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Abstract 
 
Cloud computing offers exciting new approaches for scientific computing that leverages the 

hardware and software investments on large scale data centers by major commercial players. 
Loosely coupled problems are very important in many scientific fields and are on the rise with the 
ongoing move towards data intensive computing. There exist several approaches to leverage clouds 
& cloud oriented data processing frameworks to perform pleasingly parallel computations. In this 
paper we present three pleasingly parallel biomedical applications, 1) assembly of genome fragments 
2) sequence alignment and similarity search 3) dimension reduction in the analysis of chemical 
structures, implemented utilizing cloud infrastructure service based utility computing models of 
Amazon Web Services and Microsoft Windows Azure as well as utilizing MapReduce based data 
processing frameworks, Apache Hadoop and Microsoft DryadLINQ. We review and compare each of 
the frameworks and perform a comparative study among them based on performance, efficiency, cost 
and the usability. Cloud service based utility computing model and the managed parallelism 
(MapReduce) exhibited comparable performance and efficiencies for the applications we considered. 
We analyze the variations in cost between the different platform choices (eg: EC2 instance types), 
highlighting the need to select the appropriate platform based on the nature of the computation. 

 
 

1. Introduction 

Scientists are overwhelmed with the increasing amount of data processing needs arising from the 
storm of data that is flowing through virtually every field of science. One example is the production 
of DNA fragments at massive rates by the now widely available automated DNA Sequencer 
machines. Another example would be the data generated by the Large Hadron Collider. 
Preprocessing, processing and analyzing these large amounts of data is a unique very challenging 
problem, yet opens up many opportunities for computational as well as computer scientists. 
According to Jim Gray, increasingly the scientific breakthroughs will be powered by computing 
capabilities that support researchers to analyze massive data sets. He aptly named data intensive 
scientific discovery as the forth science paradigm of discovery [1]. 

Cloud computing offerings by major commercial players provide on demand computational 
services over the web, which can be purchased within a matter of minutes simply by use of a credit 
card. The utility computing model offered through those cloud computing offerings opens up exciting 
new opportunities for the computational scientists to perform their computations since such a model 
suits well for the occasional resource intensive staccato compute needs of the scientists. Another 
interesting feature for scientists is the ability to increase the throughput of their computations by 
horizontally scaling the compute resources without incurring additional cost overhead. For an 
example in a utility computing model, 100 hours of 10 compute nodes cost same as 10 hours in 100 
compute nodes. This is facilitated by the virtually unlimited resource availability of cloud computing 
infrastructures backed by the world’s largest data centers owned by the major commercial players 



such as Amazon, Google & Microsoft. We expect the economies of scale enjoyed by the cloud 
providers scale would translate to cost efficiencies for the users.  

In addition to the leasing of virtualized compute nodes, cloud computing platforms also offer a rich 
set of distributed cloud infrastructure services including storage, messaging and database services 
with cloud specific service guarantees. These services can be leveraged to build and deploy scalable 
distributed applications on cloud environments. At the same time we notice the emergence of 
different cloud oriented data processing technologies and frameworks. One example would be the 
Map Reduce [2] framework, which allow users to effectively perform distributed computations in 
increasingly brittle environments such as commodity clusters and computational clouds. Apache 
Hadoop [3] and Microsoft DryadLINQ [4] are two such parallel data processing frameworks which 
supports Map Reduce type computations. 

A pleasingly parallel (also called embarrassingly parallel) application is an application which can 
be parallelized requiring minimal effort to divide the application in to independent parallel parts, each 
of which have no or very minimal data, synchronization or ordering dependencies among each other. 
These applications are good candidates for commodity compute clusters with no specialized 
interconnects. There are many scientific applications that fall in to this category. Few examples of 
pleasingly parallel applications would be Monte Carlo simulations, BLAST searches, many image 
processing applications such as ray tracing, parametric studies. Most of the data cleansing and pre-
processing applications can also be classified as pleasingly parallel applications. The relative number 
of pleasingly parallel scientific workloads has been growing recently due to the emerging data 
intensive computational fields such as bioinformatics. 

In this paper we introduce a set of abstract frameworks constructed using the cloud oriented 
programming models to perform pleasingly parallel computations. We present implementations of bio 
medical applications such as Cap3 [5] sequence assembly, BLAST sequence search and GTM 
interpolation using these frameworks. We analyze the performance and the usability of different 
cloud oriented programming models using the above mentioned implementations. We use Amazon 
Web Services [6] and Microsoft Windows Azure [7] cloud computing platforms and use Apache 
Hadoop [3] Map Reduce and Microsoft DryaLINQ [4] as the distributed parallel computing 
frameworks.  

