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ABSTRACT  
The cyberinfrastructure supporting science will include large-scale 
simulation systems headed to exascale combined with cloud like 
systems supporting data intensive and high throughput computing, 
pleasingly parallel jobs and the long tail of science. Clouds offer 
economies of scale, elasticity supporting real time and interactive use 
and powerful new programming models such as MapReduce. We stress 
that iterative extensions of MapReduce will be necessary to get good 
performance on for several data mining (analytics) applications. We 
give several illustrations mainly from bioinformatics. We suggest that 
the data deluge implies a corresponding increase in the computational 
resources needed to support analysis and this suggests new architectures 
for large scale data repositories. 
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1. INTRODUCTION   
The importance of simulation in science is well established with large 
programs, especially in Europe, USA, Japan and China supporting it. 
The requirements and consequent architecture of large scale 
supercomputers is well understood although there are important 
challenges in meeting performance goals seen by international drives to 
reach first petascale (starting 15 years ago) and now exascale 
performance. Performance on closely coupled parallel simulations drives 
both hardware (low latency high bandwidth networks, high flop CPU’s) 
and software that can exploit it. Grids covered both the linkage of such 
computers and broader computing facilities. This has spurred rise in high 
throughput computing, workflow and service oriented architectures 
(Software as a service); concepts of lasting value. Major data intensive 
applications like LHC data analysis highlighted the many important 
pleasingly parallel applications that these were a major driver of Grid and 
many task systems. Now the strong commercial interest is driving clouds 
and we can ask how they fit in? Clouds offer on-demand service 
(elasticity), economies of scale from sharing, a plethora of new jobs 
making clouds attractive for students & curricula and several challenges 
including security. Clouds lie in between grids and HPC supercomputers 
in their synchronization costs so all the high throughput jobs run on grids 
should perform well on clouds. In this paper, we suggest that there is a 
class of explicitly parallel jobs that do not need the highest performance  
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interconnect and will have good performance and good user 
experience on clouds. We describe this in an application analysis in 
section2. Of course, HPC supercomputers can do “all applications” 
subject to reservations about limited I/O (disk) capabilities. 
However, they are overkill for many problems and it seems better 
to reserve such machines for the high-end applications that require 
them and use commodity cloud environments when appropriate. 
We stress that clouds offer not just a new humongous data center 
architecture but striking new software models spurred by the 
competitive Platform as a Service PaaS market. In section 2 we 
focus on the possibilities suggested by MapReduce. 

2. MAPPING APPLICATIONS TO CLOUDS  
Previously I discussed mapping applications to different hardware 
and software in terms of 5 “Application Architectures”[1] mainly 
aimed at simulations and extended it to data intensive computing 
[2, 3]. One category, synchronous, was popular 20 years ago but 
is no longer significant. It describes applications that can be 
parallelized with each decomposed unit running the identical 
machine instruction at each time.  Another category, 
asynchronous is typically not important in practical computational 
science and engineering. There was also a category of 
metaproblems, which describe the domain supported by workflow 
with coarse grain interlinked components. The other categories 
were pleasingly parallel (essentially independent) and loosely 
(bulk) synchronous which are critical application classes that 
possibly combined in metaproblems describe the bulk of eScience. 
As mentioned above, pleasingly parallel problems whether 
parameter searches for simulations or analysis of independent 
data chunks (as in LHC events) are very suitable for clouds. 
Loosely synchronous problems include partial differential 
equation solution and particle dynamics and after parallelization, 
consist of a succession of compute-communication phases.  
Looking at data intensive applications we can re-examine the 
pleasingly parallel and loosely synchronous category as shown in 
figure 1 above. This introduces map-only (identical to pleasing 
parallel), and separates off MapReduce and Iterative MapReduce 
classes from the large loosely synchronous class whose remaining 
members are the last sub category d) on the right of figure 1. This 
area requires HPC architectures with low latency high bandwidth 
interconnect. The MapReduce class b) consists of a single map 
(compute) phase followed by a reduction phase such as gathering 
together the results of queries following an Internet search or 
LHC data analysis (histogram) of different datasets. As 
implemented in Hadoop, one would normally communicate 
between Map and Reduce phases by writing and reading files. 
This leads to excellent fault tolerance and dynamic scheduling 
features. At SC11, there was some buzz in favor of data analytics 
and Hadoop but that this is not clearly reasonable as many data 
analysis (mining) applications involve kernels that do not fit Map 
only or MapReduce categories. Many algorithms including those 
with linear algebra (needing to be parallelized) fall into the 



category c) Iterative MapReduce in figure 1. Problems in this category 
consist of multiple (iterated) Map phases followed by reduction or 
collective operation communication phases. They do not have the many 
local communication messages typically needed in parallel simulations 
shown in fig 1d) but rather larger collective operations mixing compute 

and communication. We do not expect traditional MapReduce to be 
broadly useful but the Iterative extension is much more promising but 
the breadth of its applicability needs much more study. Iterative 
MapReduce is a programming model that can have the performance of 
MPI and the fault tolerance and dynamic flexibility of the original 
MapReduce. Open source Java Twister[4, 5] and Twister4Azure[6, 7] 
have been released as an Iterative MapReduce framework. Figure 2 
compares Twister4Azure with Amazon and a classic HPC configuration 
on a map-only case while figure 3 shows Azure4Twister having a 
smooth execution structure and modest communication overhead (the 
uncolored gaps) on a parallel data analytics algorithm. We expect the 
commonly used expectation maximization (EM) approach used for 
example in Multidimensional Scaling MDS application of fig 3, to be 
particularly attractive for iterative MapReduce as EM can have large 

compute/communication ratios. Category c) extends the clear 
value of clouds in the categories a) and b) of figure 1. 

3. CLOUDS AND REPOSITORIES 
It is traditional to set up data repositories for large observational 

projects. Examples are EOSDIS (Earth Observation), 
GenBank (Genomics), NSIDC (Polar science), and 
IPAC (Infrared astronomy). The fourth paradigm 
implies an increase in data mining (analytics) based 
on such data and this implies repositories need 
computing as well as data. We also expect that one 
should bring the computing to the data and not vice 
versa. Thus we do not expect researchers to 
download large petabyte data samples to their local 
cluster; rather we expect repositories to be associated 
with cloud resources (as cheapest and elastic) that 
allow data analytics on demand. Again further work 
is needed here. Some questions include the data 
storage architecture (database or NOSQL) and how 
one supports mining of multidisciplinary science 
involving data from different fields stored in 
different clouds. 
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Fig 1: Four applications classes and their mapping to run time/ programming models 

a) Map Only b) Classic
MapReduce

c) Iterative
MapReduce

d) Loosely 
Synchronous

CAP3 Analysis
Smith Waterman Distces
Parametric sweeps
PolarGrid Matlab data 
analysis

High Energy Physics 
(HEP) Histograms
Distributed search
Distributed sorting
Information retrieval

Expectation maximization 
Clustering e.g. Kmeans
Linear Algebra
Multidimensional Scaling
Page Rank

Many MPI scientific 
applications such as
solving differential 
equations and particle 
dynamics

Input

map

reduce

Input
map

reduce

iterations

Pij

Domain of MapReduce and Iterative Extensions MPI

Input

Output

map

Fig 2: A Map Only example pairs sequence distances 

Fig 3: Parallel MDS on Azure4Twister showing communication 
(white) and two compute map phases 
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