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ABSTRACT
Modern biology is experiencing a rapid increase in data vol-
umes that challenges our analytical skills and existing cy-
berinfrastructure. Exponential expansion of the Protein Se-
quence Universe (PSU), the protein sequence space, together
with the costs and complexities of manual curation creates a
major bottleneck in life sciences research. Existing resources
lack scalable visualization tools that are instrumental for
functional annotation. Here, we describe a new visualiza-
tion tool using multi-dimensional scaling (MDS) to create a
3D embedding of the protein space. The advantages of the
proposed PSU method include the ability to scale to large
numbers of sequences, integrate different similarity measures
with other functional and experimental data, and facilitate
protein annotation. We applied the method to visualize the
prokaryotic PSU using sequence alignment scores. As an
annotation example, we used the interpolation approach to
map the set of annotated archaeal proteins into the prokary-
otic PSU. Transdisciplinary approaches akin to the one de-
scribed in this paper are urgently needed to quickly and
efficiently translate the influx of new data into tangible in-
novations and groundbreaking discoveries.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life andMedical Sciences—
Biology and genetics; H.3.3 [Information Systems]: In-
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1. INTRODUCTION
Functional annotation of newly sequenced genomes and

meta-genomes is one of the principal challenges of modern
biology. Rapidly advancing sequencing technologies gener-
ate peta- and even exabyte scale data, exponentially expand-
ing the PSU (see Table 1) [41, 43, 10]. Assigning functions
to this glut of newly sequenced proteins is an immense com-
putational challenge that requires advanced analytical tools
and scaling capabilities [47, 50, 40, 38, 31].

Protein functional annotation relies on expert knowledge
along with sophisticated statistical and machine-learning meth-
ods including pairwise and multiple sequence alignment al-
gorithms, structure prediction models, motif and domain
finding algorithms, and clustering methods [2, 3, 44, 48, 53].
The size and complexity of data from high-throughput tech-
nologies require the methods that can cohesively integrate
information on protein expression, pathways, structure and
functional annotation across different experiments, organ-
isms and conditions, and to put these data into context with
sequence information [28].

Functional annotation is typically done on a protein-by-
protein basis. While this ‘manual’ approach is feasible for
a small group of proteins, it quickly becomes unsustainable
as the volume of sequences expands [17, 6]. In functional
and comparative genomics approximately 30% of proteins
in any newly sequenced genome have unknown function [7,
18, 31]. This barrier remains relatively constant as more
new organisms are sequenced. The influx of data from novel



Table 1: Definitions of keywords and abbreviations used in this paper.
Abbreviation/Keyword Definition

ActiveMQ Apache publish-subscribe environment; http://activemq.apache.org/.
Apache Hadoop A software framework that supports data-intensive distributed applications and provides

a distributed file system that stores data on the compute nodes, allowing for high aggregate
bandwidth across the cluster; http://hadoop.apache.org/.

Apache Hive

An open source software designed to run data warehouse-styled operations against large
datasets stored in Hadoop Distributed File System. Hive allows projecting an RDBMS-like
structure onto the stored data and run queries against those structures using HiveQL
language; http://hive.apache.org/.

Azure, Microsoft Windows

Provides on-demand compute and storage to host, scale, and manage applications on the internet
through Microsoft datacenters. The NCBI BLAST on Windows Azure is a cloud-based
implementation of the NCBI BLAST tool;
http://research.microsoft.com/en-us/projects/azure/azureblast.aspx.

BLAST

A heuristic algorithm which is optimized to identify local alignments with high sequence
similarity. After optimal alignments are determined, BLAST calculates a bit score and an e-value
for each alignment where the latter considers both the bit score and additional information about
search database size and the scoring system http://blast.ncbi.nlm.nih.gov/Blast.cgi [2, 3].

COG
Clusters of Orthologous Groups of proteins database developed by NCBI. The database
is separated into COGs for prokaryotic genomes and KOGs for eukaryotic genomes;
http://www.ncbi.nlm.nih.gov/COG/ [52, 53].

