
Integrating Pig with Harp to Support Iterative Applications
with Fast Cache and Customized Communication

Tak Lon Wu, Abhilash Koppula, Judy Qiu
School of Informatics and Computing

Indiana University,
Bloomington, IN, 47408

[taklwu, akoppula, xqiu]@indiana.edu

ABSTRACT

Use of high-level scripting languages to solve big data problems
has become a mainstream approach for sophisticated machine
learning data analysis. Often data must be used in several steps of
a computation to complete a full task. Composing default data
transformation operators with the standard Hadoop MapReduce
runtime is very convenient. However, the current strategy of using
high-level languages to support iterative applications with Hadoop
MapReduce relies on an external wrapper script in other
languages such as Python and Groovy, which causes significant
performance loss when restarting mappers and reducers between
jobs. In this paper, we reduce the extra job startup overheads by
integrating Apache Pig with the high-performance Hadoop plug-
in Harp developed at Indiana University. This provides fast data
caching and customized communication patterns among
iterations. The results show performance improvements of factors
from 2 to 5.

Keywords
Pig, Iterative Algorithms, Big Data, Language, MapReduce.

1. INTRODUCTION
The MapReduce programming model has been widely adopted by
many fields of research in computer science and scientific
computing. It provides desirable features linking pleasingly
parallel computation, horizontal scalability on complex parallel
codes, and high performance on commodity clusters and clouds.
Hadoop [1] is the Java-based, open-source project that provides
the interfaces for implementing algorithms and applications. But
in order to achieve the best performance, it requires advanced
knowledge of the MapReduce programming model and significant
programming skills in Java. Beyond MapReduce, some have built
high-level languages such as Pig [2], Hive [3], and Shark [4] to
support an expressive, directed, acyclic graph (DAG) computing
model that contracts and runs jobs on top of MapReduce. These
languages hide the complexity of MapReduce programming,
instead providing functional operators and record-based, data-type
abstraction, enabling users to handle different types of data
integration in data warehouses and with less experience, iterative

computation in scientific applications.

So far, these high-level languages systems have been used by
many commercial companies, including Yahoo!, Facebook,
Amazon, and LinkedIn, and they have proven to be efficient
enough to handle daily ETL (Extract, Transform, and Load)
operations and ad hoc queries in many big data problems, such as
Terabyte-level log records analysis and massive email/text
message analysis. More than half of the MapReduce jobs
submitted daily are said to be generated as either Pig or Hive
scripts in these companies. However supporting iterative
applications is nontrivial. Most of these solutions claim to be
applicable and require developers to write user-defined functions
(UDFs) for computing the core algorithms and wrapping the main
language script inside of an external control-flow script to map the
iteration data from disk to memory. As a result the performance is
limited due to submitting multiple rounds of MapReduce jobs
with extra job startup overhead. In addition, most of these
language systems are built on top of Hadoop, using disk caches
and disk I/O, meaning the data communication overhead is too
high and soon becomes undesirable due to the overall
performance loss.

In this paper, we use Pig as an example and introduce Pig
integrated with Harp [5], a fast caching MPI-like collective
communication plugin with Hadoop. This is an attempt to
simplify the programming model using a high-level language and
improve the performance by providing fast data caching and
better communication patterns between iterations. The user is to
write UDF’s as now and link multiple steps with the Pig script;
those UDF’s can themselves call libraries like R [6] or Apache
Mahout. Our system will provide the data caching and high
performance communication between parallel processes.

The rest of this paper is organized as follows. Section 2 introduces
the general background of Harp and Pig. Section 3 explains our
vision of system design and improvement by integrating Pig on
Harp. Section 4 presents targeted use cases for scientific
applications. Section 5 shows aspects of results based on the lines
of code, performance, and coding difficulty. Section 6 compares
our approach with the related solutions. Section 7 sums up our
conclusions.

