
A Hierarchical Framework for Cross-Domain MapReduce
Execution

Yuan Luo1,2, Zhenhua Guo1,2, Yiming Sun1,2, Beth Plale1,2, Judy Qiu1,2, Wilfred Li 3,4
1 School of Informatics and Computing, Indiana University, Bloomington, IN, 47405

2 Pervasive Technology Institute, Indiana University, Bloomington, IN, 47408

3 San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093

4 National Biomedical Computation Resource, University of California, San Diego, La Jolla, CA, 92093

{yuanluo, zhguo, yimsun, plale, xqiu}@indiana.edu, wilfred@sdsc.edu

ABSTRACT
The MapReduce programming model provides an easy way to
execute pleasantly parallel applications. Many data-intensive life
science applications fit this programming model and benefit from
the scalability that can be delivered using this model. One such
application is AutoDock, which consists of a suite of automated
tools for predicting the bound conformations of flexible ligands to
macromolecular targets. However, researchers also need
sufficient computation and storage resources to fully enjoy the
benefit of MapReduce. For example, a typical AutoDock based
virtual screening experiment usually consists of a very large
number of docking processes from multiple ligands and is often
time consuming to run on a single MapReduce cluster. Although
commercial clouds can provide virtually unlimited computation
and storage resources on-demand, due to financial, security and
possibly other concerns, many researchers still run experiments on
a number of small clusters with limited number of nodes that
cannot unleash the full power of MapReduce. In this paper, we
present a hierarchical MapReduce framework that gathers
computation resources from different clusters and run MapReduce
jobs across them. The global controller in our framework splits
the data set and dispatches them to multiple “local” MapReduce
clusters, and balances the workload by assigning tasks in
accordance to the capabilities of each cluster and of each node.
The local results are then returned back to the global controller for
global reduction. Our experimental evaluation using AutoDock
over MapReduce shows that our load-balancing algorithm makes
promising workload distribution across multiple clusters, and thus
minimizes overall execution time span of the entire MapReduce
execution.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: MapReduce Architecture -
Hierarchical MapReduce for Life Science Applications.

General Terms
Performance, Experimentation

Keywords
AutoDock, Cloud, MapReduce, Multi-Cluster, FutureGrid

1. INTRODUCTION
Life science applications are often both compute intensive and
data intensive. They consume large amount of CPU cycles while
processing massive data sets that are either in large group of small
files or naturally splittable. These kinds of applications ideally fit
in the MapReduce programming model. MapReduce uses a
different model from the traditional HPC model. It does not
distinguish computation nodes and storage nodes. Each node is
responsible for both computation and storage. Obvious
advantages include better fault tolerance, scalability and data
locality scheduling. The MapReduce model has been applied to
life science applications by many researchers. Qiu et al. [14]
describe their work to implement various clustering algorithm
using MapReduce.

AutoDock [12] is a suite of automated docking tools for
predicting the bound conformations of flexible ligands to
macromolecular targets. It is designed to predict how small
molecules of substrates or drug candidates bind to a receptor of
known 3D structure. Running AutoDock requires several pre-
docking steps, e.g., ligand and receptor preparation, and grid map
calculations, before the actual docking process can take place.
There are desktop GUI tools for processing the individual
AutoDock steps, such as AutoDockTools (ADT) [12] and BDT
[18], but they do not have the capability to efficiently process
thousands to millions of docking processes. Ultimately, the goal
of a docking experiment is to illustrate the docked result in the
context of macromolecule, explaining the docking in terms of the
overall energy landscape. Each AutoDock calculation results in a
docking log file containing information about the best docked
ligand conformation found from each of the docking runs
specified in the docking parameter file (dpf). The results can then
be summarized interactively using the desktop tools such as
AutoDockTools or with a python script. A typical AutoDock run
consists of a large number of docking processes from multiple
targeted ligands and would take a large amount of time to finish.
However, the docking processes are data independent, so if
several CPU cores are available, these processes can be carried
out in parallel to shorten the overall length of AutoDock run
duration.

Cloud computing can provide virtually unlimited computational
and storage resources as needed. With the correct application
model and implementation, clouds enable applications to scale out
with relative ease. Because of the “pleasantly parallel” nature of
the MapReduce programming model, it has become a dominant
model for deploying and executing applications in a cloud, and
AutoDock certainly fits well for MapReduce. However, many
researchers still shun away from clouds for different reasons. For
example, some researchers may not feel comfortable letting their

data sit in shared storage space with users worldwide, while others
may have large amounts of data and computation that would be
financially too expensive to move into the cloud. It is more
typical for a researcher to have access to several research clusters
hosted at his/her lab or institute. These clusters usually consist of
only a few nodes, and the nodes in one cluster may be very
different from those in another cluster in terms of various
specifications including CPU frequency, number of cores, cache
size, memory size, and storage capacity. Commonly a MapReduce
framework is deployed in a single cluster to run jobs, but any such
individual cluster does not provide enough resources to deliver
significant performance gain. For example, at Indiana University
we have access to IU Quarry, FutureGrid [4], and Teragrid [16]
clusters but each cluster imposes limit on the maximum number
of nodes a user can uses at any time. If these isolated clusters can
work together, they collectively become more powerful.

Unfortunately, users cannot directly throw a MapReduce
framework such as Hadoop on top of these clusters to form a
single larger MapReduce cluster. Typically the internal nodes of a
cluster are not directly reachable from outside. However,
MapReduce requires the master node to directly communicate
with any slave node, which is also one of the reasons why
MapReduce frameworks are usually deployed within a single
cluster. Therefore, one challenge is to make multiple clusters act
collaboratively as one so it can more efficiently run MapReduce.
There are two possible approaches to address this challenge. One
is to unify the underlying physical clusters as a single virtual
cluster by adding a special infrastructure layer, and run
MapReduce on top of this virtual cluster. The other is to make the
MapReduce framework directly working with multiple clusters
without needing additional special infrastructure layers.

