
Cloud Computing Paradigms for Pleasingly Parallel Biomedical Applications
Thilina Gunarathne, Tak-Lon Wu, Jong Youl Choi, Seung-Hee Bae, Judy Qiu

School of Informatics and Computing / Pervasive Technology Institute
Indiana University, Bloomington.

{tgunarat, taklwu, jychoi, sebae, xqiu}@indiana.edu

Abstract

Cloud computing offers exciting new approaches for scientific computing that leverages the

hardware and software investments on large scale data centers by major commercial players.
Loosely coupled problems are very important in many scientific fields and are on the rise with the
ongoing move towards data intensive computing. There exist several approaches to leverage clouds
& cloud oriented data processing frameworks to perform pleasingly parallel computations. In this
paper we present three pleasingly parallel biomedical applications, 1) assembly of genome fragments
2) sequence alignment and similarity search 3) dimension reduction in the analysis of chemical
structures, implemented utilizing cloud infrastructure service based utility computing models of
Amazon Web Services and Microsoft Windows Azure as well as utilizing MapReduce based data
processing frameworks, Apache Hadoop and Microsoft DryadLINQ. We review and compare each of
the frameworks and perform a comparative study among them based on performance, efficiency, cost
and the usability. Cloud service based utility computing model and the managed parallelism
(MapReduce) exhibited comparable performance and efficiencies for the applications we considered.
We analyze the variations in cost between the different platform choices (eg: EC2 instance types),
highlighting the need to select the appropriate platform based on the nature of the computation.

1. Introduction

Scientists are overwhelmed with the increasing amount of data processing needs arising from the
storm of data that is flowing through virtually every field of science. One example is the production
of DNA fragments at massive rates by the now widely available automated DNA Sequencer
machines. Another example would be the data generated by the Large Hadron Collider.
Preprocessing, processing and analyzing these large amounts of data is a unique very challenging
problem, yet opens up many opportunities for computational as well as computer scientists.
According to Jim Gray, increasingly the scientific breakthroughs will be powered by computing
capabilities that support researchers to analyze massive data sets. He aptly named data intensive
scientific discovery as the forth science paradigm of discovery [1].

Cloud computing offerings by major commercial players provide on demand computational
services over the web, which can be purchased within a matter of minutes simply by use of a credit
card. The utility computing model offered through those cloud computing offerings opens up exciting
new opportunities for the computational scientists to perform their computations since such a model
suits well for the occasional resource intensive staccato compute needs of the scientists. Another
interesting feature for scientists is the ability to increase the throughput of their computations by
horizontally scaling the compute resources without incurring additional cost overhead. For an
example in a utility computing model, 100 hours of 10 compute nodes cost same as 10 hours in 100
compute nodes. This is facilitated by the virtually unlimited resource availability of cloud computing
infrastructures backed by the world’s largest data centers owned by the major commercial players

such as Amazon, Google & Microsoft. We expect the economies of scale enjoyed by the cloud
providers scale would translate to cost efficiencies for the users.

In addition to the leasing of virtualized compute nodes, cloud computing platforms also offer a rich
set of distributed cloud infrastructure services including storage, messaging and database services
with cloud specific service guarantees. These services can be leveraged to build and deploy scalable
distributed applications on cloud environments. At the same time we notice the emergence of
different cloud oriented data processing technologies and frameworks. One example would be the
Map Reduce [2] framework, which allow users to effectively perform distributed computations in
increasingly brittle environments such as commodity clusters and computational clouds. Apache
Hadoop [3] and Microsoft DryadLINQ [4] are two such parallel data processing frameworks which
supports Map Reduce type computations.

A pleasingly parallel (also called embarrassingly parallel) application is an application which can
be parallelized requiring minimal effort to divide the application in to independent parallel parts, each
of which have no or very minimal data, synchronization or ordering dependencies among each other.
These applications are good candidates for commodity compute clusters with no specialized
interconnects. There are many scientific applications that fall in to this category. Few examples of
pleasingly parallel applications would be Monte Carlo simulations, BLAST searches, many image
processing applications such as ray tracing, parametric studies. Most of the data cleansing and pre-
processing applications can also be classified as pleasingly parallel applications. The relative number
of pleasingly parallel scientific workloads has been growing recently due to the emerging data
intensive computational fields such as bioinformatics.

In this paper we introduce a set of abstract frameworks constructed using the cloud oriented
programming models to perform pleasingly parallel computations. We present implementations of bio
medical applications such as Cap3 [5] sequence assembly, BLAST sequence search and GTM
interpolation using these frameworks. We analyze the performance and the usability of different
cloud oriented programming models using the above mentioned implementations. We use Amazon
Web Services [6] and Microsoft Windows Azure [7] cloud computing platforms and use Apache
Hadoop [3] Map Reduce and Microsoft DryaLINQ [4] as the distributed parallel computing
frameworks.