DELSA Global
The mission of the Data-Enabled Life Sciences Alliance is to accelerate the impact of
data-enabled life sciences research on solutions to the pressing needs of our global society;
http://delsaglobal.org/.

EM
Expectation Maximization is an iterative algorithm used to find maximum likelihood
estimators of the underlying distribution for incomplete data or data with missing values.

KOG Clusters of orthologous groups for eukaryotic genomes; http://www.ncbi.nlm.nih.gov/COG/ [53].

MapReduce
A computational paradigm, where the application is divided into many small fragments
of work, each of which may be executed on any node in the compute cluster.

MDS
Multidimensional scaling finds a low-dimensional Euclidean representation of data given
the matrix of pairwise similarities. The classical MDS estimates the projections so that
the relation between the resulting interpoint distances and the original similarities is linear.

MPI
The Message Passing Interface designed for high performance on massively parallel machines
and on workstation clusters; http://www.mcs.anl.gov/research/projects/mpi/.

NW
Needleman-Wunsh dynamic programming algorithm is used to find the highest-scoring global
alignment of two sequences.

PlotViz
A visualization software developed by SALSA group at Indiana University;
http://salsahpc.indiana.edu/plotviz/ [45].

PSU

Protein Sequence Universe is the totality, or the aggregate, of all the protein sequences that
exists in nature. PSU is also an interactive visualization framework with scalable software
architecture. When developed the framework will allow users to explore, browse, analyze,
and visualize protein data; http://manxcatcogblog.blogspot.com/.

Sammon’s loss A cost function for nonlinear MDS with an emphasis on preserving small distances [46].

Sequence similarity
A score that gives the degree of matching between the two compared sequences. The examples
include BLAST, NW and Smith-Waterman scores.

Twister
An open source implementation of Iterative MapReduce that supports more efficient and
broader range of communication collectives (including reduce, gather, and broadcast in
an MPI language) in the Reduce phase of MapReduce; http://www.iterativemapreduce.org/.

UniProt
The Universal Protein Resource for protein sequence and annotation data;
http://www.uniprot.org/.

UniRef

The UniProt Reference Clusters database that groups members based on sequence similarity.
UniRef is composed of the distinct databases UniRef100, UniRef90, and UniRef50, that have
100%, 90%, and 50% sequence similarity, respectively, within protein clusters and reduce the
UniProt database size by approximately 10%, 40%, and 70%, respectively. Each cluster
contains one reference sequence and all proteins within the similarity threshold to the reference.
UniRef retains annotation from all members of the protein cluster to prevent information loss;
http://www.ebi.ac.uk/uniref/.

http://activemq.apache.org/
http://hadoop.apache.org/
http://hive.apache.org/
http://research.microsoft.com/en-us/projects/azure/azureblast.aspx
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/COG/
http://delsaglobal.org/
http://www.ncbi.nlm.nih.gov/COG/
http://www.mcs.anl.gov/research/projects/mpi/
http://salsahpc.indiana.edu/plotviz/
http://manxcatcogblog.blogspot.com/
http://www.iterativemapreduce.org/
http://www.uniprot.org/
http://www.ebi.ac.uk/uniref/


sequencing technologies creates an ever expanding backlog
of un-annotated proteins, or “hypothetical”, proteins [7, 32,
29, 18]. In addition to this backlog, a growing number
of databases can no longer sustain the expansion including
some of the most popular resources like the Clusters of Or-
thologous Groups database (COG; see Table 1, [53]). Last
updated in 2006, the COG database remains one of the most
popular scientific resources (over 6K citations according to
Google Scholar).

The first of a kind all-versus-all sequence alignment of
9.9 million UniRef100 [51] proteins demonstrated the com-
putational complexity of functional annotation [31]. The
alignment on Microsoft Windows Azure with 475 eight-core
virtual machines took six days to run and produced over 3
billion records. Consequently, 5.1 million (68%) bacterial
proteins were assigned into COG clusters. The remaining
2 millions were classified into functional groups using an
innovative implementation of a single-linkage algorithm on
a Hadoop compute cluster using Hive and the MapReduce
paradigm (Table 1). Similarly, the eukaryotic database was
expanded by over 1 million proteins and 100,000 new func-
tional groups.