We propose a hierarchical MapReduce framework which takes
the second approach to gather isolated cluster resources into a
more capable one for running MapReduce jobs. Kavulya et al.
characterize MapReduce jobs into four categories based on their
execution patterns: map-only, map-mostly, shuffle-mostly, and
reduce-mostly, and also find that 91% of the MapReduce jobs
they have surveyed fall into the map-only and map-mostly
categories [9]. Our framework partitions and distributes
MapReduce jobs from these two categories (map-only and map-
mostly) into multiple clusters to perform map-intensive
computation, and collects and combines the outputs in the global
node. Our framework also achieves load-balancing by assigning
different task loads to different clusters based on the cluster size,
current load, and specifications of the nodes. We have
implemented the prototype framework using Apache Hadoop.

The rest of the paper is organized as follows. Section 2 presents
some related works. Section 3 gives an overview of our
hierarchical MapReduce framework. Section 4 presents more
details on the application of AutoDock using MapReduce. Section
5 gives experiment setup and result analysis. The conclusion and
future work are given in Section 6.

2. RELATED WORKS
Researchers have put significant efforts to the easy submission
and optimal scheduling of massive parallel jobs in clusters, grids,
and clouds. Conventional job schedulers, such as Condor [11],
SGE [5], PBS [7], LSF [22], etc., aim to provide highly optimized
resource allocation, job scheduling, and load balancing, within a
single cluster environment. On the other hand, grid brokers and
metaschedulers, e.g., Condor-G [3], CSF [2], Nimrod/G[1],
GridWay [8], provide an entry point to multi-cluster grid

environments. They enable transparent job submission to various
distributed resource management systems, without worrying about
the locality of execution and available resources there. With
respect to the application of AutoDock, our earlier efforts
presented at National Biomedical Computation Resource (NBCR)
[13] Summer Institute 2009, addressed the performance issue of
massive docking processes by distributing the jobs to the grid
environment. We used the CSF4 [2] meta-scheduler to split
docking jobs to heterogeneous clusters where these jobs were
handled by local job schedulers including LSF, SGE and PBS.

Clouds give users virtually unlimited, on-demand resources for
computation and storage. Attributed to its ease of executing
pleasantly parallel applications, MapReduce has become a
dominant programming model for running applications in a cloud.
Researchers are discovering new ways to make MapReduce easier
to deploy and manage, more efficient and scalable, and also more
able to accomplish complex data processing tasks. Hadoop On
Demand (HOD) [6] uses the TORQUE resource manager [15] to
provision and manage independent MapReduce and HDFS
instances on shared physical nodes. The authors of [20] have
identified some fundamental performance limitation issues in
Hadoop and in the MapReduce model in general which make job
response time unacceptably long when multiple jobs are
submitted; by substituting their own scheduler implementation,
they are able to overcome these limitations and improve the job
throughput. CloudBATCH [21] is a prototype job queuing
mechanism for managing and dispatching MapReduce jobs and
commandline serial jobs in a uniform way. Traditionally a cluster
must separate MapReduce-enabled nodes because they are
dedicated to MapReduce jobs and cannot run serial jobs. But
CloudBATCH uses HBase to keep various metadata on each job
and also uses Hadoop to wrap commandline serial jobs as
MapReduce jobs, so that both types of jobs can be executed using
the same set of cluster nodes. The Map-Reduce-Merge is
extended from the conventional MapReduce model to accomplish
common relational algebra operations over distributed
heterogeneous data sets [19]. In this extension, the Merge phase
is a new concept that is more complex than the regular Map and
Reduce phases, and requires the learning and understanding of
several new components, including partition selector, processors,
merger, and configurable iterators. This extension also modifies
the standard MapReduce phase to expose data sources to support
some relational algebra operations in the Merge phase.

Sky Computing [10] provides end user a virtual cluster
interconnected with ViNe [17] across different domains. It aims to
bring convenience by hiding the underlying details of the physical
clusters. However, this transparency may cause unbalanced
workload if a job is dispatched over heterogeneous compute nodes
among different physical domains.

Our hierarchical MapReduce framework, aims to enable map-only
and map-most jobs to be run across a number of isolated clusters
(even virtual clusters), so these isolated resources can collectively
provide a more powerful resource for the computation. It can
easily achieve load-balance because the different clusters are
visible to the scheduler in our framework.

3. HIERARCHICAL MAPREDUCE
The hierarchical MapReduce framework we present in this paper
consists of two layers. The top layer has a global controller that
accepts user submitted MapReduce jobs and distributes them
across different local cluster domains. Upon receiving a user job,
the global controller divides the job into sub-jobs according to the

capability of each local cluster. If the input data has not been
deployed onto the cluster already, the global controller also
partitions input data proportionally to the sub-jobs, and sends
them to these clusters. After the jobs are all finished on all
clusters, the global controller collects the outputs to perform a
final reduction using the global reducer which is also supplied by
the user. The bottom layer consists of multiple local clusters that
each receives sub-jobs and input data partitions from the global
controller, performs local MapReduce computation and sends
results back to the global controller.

Although on the surface our framework may appear structurally
similar to the Map-Reduce-Merge model presented in [19], our
framework is very different in nature. As discussed in the related
work section, the Merge phase introduced in the Map-Reduce-
Merge model is a new concept which is different and more
complex than the conventional Map and Reduce, and
programmers implementing jobs under this model must not only
learn this new concept along with the components required by it,
but also need to modify the Mappers and Reducers to expose data
source. Our framework, on the other hand, strictly uses the
conventional Map and Reduce, and a programmer just needs to
supply two Reducers – one local Reducer, and one global Reducer
– instead of just one for the regular MapReduce. The only
requirement is that the programmer must make sure that the
formats of the local Reducer output keys/value pairs match those
of the global Reducer input key/value pairs. However, if the job is
map-only, the programmer does not need to supply any reducers,
and the global controller simply collects the map results from all
clusters and places them under a common directory.

3.1 Architecture
Figure 1 is a high-level architecture diagram of our hierarchical
MapReduce framework. The top layer in our framework is the
global controller, which consists of a job scheduler, a data
transferer, a workload collector, and a use-supplied global
reducer. The bottom layer consists of multiple clusters for running
the distributed local MapReduce jobs, where each cluster has a
MapReduce master node with a workload reporter and a job
manager. The compute nodes inside each of the cluster are not
accessible from the outside.

