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ABSTRACT 
 

Use of high-level scripting languages to solve big data problems 
has become a mainstream approach for sophisticated machine 
learning data analysis. Often data must be used in several steps of 
a computation to complete a full task. Composing default data 
transformation operators with the standard Hadoop MapReduce 
runtime is very convenient. However, the current strategy of using 
high-level languages to support iterative applications with Hadoop 
MapReduce relies on an external wrapper script in other 
languages such as Python and Groovy, which causes significant 
performance loss when restarting mappers and reducers between 
jobs. In this paper, we reduce the extra job startup overheads by 
integrating Apache Pig with the high-performance Hadoop plug-
in Harp developed at Indiana University. This provides fast data 
caching and customized communication patterns among 
iterations. The results show performance improvements of factors 
from 2 to 5.   
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1. INTRODUCTION 
The MapReduce programming model has been widely adopted by 
many fields of research in computer science and scientific 
computing. It provides desirable features linking pleasingly 
parallel computation, horizontal scalability on complex parallel 
codes, and high performance on commodity clusters and clouds. 
Hadoop [1] is the Java-based, open-source project that provides 
the interfaces for implementing algorithms and applications. But 
in order to achieve the best performance, it requires advanced 
knowledge of the MapReduce programming model and significant 
programming skills in Java. Beyond MapReduce, some have built 
high-level languages such as Pig [2], Hive [3], and Shark [4] to 
support an expressive, directed, acyclic graph (DAG) computing 
model that contracts and runs jobs on top of MapReduce. These 
languages hide the complexity of MapReduce programming, 
instead providing functional operators and record-based, data-type 
abstraction, enabling users to handle different types of data 
integration in data warehouses and with less experience, iterative 

computation in scientific applications.  

So far, these high-level languages systems have been used by 
many commercial companies, including Yahoo!, Facebook, 
Amazon, and LinkedIn, and they have proven to be efficient 
enough to handle daily ETL (Extract, Transform, and Load) 
operations and ad hoc queries in many big data problems, such as 
Terabyte-level log records analysis and massive email/text 
message analysis. More than half of the MapReduce jobs 
submitted daily are said to be generated as either Pig or Hive 
scripts in these companies. However supporting iterative 
applications is nontrivial. Most of these solutions claim to be 
applicable and require developers to write user-defined functions 
(UDFs) for computing the core algorithms and wrapping the main 
language script inside of an external control-flow script to map the 
iteration data from disk to memory. As a result the performance is 
limited due to submitting multiple rounds of MapReduce jobs 
with extra job startup overhead. In addition, most of these 
language systems are built on top of Hadoop, using disk caches 
and disk I/O, meaning the data communication overhead is too 
high and soon becomes undesirable due to the overall 
performance loss.  

In this paper, we use Pig as an example and introduce Pig 
integrated with Harp [5], a fast caching MPI-like collective 
communication plugin with Hadoop. This is an attempt to 
simplify the programming model using a high-level language and 
improve the performance by providing fast data caching and 
better communication patterns between iterations. The user is to 
write UDF’s as now and link multiple steps with the Pig script; 
those UDF’s can themselves call libraries like R [6] or Apache 
Mahout. Our system will provide the data caching and high 
performance communication between parallel processes. 

The rest of this paper is organized as follows. Section 2 introduces 
the general background of Harp and Pig. Section 3 explains our 
vision of system design and improvement by integrating Pig on 
Harp. Section 4 presents targeted use cases for scientific 
applications. Section 5 shows aspects of results based on the lines 
of code, performance, and coding difficulty. Section 6 compares 
our approach with the related solutions. Section 7 sums up our 
conclusions. 

2. BACKGROUND 
Harp is a Hadoop plugin that enables loop awareness, fast in-
memory caching, and self-contained communication patterns for 
iterative computation. It replaces the default mapper interface 
with a long-running mapper that can support multi-thread/multi-
process computing and in-memory caching, instead of Hadoop’s 
default multi-process parallel computing on split key-value pairs.  
In addition, Harp provides MPI-like collective communication 
interfaces for developers to do self-defined network shuffling 
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rather than shuffling with HDFS I/O. These worthwhile features 
enable our work to gain impressive performance improvement. 