2. BACKGROUND
Harp is a Hadoop plugin that enables loop awareness, fast in-
memory caching, and self-contained communication patterns for
iterative computation. It replaces the default mapper interface
with a long-running mapper that can support multi-thread/multi-
process computing and in-memory caching, instead of Hadoop’s
default multi-process parallel computing on split key-value pairs.
In addition, Harp provides MPI-like collective communication
interfaces for developers to do self-defined network shuffling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XXX-X/XX/XXXX …$15.00.

rather than shuffling with HDFS I/O. These worthwhile features
enable our work to gain impressive performance improvement.

Pig is a high-level platform extensively designed for large-scale
Hadoop MapReduce data analysis applications on raw data. Pig
Latin [7] is the provided language that abstracts the complicated
Java MapReduce programs into dataflow programs with simple
notation. Internally, submitted Pig scripts are compiled into
sequences of MapReduce jobs, which run locally as single-thread
applications or remotely on an existing Hadoop MapReduce
runtime. In other words, a Pig program is automatically parallel
and easy to maintain. Pig Latin is a procedural language compared
to traditional SQL for RDBMS. Figure 1 shows an example of
WordCount written in Pig Latin.

Pig is a dataflow language, each line having only a single data
transformation, which could be nested. The WordCount program
includes a total of seven lines of code, and the syntax is
straightforward and easy to understand. In general, data is loaded
as records, and each field in a record is defined according to Pig’s
default data types: bag, tuple, and field. The length of a record is
flexible, since tuples can contain a different number of fields in
the same column. Other than the syntax shown in this paper, Pig
Latin has more operations and syntax patterns that can be used for
various data transformations. Currently, Pig misses out on
optimized storage structures like indices and column groups,
which may not be suitable for all applications.

Figure 1. WordCount written in Pig Latin [8]

Whenever a user submits their Pig Latin scripts in batch mode or
enters line-by-line data transformation commands in interactive
mode, a default compiler handles the overall execution flows.
This compiler translates the entered Pig Latin scripts into
machine-understandable operators and forms top-down Abstract
Syntax Trees (AST) in different stages. It then visits the last
compiled AST from the MapReduce Plan compiler and constructs
MapReduce jobs in sequence. Figure 2 shows the dataflow and
lists all major components. Similar to any programming language,
Pig Latin checks syntax by parsing the user-submitted script into a
parser written in ANTLR (ANother Tool for Language
Recognition) [9]. Pig’s main driver program converts each
MapReduce operator from Map-Reduce Operator Plan
(MROperPlan) objects into Hadoop JobControl objects with
detailed descriptions, input/output linkages, and other parameters,
which are then passed along to each worker node with the general
system configuration in xml format. These translations generate
Java jar files as MapReduce jobs that contain the Pig default Map
and Reduce classes, including the user-defined functions if any.
The package jar files are submitted to Hadoop Job Manager in
sequences, and job progress is monitored until finished.

Figure 2. Pig High Level Dataflow

Control
Script

Terminated?

Pig Script

Result

HDFS

M M M M

R R R
YARN

Load UDF

Map UDF

Reduce UDF

Figure 3. Iterative applications with Pig on Hadoop

Terminated?

Result

M M M M
Collective Communication

YARN

C C C Cin-memory
cache

Pig Script

HDFS

Load &
Map UDF

with
Cond.
Loop

Figure 4. Iterative application with Pig on Harp

1 input = LOAD 'input.txt' AS
 (line:chararray);
2 words = FOREACH input GENERATE
 FLATTEN(TOKENIZE(line)) AS word;
3 filWords = FILTER words BY word MATCHES
'\\w+';
4 wdGroups = GROUP filWords BY word;
5 wdCount = FOREACH wdGroups GENERATE group AS
 word, COUNT(filWords) AS count;
6 ordWdCnt = ORDER wdCount BY count DESC;
7 STORE ordWdCnt INTO 'result';