Figure 1. Hierarchical MapReduce Architecture

When a user submits a MapReduce job to the global controller,
the job scheduler splits the job into a number of sub-jobs and
assigns them to each local cluster based on several factors,
including the current workload reported by the workload reporter
from each local cluster, as well as the capability of individual
nodes making up each cluster. This is done to achieve load-

balance by ensuring that all clusters will finish their portion of the
job in roughly the same time. The global controller also partitions
the input data in proportion to the sub-job sizes if the input data
have not been deployed before-hand. The data transferer would
transfer the user supplied MapReduce jar and job configuration
files with the input data partitions to the clusters. As soon as the
data transfer finishes for a particular cluster, the job scheduler at
the global controller notifies the job manager of that cluster to
start the local MapReduce job. Since data transfer is very
expensive, we recommend that users only use the global
controller to transfer data when the size of input data is small and
the time spent for transferring the data is insignificant compared
to the computation time. For large data sets, it would be more
efficient and effective deploy them before-hand, so that the jobs
get the full benefit of parallelization and the overall time does not
get dominated by data transfer. After the local sub-jobs are
finished on a local cluster, if the application requires, the clusters
will transfer the output back to the global controller. Upon
receiving all the output data from all local clusters, the global
reducer will be invoked to perform the final reduction task, unless
the original job is map-only.

3.2 Programming Model
The programming model of our hierarchical MapReduce
framework is the “Map-Reduce-Global Reduce” model where
computations are expressed as three functions: Map, Reduce, and
Global Reduce. We use the term “Global Reduce” to distinguish it
from the “local” Reducer, but conceptually as well as
syntactically, a Global Reducer is just another conventional
Reducer. Users of our framework implement the three functions
as a Mapper, a Reducer, and a Global Reducer, and submit the jar
to the global controller. The Mapper, just as a conventional
Mapper does, takes an input pair and produces an intermediate
key/value pair; likewise, the Reducer, just as a conventional
Reducer does, takes an intermediate input key and a set of
corresponding values produced by the Map task, and outputs a
different set of key/value pairs. Both the Mapper and the Reducer
are executed on local clusters. The Global Reducer is also a
conventional Reducer, except that it is executed on the global
controller using the output from the local clusters. For map-only
jobs, the programmer does not need to supply any reducers, and
the global controller simply collects the map results from all
clusters and places them under a common directory. Table 1 lists
these 3 functions and also the input and output data types. The
formats of the local Reducers output keys/value pairs must match
those of the Global Reducer input key/value pairs.

Table 1. Input and output types of Map, Reduce, and Global
Reduce functions

Function Name Input Output

Map ሺ݇௜, ,௜ሻ ሺ݇௠ݒ ௠ሻݒ

Reduce ሺ݇௠, ሾݒଵ
௠,… , ,௡௠ሿሻ ሺ݇௥ݒ ௥ሻݒ

Global Reduce ሺ݇௥, ሾݒଵ
௥, … , ,௡௥ሿሻ ሺ݇௢ݒ ௢ሻݒ

Figure 2 uses a tree-like structure to show the data flow sequence
among the Map, Reduce, and Global Reduce function. In this
diagram, the root node is the global controller on which the
Global Reduce takes place, and the leaf nodes represent local
clusters that perform the Map and Reduce functions. The circled
numbers shown in Figure 2 indicate the order in which the steps
occur, and the arrows indicate the directions in which the data sets
(key/value pairs) flow. A job is submitted into the system in Step

(
a
c
i
p
t
k
s
a
R
c
R
S

T
j
h
c
d
c
m
i
e
c
c

3
T
a
h

T
s
p
c
o
w

I
s
r
c
a
d
a
t

W
a
s
w
M
s
ܯ
r

1, and then the
(global controll
also Map tasks
consumes an
intermediate ke
pairs are passed
the local cluste
key with a set o
set of key/value
are send back
Reduce task. T
corresponding v
Reducers, perfo
Step 5.

Theoretically, t
just two hierarc
have more dept
controllers simi
divide its assig
clusters. But fo
more than two
increase the co
each additional
clusters availab
create a broader

3.3 Job Sc
The main chall
among each lo
how the dataset

The input datas
submitted by th
pre-deployed on
catalog to the u
on the global c
when partitionin

In this paper, w
submitted by th
run separate s
consuming and
automatically c
dataset using u
and divides the
to each cluster.

We make the
application are
same amount o
we will see in
MapReduce d
scheduling algo
ሾ݅ݎ݁݌݌ܽܯݔܽܯ
run concurrentl

input key/value
ler) to the child
are launched a
input key/valu

ey/value pairs.
d to the Reduc
ers. Each Redu
of correspondin
e pairs as outpu

to the global
he Global Redu
values that were
orms the compu

the model we pr
chical layers, i.e
th by turning th
ilar to the globa

gned jobs and ru
for all practical

layers for the f
omplexity as we
 layer. If a rese

ble, it is most l
r bottom layer t

Figure 2. Pro

cheduling a
enge of our wo

ocal MapReduc
ts are partitioned

set for a particu
he user to the gl
n the local clus
user who runs
controller takes
ng the datasets

we focus on th
he user. If the
ub-jobs on dif
d error-prone.
count the total
user-implemente
e dataset and as

assumption tha
computation in

of time to run –
n the next sect
displays exactl
orithm we use f
ሿ be the maxim

ly on ݎ݁ݐݏݑ݈ܥሾ݅

e pairs are passe
nodes (local clu

at the local clust
ue pair and
 In Step 3, the
e tasks, which

uce task consum
ng values, and p
ut. In Step 4, th

controller to
uce task takes i
e originally pro
utation, and pro

resent can be ex
e. the tree struc
e non-leaf clust
al controller and
un them on its
purposes, we d
foreseeable futu
ell as the overh
earcher has a la
ikely more effi
than to increase

ogramming Mo

nd Data Pa
ork is how to ba
ce cluster, whic
d.