The UniRef clustering project showed both the promise
and the challenge of protein annotation. Public annota-
tion resources are struggling to cope with the influx of data
and, as a result, are either no longer supported [53, 34, 33]
or provide limited interactive and analytic capabilities [24,
26]. Comprehensive functional annotation of large scale data
requires a wide range of skills and tools including expert
knowledge, manual curation, compute power, and analytic
methods with scaling capabilities.

Because functionally similar proteins tend to cluster to-
gether, visualizing proximity of hypothetical proteins to the
existing functional groups can significantly simplify the task
of functional annotation. One approach to PSU visualiza-
tion is through low-dimensional embedding of sequence sim-
ilarity data. Methods for low-dimensional embedding in-
clude MDS, principal- and independent component analy-
ses, spring embedding, feature selection and others [9, 19,
23, 22].

Visualization methods for biological data proposed in the
literature include BioLayout [13] and Large Graph Layout
(LGL) [1]. Both methods implement graph layout algo-
rithms to visualize the network. Large volumes of data may
affect the performance and utility of the visualization meth-
ods. Indeed, the BioLayout rendering limit of 45,000 nodes
and 5 million edges is only a quarter of the COG database
size. The software also does not allow an iterative update
and the layout has to be recomputed for the entire data set
with each expansion. The LGL method appears to be no
longer available.

In this paper, we propose a PSU, an exploratory tool
to enable protein annotation. The tool provides a low-
dimensional visualization of data using a parallel MDS im-
plementation on cloud and HPC systems with Iterative MapRe-
duce, the standard Message Passing Interface (MPI; see Ta-
ble 1), and threading. The implementation allows for iter-
ative expansion by interpolating the new experimental data
into the existing universe. When fully developed, the PSU
would provide interactive, exploratory tools to examine com-
plex biological data both independently and in the context
of the existing information. As an example, we apply the
method to create a 3D projection of the prokaryotic PSU.

Prokaryotes are one of the four major biological kingdoms.
To demonstrate the utility of the method as a tool for func-
tional annotation, we interpolate the positions of the ar-
chaeal proteins and discuss the implications of the result in
the context of functional annotation.

2. MATERIALS AND METHODS

2.1 COG Database
A major principle of molecular evolution is that function-

ally important proteins tend to be conserved across species.
The COG database was developed by the National Cen-
ter for Biotechnology Information (NCBI) [53]. The project
constructed clusters of proteins from 66 prokaryotic and
seven eukaryotic genomes. For each protein, the best aligned
protein in every other genome was determined using a se-
quence similarity search [2]. If three proteins from three or-
ganisms were mutual best hits, they created a triple. COGs
are the result of exhaustive, successive merging of triples
with two common members. Manual curation of the clus-
ters was done by experts to ensure correct grouping and
functional annotations. The COG database is separated
into COGs for prokaryotic genomes and KOGs for eukary-
otic genomes [52, 53]. The database was last updated in
2008 and is not currently maintained.

In this paper, we are using the COG database of prokary-
otic genomes that we will refer to as COGs.

2.2 Archaeal Database
The archaeal clusters of orthologous genes (arCOGs) con-

tains 120 archaeal genomes with over 250,000 protein-coding
genes that are classified into 10,335 arCOGs. The expert an-
notation of arCOGs was based on the COGs, the Conserved
Domains and Protein Classification and the homolog anno-
tation in the nonredundant nucleotide database [56]. The
archaeal proteins were classified into 10,335 archaeal func-
tional groups (arCOGs) that were further assigned to COG
clusters. The current version of the database covers 91% of
120 archaeal genomes.

2.3 Multi-Dimensional Scaling
The MDS algorithm was used to project the protein se-

quence data into a low-dimensional space [9]. The method
uses a dissimilarity matrix to estimate the positions in the
lower dimensional space while preserving the dissimilarity
between the sequences. Here, we optimize Sammon’s loss
function [46] given by

H =

n∑

i,j=1

i<j

(f(δij)− d(xi, xj))
2

f(δij)
, (1)

where δij is the dissimilarity measure between sequences i
and j and d is the Euclidean distance between the corre-
sponding 3D projections xi and xj . Function f in equation
(1) is a monotone transformation of dissimilarity measure.
The transformation f is chosen heuristically to increase the
range of dissimilarity measures. The denominator in (1) en-
sures a larger contribution from smaller dissimilarities thus
making the clustering structure of the data more apparent.