2. Cloud technologies and application architecture 

Processing of large data sets using existing sequential executables is a common use case we 
encounter in many scientific applications. Some of these applications exhibit pleasingly parallel 
characteristics where the data can be independently processed in parts allowing the applications to be 
easily parallelized. In the following sections we explore cloud programming models and the 
application frameworks we developed using them to perform pleasingly parallel computations. These 
frameworks have been used to implement the applications mentioned in section 3. 

2.1. Classic cloud architecture 

2.1.1. Amazon Web Services. Amazon Web Services (AWS) [6] are a set of cloud computing 
services by Amazon, offering on demand compute and storage services including but not limited to 
Elastic Compute Cloud (EC2), Simple Storage Service (S3) and Simple Queue Service (SQS).  

EC2 provides users the capability to lease hourly billed Xen based virtual machine instances 
allowing users to dynamically provision resizable virtual clusters in a matter of minutes through a 
web service interface. EC2 supports both Linux and Windows virtual instances. EC2 follows an 
infrastructure as a service approach where it provides users with ‘root’ access to the virtual machines 



giving maximum possible flexibility. Users can store virtual machines snapshots as Amazon Machine 
Images (AMIs), which can be used as templates to create new instances. Amazon EC2 offers a variety 
of hourly billed instance sizes with different price points giving a richer set of options for the users to 
choose from depending on thier requirements. One particular instance type of interest is the High-
CPU-Extra-Large instances, which costs the same as an Extra-Large instance but offers more CPU 
power, but with less memory. Similarly EC2 offers High-Memory instance types which offer larger 
memory sizes, but fewer CPU cores. Table 1 provides a summary of the EC2 instance types we used 
in this paper. The clock speed of a single EC2 compute unit is approximately 1 GHz to 1.2 GHz. The 
small instance type with a single EC2 compute unit is only available in 32-bit x86 environment, while 
the larger instance types support 64 bit x86_64 environment as well.  

SQS is an eventual consistent, reliable, scalable and distributed web-scale message queue service 
ideal for small short-lived transient messages. SQS provides a REST based web service interface 
enabling any HTTP capable client to use it. Users can create unlimited number of queues and send 
unlimited number of messages. SQS does not guarantee the order of the messages, the deletion of 
messages and availability of all the messages for a request, though it guarantees the eventual 
availability over multiple requests. Each message has a configurable visibility timeout. Once it’s read 
by a client, the message will be hidden from other clients till the visibility time expires. Message will 
reappear upon expiration of the timeout, as long as it is not deleted. The service is priced based on the 
number of API requests as well as based on the total amount of data transfer per month. 

S3 provides a web-scale distributed storage service where users can store and retrieve any type of 
data through a web services interface. S3 is accessible from anywhere in the web. Data objects in S3 
are access controllable and can be organized in to buckets. S3 pricing is based on the size of the 
stored data, amount of data transferred and the number of API requests. 

Table 1 : Selected EC2 instance types 
Instance Type Memory EC2 

compute 
units 

Actual CPU 
cores 

Cost per 
hour 

Large (L) 7.5 GB 4 2 X (~2Ghz) 0.34$ 
Extra Large (XL) 15 GB 8 4 X (~2Ghz) 0.68$ 
High CPU Extra 
Large (HCXL) 7 GB 20 8 X 

(~2.5Ghz) 0.68$ 

High Memory 
4XL (HM4XL) 68.4 GB 26 8 X 

(~3.25Ghz) 2.00$ 
 

Table 2 : Microsoft Windows Azure instance types 
Instance 

Type 
CPU 
Cores 

Memory Local Disk 
Space 

Cost per 
hour 

Small 1 1.7 GB 250 GB 0.12$ 
Medium 2 3.5 GB 500 GB 0.24$ 
Large 4 7 GB 1000 GB 0.48$ 
Extra 
Large 8 15 GB 2000 GB 0.96$ 

 

2.1.2. Microsoft Azure Platform. Microsoft Azure platform [7] is a cloud computing platform 
offering a set of cloud computing services similar to the Amazon Web Services. Windows Azure 
compute, Azure Storage Queues and Azure Storage blob services are the Azure counterparts for 
Amazon EC2, Amazon SQS and the Amazon S3 services. Features of the Azure services are more or 
less similar to the features of the AWS services we discussed above, except for the following. 

Windows Azure Compute only supports Windows virtual machine instances and offers a limited 
variety of instance types when compared with Amazon EC2. As shown in Table 2, Azure instance 
type configurations and the cost scales up linearly from small, medium, large to extra large. Azure 
instances are available in 64 bit environment. It’s been speculated that the clock speed of a single 
CPU core in Azure terminology is approximately 1.5 GHz to 1.7 GHz. During our performance 
testing using the Cap3 program (section 4), we found that 8 Azure small instances perform 
comparable to a single Amazon high CPU extra large instance with 20 EC2 compute units. Azure 
Compute follows a platform as a service approach and offers the .net runtime as the platform. Users 
can deploy their programs as an Azure deployment package through a web application. Users do not 
have the ability to interact with the Azure instances, other than through the deployed programs.  