ular MapReduc
lobal controller
sters and is exp
the MapReduce
into considerat
and scheduling

he situation wh
user manually

fferent clusters
Our global co

l number of r
ed InputFormat
signs the correc

at all map task
ntensive and tak
– this is a reaso
tion that runni
ly this kind
for our framewo

mum number of
ሿ; ݊ݑܴݎ݁݌݌ܽܯ

ed from the root
usters) in Step 2
ters where each
produces a s

e set of interme
are also launch
mes an interme
produces yet an
e local reduce o
perform the G

in a key and a
oduced from the
oduces the outp

xtended to more
cture in Figure
ters into interme
d each would fu
own set of ch

do not see a nee
ure, because it
head introduced
arge number of
icient to use the
the depth.

odel

artitioning
alance the work
ch is closely ti

ce job may be
before executio

posed via a met
e job. The sche
tion the data lo
the job.

here input data
split the datase

s, it would be
ontroller is ab

records in the
t and RecordRe
ct number of re

ks of a MapR
ke approximate
onable assumpti
ng AutoDock
of behavior.

ork is as follow
Mappers that c
݊ሾ݅ሿ be the numb

t node
2, and
h Map
et of
ediate
hed at
ediate
nother
output
Global
set of

e local
put in

e than
2 can
ediate

further
ildren
ed for
could

d with
small
em to

kloads
ied to

either
on, or
tadata
eduler
ocality

aset is
et and

time
ble to

input
eader,
ecords

educe
ly the
ion as
using

The
ws. Let
can be
ber of

Ma
the
on
ݑ݈ܥ
als
cor

No
com

Fo

Th
fac
spe
dep
com

Le
job
inp
tas

Af
usi
mo
loc

4.
We
usi
fea
too
key
the
for
con

T

Fo
Re

1)
exe

appers currentl
e number of ava
ݑܰ ;ሾ݅ሿݎ݁ݐݏݑ݈ܥ
ሾ݅ሿ, whereݎ݁ݐݏݑ
so use ߩሾ݅ሿ to de
re, that is,

ሾݎ݁݌݌ܽܯݔܽܯ

ormally we set
mputation inten

݈݅ܽݒܣݎ݁݌݌ܽܯ

r simplicity, let

ሾ݅ሿߛ ൌ ݁݌݌ܽܯ

he weight of eac
ctor ߠሾ݅ሿ is the
eed, memory si
pending on the
mputation inten

ሾ݅ሿݐ݄ܹ݃݅݁ ൌ

t ݌ܽܯܾ݋ܬሾݔሿ b
b x, which can
put to the Map
sks to be schedu

ሿሾ݅ሿݔሾ݌ܽܯܾ݋ܬ

fter partitioning
ing equation (5
ove the data ite
cal clusters, or f

AUTODO
e apply the Ma
ing the hierar
asibility of our a
ol in the Auto
y/value pairs of
e location of lig
r AutoDock M
ntains 7 fields s

Table 2. AutoDo

Field

ligand_n

autodock

input_f

output_

autodock_pa

summariz

summarize_p

r our AutoDoc
educe functions

Map: The Map
ecutable against

ly running on
ailable Mappers
ሾ݅ሿ be t݁ݎ݋ܥ݉ݑ
e i is the cluster
efine how many

ሾ݅ሿ ൌ ሾ݅ሿߩ ൈ ݑܰ

ሾ݅ሿߩ ൌ 1 in th
nsive jobs, so we

݈ሾ݅ሿ ൌ ݌ܽܯݔܽܯ

t

 ሾ݅ሿ݈݅ܽݒܣݎ݁

ch sub-job can
computing pow
ize, storage cap
characteristics

nsive or I/O inte

ఊሾ௜ሿൈఏሾ௜ሿ

∑ ఊሾ௜ሿൈఏሾ௜ሿಿ
೔సభ

	

be the total num
be calculated

tasks, and ܯܾ݋ܬ
uled to ݎ݁ݐݏݑ݈ܥ

ሿ 	ൌ ሾ݅ሿݐ݄ܹ݃݅݁	

g the MapRedu
), we number t
ms accordingly

from local cluste

OCK MAPR
apReduce parad
rchical MapRe
approach. We t
oDock suite) a
f the input of the
and files. We d

MapReduce jo
shown in Table

ock MapReduc

d

name

k_exe

files

_dir

arameters

ze_exe

arameters

ck MapReduce
are implemente

p task takes a lig
t a shared recep

ܯ ;ሾ݅ሿݎ݁ݐݏݑ݈ܥ
s that can be ad
the total number
r number, and i
y map tasks a us

 ሾ݅ሿ݁ݎ݋ܥ݉ݑ

he local MapRe
e get

ሾ݅ሿݎ݁݌݌ െ ݌ܽܯ

be calculated fr
wer of each clus
pacity, etc. The
of the jobs, i.e.

ensive

mber of Map tas
from the numb
ሿሾ݅ሿ be thݔሾ݌ܽܯ
ሾ݅ሿ for job x, so

ሿ ൈ ሿݔሾ݌ܽܯܾ݋ܬ	

uce job to Sub
the data items o
y, either from g
er to local clust

REDUCE
digm to the Auto
educe framewo
take the outputs
as input to the
e Map tasks are
esigned a simpl
bs. Each inpu
2, corresponds

ce input fields a

Des

Name o

Path to Auto

Input files

Output direct

AutoDoc

Path to su

Summarize

e, the Map, Re
ed as follows:

gand to run the
ptor, and then ru

ሾ݅ሿ݈݅ܽݒܣݎ݁݌݌ܽܯ
dded for execut
r of CPU Cores
i ∈ ሼ1, . . . , nሽ. W
ser assigns to ea

 (

educe clusters

 ሾ݅ሿ݊ݑܴݎ݁݌݌

 (

from (4) where
ster, e.g., the C
actual ߠሾ݅ሿ var

., whether they

 (

sks for a particu
ber of keys in
he number of M
that

ሿ	 (

b-MapReduce jo
of the datasets a
global controller
ter.

oDock applicat
ork to prove
s of AutoGrid (o
e AutoDock. T
e ligand names a
le input file form
ut record, wh
to a map task.

and description

scription

of the ligand

oDock executab

s of AutoDock

tory of AutoDo

ck parameters

ummarize script

script paramete

educe, and Glo

e AutoDock bin
uns a Python scr

ሿ	be
tion
s on
We
ach

(1)

for

(2)