Equation (1) shows that projections xi are mutually de-
pendent. Hence the parallel MDS implementaion is accom-
plished by splitting the data into parts, computing the pro-
jections for each part using the mapping results for other



Figure 1: (left) MDS representation of the 100,000 sequences from well-characterized COGs in prokaryotic
PSU. Each point represents a protein sequence. Eleven COG clusters were color-coded as marked in the
legend. The number of proteins in each cluster is in parentheses; (center) the heatmap of the transformed
NW distances versus the Euclidean distances between the MDS projections and (right) the histogram of
transformed NW distances for 100,000 COG proteins.

parts and merging the mapping results. The iterations are
stopped when the layout is stable, i.e. the projections do
not change significantly after an iteration step. The MDS
method has an O(n2) computational complexity to map n
sequences into 3D. Here, we used an expectation maximiza-
tion (EM) approach to minimize the loss function [35, 8].

2.4 Interpolation
Large volumes of newly generated high-throughput data

require efficient processing methods. To enable efficient map-
ping of newly sequenced proteins into the existing universe,
we used an interpolation approach [4]. The approach uses
pre-computed MDS projections for a sample of sequences to
estimate the positions of new elements.

1. Map the initial set of n sequences using MDS and let
x1, . . . , xn denote the corresponding projections.

2. For each new protein sequence, compute n dissimilar-
ity measures δip, where i and p index the original and
new sequence, respectively.

3. For each new sequence, identify its K nearest neigh-
bors among the original n proteins.

4. Estimate the projection xp of the new protein by min-
imizing the loss function

H(xp) =

n∑

i=1

(f(δpi)− d(xp, xi))
2/f(δpj). (2)

Equation (2) shows that in interpolation, the objective
function is optimized independently for each new protein p.
Therefore, the computations can be easily parallelized and
hence, the algorithm can be scaled to handle large data. The
interpolation approach requires O(n) operations [4].

2.5 Implementation
We used a scaled, parallel traditional MPI with thread-

ing intranode for minimizing the loss function [15]. In the
Reduce phase of MapReduce, we used Twister (see Table 1)
[54, 12]. In Twister, all communication avoids using inter-
mediate disk and is built around ActiveMQ (see Table 1) in

Java Twister and around Azure primitives in the Microsoft
cloud.

The method was applied to obtain a 3D projection of
sequences in COG and archaeal databases. Initially, we
applied MDS to create a low dimensional representation
of COG consensus sequences. A consensus sequence was
computed for each COG cluster separately and reflects the
consensus of residues across the alignment columns. The
consensus sequences were mapped into the 3D space using
the MDS approach. The projections of consensus sequences
were used to interpolate the coordinates of the COG protein
sequences as described in Section 2.4.

We used sequence alignment scores as proximity measure.
All pairwise distances were calculated using an MPI im-
plementation of the Needleman-Wunsch (NW, see Table 1)
alignment algorithm. The NW algorithm was realized by a
parallel computation on the 24-core node system. The ef-
ficiency of the parallel distance computation was less than
that of MDS due to saturation of memory bandwidth.

The distances were normalized to 2δij/(δii + δjj) to ac-
count for the sequence length effect. Then, we applied a
monotone log(1− δ6ij) transformation to the normalized dis-
tances. This nonlinear transformation shortensl distances
between similar sequences while magnifying distances be-
tween those with low alignment score. For MDS of consensus
sequences, we used an MPI implementation of the nonlinear
MDS with random initialization[27]. For interpolation, we
set K = 20. The calculations were performed on a 768 core
Microsoft HPC cluster. The resulting 3D projections were
visualized in PlotViz (see Table 1) [45]

The NW distance calculation required one day to com-
plete and the MDS job ran for three days. The parallel
efficiency of the code was approximately 70% based on ear-
lier studies that discuss both the inter-node and intra-node
cases and find that it is essential to adopt a hybrid model
with intra-node threading and MPI between nodes [42, 16].
All software used to analyze and visualize the data is open
source. The results of the MDS analysis including esti-
mated coordinates, parameters and captures are available
at http://manxcatcogblog.blogspot.com/.