 



2.1.3. Classic cloud processing model 

 
Figure 1: Classic cloud processing model 

 

 
 

Figure 2: Hadoop MapReduce processing model 

Figure 1 depicts the architecture of the classic cloud processing model. Varia [8] and Chappell [9] 
describe similar architectures that are implemented using Amazon and Azure processing models 
respectively. The classic cloud processing model follows a task processing pipeline approach with 
independent workers. It uses the cloud instances (EC2/Azure Compute) for data processing and uses 
Amazon S3/Windows Azure Storage for the data storage. For the task scheduling pipeline, it uses an 
Amazon SQS or an Azure queue as a queue of tasks where every message in the queue describes a 
single task. The client populates the scheduling queue with tasks, while the worker processes running 
in cloud instances pick tasks from the scheduling queue. The configurable visibility timeout feature of 
SQS and Azure queue, where a message will not be visible to other workers for the given amount of 
time once a worker reads it and reappears after the timeout, is used to provide a simple fault tolerance 
capability to the system. The workers delete the task (message) in the queue only after the completion 
of the task. Hence, a task (message) will get processed by some worker if the task does not get 
completed with the initial reader (worker) within the given time limit. Multiple instances processing 
the same task or another worker re-executing a failed task will not affect the result due to the 
idempotent nature of the independent tasks. 

For the applications discussed in this paper, a single task comprises of a single input file and a 
single output file. The worker processes will retrieve the input files from the cloud storage through 
the web service interface using HTTP and will process them using an executable program before 
uploading the results back to the cloud storage. In this implementation a user can configure the 
workers to use any executable program installed in the virtual machine to process the tasks provided 
that it takes input in the form of a file. Our implementation uses a monitoring message queue to 
monitor the progress of the computation, but for more sophistication one can use cloud data stores 
like Amazon SimpleDB to store the monitoring and state data. One interesting feature of the classic 
cloud framework is the ability to extend it to use the local machines and clusters side by side with the 
clouds. Even though it might not be the best option due to the data being stored in the cloud, one can 
start workers in computers outside of the cloud to help perform the computations.  

 

2.2. Apache Hadoop MapReduce 
Apache Hadoop [3] is an open source implementation of the Google MapReduce [2] technology 

and shares many characteristics with the Google MapReduce implementation.  Apache Hadoop 
MapReduce uses HDFS distributed parallel file system for data storage, which stores the data across 



the local disks of the compute nodes while presenting a single file system view through the HDFS 
API. HDFS is targeted for deployment on commodity clusters and achieves reliability through 
replication of file data. When executing using the stored in HDFS, Hadoop optimizes the data 
communication by scheduling computations near the data using the data locality information provided 
by the HDFS file system. Hadoop follows a master node with many client workers approach and uses 
a global queue for the task scheduling, achieving natural load balancing among the tasks. Hadoop 
performs data distribution and automatic task partitioning based on the information provided in the 
master program and based on the structure of the data stored in HDFS. The Map Reduce model 
reduces the data transfer overheads by overlapping data communication with computation when 
reduce steps are involved.  Hadoop performs duplicate execution of slower tasks and handles failures 
by rerunning of the failed tasks using different workers.  

As shown in figure Figure 2, the pleasingly parallel application framework on Hadoop is developed 
as a set of map tasks which process the given data splits (files) using the configured executable 
program. Input to a Hadoop map task comprises of key, value pairs, where by default Hadoop parses 
the contents of the data split to read them. Most of the legacy data processing applications expect a 
file path as the input instead of the contents of the file, which is not possible with the Hadoop built-in 
input formats and record readers. We implemented a custom InputFormat and a RecordReader for 
Hadoop which will provice the file name and the HDFS path of the data split respectively as the key 
and the value for the map function, while preserving the Hadoop data locality based scheduling.  

2.3. DryadLINQ 
Dryad [10] is a framework developed by Microsoft Research as a general-purpose distributed 

execution engine for coarse-grain parallel applications. Dryad applications are expressed as directed 
acyclic data-flow graphs (DAG), where vertices represent computations and edges represent 
communication channels between the computations. DAGs can be used to represent MapReduce type 
computations and can be extended to represent many other parallel abstractions too. Similar to the 
Map Reduce frameworks, the Dryad scheduler optimizes the data transfer overheads by scheduling 
the computations near data and handles failures through rerunning of tasks and duplicate instance 
execution. Data for the computations need to be partitioned manually and stored beforehand in the 
local disks of the computational nodes via windows shared directories. Dryad is available for 
academic usage through the DryadLINQ API. DryadLINQ [4] is a high level declarative language 
layer on top of Dryad. DryadLINQ queries get translated in to distributed Dryad computational 
graphs in the run time. Latest version of DryadLINQ operates only on Window HPC clusters.  