Pig is a high-level platform extensively designed for large-scale 
Hadoop MapReduce data analysis applications on raw data. Pig 
Latin [7] is the provided language that abstracts the complicated 
Java MapReduce programs into dataflow programs with simple 
notation. Internally, submitted Pig scripts are compiled into 
sequences of MapReduce jobs, which run locally as single-thread 
applications or remotely on an existing Hadoop MapReduce 
runtime. In other words, a Pig program is automatically parallel 
and easy to maintain. Pig Latin is a procedural language compared 
to traditional SQL for RDBMS. Figure 1 shows an example of 
WordCount written in Pig Latin. 

Pig is a dataflow language, each line having only a single data 
transformation, which could be nested. The WordCount program 
includes a total of seven lines of code, and the syntax is 
straightforward and easy to understand. In general, data is loaded 
as records, and each field in a record is defined according to Pig’s 
default data types: bag, tuple, and field. The length of a record is 
flexible, since tuples can contain a different number of fields in 
the same column. Other than the syntax shown in this paper, Pig 
Latin has more operations and syntax patterns that can be used for 
various data transformations. Currently, Pig misses out on 
optimized storage structures like indices and column groups, 
which may not be suitable for all applications. 

 

Figure 1. WordCount written in Pig Latin [8] 

Whenever a user submits their Pig Latin scripts in batch mode or 
enters line-by-line data transformation commands in interactive 
mode, a default compiler handles the overall execution flows. 
This compiler translates the entered Pig Latin scripts into 
machine-understandable operators and forms top-down Abstract 
Syntax Trees (AST) in different stages. It then visits the last 
compiled AST from the MapReduce Plan compiler and constructs 
MapReduce jobs in sequence. Figure 2 shows the dataflow and 
lists all major components. Similar to any programming language, 
Pig Latin checks syntax by parsing the user-submitted script into a 
parser written in ANTLR (ANother Tool for Language 
Recognition) [9]. Pig’s main driver program converts each 
MapReduce operator from Map-Reduce Operator Plan 
(MROperPlan) objects into Hadoop JobControl objects with 
detailed descriptions, input/output linkages, and other parameters, 
which are then passed along to each worker node with the general 
system configuration in xml format. These translations generate 
Java jar files as MapReduce jobs that contain the Pig default Map 
and Reduce classes, including the user-defined functions if any. 
The package jar files are submitted to Hadoop Job Manager in 
sequences, and job progress is monitored until finished. 

 
 
 

Figure 2. Pig High Level Dataflow 
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Figure 3. Iterative applications with Pig on Hadoop 
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Figure 4. Iterative application with Pig on Harp 

 

1 input    = LOAD 'input.txt' AS   
             (line:chararray); 
2 words    = FOREACH input GENERATE  
             FLATTEN(TOKENIZE(line)) AS word; 
3 filWords = FILTER words BY word MATCHES 
'\\w+'; 
4 wdGroups = GROUP filWords BY word; 
5 wdCount  = FOREACH wdGroups GENERATE group AS  
             word, COUNT(filWords) AS count; 
6 ordWdCnt = ORDER wdCount BY count DESC; 
7 STORE ordWdCnt INTO 'result'; 
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3. PIG IN SUPPORTING ITERATIVE 
APPLICATIONS 
Pig is good enough for general ETL applications, however it does 
badly in supporting iterative applications. When writing Pig 
programs for iterative applications, the control flow should be 
similar to what is shown in Figure 3. The need for an external 
wrapper script is vital, because Pig syntax does not provide a 
control flow statement.  Therefore, a submitted program runs in 
several rounds of MapReduce jobs with extra overhead from 
unnecessary job startup and cleanup time, which hugely decreases 
overall performance. Additionally, inputs of iterative applications 
are normally unchanged and cacheable in every iteration, whereas 
Pig is a DAG framework that cannot cache those inputs in 
memory and reuse them efficiently.   
Due to the obvious fact that Pig lacks the features of loop-
awareness and in-memory caching, our approach is to investigate 
and apply possible extensions to Pig based on the DAG 
computation model. There are several iterative MapReduce 
framework candidates: Twister [10], Spark [11], HaLoop [12], 
and Harp. We choose Harp for our initial approach, as it is a 
simple MapReduce extension that supports our required features. 
With Harp integration, we mainly replace the Hadoop Mapper 
interface with Harp’s MapCollective, long-running mapper to 
support conditional loops. Subsequently, iterative applications 
implemented in Pig can cache reusable data and replace the 
default GROUP BY operation with Harp’s collective 
communication interface. We compare the original reduce stages 
against Harp’s communication in Section 5. Figure 4 shows 
overall dataflow that can be applied to any iterative applications. 