3. RESULTS



3.1 COG Database
Figure 1 (left) shows the 3D rendering of the prokaryotic

PSU with each point representing a protein sequence. The
figure shows the complexity of the PSU and the presence
of distinct grouping structure. We color-coded eleven COG
clusters in Figure 1 to illustrate the diversity of the under-
lying protein groups with respect to their location, shape,
dispersion and size. While some clusters are rather tight,
others are scattered throughout a sizeable domain. For ex-
ample, compare the tight COG0333 cluster of ribosomal pro-
tein L32 with the diffuse COG0454 (HPA2) and COG0477
(Permeases of the major facilitator superfamily); see also
Table 2.
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Figure 2: The dendrogram tree of the cluster cen-
troids. The cluster labels are color-coded as in Fig-
ure 1.

Recall that in MDS, the goal is to create a low-dimensional
representation of a high-dimensional space while preserving
the similarity measures. Hence, given the choice of the sim-
ilarity measure, the proximity of two points in the 3D rep-
resentation in Figures 1 and 3 implies the similarity of the
corresponding protein sequences as measured by the NW
scores. High intensity values along the diagonal in Figure 1
(center) show a strong correlation between the NW distances
and the distances based on MDS projections. The excess of
points with mapped distances less than original values can
be traced to equation (1) where the denominator depends
on the original rather than mapped distances. Consequently,
clusters that appear tight in 3D can be thought of as consist-
ing of similar sequences, in NW sense. Similarly, scattered
clusters imply greater variability of NW alignments between
the proteins in the same cluster. Spatial proximity of clus-
ters indicates the similarity of the sequences across these
clusters. Note that the histogram of NW distances in Fig-
ure 1 also shows a lack of spatial separation between the
clusters.

For the eleven color-coded COG clusters in Figure 1, we
computed the centroids of their respective MDS projections.
The dendrogram tree in Figure 2 shows the relative proxim-
ity of the cluster centroids to each other. Out of the eleven
selected clusters, COG1131 (yellow) and COG1136 (cyan)
are the tightest with respect to the mean intra-cluster dis-
tance. These two clusters are a part of a group that includes
seven COGs in all; see right branch of the dendrogram. The
other four COGs 1028, 0333, 0477, 0454 appear to be less
similar to this group of seven or to each other.

The magnified view in Figure 3 (left) details the neigh-

borhood structure of the COG1131 and COG1136 showing
five more COGs lying in close proximity. Remarkably, all
seven clusters are functionally similar and correspond to the
ABC-type transport system, ATPase component (see Table
2). The heatmap shows a good agreement between the NW
distances and MDS projections for the seven selected clus-
ters; see Figure 3.

From the biological standpoint, the spatial features of the
MDS projection of sequence alignment scores conform well
to the clusters’ functions. For example, a tight COG3839
cluster contains 142 protein sequences of the sugar trans-
port systems that are similar both in function and compo-
sition. Similarly, COG1126 of the polar amino acid trans-
port system proteins with very specific functions appears
as a very tight cluster. In turn, the apparent diffusivity of
COG1131 can be explained by the fact that the 244 mul-
tidrug transport system proteins that compose the cluster
differ in amino acid composition and functional mechanisms.
The inter-cluster distance of the 3D projections reflects the
similarity between protein sequences in the corresponding
clusters. For example, the two oligopeptide transport sys-
tems, COG4608 and COG0444, have similar shape and are
located in close proximity to one another. The example of
the COG data clearly demonstrates that MDS can effec-
tively create a 3D projection of the PSU while preserving
the fundamental grouping structure.

As mentioned, in our previous work we used all-versus-
all alignment of 10 million UniRef100 proteins to populate
the existing COG clusters [31]. The last column in Table 2
shows the number of UniRef100 proteins added to each of
the eleven clusters from Figure 1. Notably the most diffuse
clusters show the greatest expansion.