(3)

the
CPU

ries
are

(4)

ular
the

Map

(5)

obs
and
r to

tion
the
one
The
and
mat
hich

ns

ble

ock

ers

obal

nary
ript

s
c

2
t
f
l

3
o
i

5
W
h
a
s
r
i
t
c
i
m
l

I
c
c
f
r
c
f
m
b
p
E

M
m
n
O
d

T
b
m
i
H
H
t

W
H
r
d
j
E
s

summarize_resu
constant interm

2) Reduce: The
the constant int
from low to hig
local reducer in

3) Global Redu
of the local red
into a single file

5. EVALU
We evaluate
hierarchical Ma
and Shell scrip
stage-in and sta
reporter is a
information acc
to make it a se
code. Unfortu
information we
modify Hadoop
load data by usi

In our evaluatio
cluster and two
cluster which h
from outside. A
related tasks, in
cancellation. Th
from outside. S
mounted to eac
by the jobs. Fu
parts, and each
Eucalyptus, Nim

MapReduce us
model. It does
nodes. Each no
Obvious advant
data locality sch

To deploy Had
built-in job sc
maintainability
in shared direct
Hadoop progra
Hadoop daemo
times.

We use three c
Hotel and Futur
run Linux 2.6
dedicated mas
jobtracker) and
Each node in
specifications o

T

Cluster

Hotel In

Alamo In

Quarry In

ult4.py to outpu
mediate key.

e Reduce task ta
termediate key
gh, and outputs

ntermediate key.

uce: The Global
ducer intermed
e by the energy

UATIONS
our model b

apReduce syste
pts. We use ssh
age-out. On the
component th

cessed by globa
eparate program
unately, Hadoo
e need to exte
p code to add
ing Hadoop Jav

on, we use seve
 clusters in Futu

has several login
After a user lo
ncluding job su
he computation
Several distribut
h computation n

utureGrid partiti
h of which pro
mbus, and HPC

ses a different
s not distinguis
de is responsibl
tages include b
heduling.

doop to traditio
cheduler (PBS
and performan

tory while store
am (Java jar fi
ons whereas th

clusters for eva
reGrid Alamo. E
.18 SMP. W
ster node (HD
d other nodes
n these cluste
of these cluster n

able 3. Cluster

CPU

ntel Xeon 2.93G

ntel Xeon 2.67G

ntel Xeon 2.33G

ut the lowest e

akes all the valu
and sorts the v

s the sorted res
.

l Reduce finally
diate key, sorts

from low to hig

by prototyping
em. The system
h and scp scrip
e local clusters
hat exposes H
al scheduler. Ou
m without touc
op does not
ernal applicatio
an additional d

va APIs.

eral clusters incl
ureGrid. IU Qu
n nodes that are
ogins, he/she c

ubmission, job
nodes however

ted file systems
node for storing
ions the physica
ovides a differ

C.

model from t
sh computation
le for both comp

better fault toler

onal HPC cluste
) to allocate

nce, we install t
e data in local d
files, etc.) is lo
e HDFS data i

aluations – IU
Each cluster ha

Within each clu
DFS namenod
are data nodes

ers has an 8
nodes are listed

r Node Specific

Cach

GHz 8192

GHz 8192

GHz 6144

energy result us

ues correspondi
values by the e
ults to a file us

y takes all the v
and combines

gh.

g a Hadoop
m is written in
pts to finish the
’ side, the wor

Hadoop cluster
ur original desig
hing Hadoop s

expose the
ons, and we h
daemon that co

luding the IU Q
arry is a classic
e publicly acce
can do various
status query an
r, cannot be acc
s (Lustre, GPFS
g input data acc
al cluster into se
rent testbed su

the traditional
n nodes and st
putation and sto
rance, scalabilit

ers, we first us
nodes. To ba

the Hadoop pro
directory, becau
oaded only onc
is accessed mu

Quarry, Futur
as 21 nodes. Th
ster, one node

de and MapR
s and task trac

8-core CPU.
d in Table 3.

cations.

he size Mem

2KB 24G

2KB 12G

4KB 16G

sing a

ing to
energy
sing a

values
them

based
n Java
e data
rkload

load
n was

source
load

had to
ollects

Quarry
c HPC
essible
s job-
nd job
cessed
S) are
cessed
everal

uch as

HPC
torage
orage.
ty and

se the
alance
ogram
se the
ce by
ultiple

reGrid
hey all
e is a
educe
ckers.

The

mory

GB

GB

GB

Co
ሾ݅ߩ
tas
Th
ver
exe
com

In
the
num
pro
exp
5,0

Fig
dur
tra
mo
num
beg
To
qui
ind
Ma
by

M
P

Tes
Ou
Co

onsidering Auto
݅ሿ ൌ 1 per sect
sks on each nod
he version of Au
rsion. The glo
ecution details
mplexity.

our experiment
e most importa
mber of evalua
obability that b
periences, the g
000,000. We con

Figure 3: Num

gure 3 plots the
ring the job ex

ackers, so the m
oment is 20 *
mber of runni
ginning and st

owards the end
ickly (roughly
dicating that no
apReduce tasks
those new task

Table 4. MapR
unde

Number of
Map Tasks
Per Cluster

100

500

1000

1500

2000

st Case 1:
ur first test case
ontroller to find

oDock being a C
tion 3.3 so tha
de is equal to th
utoDock we us

obal controller
s because our

ts, we use 6,00
ant configuratio
ations. The lar

better results m
ga_num_evals i
nfigure it to 2,5

mber of runnin
MapReduc

number of runn
ecution. The cl

maximum numb
8 = 160. From

ing map tasks
tays approxima

d of job execu
0 - 5). Notic

ode usage ratio
come in, the av

ks.