4. USE CASE 
The proposal applications are K-means clustering and PageRank, 
both popular iterative algorithms for scientific computation, but 
our approach could be extended to other algorithms as long as 
user-defined functions are correctly implemented, e.g. naïve bayes 
classifier. We compare two versions of implementation for these 
two algorithms, one implemented on Hadoop 2.2.0 and another 
built on Harp 0.1.0, both scheduled on YARN resource manager. 

 
Figure 5. Pig K-means on Hadoop for a single iteration 

4.1 Pig K-means on Hadoop 
Here, Pig K-means on Hadoop implementation is split into three 
pieces: a python control-flow script, a Pig data-transform script 
for a single iteration, and two K-means user-defined functions 
written with a Pig-provided Java interface. During every iteration, 
our customized Loader in each Mapper loads the centroids into 
memory from distributed caches on disk before computing the 
Euclidean distances for data points. It then uses the Pig standard 
GROUP operation for collecting partial centroid vectors from 
mappers. Afterwards, it takes the average of all partitions and 

emits a final centroids file back to HDFS for the next iteration. 
Figure 5 shows a single iteration of K-means written in Pig Latin. 

4.2 Pig K-means on Harp 
In the case of Pig K-means running on Harp, the customized 
Loader in each Mapper first loads the initial centroids and data 
points one time from HDFS to memory as cache for all iterations. 
Then UDF computes the Euclidean distance and emits partial 
centroids locally. Harp’s communication layer then exchanges 
these partial centroids on each mapper. By default, our UDF uses 
AllReduce to synchronize among all partitions. The program 
reuses the same set of mapper processes until break conditions 
have been met.  

 
Figure 6. Pig K-means on Harp 

The script in Figure 6 illustrates a similar idea of using R. Users 
only consider the parameters provided to the existing interface, 
such as number of mappers, total amount of iterations, 
communication patterns used for global data synchronization, etc. 
Note that developers must have a deep understanding of using 
Hadoop and Harp as well as distributed system knowledge in 
order to achieve the best performance. 

4.3 Pig PageRank on Hadoop 
For PageRank implemented in Pig, we use fewer UDF functions 
and utilize the Pig operators and built-in functions for page rank 
computation to see how Pig performs. As shown in Figure 7, a Pig 
script for a single iteration of the PageRank algorithm is created 
and iteratively invoked by a Java wrapper. Steps in this script 
involve: a) Load the given input file using the custom loader into 
variable raw; b) Extract the outgoing URLs and emit the outgoing 
URL and partial page rank from the source URL; c) CO-GROUP 
above two aliases to calculate new page rank and store it in an 
alias newPgRank; d) Store this new page rank into a HDFS temp 
file, which will be the input file for our next iteration. One 
drawback of this program is that the default Pig runtime optimizer 
creates extra mappers for the final step when it calls the raw 
variable for the CO-GROUP operators, using extra computing and 
memory resources. 

 
Figure 7. Pig PageRank on Hadoop for a single iteration 

4.4 Pig PageRank on Harp 
For PageRank implemented on Harp, we create a new data loader 
and write UDFs for computing the access probabilities for each 
web page. For the initial iteration, data is loaded in a graph data 

1 raw     = LOAD $hdfsInputDir using  
            PigKmeans('$centroids', 
            '$numOfCentroids') AS (datapoints); 
2 dptsBag = FOREACH raw GENERATE 
            FLATTEN(datapoints) as dptInStr;  
3 dpts    = FOREACH dptsBag GENERATE  
            STRSPLIT(dptInStr, ',', 5) AS  
            splitedDP; 
4 grouped = GROUP dpts BY splitedDP.$0; 
5 newCens = FOREACH grouped GENERATE  
            CalculateNewCentroids($1); 
6 STORE newCens INTO 'output'; 
 

1 centds = LOAD $hdfsInputDir using  
           HarpKmeans('$initCentroidOnHDFS',  
           '$numOfCentroids', '$numOfMappers',  
           '$iteration', '$jobID', '$Comm') as  
           (result); 
2 STORE centroids INTO '$output'; 