2. Cloud technologies and application architecture

Processing of large data sets using existing sequential executables is a common use case we
encounter in many scientific applications. Some of these applications exhibit pleasingly parallel
characteristics where the data can be independently processed in parts allowing the applications to be
easily parallelized. In the following sections we explore cloud programming models and the
application frameworks we developed using them to perform pleasingly parallel computations. These
frameworks have been used to implement the applications mentioned in section 3.

2.1. Classic cloud architecture

2.1.1. Amazon Web Services. Amazon Web Services (AWS) [6] are a set of cloud computing
services by Amazon, offering on demand compute and storage services including but not limited to
Elastic Compute Cloud (EC2), Simple Storage Service (S3) and Simple Queue Service (SQS).

EC2 provides users the capability to lease hourly billed Xen based virtual machine instances
allowing users to dynamically provision resizable virtual clusters in a matter of minutes through a
web service interface. EC2 supports both Linux and Windows virtual instances. EC2 follows an
infrastructure as a service approach where it provides users with ‘root’ access to the virtual machines

giving maximum possible flexibility. Users can store virtual machines snapshots as Amazon Machine
Images (AMIs), which can be used as templates to create new instances. Amazon EC2 offers a variety
of hourly billed instance sizes with different price points giving a richer set of options for the users to
choose from depending on thier requirements. One particular instance type of interest is the High-
CPU-Extra-Large instances, which costs the same as an Extra-Large instance but offers more CPU
power, but with less memory. Similarly EC2 offers High-Memory instance types which offer larger
memory sizes, but fewer CPU cores. Table 1 provides a summary of the EC2 instance types we used
in this paper. The clock speed of a single EC2 compute unit is approximately 1 GHz to 1.2 GHz. The
small instance type with a single EC2 compute unit is only available in 32-bit x86 environment, while
the larger instance types support 64 bit x86_64 environment as well.

SQS is an eventual consistent, reliable, scalable and distributed web-scale message queue service
ideal for small short-lived transient messages. SQS provides a REST based web service interface
enabling any HTTP capable client to use it. Users can create unlimited number of queues and send
unlimited number of messages. SQS does not guarantee the order of the messages, the deletion of
messages and availability of all the messages for a request, though it guarantees the eventual
availability over multiple requests. Each message has a configurable visibility timeout. Once it’s read
by a client, the message will be hidden from other clients till the visibility time expires. Message will
reappear upon expiration of the timeout, as long as it is not deleted. The service is priced based on the
number of API requests as well as based on the total amount of data transfer per month.

S3 provides a web-scale distributed storage service where users can store and retrieve any type of
data through a web services interface. S3 is accessible from anywhere in the web. Data objects in S3
are access controllable and can be organized in to buckets. S3 pricing is based on the size of the
stored data, amount of data transferred and the number of API requests.

Table 1 : Selected EC2 instance types
Instance Type Memory EC2

compute
units

Actual CPU
cores

Cost per
hour

Large (L) 7.5 GB 4 2 X (~2Ghz) 0.34$
Extra Large (XL) 15 GB 8 4 X (~2Ghz) 0.68$
High CPU Extra
Large (HCXL) 7 GB 20 8 X

(~2.5Ghz) 0.68$

High Memory
4XL (HM4XL) 68.4 GB 26 8 X

(~3.25Ghz) 2.00$

Table 2 : Microsoft Windows Azure instance types
Instance

Type
CPU
Cores

Memory Local Disk
Space

Cost per
hour

Small 1 1.7 GB 250 GB 0.12$
Medium 2 3.5 GB 500 GB 0.24$
Large 4 7 GB 1000 GB 0.48$
Extra
Large 8 15 GB 2000 GB 0.96$

2.1.2. Microsoft Azure Platform. Microsoft Azure platform [7] is a cloud computing platform
offering a set of cloud computing services similar to the Amazon Web Services. Windows Azure
compute, Azure Storage Queues and Azure Storage blob services are the Azure counterparts for
Amazon EC2, Amazon SQS and the Amazon S3 services. Features of the Azure services are more or
less similar to the features of the AWS services we discussed above, except for the following.