Reduce executi
er different nu

Execution

Hotel
(seconds)

1004

1763

2986

4304

5942

e is a base test c
d out how eac

CPU-intensive a
at the maximum
he number of c
e is 4.2 which
does not care
local job m

00 ligands and 1
on parameters i
rger its value i

may be obtained
is typically set
500,000 in our e

g map tasks fo
ce instance

ning map tasks
luster has 20 da
ber of running
m the plot, we
 quickly grow
ately constant
ution, it drops
ce there is a t

is low. At thi
vailable mapper

ion time on dif
mber of map t

n Time on Thr

Alamo
(seconds)

821

1771

2962

4251

5849

case without inv
ch of our local

application, we
m number of m
cores on the no
is the latest sta

e about low-le
anagers hide

1 receptor. One
is ga_num_eval
is, the higher
d. Based on pr
from 2,500,000

experiments.

or an Autodock

within one clus
ata nodes and t
map tasks at a

e can see that
ws to 160 in

for a long tim
to a small va

tail near the e
s moment, if n
rs will be occup

fferent clusters
tasks.

ree Clusters

Quarry
(seconds)

1179

2529

4370

6344

8778

volving the Glo
l Hadoop clust

set
map
ode.
able
evel
the

e of
ls -
the
rior
0 to

k

ster
task
any
the
the

me.
alue
end,
new
pied

s

obal
ters

p
A
2
4

A
n
l
T
i
T
C

O
M
c
e
c
s
r
d
p
s
c
t
b
s
c

T
l
g
s
a
j
e
c
e
t
d
i
f
c
c

performs unde
AutoDock in th
2000 ligand/rec
4 for results.

As is reflected
number of map
linear, regardle
The total execu
is approximatel
The main reaso
CPUs compared

Figure 4. Loc

Test Case 2:
Our second te
MapReduce job
clusters, which
equation (4) fr
constant, and i
shows ߛሾ1ሿ ൌ ߛ
running before
distribution on
partition the d
stage the dat
configuration fi
the local MapR
back to the glo
shows the data
contexts.

The input data
ligands. The re
gridmap files t
stored in 60
approximately
job configuratio
each cluster,
containing 1 r
executable jar,
transfers it to
decompressed.
in.” Similarly, w
files together w
compressed int
controller. We c

er different n
he Hadoop to
ceptor pairs in e

d in Figure 4,
p tasks in test
ss of the startup

ution time of the
ly 50% slower
on is that nodes
d with that of A

cal cluster Map
different num

est case show
bs with ߛ-weigh
h is based on th
rom section 3.
∈ ሼ1, 2, 3ሽ	 fo
ሾ2ሿߛ ൌ ሾ3ሿߛ ൌ
ehand. Theref
each cluster is
ataset (apart fr
ta together w
file to local clus
Reduce executi
bal controller f
a movement c

aset of AutoDo
eceptor is descr
totaling 35MB

000 separate
5-6 KB large.
on file together
the global co
receptor file s
and job config

o the destinati
We call this glo
when the local

with control file
to a tarball an
call this local-to

numbers of m
process 100, 5

each of the thre

 the total exe
case 1 on each

p overhead of t
e jobs running o
than running o

s of the Quarry
Alamo and Hote

pReduce execut
mber of map ta

ws the perform
hted partitioned
he following pa
3, we set	ߠሾ݅ሿ

or our three clus
160, given no
fore, the weig
ሾ݅ሿݐ݄ܹ݃݅݁ ൌ 1
rom shared dat

with the jar e
sters for execut
on, the output

for the final glo
cost in the sta

ock contains 1
ribed as a set o
in size, and th
directories, e
In addition, th

r has a total of
ontroller create
set, 2000 ligan
guration files,
ion cluster, w
obal-to-local pr
MapReduce jo

s (typically 300
nd transferred
o-global proced

map tasks. We
500, 1000, 1500
ee clusters. See

ecution time vs
h cluster is clo
the MapReduce
on the Quarry c
on Alamo and H
y cluster have s
l.

tion time based
asks.

mance of exec
datasets on dif

arameters setup
ൌ where C ,ܥ

sters. Our calcu
MapReduce job
ght of map
1/3. We then eq
taset) into 3 p
executable and
ion in parallel.
files will be s

obal reduce. Fig
age-in and stag

 receptor and
of approximate
he 6000 ligand

each of whic
he executable ja

300KB in size
es a 14MB t
nds directories
all compressed

where the tarba
rocedure “data s
obs finish, the o
0-500KB in siz
back to the g

dure “data stage

e ran
0 and
Table

s. the
ose to
e jobs.
cluster
Hotel.
slower

d on

cuting
fferent
p. For

C is a
ulation
bs are
tasks

qually
pieces,
d job
After

staged
gure 5
ge-out

6000
ely 20
ds are
ch is
ar and
. For
tarball
s, the
d, and
all is
stage-
output
e) are
global
-out.”

As
13
tak
litt
com
exe

Th
Ma
clu
dat
in
tim
app
Ho
all
onl
on

F

Tes
In
Ma
dif
tes
ass
the
of
slo
Qu
Int

s we can see fr
.88 to 17.3 seco

kes 2.28 to 2.52
tle longer to tra
mpare to the
ecutions.

Figure 5. Tw
partitioned d

he time it takes
apReduce cluste
usters. The loc
ta movement co
Figure 6. The H

me to finish
proximately 3,0
otel and Alamo

the local result
ly 16 seconds t
Quarry become

Figure 6. Local
datas

st Case 3:
our third test c

apReduce jobs
fferent clusters,
st cases 1 and 2
signed the same
e same amount

time to finish
ower than Alam
uarry, Alamo a
tel(R) Xeon(R)

rom Figure 5, t
onds to finish, w
2 seconds to fi

ansfer the data b
relatively long

wo-way data mo
datasets: local M

outp

s to run 2000
ers varies due to
al MapReduce
osts (both data
Hotel and Alam

their jobs, b
000 more second
. The Global R
ts are ready in
to finish. Thus,
es the bottlenec

l MapReduce t
sets, including

case, we evalua
s with ߠߛ-we
, which is base
, we have obser

e number of com
of data, they ta

h. Among the
mo and Hotel. T
and Hotel are
 X5550 2.67GH

the data stage-i
while the data st
inish. The Alam
but the differen
g duration of

ovement cost o
MapReduce in
puts

map tasks on
o the different s
 execution ma
stage-in and st

mo clusters take
but the Quar
ds to finish, abo

Reduce task is o
the global contr
, the relatively

ck on the curren

turnaround tim
data movemen

ate the perform
eighted partitio
ed on the follo
rved that althou
mpute nodes an
ake significantly

three clusters,
The specification
Intel(R) Xeon(
Hz, and Intel(R

in procedure ta
tage-out proced
mo cluster take
nce is insignific
local MapRedu

of ࢽ-weighted
nput and their

each of the lo
specification of
akespan, includ
tage-out) is sho
similar amount

rry cluster ta
out 50% more th
only invoked af
roller, and it ta
poor performan

nt job distributio

me of ࢽ-weighte
nt cost

mance of execut
oned datasets
wing setup. Fr

ugh all clusters
nd cores to proc
y different amo
, Quarry is mu
ns of the cores
(R) E5410 2GH