Pig Latin Syntax Parser

Logical Plan Builder,
Compiler, Optimizer

Physical Plan Compiler,
Optimizer

MapReduce Plan Compiler

MapReduce Plan Optimizer

Hadoop Job Manager

3. PIG IN SUPPORTING ITERATIVE
APPLICATIONS
Pig is good enough for general ETL applications, however it does
badly in supporting iterative applications. When writing Pig
programs for iterative applications, the control flow should be
similar to what is shown in Figure 3. The need for an external
wrapper script is vital, because Pig syntax does not provide a
control flow statement. Therefore, a submitted program runs in
several rounds of MapReduce jobs with extra overhead from
unnecessary job startup and cleanup time, which hugely decreases
overall performance. Additionally, inputs of iterative applications
are normally unchanged and cacheable in every iteration, whereas
Pig is a DAG framework that cannot cache those inputs in
memory and reuse them efficiently.
Due to the obvious fact that Pig lacks the features of loop-
awareness and in-memory caching, our approach is to investigate
and apply possible extensions to Pig based on the DAG
computation model. There are several iterative MapReduce
framework candidates: Twister [10], Spark [11], HaLoop [12],
and Harp. We choose Harp for our initial approach, as it is a
simple MapReduce extension that supports our required features.
With Harp integration, we mainly replace the Hadoop Mapper
interface with Harp’s MapCollective, long-running mapper to
support conditional loops. Subsequently, iterative applications
implemented in Pig can cache reusable data and replace the
default GROUP BY operation with Harp’s collective
communication interface. We compare the original reduce stages
against Harp’s communication in Section 5. Figure 4 shows
overall dataflow that can be applied to any iterative applications.

4. USE CASE
The proposal applications are K-means clustering and PageRank,
both popular iterative algorithms for scientific computation, but
our approach could be extended to other algorithms as long as
user-defined functions are correctly implemented, e.g. naïve bayes
classifier. We compare two versions of implementation for these
two algorithms, one implemented on Hadoop 2.2.0 and another
built on Harp 0.1.0, both scheduled on YARN resource manager.

Figure 5. Pig K-means on Hadoop for a single iteration

4.1 Pig K-means on Hadoop
Here, Pig K-means on Hadoop implementation is split into three
pieces: a python control-flow script, a Pig data-transform script
for a single iteration, and two K-means user-defined functions
written with a Pig-provided Java interface. During every iteration,
our customized Loader in each Mapper loads the centroids into
memory from distributed caches on disk before computing the
Euclidean distances for data points. It then uses the Pig standard
GROUP operation for collecting partial centroid vectors from
mappers. Afterwards, it takes the average of all partitions and

emits a final centroids file back to HDFS for the next iteration.
Figure 5 shows a single iteration of K-means written in Pig Latin.

4.2 Pig K-means on Harp
In the case of Pig K-means running on Harp, the customized
Loader in each Mapper first loads the initial centroids and data
points one time from HDFS to memory as cache for all iterations.
Then UDF computes the Euclidean distance and emits partial
centroids locally. Harp’s communication layer then exchanges
these partial centroids on each mapper. By default, our UDF uses
AllReduce to synchronize among all partitions. The program
reuses the same set of mapper processes until break conditions
have been met.

Figure 6. Pig K-means on Harp

The script in Figure 6 illustrates a similar idea of using R. Users
only consider the parameters provided to the existing interface,
such as number of mappers, total amount of iterations,
communication patterns used for global data synchronization, etc.
Note that developers must have a deep understanding of using
Hadoop and Harp as well as distributed system knowledge in
order to achieve the best performance.

4.3 Pig PageRank on Hadoop
For PageRank implemented in Pig, we use fewer UDF functions
and utilize the Pig operators and built-in functions for page rank
computation to see how Pig performs. As shown in Figure 7, a Pig
script for a single iteration of the PageRank algorithm is created
and iteratively invoked by a Java wrapper. Steps in this script
involve: a) Load the given input file using the custom loader into
variable raw; b) Extract the outgoing URLs and emit the outgoing
URL and partial page rank from the source URL; c) CO-GROUP
above two aliases to calculate new page rank and store it in an
alias newPgRank; d) Store this new page rank into a HDFS temp
file, which will be the input file for our next iteration. One
drawback of this program is that the default Pig runtime optimizer
creates extra mappers for the final step when it calls the raw
variable for the CO-GROUP operators, using extra computing and
memory resources.