The DryadLINQ implementation of the framework uses the DryadLINQ “select” operator on the 
data partitions to perform the distributed computation. The resulting computation graph looks much 
similar to the figure 2, where instead of using HDFS, Dryad will use the windows shared local 
directories for data storage. Data partitioning, distribution and the generation of metadata files for the 
data partitions is implemented as part of our pleasingly parallel framework.  

2.4. Usability of the technologies 
As expected, implementing the above mentioned application framework using already existing 

Hadoop and DryadLINQ data processing frameworks was easier than implementing them using cloud 
services as building blocks. Hadoop and DryadLINQ take care of scheduling, monitoring and fault 
tolerance. With Hadoop we had to implement a Map function, which contained the logic to copy the 
input file from HDFS to the working directory, execute the external program as a process and to 
upload the results files to the HDFS. In addition to this, we had to implement a custom InputFormat 
and a RecordReader to support file inputs to the map tasks. With DryadLINQ we had implement a 



side effect free function to execute the program on the given data and to copy the result to the output 
shared directory. But significant effort had to be spent on implementing the data partitioning and the 
distribution programs to support DryadLINQ. 

Table 3: Summary of cloud technology features 

 AWS/ Azure Hadoop DryadLINQ 
Programming 
patterns 

Independent job execution, 
More structure can be 
imposed using client side 
driver program. 

Map Reduce DAG execution, Extensible 
to MapReduce and other 
patterns 

Fault Tolerance Task re-execution based on 
a configurable time out  

Re-execution of failed and 
slow tasks. 

Re-execution of failed and 
slow tasks. 

Data Storage & 
Communication  

S3/Azure Storage. Data 
retrieved through HTTP. 

HDFS parallel file system. 
TCP/IP based Communication 

Local files  

Environment EC2/Azure virtual instances, 
local compute resources 

Linux cluster, Amazon Elastic 
MapReduce 

Windows HPCS cluster 

Scheduling & 
Load Balancing 

Dynamic scheduling 
through a global queue, 
providing natural load 
balancing 

Data locality, rack aware 
dynamic task scheduling 
through a global queue, 
providing natural load 
balancing 

Data locality, network 
topology aware scheduling. 
Static task partitions at the 
node level, suboptimal load 
balancing 

EC2 and Azure classic cloud implementations involved more effort than the Hadoop and 
DryadLINQ implementations, as all the scheduling, monitoring and fault tolerance had to be 
implemented from the scratch using the features of the cloud services. Amazon EC2 provides 
infrastructure as a service by allowing users to access the raw virtual machine instances while 
windows Azure provides the .net platform as a service allowing users to deploy .net applications in 
the virtual machines through a web interface. Hence the deployment process was easier with Azure as 
oppose to the EC2 where we had to manually create instances, install software and start the worker 
instances. On the other hand the EC2 infrastructure as a service gives more flexibility and control to 
the developers. Azure SDK provides better development and testing support through the visual studio 
integration. The local development compute fabric and the local development storage of the Azure 
SDK make it much easier to test and debug the Azure applications. Azure platform is heading 
towards providing a more developer friendly environment, but as of today (Oct 2010) the Azure 
platform is less matured compared to the AWS, with deployment glitches and with the non-
deterministic times taken for the deployment process. 

3. Performance Methodology 

In the performance studies we use parallel efficiency as the measure to evaluate the different 
frameworks. Parallel efficiency is a relatively good measure to evaluate the different approaches we 
use in our studies as we don’t have the possibility to use identical configurations across the different 
environments. At the same time we cannot use efficiency to directly compare the different 
technologies. Even though efficiency accounts the system dissimilarities which affect the sequential 
running time as well as the parallel running time, it does not reflect other dissimilarities such as 
memory size, memory bandwidth and network bandwidth that can affect when running parallel 
computations. Parallel efficiency is calculated using the following formula.  

 



T(1) is the best sequential execution time for the application in a particular environment using the 
same data set or a representative subset. In all the cases the sequential time was measured with no 
data transfers with input files already present in the local disks. T(  is the parallel run time for the 
application while “p” is the number of processor cores used.  

Per core per computation time is calculated in each test to give an idea about the actual execution 
times in the different environments. 

 
When composing results for this paper, we considered a single EC2 Extra-Large instance, with 20 

EC2 compute units, as 8 actual CPU cores while an Azure small instance was considered as a single 
CPU core. In all the test cases, it is assumed that the data was already present in the frameworks 
preferred storage location. We used Apache Hadoop version 0.20.2 and DryadLINQ version 
1.0.1411.2 (November 2009) for our studies. 

3.1. Performance of different EC2 instance types 
Due to the richness of the instance type choices Amazon EC2 provides, it is important to select an 

instance type which optimizes the balance between performance and cost. We perform an instance 
type study for each of our applications using the EC2 instance types mentioned in Table 1 using 16 
CPU cores for each study.  We do not perform such studies for Azure as features of the Azure 
instance types scale linearly with the price as shown in table 2. EC2 small instances were not included 
in our study as they do not support 64 bit operating systems.  