R) Xeon(R) X55

akes
dure
es a
cant
uce

ocal
the

ding
own
t of

akes
han
fter
kes
nce

on.

ed

ting
on

rom
are

cess
ount
uch
on

Hz,
570

2
t
d
f
n
c
s
H
ߠ
c
a
0
H
p
d

F
s
l
c

2
t
r
p

W
m
s
a
t
b
r
s
t

2.93GHz, respe
that of processi
difference in pr
frequencies, th
number of co
capabilities of
scheduling poli
Here we set ߠሾ
ሾ3ሿߠ ൌ 2 for Q
calculated ߛሾ1ሿ
are running be
0.3860, ܹ݁݅݃
Hotel, Alamo,
partitioned acco
dataset is partiti

Table 5. Num

Cluster

Hotel

Alamo

Quarry

Figure 7 shows
scenario. The v
ligands sets are
can see from th
17.64 seconds t
2.2 to 2.6 seco
transfer the dat
relatively long
previous test ca

Figure 7. T
partitioned

With weighted
makespan, inclu
stage-out) are s
amount of time
that our refined
balancing work
reduction comb
sorts the result
tasks (ligand/re

ectively. The in
ing time match r
rocessing time
erefore, it is n

ores for load
f each core ar
icy to add CPU
ሾ1ሿ ൌ 2.93 for H
Quarry. As is
ൌ ሾ2ሿߛ ൌ ሾ3ሿߛ

eforehand. Thu
ሾ2ሿݐ݄݃ ൌ 0.350

and Quarry
ording to the n
ioned.

mber of Map T
Time on

Number of M

2316

2103

1581

s the data move
variations in the
e quite small, w
he graph, the da
to finish, while
onds to finish.
ta but the differ
duration of loc

ase.

Two-way data m
d datasets: loca

o

d partition, t
uding data mov
shown in Figur
e to finish the l
d scheduler conf
kload among clu
bines partial re
ts. The average
ceptor docking)

nverse ratio of
roughly. So we
is mainly due

not enough to m
balancing, an

re also importa
U frequency as
Hotel, ߠሾ2ሿ ൌ 2

for test case
ሿ ൌ 160, given
us, the weight
05, and ܹ݁݅݃
respectively. T
ew weight. Tab

Tasks and MapR
Each Cluster

Map Tasks
Ex

6

3

1

ement cost in th
e size of tarball
which is smaller
ata stage-in proc
e the data stage

Alamo takes a
rence is also in
cal MapReduce

movement cost
al MapReduce
utputs

the local Ma
vement costs (bo
re 8. All three
local MapRedu
figuration impro
usters. In the fi
sults from low
e time taken to
) is 16 seconds.

CPU frequency
e hypothesize th
to the different
merely factor i
nd the compu
ant. We refine
a factor to set
2.67 for Alamo

2, we again
no MapReduce

s are ܹ݄݁݅݃ݐ
ሾ3ሿݐ݄݃ ൌ 0.263
The dataset is
ble 5 shows ho

Reduce Execut

xecution Time
(Seconds)

5915

5888

6395

he weighted par
l different numb
r than 2MB. A
cedure takes 12
e-out procedure
a little bit long

nsignificant give
executions as i

t of ࣂࢽ-weighte
input and thei

apReduce exec
oth data stage-i
clusters take si

uce jobs. We ca
oves performan
inal stage, the g
er-level cluster
o process 6000

y and
hat the
t core
in the

utation
e our
 .ሾ݅ሿߠ	

o, and
have

e jobs
ሾ1ሿ ൌ
5 for

s also
w the

tion

rtition
ber of
As we
.34 to
takes

ger to
en the
in the

ed
ir

cution
in and
imilar
an see
nce by
global
rs and
0 map

Fi

6.
In
fra
clu
imp
Re
fun
con
mu
fun
con
cap
We
per
wo
mi

Ou
dat
com
inv
vol

7.
Ou
acc
wo

8.
[1]

[2]

[3]

[4]

igure 8. Local
datas

CONCLU
this paper, w

amework that c
usters and run M

mplemented in t
educe” model
nctions: Map,
ntroller in our fr
ultiple “local”
nctions, and th
ntroller to run
pacity-aware alg
e use AutoDoc
rformance of
orkloads are we
nimum.

ur future work
tasets, especia
mputing. Instea
vestigate movin
lume and/or pri

ACKNOW
ur special thank
cess to FutureG
ork. We also tha

REFERE
] Buyya, R., A

architecture f
system in a g
HPC ASIA'2

] Ding, Z., We
W. Customiz
Life Sciences
Volume 25, N
10.1007/s003
http://dx.doi.

] Frey, J., Tann
2002. Condo
Multi-Institu
2002), 237-2
http://dx.doi.

] FutureGrid, h

MapReduce tu
sets, including

USION AND
we have presen
an gather comp
MapReduce job
this framework
where compu
Reduce, and

framework split
MapReduce cl
e local results
the Global Re

gorithm to balan
ck application
our framewor

ell balanced an

will address th
ally for data
ad of moving d
ng computation
ivacy sensitive.

