
A Hierarchical Framework for Cross-Domain MapReduce 
Execution 

Yuan Luo1,2, Zhenhua Guo1,2, Yiming Sun1,2, Beth Plale1,2, Judy Qiu1,2, Wilfred Li 3,4 
1 School of Informatics and Computing, Indiana University, Bloomington, IN, 47405 

2 Pervasive Technology Institute, Indiana University, Bloomington, IN, 47408 

3 San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093 

4 National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA, 92093 

{yuanluo, zhguo, yimsun, plale, xqiu}@indiana.edu, wilfred@sdsc.edu 

 
ABSTRACT 
The MapReduce programming model provides an easy way to 
execute pleasantly parallel applications. Many data-intensive life 
science applications fit this programming model and benefit from 
the scalability that can be delivered using this model.  One such 
application is AutoDock, which consists of a suite of automated 
tools for predicting the bound conformations of flexible ligands to 
macromolecular targets.  However, researchers also need 
sufficient computation and storage resources to fully enjoy the 
benefit of MapReduce.  For example, a typical AutoDock based 
virtual screening experiment usually consists of a very large 
number of docking processes from multiple ligands and is often 
time consuming to run on a single MapReduce cluster.  Although 
commercial clouds can provide virtually unlimited computation 
and storage resources on-demand, due to financial, security and 
possibly other concerns, many researchers still run experiments on 
a number of small clusters with limited number of nodes that 
cannot unleash the full power of MapReduce.  In this paper, we 
present a hierarchical MapReduce framework that gathers 
computation resources from different clusters and run MapReduce 
jobs across them.  The global controller in our framework splits 
the data set and dispatches them to multiple “local” MapReduce 
clusters, and balances the workload by assigning tasks in 
accordance to the capabilities of each cluster and of each node. 
The local results are then returned back to the global controller for 
global reduction. Our experimental evaluation using AutoDock 
over MapReduce shows that our load-balancing algorithm makes 
promising workload distribution across multiple clusters, and thus 
minimizes overall execution time span of the entire MapReduce 
execution. 

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: MapReduce Architecture - 
Hierarchical MapReduce for Life Science Applications. 

General Terms 
Performance, Experimentation 

Keywords 
AutoDock, Cloud, MapReduce, Multi-Cluster, FutureGrid 

1. INTRODUCTION 
Life science applications are often both compute intensive and 
data intensive. They consume large amount of CPU cycles while 
processing massive data sets that are either in large group of small 
files or naturally splittable. These kinds of applications ideally fit 
in the MapReduce programming model. MapReduce uses a 
different model from the traditional HPC model. It does not 
distinguish computation nodes and storage nodes. Each node is 
responsible for both computation and storage. Obvious 
advantages include better fault tolerance, scalability and data 
locality scheduling. The MapReduce model has been applied to 
life science applications by many researchers. Qiu et al. [14] 
describe their work to implement various clustering algorithm 
using MapReduce.  

AutoDock [12] is a suite of automated docking tools for 
predicting the bound conformations of flexible ligands to 
macromolecular targets. It is designed to predict how small 
molecules of substrates or drug candidates bind to a receptor of 
known 3D structure. Running AutoDock requires several pre-
docking steps, e.g., ligand and receptor preparation, and grid map 
calculations, before the actual docking process can take place. 
There are desktop GUI tools for processing the individual 
AutoDock steps, such as AutoDockTools (ADT) [12] and BDT 
[18], but they do not have the capability to efficiently process 
thousands to millions of docking processes. Ultimately, the goal 
of a docking experiment is to illustrate the docked result in the 
context of macromolecule, explaining the docking in terms of the 
overall energy landscape. Each AutoDock calculation results in a 
docking log file containing information about the best docked 
ligand conformation found from each of the docking runs 
specified in the docking parameter file (dpf). The results can then 
be summarized interactively using the desktop tools such as 
AutoDockTools or with a python script. A typical AutoDock run 
consists of a large number of docking processes from multiple 
targeted ligands and would take a large amount of time to finish.  
However, the docking processes are data independent, so if 
several CPU cores are available, these processes can be carried 
out in parallel to shorten the overall length of AutoDock run 
duration.  