Figure 7. Pig PageRank on Hadoop for a single iteration

4.4 Pig PageRank on Harp
For PageRank implemented on Harp, we create a new data loader
and write UDFs for computing the access probabilities for each
web page. For the initial iteration, data is loaded in a graph data

1 raw = LOAD $hdfsInputDir using
 PigKmeans('$centroids',
 '$numOfCentroids') AS (datapoints);
2 dptsBag = FOREACH raw GENERATE
 FLATTEN(datapoints) as dptInStr;
3 dpts = FOREACH dptsBag GENERATE
 STRSPLIT(dptInStr, ',', 5) AS
 splitedDP;
4 grouped = GROUP dpts BY splitedDP.$0;
5 newCens = FOREACH grouped GENERATE
 CalculateNewCentroids($1);
6 STORE newCens INTO 'output';

1 centds = LOAD $hdfsInputDir using
 HarpKmeans('$initCentroidOnHDFS',
 '$numOfCentroids', '$numOfMappers',
 '$iteration', '$jobID', '$Comm') as
 (result);
2 STORE centroids INTO '$output';

1 raw = LOAD '$InputDir' USING
 CmLoader('$noOfURLs','$itrs') as
 (source,pagerank, out:bag{});
2 prePgRank = FOREACH raw GENERATE FLATTEN(out)
 as source, pagerank/SIZE(out) as
 pagerank;
3 newPgRank = FOREACH (COGROUP raw by source,
 prePgRank by source OUTER)GENERATE
 group as source, (1-$dpFactor) +
 $dpFactor*(SUM(prePgRank.pagerank)
 IS NULL?0:SUM(prePgRank.pagerank))
 as pagerank, FLATTEN(raw.out)
 as out;
4 STORE newPgRank INTO '$outputFile';

structure where vertices are partitioned across all worker nodes.
Each vertex has all its in-edges information by calling
regroupEdges collective communication, and amount of out-edges
is sent to all vertices by calling an AllMsgToAllVtx operation.
This vertex and edge information is cached in memory for all
iterations. Finally, whenever the page rank values of each vertex
on a worker node are changed during an iteration, they are
distributed by an AllGather communication until the program
meets break conditions, e.g. the end of iterations. The script
shown in Figure 9 is similar to the approach of Pig K-Means on
Harp.

Figure 9. Pig PageRank on Harp

5. RESULTS
We have investigated the lines of code in detailed
implementations using Pig against other platforms. Also we have
run a standard computation comparison for each algorithm to see
the performance difference. We construct our experiments on
vertical and horizontal scales. We keep the same ratio between the
amount of data points and amount of centroids, and we try to see
the data loading, cache access, and computation overhead within
the same environment. Meanwhile, we increase the computing
resources in parallel by adding more mappers to each case in
order to see the parallelism and communication overhead. Results
shown in Figure 8 are obtained from our local cluster Madrid with
Hadoop 2.2.0 and Pig 0.12.0. The specification and configuration
are described below.
Madrid: An 8-node cluster with an extra head node; each worker
has 4 AMD Opteron 8356’s at 2.30GHz with 4 cores, totaling 16
cores per node, installed with 16GB node memory and a 1Gbps
Ethernet network connection. It runs Red Hat Enterprise Linux
Server release 6.5.
Hadoop 2.2.0: We run all the master services, such as resource
manager, namenode, application master, etc. on the head node.
Each worker starts with node manager and datanode service, and
any job can obtain up to 13GB of memory per node. By default
each process spawns 1GB memory. For Harp, as its multithread
computing model, we give the master process on each worker a
total of 13GB memory.
Pig 0.12.0: We use the latest stable version released on Oct 13th,
2013 for general Pig applications. In addition we embedded

Harp’s MapCollective Mapper into Pig and made the customized
version run on top of Harp.
For K-means, we have set up three major batches of performance
tests: a) 100 million data points against 500 centroids; b) 10
million data points against 5000 centroids; c) 1 million data points
against 50k centroids. All of these are executed with different
mappers and partition sizes, such as 24, 48, and 96 on the Madrid
cluster. For PageRank, we perform a strong scaling test on a
dataset with 2 million vertices, and it is executed with mappers
and partition sizes of 8, 16, and 32.