WLEDGME
ks to Dr. Geof
Grid resources
ank Chathura H

ENCES
Abramson, D., G
for a resource m
global computat
2000, China, IEE

ei, X., Luo, Y., M
zed Plug-in Mod
s Applications,
Number 4, 373-
354-007-0024-6
org/10.1007/s0

nenbaum, T., L
or-G: A Comput
utional Grids. Cl
246. DOI=10.10

org/10.1023/A:

http://www.futu

urnaround tim
data movemen

D FUTURE
nted a hierarch
putation resourc
bs across them

k adopt the “M
utations are ex
d Global Red
s the data set an
lusters to run
are returned b

educe function.
ance the workloa

as a test case
rk. The result
nd the total ma

he data locality
a-intensive an
data to the com
to data, which

ENTS
ffrey Fox for p
 and valuable
erath for discus

Giddy, J. Nimrod
management and
tional grid, in: P
EE CS Press, U

Ma, D., Arzberg
dules in Metasc
New Generatio

-394, 2007, DO
6
0354-007-0024

ivny, M., Foste
tation Managem
luster Computin

023/A:10156170
:101561701942

uregrid.org

me of ࣂࢽ-weight
nt cost

E WORK
hical MapRedu
ces from differ
. The applicatio

Map-Reduce-Glo
xpressed as th
duce. The glo
nd maps them o
Map and Redu

back to the glo
We use resou

ad among cluste
e to evaluate
t shows that
akespan is kept

issue of the in
nd data-sensit

mputation, we w
might be in la

providing us ea
feedback on

ssions.

d-G: an
d scheduling
Proceedings of t

USA, 2000.

ger, P. W., Li, W
cheduler CSF4 f
on Computing

OI:

4-6

r, I., Tuecke, S.
ment Agent for
ng 5, 3 (July
019423
23

ted

uce
rent
ons

obal
hree
obal
onto
uce

obal
urce
ers.
the
the

t in

nput
tive
will
arge

arly
our

the

W.
for

.

[5] Gentzsch, W. (Sun Microsystems). 2001. Sun Grid Engine:
Towards Creating a Compute Power Grid. In Proceedings of
the 1st International Symposium on Cluster Computing and
the Grid (CCGRID '01). IEEE Computer Society,
Washington, DC, USA, 35-39

[6] Hadoop On Demand,
http://hadoop.apache.org/common/docs/r0.17.2/hod.html

[7] Henderson, R. L.. 1995. Job Scheduling Under the Portable
Batch System. In Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing (IPPS '95),
Dror G. Feitelson and Larry Rudolph (Eds.). Springer-
Verlag, London, UK, 279-294.

[8] Huedo, E., Montero, R. S., and Llorente, I. M. 2004. A
framework for adaptive execution in grids. Softw. Pract.
Exper. 34, 7 (June 2004), 631-651. DOI=10.1002/spe.584
http://dx.doi.org/10.1002/spe.584

[9] Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. 2010.
An Analysis of Traces from a Production MapReduce
Cluster. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing (CCGRID '10). IEEE Computer Society,
Washington, DC, USA, 94-103.
DOI=10.1109/CCGRID.2010.112
http://dx.doi.org/10.1109/CCGRID.2010.112

[10] Keahey, K., Tsugawa, M., Matsunaga, A., and Fortes, J.
2009. Sky Computing. IEEE Internet Computing 13, 5
(September 2009), 43-51. DOI=10.1109/MIC.2009.94
http://dx.doi.org/10.1109/MIC.2009.94

[11] Litzkow, M. J., Livny, M., Mutka, M. W. Condor - A Hunter
of Idle Workstations. ICDCS 1988:104-111

[12] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F.,
Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009),
AutoDock4 and AutoDockTools4: Automated docking with
selective receptor flexibility. Journal of Computational
Chemistry, 30: 2785–2791. doi: 10.1002/jcc.21256

[13] National Biomedical Computation Resource, http://nbcr.net

[14] Qiu, J., Ekanayake, J., Gunarathne, T., Choi, J. Y., Bae, S.
H., Ruan, Y., Ekanayake, S., Wu, S., Beason, S., Fox, G.,
Rho, M., Tang, H., “Data Intensive Computing for
Bioinformatics”, In Data Intensive Distributed Computing,
IGI Publishers, 2010

[15] Staples, G. 2006. TORQUE resource manager. In
Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC '06). ACM, New York, NY, USA,
Article 8. DOI=10.1145/1188455.1188464
http://doi.acm.org/10.1145/1188455.1188464

[16] Teragrid, http://www.teragrid.org

[17] Tsugawa, M., and Fortes, J. A. B. 2006. A virtual network
(ViNe) architecture for grid computing. In Proceedings of the
20th International Conference on Parallel and Distributed
Processing (IPDPS'06). IEEE Computer Society,
Washington, DC, USA, 148-148.

[18] Vaqué, M., Arola, A., Aliagas, C., and Pujadas, G. 2006.
BDT: an easy-to-use front-end application for automation of
massive docking tasks and complex docking strategies with
AutoDock. Bioinformatics 22, 14 (July 2006), 1803-1804.
DOI=10.1093/bioinformatics/btl197
http://dx.doi.org/10.1093/bioinformatics/btl197

[19] Yang, H., Dasdan, A., Hsiao, R., and Parker, D. S. 2007.
Map-Reduce-Merge: Simplified Relational Data Processing
on Large Clusters. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data
(SIGMOD '07). ACM, New York, NY, USA, 1029-1040.
DOI=10.1145/1247480.1247602
http://doi.acm.org/10.1145/1247480.1247602

[20] Zaharia, M., Borthakur, D, Sarma, J. S., Elmeleegy, K.,
Shenker, S., and Stoica, I. Job Scheduling for Multi-User
MapReduce Clusters, Technical Report UCB/EECS-2009-
55, University of California at Berkeley, April 2009.

[21] Zhang, C., De Sterck, H., "CloudBATCH: A Batch Job
Queuing System on Clouds with Hadoop and HBase," Cloud
Computing Technology and Science, IEEE International
Conference on, pp. 368-375, 2010 IEEE Second
International Conference on Cloud Computing Technology
and Science, 2010

[22] Zhou, S, Zheng, X., Wang, J., and Delisle, P. 1993. Utopia: a
load sharing facility for large, heterogeneous distributed
computer systems. Softw. Pract. Exper. 23, 12 (December
1993), 1305-1336. DOI=10.1002/spe.4380231203
http://dx.doi.org/10.1002/spe.4380231203