Cloud virtual machine instances are hourly billed. When presenting the results, compute cost (hour 
units) assumes that particular instances are used only for that particular computation and no useful 
work is done for the remainder of the hour, effectively making the computation responsible for the 
whole hourly charge. The amortized cost assumes that the instance will be used for useful work for 
the remainder of the hour, making the computation responsible only for the actual fraction of time it 
got executed. The horizontal axis labeling of the graphs are in the format ‘Instance Type’ – ‘Number 
of Instances’ X ‘Number of Workers per Instance’. For an example, HCXL – 2 X 8 means two High-
CPU-Extra-Large instances are used with 8 workers per instance.  

4. Cap3 

Cap3 [5]  is a sequence assembly program which assembles DNA sequences by aligning and 
merging sequence fragments to construct whole genome sequences. Sequence assembly is an integral 
part of genomics as the current DNA sequencing technology, such as shotgun sequencing, is capable 
of reading only parts of genomes at once. The Cap3 algorithm operates on a collection of gene 
sequence fragments presented as FASTA formatted files. It removes the poor regions of the DNA 
fragments, calculates the overlaps between the fragments, identifies and removes the false overlaps, 
joins the fragments to form contigs of one or more overlapping DNA segments and finally through 
multiple sequence alignment generates consensus sequences.  

The increased availability of DNA Sequencers is generating massive amounts of sequencing data 
that needs to be assembled. Cap3 program is often used in parallel with lots of input files due to the 
pleasingly parallel nature of the application. The run time of the Cap3 application depends on the 
contents of the input file. Cap3 is relatively not memory intensive compared to the interpolation 
algorithms we discuss below. Size of a typical data input file for Cap3 program and the result data file 
range from hundreds of kilobytes to few megabytes. Output files resulting from the input data files 
can be collected independently and do not need any combining steps. 



4.1. Performance with different EC2 cloud instance types 

 
Figure 3 : Cap3 cost with different EC2 instance types 
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Figure 4 : Cap3 compute time with different 

instance types 

Figure 3 and Figure 4 present the benchmark results for Cap3 application on different EC2 instance 
types. These experiments processed 200 FASTA files, each containing 200 reads using 16 compute 
cores.  According to these results we can infer that memory is not a bottleneck for the Cap3 program 
and that the performance depends primarily on the computational power. While EC2 High-Memory-
Quadruple-Extra-Large instances show the best performance due to the higher clock rated processors, 
the most cost effective performance for the Cap3 EC2 classic cloud application is gained using the 
EC2 High-CPU-Extra-Large instances. 

4.2. Scalability study 

 
Figure 5 : Cap3 parallel efficiency 

 
Figure 6 : Cap3 execution time for single file per core  

We benchmarked the Cap3 classic cloud implementation performance using a replicated set of 
FASTA formatted data files, each file containing 458 reads, and compared with our previous 
performance results [11] for Cap3 DryadLINQ and Cap3 Hadoop. 16 High-CPU-Extra-Large 
instances were used for the EC2 testing and 128 small Azure instances were used for the Azure Cap3 
testing. DryadLINQ and Hadoop bare metal results were obtained using a 32 node X 8 core (2.5 Ghz) 
cluster with 16 GB memory on each node.  

Load balancing across the different sub tasks do not pose a significant overhead in the Cap3 
performance studies, as we used a replicated set of input data files making each sub task identical. We 
performed a detailed study of the performance of Hadoop and DryadLINQ in the face of 
inhomogeneous data in one of our previous works [11], where we noticed better natural load 
balancing in Hadoop due to its dynamic global level scheduling than in DryadLINQ, which uses static 



task partitioning. We assume cloud frameworks will be able perform load balancing similar to 
Hadoop as they share the same dynamic scheduling global queue architecture. 

Based on figure 5 & 6 we can conclude that all four implementations exhibit similar (within 20%) 
reasonable efficiency with low parallelization overheads. When interpreting figure 6, it should be 
noted that the Cap3 program performs ~12.5% faster on windows environment than on the Linux 
environment. As we mentioned earlier we cannot use these results to claim that a given framework 
performs better than another, as only approximations are possible given that the underlying 
infrastructure configurations of the cloud environments are unknown.  