Table 1. K-Means implemented on Pig, Harp and Hadoop

 Hadoop
K-means

Pig
K-means

on
Hadoop

Harp
K-means

Pig
K-means
on Harp

Kmeans 36 39 39 39
 Load &
Format 261 250 499 662

Reduce /
Comm. 142 56 34 34

Pig 0 10 0 3
Driver /

Wrapper 341 40 176 0

Total lines 780 395 748 738

Table 2. PageRank implemented on Pig and Harp

Pig

PageRank on
Hadoop

Harp
PageRank

Pig
PageRank on

Harp

PageRank 1 56 56
 Load &
Format 50 386 494

Reduce /
Comm. 0 4 4

Pig 4 0 3
Driver /

Wrapper 70 90 0

Total lines 125 536 557

5.1 Coding Style
Table 1 has shown the lines of code for a K-means application
implemented on Pig and other platforms. In general, applications
written in Pig require less code, as it does not include the control
flow statements. By contrast, the native Java MapReduce

0

500

1000

1500

2000

100m * 500 10m * 5000 1m * 50000 100m * 500 10m * 5000 1m * 50000 100m * 500 10m * 5000 1m * 50000

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Data Size (Data points * Centriods Size)

Hadoop Pig Hadoop
Harp Pig Harp

24 mappers

48 mappers

96 mappers

Figure 8. K-means Clustering Performance Comparison across different platforms

1 pagerank = LOAD '$InputDir' using
 HarpPageRank('$totalUrls',
 '$numMaps', '$itrs', '$jobID')
 as (result);
2 STORE pagerank INTO '$output';

implementation requires more lines to define the variables and
data transformation functions. But in some sense these data
transformations are exactly the same code as Pig’s UDFs when
implemented. In our case of K-means clustering, Pig K-means on
Hadoop is implemented as a MPMD model, which must include a
wrapper written in the support language, e.g. Python or other
supported language. For Pig K-means in Harp, the amount of code
is almost the same as Harp K-means; the UDFs contain the
customized data loading, computation and user-defined
communication. This is similar to PageRank shown in Table 2,
but in the case of Pig implementation on Hadoop, we write less
code, as we only rewrite a customized data loader. These tables
record the "Load & Format" row that covers the lines of codes
that loads and stores data from/to file system. It also includes lines
that transform abstracted data type to java primitive data type
before any computation, and convert java primitive data type to
Harp data type when using collective communication. In our
projected scientific Pig this capability would be included in
system and would not be responsibility of the user.
We stress that our tests do not demonstrate a key advantage of
“Scientific Pig”; namely the ability to efficiently link (pipeline)
multiple analysis steps on the same data sample.

5.2 Performance and Parallelism
For K-means comparison, seen in Figure 8, most of the Pig tests
on Hadoop are slower than pure Hadoop cases and Harp cases.
The performance difference is due to the implementation of using
Pig, which generates larger intermediate data when emitting the
partial centroids result as a databag instead of key-value pairs; the
shuffling stage before the reduce computation also takes longer. In
addition, for the 1 million data points with 50K centroids, Hadoop
and Pig Hadoop have a huge performance loss, as they have to
reload the centroids for each iteration, and the computing
centroids array grows beyond L2 & L3 cache and influences the
mapper computation time. In sum, Harp performs the best, as it is
highly optimized. Meanwhile, Pig Harp tests closely achieve a
similar performance.