3.2 Comparison with BioLayout
We further compared the performance of the proposed

method to BioLayout [13]. In BioLayout, the current limit
for network rendering is 45,000 nodes and 5 million edges.
This was only a quarter of the size of COG database. Hence,
we decided to compute the layout only for data in seven se-
lected clusters in Figure 3 that contain about 5.5 million
edges. The projections resembled a large spherical cluster
and did not reflect the underlying grouping structure (see
Figure 4). Limited zooming capabilities did not allow ex-
ploring the results in more detail. The BioLayout approach
does not have an interpolation option and hence the layout
has to be recomputed every time the data set is expanded.

Figure 4: The 3D layout of data by BioLayout based
on sequence similarity for seven clusters in Figure 3.

3.3 Archaeal Database



Figure 3: (left) Magnified version of the prokaryotic PSU showing seven functionally similar COGs from
Figure 1; (center) the heatmap of the transformed NW distances versus the Euclidean distances between the
MDS projections and (right) the histogram of transformed NW distances for the corersponding clusters. The
inset in the top right corner shows the distribution for the distances below 0.05

Table 2: Annotations of COG clusters in Figures 1 and 3.
COG Annotation Size UniRef
COG1131 ABC-type multidrug TS, ATPase comp. 244 14,406
COG1136 ABC-type antimicrobial peptide TS, ATPase comp. 198 7,306
COG1126 ABC-type polar amino acid TS, ATPase comp. 118 4,061
COG3839 ABC-type sugar TSs, ATPase comp. 142 4,121
COG0444 ABC-type di-/oligopeptide/nickel TS, ATPase comp. 142 3,520
COG4608 ABC-type oligopeptide TS, ATPase comp. 132 3,074
COG3842 ABC-type spermidine/putrescine TSs, ATPase comp. 115 3,665

COG0333 Ribosomal protein L32 49 1,148
COG0454 Histone acetyltransferase HPA2 & related acetyltransf. 285 14,085
COG0477 Permeases of the major facilitator superfamily 381 48,590
COG1028 Dehydrogenases with different specificities 299 37,461

Figure 5 shows an example of four COG clusters and the
positions of the archaeal proteins classified into those clus-
ters. The spread and shape of the projections is similar for
bacterial and archaeal proteins. All four clusters have one
common phenomenon: a tight core with extended, sparse
scatter. The figure suggest that the proximity of the projec-
tions may be used to annotate new proteins by classifying
them into existing clusters. However, the presence of outliers
shows that projection information alone may not suffice for
accurate classification at least for observation in the tails.

4. DISCUSSION
Functional protein annotation is one of the most impor-

tant and resource-intensive challenges in biology [6]. The
rapid influx of data from newly sequenced genomes together
with high costs of expert annotaton create a major bottle-
neck, stalling scientific advances. The number of sequenced
genomes is poised to increase in the next five years. The
Earth Microbiome Project alone is expected to sequence
500,000 microbial genomes [10]. This is well over a 100-fold
increase in the number of sequenced microbial genomes and
proteins currently contained in GenBank. The i5K Insect
and other Arthropod Genome Sequencing Initiative plans
to sequence 5,000 insects and related species, yielding nearly
100 million new protein sequences [43]. Assigning functions

to this glut of newly sequenced proteins is an immense sci-
entific challenge.

Large-scale annotation projects require expert validaton,
significant compute power, and a wide spectrum of analytic
tools with scaling capabilities. Used here as an example,
the COG database is one of the primary research tools in
functional annotation and comparative genomics. However,
rapid accumulation of data drastically raised the computa-
tional demands for COG update and enhancement. As a
result, the database has not been updated since 2006. Sus-
taining resources like COG is essential to enable advances
in functional annotation, comparative and evolutionary ge-
nomics.