4.3. Cost comparison 
Table 4 : Cost Comparison 

Amazon Web Services Azure 
Compute Cost 10.88 $ (0.68$ X 16 HCXL) 15.36$ (0.12$ X 128 Azure Small) 
Queue messages (~10,000) 0.01 $ 0.01 $ 
Storage (1GB, 1 month) 0.15 $ 0.15 $ 
Data transfer in/out (1 GB) 0.15 $ 0.25 $ (0.10$ + 0.15$) 

Total Cost 11.19 $ 15.77 $ 
Below we estimate the cost to assemble 4096 FASTA files using classic computing 

implementations of EC2 and on Azure. For the sake of comparison, we also approximate the cost for 
the computation using one of our internal compute clusters (32 node 24 core, 48 GB memory per 
node with Infiniband interconnects) , with the cluster purchase cost (~500,000$) depreciated over 3 
years in addition to the yearly maintenance fee (~150,000$), which includes power and administration 
costs. Application executed in 58 minutes on EC2, in 59 minutes on Azure and in 10.9 minutes on the 
internal cluster. Cost for computation using the internal cluster was approximated to 8.25$ for 80% 
utilization, 9.43$ for 70% utilization and 11.01$ for 60% utilization. For simplicity, we did not 
consider other factors such as the opportunity costs of the upfront investment, equipment failures and 
the upgradability. Also there will be additional costs in the cloud environments for the instance time 
required for environment preparation and minor miscellaneous platform specific charges such as 
number of storage requests. 

5. BLAST 

NCBI BLAST+ [12] is a very popular bioinformatics application that is used to handle sequence 
similarity searching. It is the latest version of BLAST [13], a multi-letter command line tool 
developed using the NCBI C++ toolkit, to translate a FASTA formatted nucleotide query and to 
compare it to a protein database. Queries are processed independently and have no dependencies 
between them. This makes it possible to use multiple BLAST instances to process queries in a 
pleasingly parallel manner. We used a sub-set of a real-world protein sequence data set as the input 
BLAST queries and used NCBI’s non-redundent (NR) protein sequence database (8.7 GB), updated 
on 6/23/2010, as the BLAST database. In order to make the tasks coarser granular, we bundled 100 
queries in to each data input file resulting in files with sizes in the range of 7-8 KB. The output files 
for these input data range from few bytes to few Megabytes.  

We implemented distributed BLAST applications for Amazon EC2, Microsoft Azure, DryadLINQ 
and for Apache Hadoop using the framewroks we presented in section 2. All the implementations 
download the BLAST database to a local disk partition of each worker prior to start processing of the 
tasks. Hadoop-Blast uses the Hadoop distributed cache feature to distribute the database. We added a 
similar data preloading feature to the classic cloud frameworks, where each worker will download the 
specified file from the cloud storage at the time of startup. In the case of DryadLINQ, we manually 



distributed the database to each node using Windows shared directories. The performance results 
presented in this paper do not include the database distribution times. 

5.1. Performance with different EC2 cloud instance types 

 
Figure 7 : Cost to process 64 query files using Blast in EC2 
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Figure 8 : Time to process 64 query files using 

Blast in EC2 

Figure 7 and Figure 8 present the benchmark results for Blast classic cloud application on different 
EC2 instance types. These experiments processed 64 query files, each containing 100 seqeunces using 
16 compute cores.  While we expected the memory size to have a strong correlation to the BLAST 
performance, due to querying of a large database, the performance results do not show a significant 
effect with the memory size, as High-CPU-Extra-Large (HCXL) instances with less than 1GB 
memory per CPU core was able to perform comparatively to Large and Extra-Large instances with 
3.75GB per CPU core. However it should be noted that there exist a slight correlation to the memory 
size, as the lower clock rated Extra-Large (~2.0Ghz) instances, but with more memory per core, 
performed similar to the HCXL (~2.5Ghz) instances. The High-Memory-Quadruple-Large (HM4XL) 
instances (~3.25Ghz) have a higher clock rate, which partially explains the faster processing time. 
Once again EC2 HCXL instances gave the most cost-effective performance offsetting the 
performance advantages by other instance types. 

5.2. Scalability 

 
Figure 9 : Blast Parallel efficiency 

 
Figure 10 : Blast average time to process a single query file 

For the scalability test, we replicated the query data set of 128-files (with 100 sequences in each), 
one to six times to create the input data sets for the experiments ensuring the linear scalability of the 
workload across them. Even though the larger data sets are replicated, the base 128-file data set is 
inhomogeneous. The Hadoop-Blast tests were performed on an iDataplex cluster, in which each node 



had two 4-core CPUs (Intel Xeon CPU E5410 2.33GHz) and 16 GB memory, and was inter-
connected using Gigabit Ethernet. DryadLINQ tests were performed on a Windows HPC cluster with 
16 cores (AMD Opteron 2.3 Ghz) and 16GB memory per node. 16 High-CPU-Extra-Large instances 
were used for the EC2 testing and 128 small Azure instances were used for the Azure testing. 