1 raw       = LOAD '$InputDir' USING  
              CmLoader('$noOfURLs','$itrs') as    
              (source,pagerank, out:bag{}); 
2 prePgRank = FOREACH raw GENERATE FLATTEN(out)  
              as source, pagerank/SIZE(out) as  
              pagerank; 
3 newPgRank = FOREACH (COGROUP raw by source,  
              prePgRank by source OUTER)GENERATE    
              group as source, (1-$dpFactor) +   
              $dpFactor*(SUM(prePgRank.pagerank)  
              IS NULL?0:SUM(prePgRank.pagerank))  
              as pagerank, FLATTEN(raw.out)  
              as out; 
4 STORE newPgRank INTO '$outputFile'; 



structure where vertices are partitioned across all worker nodes. 
Each vertex has all its in-edges information by calling 
regroupEdges collective communication, and amount of out-edges 
is sent to all vertices by calling an AllMsgToAllVtx operation. 
This vertex and edge information is cached in memory for all 
iterations. Finally, whenever the page rank values of each vertex 
on a worker node are changed during an iteration, they are 
distributed by an AllGather communication until the program 
meets break conditions, e.g. the end of iterations. The script 
shown in Figure 9 is similar to the approach of Pig K-Means on 
Harp. 

 
Figure 9. Pig PageRank on Harp 

5. RESULTS 
We have investigated the lines of code in detailed 
implementations using Pig against other platforms. Also we have 
run a standard computation comparison for each algorithm to see 
the performance difference. We construct our experiments on 
vertical and horizontal scales. We keep the same ratio between the 
amount of data points and amount of centroids, and we try to see 
the data loading, cache access, and computation overhead within 
the same environment. Meanwhile, we increase the computing 
resources in parallel by adding more mappers to each case in 
order to see the parallelism and communication overhead. Results 
shown in Figure 8 are obtained from our local cluster Madrid with 
Hadoop 2.2.0 and Pig 0.12.0. The specification and configuration 
are described below.  
Madrid: An 8-node cluster with an extra head node; each worker 
has 4 AMD Opteron 8356’s at 2.30GHz with 4 cores, totaling 16 
cores per node, installed with 16GB node memory and a 1Gbps 
Ethernet network connection. It runs Red Hat Enterprise Linux 
Server release 6.5. 
Hadoop 2.2.0: We run all the master services, such as resource 
manager, namenode, application master, etc. on the head node. 
Each worker starts with node manager and datanode service, and 
any job can obtain up to 13GB of memory per node. By default 
each process spawns 1GB memory. For Harp, as its multithread 
computing model, we give the master process on each worker a 
total of 13GB memory.  
Pig 0.12.0: We use the latest stable version released on Oct 13th, 
2013 for general Pig applications. In addition we embedded 

Harp’s MapCollective Mapper into Pig and made the customized 
version run on top of Harp.  
For K-means, we have set up three major batches of performance 
tests: a) 100 million data points against 500 centroids; b) 10 
million data points against 5000 centroids; c) 1 million data points 
against 50k centroids. All of these are executed with different 
mappers and partition sizes, such as 24, 48, and 96 on the Madrid 
cluster. For PageRank, we perform a strong scaling test on a 
dataset with 2 million vertices, and it is executed with mappers 
and partition sizes of 8, 16, and 32. 

Table 1. K-Means implemented on Pig, Harp and Hadoop 

 Hadoop  
K-means 

Pig  
K-means 

on 
Hadoop 

Harp  
K-means 

Pig  
K-means 
on Harp 

Kmeans 36 39 39 39 
 Load  & 
Format 261 250 499 662 

Reduce / 
Comm. 142 56 34 34 

Pig 0 10 0 3 
Driver / 

Wrapper 341 40 176 0 

Total lines 780 395 748 738 

Table 2. PageRank implemented on Pig and Harp 

 
Pig  

PageRank on 
Hadoop 

Harp  
PageRank 

Pig  
PageRank on 

Harp 

PageRank 1 56 56 
 Load  & 
Format 50 386 494 

Reduce / 
Comm. 0 4 4 

Pig 4 0 3 
Driver / 

Wrapper 70 90 0 

Total lines 125 536 557 
 

5.1 Coding Style 
Table 1 has shown the lines of code for a K-means application 
implemented on Pig and other platforms. In general, applications 
written in Pig require less code, as it does not include the control 
flow statements. By contrast, the native Java MapReduce 
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Figure 8. K-means Clustering Performance Comparison across different platforms 