Figure 11. PageRank Performance Comparison

We have also enlarged and compared the timing detail between
Harp and Pig Harp, as shown in Figure 10. In most cases, the
overhead of using Pig as an external wrapper is small, and we
even have interesting findings that Pig on Harp with multi-
processes computing model has good performance. Harp shows
the advantages of its default multi-threads when we have the same
L2 & L3 cache effect of in-memory cache for large centroids, e.g.
50,000 centroids against 1 million data points; the pure mapper
computation time is 2 times slower. Communication takes longer,
as more processes generate more messages, and it lacks in-node
global data reduction. But since the Harp communication module
is highly optimized for object serialization and deserialization, the
overhead in our tests is still acceptable.
For the PageRank result shown in Figure 11, we display several
variations to compare the native Pig implementation on Hadoop
against Harp’s integrations. All the cases implemented on Harp
run 10 times faster than the pure Pig implementation. This is
because the loop-unawareness record-based computation of native
Pig PageRank takes longer; data is reloaded every iteration, Pig
data type conversion time between databag and fields cost extra
overhead, and compute processes are restarted with every job.
Additionally, as seen in Figure 12, the Pig with Harp integration
performs close to the native Harp multi-threads and multi-
processes implementation. Due to AllGather communication used
in Harp for page rank values updated between iterations, the
larger number of partitions is likely to increase the overall
communication time; this is also similar to a native Pig
implementation where reduce stages take longer for the case of 32
mappers.

0

50

100

150

200

250

300

350

Pig Harp
24

Mappers

Harp 24
Mappers

Pig Harp
48

Mappers

Harp 48
Mappers

Pig Harp
96

Mappers

Harp 96
Mappers

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)
Job start up Centroids broadcast
Data points loading Map computation
Coll. comm. & reduce Job cleanup
Centroids merge & store

0

50

100

150

200

250

300

350

Pig Harp
24

Mappers

Harp 24
Mappers

Pig Harp
48

Mappers

Harp 48
Mappers

Pig Harp
96

Mappers

Harp 96
Mappers

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Job start up Centroids broadcast
Data points loading Map computation
Coll. comm. & reduce Job cleanup
Centroids merge & store

0

50

100

150

200

250

300

350

400

Pig Harp
24

Mappers

Harp 24
Mappers

Pig Harp
48

Mappers

Harp 48
Mappers

Pig Harp
96

Mappers

Harp 96
Mappers

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Job start up Centroids broadcast
Data points loading Map computation
Coll. comm. & reduce Job cleanup
Centroids merge & store

a. 1 million data points with 50000 centroids b. 10 million data points with 5000 centroids c. 100 million data points with 500 centroids

Figure 10. Performance details of Harp K-means and Pig K-means on Harp

0

20

40

60

80

100

120

140

160

Harp
MT 8m

Harp
MP 8m

Pig on
Harp
8m

Harp
MT

16m

Harp
MP
16m

Pig on
Harp
16m

Harp
MT

32m

Harp
MP
32m

Pig on
Harp
32m

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)
Job Startup & Cleanup
Data loading
Compute
AllGather
Store result

Figure 12. Performance details of PageRank

5.3 Coding Difficulties
Rewriting all the code from Java Hadoop MapReduce to Pig is not
difficult in general, as Pig is designed to run data warehouse
applications on top of Hadoop. The only problems we meet here
are the logic of how the data is stored in Pig’s data format and
how it could retrieve the correct form of data from abstracted data
formats before passing it to computation. In our experience, even
if this is a legacy code from other languages, as long as it is
convertible to Java, the rewriting process will look for suitable
Java libraries or rewrite the function in Java to replace the legacy
libraries. For Pig with Harp integration, it might be a bit difficult
for beginners, as they need to understand the background of
Hadoop, Pig, and Harp, respectively.