Figure 9 depicts the absolute parallel efficiency of the distributed BLAST implementations, while 
figure 10 depicts the average time to process a single query file in a single core. From those figures 
we can conclude that DryadLINQ, Hadoop and EC2 classic cloud BLAST implementations exhibit 
near linear scalability with comparable performance (within 20% efficiency), while DryadLINQ-
BLAST exhibit the best performance. Limited memory of the High-CPU-Extra-Large instances 
shared across 8 workers performing different BLAST computations might have contributed to the 
relative low efficiency of EC2 BLAST implementation. 

Azure classic cloud BLAST implementation exhibited an unusual behavior, where it showed a 
large performance overhead in the smallest test case and then scaled super linearly. After performing 
more in-depth experiments, we noticed a large variation of the execution time for individual BLAST 
tasks.  While the variations of execution times are expected due to the inhomogeneous nature of the 
data, tasks executed by other frameworks exhibited variations only in the range of +/-10% of the 
average execution time. For the Azure the variations were as high as +/-50%, which made the 
execution time of the smallest test case (which only had one wave of tasks when scheduling 128 tasks 
on 128 CPU cores) equivalent to the execution time of the slowest task. In the subsequent test cases, 
which have more than one wave of tasks, the effect of in-homogeneity gets reduced due to the natural 
load balancing nature of the global queue based dynamic scheduling of tasks [11].    

Further explorations also showed that the slow executing tasks randomly vary from one test run to 
another, which made us suspect that this behavior is related to an infrastructure limitation. We are 
planning on further exploring the reason for the slowness of random tasks on Azure. BLAST 
application also has the ability to parallelize queries in multi-core machines. We are planning on 
utilizing that feature to create a hybrid framework, where the classic cloud model will parallelize 
tasks across nodes and the BLAST multicore implementation will parallelize inside the node. We plan 
on using the resulting framework with Azure large instances to experiment whether it’ll resolve the 
above issue. 

6. Generative Topographic Mapping Interpolation 

Generative Topographic Mapping (GTM)[14] is an algorithm for finding an optimal user-defined 
low-dimensional representation of high-dimensional data. This process is known as dimension 
reduction, which plays a key role in scientific data visualization. In a nutshell, GTM is an 
unsupervised learning method for modeling the density of data and finding a non-linear mapping of 
high-dimensional data in a low-dimensional space. Unlike the Kohonen’s Self-Organizing Map 
(SOM) [15] which does not have any density model, GTM defines an explicit density model based on 
Gaussian distribution [16] and finds the best set of parameters associated with Gaussian mixtures by 
using an Expectation-Maximization (EM) optimization algorithm[17]. 

To reduce the high computational costs and memory requirements in the conventional GTM 
process for large and high-dimesional datasets, GTM Interpolation [18]  has been developed as an 
out-of-sample extension to process much larger data points with minor trade-off of approximation. 
Instead of processing full dataset approach, GTM Interpolation takes only a part of the full dataset, 
known as samples, for a computer-intensive training process and applies the trained result to the rest 
of the dataset, known as out-of-samples, which is usually faster than the former process. With this 
interpolation approach in GTM, one can visualize millions of data points with modest amount of 



computations and memory requirement. Currently we use GTM and GTM interpolation applications 
for DNA sequence studies and cheminformatics data mining & exploration for the analysis of large 
chemical compounds in the PubChem database.  

 The size of the input data for the interpolation algorithms consisting of millions of data points 
usually ranges in gigabytes, while the size of the output data in lower dimensions is orders of 
magnitude smaller than the input data. The input data can be partitioned arbitrarily on the data point 
boundaries to generate computational sub tasks. The output data from the sub tasks can be collected 
using a simple merging operation and does not require any special combining functions. The GTM 
interpolation application is high memory intensive and requires large amount of memory proportional 
to the size of the input data.   
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Figure 11 : GTM cost with different instance types  
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Figure 12 : GTM interpolation compute 

time with different instance types 

6.1. Application performance with different cloud instance types 
According to the figure Figure 12 : GTM interpolation compute time with different instance types, 

we can infer that memory (size & bandwidth) is a bottleneck for the GTM interpolation application. 
The GTM interpolation application performs better in the presence of more memory and less number 
of processor cores sharing the memory. The high memory quadruple extra large instances give the 
best performance, but still the high CPU extra large instances appear as the most economical choice. 

6.2. GTM interpolation scalability 
We used the PubChem data set of 26.4 million data points with 166 dimensions to analyze the 

GTM interpolation applications. PubChem is a NIH funded repository of over 60 million chemical 
molecules including their chemical structures and biological activities. We used a 100,000 already 
processed subset of the data as a seed for the GTM interpolation. We partitioned the input data in to 
264 files with each file containing 100,000 data points. Figure 8 and 9 depicts the performance of the 
GTM interpolation implementations. 