Cloud computing can provide virtually unlimited computational 
and storage resources as needed.  With the correct application 
model and implementation, clouds enable applications to scale out 
with relative ease.  Because of the “pleasantly parallel” nature of 
the MapReduce programming model, it has become a dominant 
model for deploying and executing applications in a cloud, and 
AutoDock certainly fits well for MapReduce.  However, many 
researchers still shun away from clouds for different reasons.  For 
example, some researchers may not feel comfortable letting their 

 



data sit in shared storage space with users worldwide, while others 
may have large amounts of data and computation that would be 
financially too expensive to move into the cloud.  It is more 
typical for a researcher to have access to several research clusters 
hosted at his/her lab or institute. These clusters usually consist of 
only a few nodes, and the nodes in one cluster may be very 
different from those in another cluster in terms of various 
specifications including CPU frequency, number of cores, cache 
size, memory size, and storage capacity. Commonly a MapReduce 
framework is deployed in a single cluster to run jobs, but any such 
individual cluster does not provide enough resources to deliver 
significant performance gain. For example, at Indiana University 
we have access to IU Quarry, FutureGrid [4], and Teragrid [16] 
clusters but each cluster imposes limit on the maximum number 
of nodes a user can uses at any time. If these isolated clusters can 
work together, they collectively become more powerful. 

Unfortunately, users cannot directly throw a MapReduce 
framework such as Hadoop on top of these clusters to form a 
single larger MapReduce cluster. Typically the internal nodes of a 
cluster are not directly reachable from outside. However, 
MapReduce requires the master node to directly communicate 
with any slave node, which is also one of the reasons why 
MapReduce frameworks are usually deployed within a single 
cluster.  Therefore, one challenge is to make multiple clusters act 
collaboratively as one so it can more efficiently run MapReduce.  
There are two possible approaches to address this challenge. One 
is to unify the underlying physical clusters as a single virtual 
cluster by adding a special infrastructure layer, and run 
MapReduce on top of this virtual cluster. The other is to make the 
MapReduce framework directly working with multiple clusters 
without needing additional special infrastructure layers. 

We propose a hierarchical MapReduce framework which takes 
the second approach to gather isolated cluster resources into a 
more capable one for running MapReduce jobs.  Kavulya et al. 
characterize MapReduce jobs into four categories based on their 
execution patterns: map-only, map-mostly, shuffle-mostly, and 
reduce-mostly, and also find that 91% of the MapReduce jobs 
they have surveyed fall into the map-only and map-mostly 
categories [9]. Our framework partitions and distributes 
MapReduce jobs from these two categories (map-only and map-
mostly) into multiple clusters to perform map-intensive 
computation, and collects and combines the outputs in the global 
node. Our framework also achieves load-balancing by assigning 
different task loads to different clusters based on the cluster size, 
current load, and specifications of the nodes.  We have 
implemented the prototype framework using Apache Hadoop. 

The rest of the paper is organized as follows. Section 2 presents 
some related works. Section 3 gives an overview of our 
hierarchical MapReduce framework. Section 4 presents more 
details on the application of AutoDock using MapReduce. Section 
5 gives experiment setup and result analysis. The conclusion and 
future work are given in Section 6. 

2. RELATED WORKS 
Researchers have put significant efforts to the easy submission 
and optimal scheduling of massive parallel jobs in clusters, grids, 
and clouds.  Conventional job schedulers, such as Condor [11], 
SGE [5], PBS [7], LSF [22], etc., aim to provide highly optimized 
resource allocation, job scheduling, and load balancing, within a 
single cluster environment. On the other hand, grid brokers and 
metaschedulers, e.g., Condor-G [3], CSF [2], Nimrod/G[1], 
GridWay [8], provide an entry point to multi-cluster grid 

environments. They enable transparent job submission to various 
distributed resource management systems, without worrying about 
the locality of execution and available resources there. With 
respect to the application of AutoDock, our earlier efforts 
presented at National Biomedical Computation Resource (NBCR) 
[13] Summer Institute 2009, addressed the performance issue of 
massive docking processes by distributing the jobs to the grid 
environment. We used the CSF4 [2] meta-scheduler to split 
docking jobs to heterogeneous clusters where these jobs were 
handled by local job schedulers including LSF, SGE and PBS. 