6. RELATED WORK
DataFu [13] is an Apache open-source project that provides a
collection of libraries for working with large-scale data in Hadoop
and Pig, especially the subdivision of DataFu Pig, which provides
a good set of UDFs for developers working in data mining and
statistics. Our project shares these similarities, but we focus on the
performance for iterative applications and research purposes using
Apache open source stacks for data scientists.
Shark [4] integrates Spark [11] with Apache Hive to support the
SQL community. They have implemented Hive K-means as an
example shown on their project website. The use of Spark and
RDDs [14] provides the possibility of writing iterative
applications into one Scala script by first extracting the read-only
data into RDDs, then computing the core iterative algorithms with
the Spark runtime. We intend to compare Shark with Pig+Harp in
our future work.
Cascading [15] is a Java library built on top of Hadoop to support
data-parallel pipelines, it’s similar to Pig but it constructs data
pipeline as DAG flow from source tap to sink tap
programmatically by writing linkage for each component in pipe
that maps into MapReduce jobs. Unlike our work, Cascading
naturally supports iterative applications as a dependency ordered
DAG, where developers need to write the correct Riffle
annotations to link the input and output as source and sink
between iterations. In addition, although Cascading consider
unchanged data source/sink as reusable logic unit, it does not
support in-memory data caching between iterations. Some have
commented that Cascading as a library maintaining the full
expressivity of Java is more powerful than Pig as a specialized
language. We hope to look at a Harp enhanced Cascading as a
technical data analysis environment in the future.

Apache Tez [16] is an Apache incubator project that optimizes
Pig/Hive’s script compiler to construct a complex DAG dataflow,
originally compiled into multiple MapReduce jobs, into a single
MapReduce job which boosts the performance and reuses the
same set of mappers and reducers. Still, this approach does not
support loop-aware computation and in-memory caches from the
default Pig/Hive language syntax, and the Pig community does
not have any alpha release for version 0.12.x on this track.
HaLoop is another academic project that extends Hadoop to
support loop-aware task scheduling and on-disk caching for
iterative applications. Users of HaLoop need be less aware of the
system and write and set fewer java classes for data passing
between iterations, where inter-iteration data shuffling is
optimized by the modified task scheduler to reuse the same
physical node. Currently, HaLoop does not provide high-level
language support, but we believe that our integration with Harp
could also be applied on HaLoop to achieve the same goals.

7. CONCLUSION
We have successfully integrated Pig with Harp and have
presented the idea of writing applications in Pig as a SPMD model
instead of MPMD. Our results show that Pig with Harp can
achieve nearly the same performance compared to pure Harp
implementations, although the developer must have fundamental
knowledge of and familiarity with MapReduce, Harp architecture,
and programming skills. Moreover, we have shown the possibility
of providing user-friendly libraries to users. One may harbor
doubts such as, “Why don’t we use RHadoop [17] or other
scripting libraries directly instead of integrating Pig to achieve
similar goals?” Our approach is motivated by the fact that Hadoop
and Apache open-source stacks are designed as the mainstream
tools for handling big data problems. In order to achieve the best
performance, we should leverage these building blocks to
maximize the usage of existing features, such as expressiveness of
data type and data structure, automatic parallelization for
applications, and algorithms. This motivated our switch [18, 19]
from custom iterative MapReduce such as our successful Twister
system [10] to development of a Hadoop plug-in to support
Iterative MapReduce. To support large scale iterative applications
in Pig with Harp, we suggest developers should minimize the
overhead of using Pig; one should avoid the slow record-based
computation and replace aggregation operators by writing
customized collective communication. In addition, as Pig with
Harp integration is compatible with existing Pig operators and
functions, users can select the best UDFs run on different
platforms and construct the ideal Pig pipeline for their data
analysis.
Our current results have not considered and investigated data
access patterns, general data abstractions, optimization of Pig
operators, or using Pig to link scientific data pipelines as an end-
to-end solution in the sense of using high-level languages to solve
parallel computing problems. We may go further in this direction
as future work which aims at a version of Pig optimized for
technical data analytics.

8. ACKNOWLEDGMENTS
This project is in part supported by NSF Grant OCI-1032677 and
NSF CAREER grant. We would like to thank our colleagues
Xiaoming Gao and Bingjing Zhang of the Salsa team in Indiana
University, who shared their results on the implementation for
Hadoop and Harp K-means. Also, thanks to Dr. Geoffrey Fox
with whom we discussed the possibility, usability, and

computation model of using high-level language for parallel
computing.