DryadLINQ Cap3 tests were performed on a 16 core (AMD Opteron 2.3 Ghz) per node, 16GB 
memory per node cluster. Hadoop Cap3 tests were performed on a 24 core (Intel Xeon 2.4 Ghz) per 
node, 48 GB memory per node cluster which was configured to use only 8 cores per node. Classic 
cloud Azure tests we performed on Azure small instances where a single instance is considered as a 
single core in the figure 10. Classic cloud EC2 tests were performed on EC2 Large, High-CPU-Extra-
Large (HCXL) as well as on High-Memory-Quadruple-Extra-Large (HM4XL) instances separately. 
HM4XL and HCXL instances were considered 8 cores per instance while ‘Large’ instances were 
considered 2 cores per instance.  



 
Figure 13: GTM interpolation parallel efficiency  

 
Figure 14 : GTM interpolation performance per core 

Characteristics of the GTM interpolation application are different from the Cap3 application as 
GTM is more memory intensive and the memory bandwidth becomes the bottleneck, which we 
assume as the cause of the lower efficiency numbers. Among the EC2 different instances, large 
instances achieved the best parallel efficiency and High-Memory-Quaraple-Extra-Large instances 
gave the best performance while High-CPU-Extra-Large instances were the most economical. Azure 
small instances achieved the overall best efficiency. The efficiency numbers highlight the memory 
bound nature of the GTM interpolation computation, where platforms with less memory contention 
(less CPU cores sharing a single memory) performed better. As we can notice, the DryadLINQ GTM 
interpolation efficiency is lower than the others. One reason for the lower efficiency would be the 
usage of 16 core machines for the computation, which puts more contention on the memory. 

Computational tasks of GTM applications were much finer grain than in Cap3 or MDS 
interpolation. Compressed data splits, which were unzipped before handing over to the executable, 
were used due to the large size of the input data. When the input data size is larger, Hadoop & 
DryadLINQ applications have an advantage of data locality based scheduling over EC2. Hadoop and 
DryadLINQ model brings computation to the data optimizing the I/O load, while the classic cloud 
model brings data to the computations. 

7. Related works 

There exist many studies [19-21] of benchmarking existing traditional distributed scientific 
applications on the cloud. In contrast, we focused on implementing and analyzing the performance of 
biomedical applications using cloud services/technologies and cloud oriented programming 
frameworks. In one of our earlier works [11] we analyzed the overhead of virtualization and the effect 
of inhomogeneous data on the cloud oriented programming frameworks. Also Ekanayake and Fox 
[22] analyzed the overhead of MPI running on virtual machines under different VM configurations 
and under different MPI stacks. 

In addition to the biomedical applications we have discussed in this paper, we also developed 
distributed pair-wise sequence alignment applications using the Map Reduce programming models 
[11]. There are other bio-medical applications developed using Map Reduce programming 
frameworks such as CloudBurst[23], which performs parallel genome read mappings. 
CloudBLAST[23] performs distributed BLAST computations using Hadoop and implements an 
architecture similar to the Hadoop-Blast used in this paper. AzureBlast [24] presents a distributed 
BLAST implementation similar to the BLAST implementation we implemented using our classic 
cloud model. 



CloudMapReduce[25] is an effort to implement a map reduce framework utilizing the Amazon 
cloud infrastructure services. Amazon Web Services [6] also offer MapReduce as an one demand 
cloud service through the Elastic Map Reduce service. We are developing a MapReduce framework 
for Windows Azure, AzureMapReduce [26], using Azure cloud infrastructure services. 

Walker [27] presents a more detailed model for buying versus leasing decisions for CPU power 
based on lease-or-buy budgeting models, pure CPU hours, Moore’s law, etc,. Our cost estimation in 
4.3 is based on pure performance of the application in different environments, purchase cost of the 
cluster and the estimation of maintenance cost. Walker also highlights the advantages of the mobility 
user’s gain through the ability to perform short-term leases from clouds computing environments, 
allowing them to adopt the latest technology. Wilkening et al[28] presents a cost based feasibility 
study for using BLAST in EC2 and concludes the cost in clouds is slightly higher than using compute 
clusters. They benchmarked the BLAST computation directly inside the EC2 instances without using 
a distributed computing framework and also assume the local cluster utilization to be 100%. 

8. Conclusion 

We have demonstrated that clouds offer attractive computing paradigms for three loosely coupled 
scientific computation applications. Cloud infrastructure based models as well as the MapReduce 
based frameworks offered good parallel efficiencies in most of the cases, given sufficiently coarser 
grain task decompositions. The higher level MapReduce paradigm offered a simpler programming 
model. Also by using three different kinds of applications we showed that selecting an instance type 
which suits your application can give significant time and monetary advantages. Our previous work 
has tackled a broader range of data intensive applications under MapReduce and also compared them 
to MPI on raw hardware. The cost effectiveness of cloud data centers combined with the comparable 
performance reported here suggests that loosely coupled science applications will increasingly be 
implemented on clouds and that using MapReduce frameworks will offer convenient user interfaces 
with little overhead. 
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