In life sciences, efficient data exploration and analysis re-
quires advanced visualization tools. However, existing meth-
ods neither address large-scale biological problems, nor offer
sustainable, affordable means to cope with the influx of new
information. Biological data are typically analyzed on the
experiment level and in the context of known relationships,
e.g. pathways, complexes. Tools for pathway and network
visualization (e.g. Ingenuity or Biobase) consider neither
sequence information nor extend to the entire PSU. Tools
that would enable a low-dimensional representation of data
and provide interactive visualization would substantially aid
functional annotation.

The low-dimensional MDS implemented here allows dy-



Figure 5: 3D view of selected COG clusters (yellow) and the archaeal proteins from those clusters. Orientation
is shown in the bottom left corner. Big axis show the scale of the zoom. Numbers in parenthesis indicate the
number of proteins in the given cluster.

namic, interactive exploration that is a mandatory precursor
to statistical modeling. The MDS approach can be readily
adapted to incorporate a composite similarity measure based
on different types of proximities and biological information
[2, 49, 20]. The parallel implementation employed here was
developed specifically to handle large-scale data. Further-
more, the interpolation methods allow for quick mapping
of new sequences into the existing projection space. The
interpolation runs in O(n) time after an initial MDS em-
bedding with the O(n2) approach [4]. Given the ever in-
creasing volumes of data from new sequencing technologies,
this feature is essential as it facilitates prompt integration
of large scale data while reducing computational costs. As
a tool, PSU provides an interactive visualization of depen-
dencies between a large number of proteins. The projection
preserves the structure of data and can be integrated with
information on function, pathways, structure, and environ-
ment, enabling analysis across domains of interest.

BioLayout platform provides an alternative visualization
approach for biological data. Currently BioLayout has a
45,000 node rendering limit that is not enough even to visu-
alize an example subset of well-characterized bacterial pro-
teins. When applied to sequence data the selected seven
clusters, BioLayout failed to preserve the distinct group-
ing structure. Furthemore, BioLayout has no interpolation
mechanisms to iteratively update the results, so that an ad-
dition of a single sequence requires recomputing the layout of
the entire set. In comparison, the MDS approach preserved
the clustering structure and allowed for iterative expansion
of the universe.

The mapping of archaeal proteins demonstrated the ca-

pabilities of the PSU as an annotation tool. The archaeal
set was annonated by experts and hence provided a reliable
standard. The interpolation allowed mapping a large num-
ber of archaeal proteins while effectively reducing computa-
tional complexity and memory requirement. The resulting
projections were in good agreement with functional anno-
tation of the corresponding proteins, i.e. the features and
structure of archaeal proteins projections resembled those of
the COG cluster they were classified into. Further, we in-
tend to develop an accurate and efficient method for classi-
fying new proteins into existing clusters based on the MDS
layout. The two nearest neighbor rules, one based on the
nearest annotated protein and the other based on the near-
est consensus, did not achieve desirable accuracy attesting
to the complexity of the problem.

In conclusion, we have illustrated the merits of low-dimensional
embedding as a tool to explore the protein space and anno-
tate new sequences. The method based on MDS retains
the important grouping structure of the data, whereas the
interpolation scheme allows for efficient expansion of the ex-
isting protein universe at reduced computational costs. The
method outperformed the alternative graph layout approach
implemented in BioLayout. The mapping of archaeal pro-
teins illustrated both the advantages of the interpolation and
the capacity of the proposed approach as an aid to functional
annotation. The agreement between archaeal projections
and the corresponding functional cluster suggested that an
efficient classification scheme based on features of the pro-
jection space may enable an accurate functional annotation
of new sequences.

Functional annotation of newly sequenced genomes cannot



be solved by the life sciences community alone. The exa-
scale of sequencing data requires a new, trans-disciplinary
approach that would leverage and adopt the most prominent
advances of modern sciences. This turn to collective inno-
vation in data-enabled sciences is essential for truly ground-
breaking medical discoveries. Scientific alliances like DELSA
Global (Data-Enabled Life Sciences Alliance) stand to har-
ness the essential diversity of skills and expertise, thus quickly
and efficiently translating the influx of new data into tan-
gible innovations and groundbreaking discoveries [39, 30].
Functional annotation represents one of the grand challenges
in biology where communities like DELSA Global can help
solve large-scale biological problems.
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