1 pagerank = LOAD '$InputDir' using  
             HarpPageRank('$totalUrls',  
             '$numMaps', '$itrs', '$jobID')  
             as (result); 
2 STORE pagerank INTO '$output'; 



implementation requires more lines to define the variables and 
data transformation functions. But in some sense these data 
transformations are exactly the same code as Pig’s UDFs when 
implemented. In our case of K-means clustering, Pig K-means on 
Hadoop is implemented as a MPMD model, which must include a 
wrapper written in the support language, e.g. Python or other 
supported language. For Pig K-means in Harp, the amount of code 
is almost the same as Harp K-means; the UDFs contain the 
customized data loading, computation and user-defined 
communication. This is similar to PageRank shown in Table 2, 
but in the case of Pig implementation on Hadoop, we write less 
code, as we only rewrite a customized data loader. These tables 
record the "Load & Format" row that covers the lines of codes 
that loads and stores data from/to file system. It also includes lines 
that transform abstracted data type to java primitive data type 
before any computation, and convert java primitive data type to 
Harp data type when using collective communication. In our 
projected scientific Pig this capability would be included in 
system and would not be responsibility of the user. 
We stress that our tests do not demonstrate a key advantage of 
“Scientific Pig”; namely the ability to efficiently link (pipeline) 
multiple analysis steps on the same data sample. 

5.2 Performance and Parallelism 
For K-means comparison, seen in Figure 8, most of the Pig tests 
on Hadoop are slower than pure Hadoop cases and Harp cases. 
The performance difference is due to the implementation of using 
Pig, which generates larger intermediate data when emitting the 
partial centroids result as a databag instead of key-value pairs; the 
shuffling stage before the reduce computation also takes longer. In 
addition, for the 1 million data points with 50K centroids, Hadoop 
and Pig Hadoop have a huge performance loss, as they have to 
reload the centroids for each iteration, and the computing 
centroids array grows beyond L2 & L3 cache and influences the 
mapper computation time. In sum, Harp performs the best, as it is 
highly optimized. Meanwhile, Pig Harp tests closely achieve a 
similar performance. 

 
Figure 11. PageRank Performance Comparison 

We have also enlarged and compared the timing detail between 
Harp and Pig Harp, as shown in Figure 10. In most cases, the 
overhead of using Pig as an external wrapper is small, and we 
even have interesting findings that Pig on Harp with multi-
processes computing model has good performance. Harp shows 
the advantages of its default multi-threads when we have the same 
L2 & L3 cache effect of in-memory cache for large centroids, e.g. 
50,000 centroids against 1 million data points; the pure mapper 
computation time is 2 times slower. Communication takes longer, 
as more processes generate more messages, and it lacks in-node 
global data reduction. But since the Harp communication module 
is highly optimized for object serialization and deserialization, the 
overhead in our tests is still acceptable.  
For the PageRank result shown in Figure 11, we display several 
variations to compare the native Pig implementation on Hadoop 
against Harp’s integrations. All the cases implemented on Harp 
run 10 times faster than the pure Pig implementation. This is 
because the loop-unawareness record-based computation of native 
Pig PageRank takes longer; data is reloaded every iteration, Pig 
data type conversion time between databag and fields cost extra 
overhead, and compute processes are restarted with every job. 
Additionally, as seen in Figure 12, the Pig with Harp integration 
performs close to the native Harp multi-threads and multi-
processes implementation. Due to AllGather communication used 
in Harp for page rank values updated between iterations, the 
larger number of partitions is likely to increase the overall 
communication time; this is also similar to a native Pig 
implementation where reduce stages take longer for the case of 32 
mappers. 
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Figure 10. Performance details of Harp K-means and Pig K-means on Harp 
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Figure 12. Performance details of PageRank 

5.3 Coding Difficulties 
Rewriting all the code from Java Hadoop MapReduce to Pig is not 
difficult in general, as Pig is designed to run data warehouse 
applications on top of Hadoop. The only problems we meet here 
are the logic of how the data is stored in Pig’s data format and 
how it could retrieve the correct form of data from abstracted data 
formats before passing it to computation. In our experience, even 
if this is a legacy code from other languages, as long as it is 
convertible to Java, the rewriting process will look for suitable 
Java libraries or rewrite the function in Java to replace the legacy 
libraries. For Pig with Harp integration, it might be a bit difficult 
for beginners, as they need to understand the background of 
Hadoop, Pig, and Harp, respectively.  