9. REFERENCES
[1] "Apache Hadoop," http://hadoop.apache.org/, 2009].
[2] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.

Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and U.
Srivastava, “Building a high-level dataflow system on top of
Map-Reduce: the Pig experience,” Proc. VLDB Endow., vol.
2, no. 2, pp. 1414-1425, 2009.

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.
Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive: a
warehousing solution over a map-reduce framework,” Proc.
VLDB Endow., vol. 2, no. 2, pp. 1626-1629, 2009.

[4] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: SQL and rich analytics at scale,” in
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, New York, New York,
USA, 2013, pp. 13-24.

[5] B. Zhang. "Apache Harp Project,"
http://salsaproj.indiana.edu/harp/.

[6] R. D. C. Team, R: A Language and Environment for
Statistical Computing: R Foundation for Statistical
Computing, 2011.

[7] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,
Ravi Kumar, and Andrew Tomkins, “Pig latin: a not-so-
foreign language for data processing,” in Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, Vancouver, Canada, 2008, pp. 1099-
1110.

[8] "Pig Programming Tools,"
http://en.wikipedia.org/wiki/Pig_(programming_tool).

[9] T. Parr. "http://www.antlr.org/," http://www.antlr.org/.
[10] J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu,

and G.Fox, “Twister: A Runtime for iterative MapReduce,”
in Proceedings of the First International Workshop on

MapReduce and its Applications of ACM HPDC 2010
conference June 20-25, 2010, Chicago, Illinois, 2010.

[11] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,
Scott Shenker, and Ion Stoica, “Spark: Cluster Computing
with Working Sets,” in 2nd USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud '10), Boston, 2010.

[12] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael
D. Ernst, “HaLoop: Efficient Iterative Data Processing on
Large Clusters,” in The 36th International Conference on
Very Large Data Bases, Singapore, 2010.

[13] M. Hayes, and S. Shah, "Hourglass: A library for incremental
processing on Hadoop." pp. 742-752.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing,” in Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, San Jose, CA, 2012, pp. 2-2.

[15] "Cascading," http://www.cascading.org/.
[16] "Apache Tez," http://tez.incubator.apache.org/.
[17] "RHadoop,"

https://github.com/RevolutionAnalytics/RHadoop.
[18] Judy Qiu, Shantenu Jha, Andre Luckow, and Geoffrey C.Fox,
“Towards HPC-ABDS: An Initial High-Performance Big Data
Stack. August 8, 2014.
http://grids.ucs.indiana.edu/ptliupages/publications/nist-hpc-
abds.pdf.
[19] Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha,
and Geoffrey C. Fox, “”A Tale of Two Data-Intensive
Approaches: Applications, Architectures and Infrastructure”, in
3rd International IEEE Congress on Big Data Application and
Experience Track. June 27- July 2, 2014. Anchorage, Alaska.
http://arxiv.org/abs/1403.1528.

http://hadoop.apache.org/
http://salsaproj.indiana.edu/harp/
http://en.wikipedia.org/wiki/Pig_(programming_tool)
http://www.antlr.org/,
http://www.antlr.org/
http://www.cascading.org/
http://tez.incubator.apache.org/
http://grids.ucs.indiana.edu/ptliupages/publications/nist-hpc-abds.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/nist-hpc-abds.pdf

	1. INTRODUCTION
	2. BACKGROUND
	3. PIG IN SUPPORTING ITERATIVE APPLICATIONS
	4. USE CASE
	4.1 Pig K-means on Hadoop
	4.2 Pig K-means on Harp
	4.3 Pig PageRank on Hadoop
	4.4 Pig PageRank on Harp

	5. RESULTS
	5.1 Coding Style
	5.2 Performance and Parallelism
	5.3 Coding Difficulties

	6. RELATED WORK
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. REFERENCES