Clouds give users virtually unlimited, on-demand resources for 
computation and storage. Attributed to its ease of executing 
pleasantly parallel applications, MapReduce has become a 
dominant programming model for running applications in a cloud. 
Researchers are discovering new ways to make MapReduce easier 
to deploy and manage, more efficient and scalable, and also more 
able to accomplish complex data processing tasks.  Hadoop On 
Demand (HOD) [6] uses the TORQUE resource manager [15] to 
provision and manage independent MapReduce and HDFS 
instances on shared physical nodes. The authors of [20] have 
identified some fundamental performance limitation issues in 
Hadoop and in the MapReduce model in general which make job 
response time unacceptably long when multiple jobs are 
submitted; by substituting their own scheduler implementation, 
they are able to overcome these limitations and improve the job 
throughput.  CloudBATCH [21] is a prototype job queuing 
mechanism for managing and dispatching MapReduce jobs and 
commandline serial jobs in a uniform way.  Traditionally a cluster 
must separate MapReduce-enabled nodes because they are 
dedicated to MapReduce jobs and cannot run serial jobs.  But 
CloudBATCH uses HBase to keep various metadata on each job 
and also uses Hadoop to wrap commandline serial jobs as 
MapReduce jobs, so that both types of jobs can be executed using 
the same set of cluster nodes.  The Map-Reduce-Merge is 
extended from the conventional MapReduce model to accomplish 
common relational algebra operations over distributed 
heterogeneous data sets [19].  In this extension, the Merge phase 
is a new concept that is more complex than the regular Map and 
Reduce phases, and requires the learning and understanding of 
several new components, including partition selector, processors, 
merger, and configurable iterators.  This extension also modifies 
the standard MapReduce phase to expose data sources to support 
some relational algebra operations in the Merge phase.  

Sky Computing [10] provides end user a virtual cluster 
interconnected with ViNe [17] across different domains. It aims to 
bring convenience by hiding the underlying details of the physical 
clusters. However, this transparency may cause unbalanced 
workload if a job is dispatched over heterogeneous compute nodes 
among different physical domains.   

Our hierarchical MapReduce framework, aims to enable map-only 
and map-most jobs to be run across a number of isolated clusters 
(even virtual clusters), so these isolated resources can collectively 
provide a more powerful resource for the computation.  It can 
easily achieve load-balance because the different clusters are 
visible to the scheduler in our framework.  

3. HIERARCHICAL MAPREDUCE 
The hierarchical MapReduce framework we present in this paper 
consists of two layers.  The top layer has a global controller that 
accepts user submitted MapReduce jobs and distributes them 
across different local cluster domains.  Upon receiving a user job, 
the global controller divides the job into sub-jobs according to the 



capability of each local cluster.  If the input data has not been 
deployed onto the cluster already, the global controller also 
partitions input data proportionally to the sub-jobs, and sends 
them to these clusters.  After the jobs are all finished on all 
clusters, the global controller collects the outputs to perform a 
final reduction using the global reducer which is also supplied by 
the user.  The bottom layer consists of multiple local clusters that 
each receives sub-jobs and input data partitions from the global 
controller, performs local MapReduce computation and sends 
results back to the global controller. 

Although on the surface our framework may appear structurally 
similar to the Map-Reduce-Merge model presented in [19], our 
framework is very different in nature.  As discussed in the related 
work section, the Merge phase introduced in the Map-Reduce-
Merge model is a new concept which is different and more 
complex than the conventional Map and Reduce, and 
programmers implementing jobs under this model must not only 
learn this new concept along with the components required by it, 
but also need to modify the Mappers and Reducers to expose data 
source.  Our framework, on the other hand, strictly uses the 
conventional Map and Reduce, and a programmer just needs to 
supply two Reducers – one local Reducer, and one global Reducer 
– instead of just one for the regular MapReduce. The only 
requirement is that the programmer must make sure that the 
formats of the local Reducer output keys/value pairs match those 
of the global Reducer input key/value pairs. However, if the job is 
map-only, the programmer does not need to supply any reducers, 
and the global controller simply collects the map results from all 
clusters and places them under a common directory.   