6. RELATED WORK 
DataFu [13] is an Apache open-source project that provides a 
collection of libraries for working with large-scale data in Hadoop 
and Pig, especially the subdivision of DataFu Pig, which provides 
a good set of UDFs for developers working in data mining and 
statistics. Our project shares these similarities, but we focus on the 
performance for iterative applications and research purposes using 
Apache open source stacks for data scientists.  
Shark [4] integrates Spark [11] with Apache Hive to support the 
SQL community. They have implemented Hive K-means as an 
example shown on their project website. The use of Spark and 
RDDs [14] provides the possibility of writing iterative 
applications into one Scala script by first extracting the read-only 
data into RDDs, then computing the core iterative algorithms with 
the Spark runtime. We intend to compare Shark with Pig+Harp in 
our future work. 
Cascading [15] is a Java library built on top of Hadoop to support 
data-parallel pipelines, it’s similar to Pig but it constructs data 
pipeline as DAG flow from source tap to sink tap 
programmatically by writing linkage for each component in pipe 
that maps into MapReduce jobs. Unlike our work, Cascading 
naturally supports iterative applications as a dependency ordered 
DAG, where developers need to write the correct Riffle 
annotations to link the input and output as source and sink 
between iterations. In addition, although Cascading consider 
unchanged data source/sink as reusable logic unit, it does not 
support in-memory data caching between iterations. Some have 
commented that Cascading as a library maintaining the full 
expressivity of Java is more powerful than Pig as a specialized 
language. We hope to look at a Harp enhanced Cascading as a 
technical data analysis environment in the future. 

Apache Tez [16] is an Apache incubator project that optimizes 
Pig/Hive’s script compiler to construct a complex DAG dataflow, 
originally compiled into multiple MapReduce jobs, into a single 
MapReduce job which boosts the performance and reuses the 
same set of mappers and reducers. Still, this approach does not 
support loop-aware computation and in-memory caches from the 
default Pig/Hive language syntax, and the Pig community does 
not have any alpha release for version 0.12.x on this track.      
HaLoop is another academic project that extends Hadoop to 
support loop-aware task scheduling and on-disk caching for 
iterative applications. Users of HaLoop need be less aware of the 
system and write and set fewer java classes for data passing 
between iterations, where inter-iteration data shuffling is 
optimized by the modified task scheduler to reuse the same 
physical node. Currently, HaLoop does not provide high-level 
language support, but we believe that our integration with Harp 
could also be applied on HaLoop to achieve the same goals. 

7. CONCLUSION 
We have successfully integrated Pig with Harp and have 
presented the idea of writing applications in Pig as a SPMD model 
instead of MPMD. Our results show that Pig with Harp can 
achieve nearly the same performance compared to pure Harp 
implementations, although the developer must have fundamental 
knowledge of and familiarity with MapReduce, Harp architecture, 
and programming skills. Moreover, we have shown the possibility 
of providing user-friendly libraries to users. One may harbor 
doubts such as, “Why don’t we use RHadoop [17] or other 
scripting libraries directly instead of integrating Pig to achieve 
similar goals?” Our approach is motivated by the fact that Hadoop 
and Apache open-source stacks are designed as the mainstream 
tools for handling big data problems. In order to achieve the best 
performance, we should leverage these building blocks to 
maximize the usage of existing features, such as expressiveness of 
data type and data structure, automatic parallelization for 
applications, and algorithms. This motivated our switch [18, 19] 
from custom iterative MapReduce such as our successful Twister 
system [10] to development of a Hadoop plug-in to support 
Iterative MapReduce. To support large scale iterative applications 
in Pig with Harp, we suggest developers should minimize the 
overhead of using Pig; one should avoid the slow record-based 
computation and replace aggregation operators by writing 
customized collective communication. In addition, as Pig with 
Harp integration is compatible with existing Pig operators and 
functions, users can select the best UDFs run on different 
platforms and construct the ideal Pig pipeline for their data 
analysis.  
Our current results have not considered and investigated data 
access patterns, general data abstractions, optimization of Pig 
operators, or using Pig to link scientific data pipelines as an end-
to-end solution in the sense of using high-level languages to solve 
parallel computing problems. We may go further in this direction 
as future work which aims at a version of Pig optimized for 
technical data analytics. 
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