3.1 Architecture 
Figure 1 is a high-level architecture diagram of our hierarchical 
MapReduce framework.  The top layer in our framework is the 
global controller, which consists of a job scheduler, a data 
transferer, a workload collector, and a use-supplied global 
reducer. The bottom layer consists of multiple clusters for running 
the distributed local MapReduce jobs, where each cluster has a 
MapReduce master node with a workload reporter and a job 
manager. The compute nodes inside each of the cluster are not 
accessible from the outside.  

 

Figure 1. Hierarchical MapReduce Architecture 

When a user submits a MapReduce job to the global controller, 
the job scheduler splits the job into a number of sub-jobs and 
assigns them to each local cluster based on several factors, 
including the current workload reported by the workload reporter 
from each local cluster, as well as the capability of individual 
nodes making up each cluster. This is done to achieve load-

balance by ensuring that all clusters will finish their portion of the 
job in roughly the same time. The global controller also partitions 
the input data in proportion to the sub-job sizes if the input data 
have not been deployed before-hand.  The data transferer would 
transfer the user supplied MapReduce jar and job configuration 
files with the input data partitions to the clusters.  As soon as the 
data transfer finishes for a particular cluster, the job scheduler at 
the global controller notifies the job manager of that cluster to 
start the local MapReduce job.  Since data transfer is very 
expensive, we recommend that users only use the global 
controller to transfer data when the size of input data is small and 
the time spent for transferring the data is insignificant compared 
to the computation time.  For large data sets, it would be more 
efficient and effective deploy them before-hand, so that the jobs 
get the full benefit of parallelization and the overall time does not 
get dominated by data transfer. After the local sub-jobs are 
finished on a local cluster, if the application requires, the clusters 
will transfer the output back to the global controller.  Upon 
receiving all the output data from all local clusters, the global 
reducer will be invoked to perform the final reduction task, unless 
the original job is map-only. 

3.2 Programming Model 
The programming model of our hierarchical MapReduce 
framework is the “Map-Reduce-Global Reduce” model where 
computations are expressed as three functions: Map, Reduce, and 
Global Reduce. We use the term “Global Reduce” to distinguish it 
from the “local” Reducer, but conceptually as well as 
syntactically, a Global Reducer is just another conventional 
Reducer.  Users of our framework implement the three functions 
as a Mapper, a Reducer, and a Global Reducer, and submit the jar 
to the global controller.  The Mapper, just as a conventional 
Mapper does, takes an input pair and produces an intermediate 
key/value pair; likewise, the Reducer, just as a conventional 
Reducer does, takes an intermediate input key and a set of 
corresponding values produced by the Map task, and outputs a 
different set of key/value pairs.  Both the Mapper and the Reducer 
are executed on local clusters.  The Global Reducer is also a 
conventional Reducer, except that it is executed on the global 
controller using the output from the local clusters.  For map-only 
jobs, the programmer does not need to supply any reducers, and 
the global controller simply collects the map results from all 
clusters and places them under a common directory.  Table 1 lists 
these 3 functions and also the input and output data types.  The 
formats of the local Reducers output keys/value pairs must match 
those of the Global Reducer input key/value pairs. 

Table 1. Input and output types of Map, Reduce, and Global 
Reduce functions 

Function Name Input Output 

Map ሺ݇௜, ,௜ሻ ሺ݇௠ݒ  ௠ሻݒ

Reduce ሺ݇௠, ሾݒଵ
௠,… , ,௡௠ሿሻ ሺ݇௥ݒ  ௥ሻݒ

Global Reduce ሺ݇௥, ሾݒଵ
௥, … , ,௡௥ሿሻ ሺ݇௢ݒ  ௢ሻݒ

Figure 2 uses a tree-like structure to show the data flow sequence 
among the Map, Reduce, and Global Reduce function.  In this 
diagram, the root node is the global controller on which the 
Global Reduce takes place, and the leaf nodes represent local 
clusters that perform the Map and Reduce functions. The circled 
numbers shown in Figure 2 indicate the order in which the steps 
occur, and the arrows indicate the directions in which the data sets 
(key/value pairs) flow.  A job is submitted into the system in Step 
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