Windows Azure Compute only supports Windows virtual machine instances and offers a limited
variety of instance types when compared with Amazon EC2. As shown in Table 2, Azure instance
type configurations and the cost scales up linearly from small, medium, large to extra large. Azure
instances are available in 64 bit environment. It’s been speculated that the clock speed of a single
CPU core in Azure terminology is approximately 1.5 GHz to 1.7 GHz. During our performance
testing using the Cap3 program (section 4), we found that 8 Azure small instances perform
comparable to a single Amazon high CPU extra large instance with 20 EC2 compute units. Azure
Compute follows a platform as a service approach and offers the .net runtime as the platform. Users
can deploy their programs as an Azure deployment package through a web application. Users do not
have the ability to interact with the Azure instances, other than through the deployed programs.

2.1.3. Classic cloud processing model

Figure 1: Classic cloud processing model

Figure 2: Hadoop MapReduce processing model

Figure 1 depicts the architecture of the classic cloud processing model. Varia [8] and Chappell [9]
describe similar architectures that are implemented using Amazon and Azure processing models
respectively. The classic cloud processing model follows a task processing pipeline approach with
independent workers. It uses the cloud instances (EC2/Azure Compute) for data processing and uses
Amazon S3/Windows Azure Storage for the data storage. For the task scheduling pipeline, it uses an
Amazon SQS or an Azure queue as a queue of tasks where every message in the queue describes a
single task. The client populates the scheduling queue with tasks, while the worker processes running
in cloud instances pick tasks from the scheduling queue. The configurable visibility timeout feature of
SQS and Azure queue, where a message will not be visible to other workers for the given amount of
time once a worker reads it and reappears after the timeout, is used to provide a simple fault tolerance
capability to the system. The workers delete the task (message) in the queue only after the completion
of the task. Hence, a task (message) will get processed by some worker if the task does not get
completed with the initial reader (worker) within the given time limit. Multiple instances processing
the same task or another worker re-executing a failed task will not affect the result due to the
idempotent nature of the independent tasks.

For the applications discussed in this paper, a single task comprises of a single input file and a
single output file. The worker processes will retrieve the input files from the cloud storage through
the web service interface using HTTP and will process them using an executable program before
uploading the results back to the cloud storage. In this implementation a user can configure the
workers to use any executable program installed in the virtual machine to process the tasks provided
that it takes input in the form of a file. Our implementation uses a monitoring message queue to
monitor the progress of the computation, but for more sophistication one can use cloud data stores
like Amazon SimpleDB to store the monitoring and state data. One interesting feature of the classic
cloud framework is the ability to extend it to use the local machines and clusters side by side with the
clouds. Even though it might not be the best option due to the data being stored in the cloud, one can
start workers in computers outside of the cloud to help perform the computations.

2.2. Apache Hadoop MapReduce
Apache Hadoop [3] is an open source implementation of the Google MapReduce [2] technology

and shares many characteristics with the Google MapReduce implementation. Apache Hadoop
MapReduce uses HDFS distributed parallel file system for data storage, which stores the data across

the local disks of the compute nodes while presenting a single file system view through the HDFS
API. HDFS is targeted for deployment on commodity clusters and achieves reliability through
replication of file data. When executing using the stored in HDFS, Hadoop optimizes the data
communication by scheduling computations near the data using the data locality information provided
by the HDFS file system. Hadoop follows a master node with many client workers approach and uses
a global queue for the task scheduling, achieving natural load balancing among the tasks. Hadoop
performs data distribution and automatic task partitioning based on the information provided in the
master program and based on the structure of the data stored in HDFS. The Map Reduce model
reduces the data transfer overheads by overlapping data communication with computation when
reduce steps are involved. Hadoop performs duplicate execution of slower tasks and handles failures
by rerunning of the failed tasks using different workers.

As shown in figure Figure 2, the pleasingly parallel application framework on Hadoop is developed
as a set of map tasks which process the given data splits (files) using the configured executable
program. Input to a Hadoop map task comprises of key, value pairs, where by default Hadoop parses
the contents of the data split to read them. Most of the legacy data processing applications expect a
file path as the input instead of the contents of the file, which is not possible with the Hadoop built-in
input formats and record readers. We implemented a custom InputFormat and a RecordReader for
Hadoop which will provice the file name and the HDFS path of the data split respectively as the key
and the value for the map function, while preserving the Hadoop data locality based scheduling.

2.3. DryadLINQ
Dryad [10] is a framework developed by Microsoft Research as a general-purpose distributed

execution engine for coarse-grain parallel applications. Dryad applications are expressed as directed
acyclic data-flow graphs (DAG), where vertices represent computations and edges represent
communication channels between the computations. DAGs can be used to represent MapReduce type
computations and can be extended to represent many other parallel abstractions too. Similar to the
Map Reduce frameworks, the Dryad scheduler optimizes the data transfer overheads by scheduling
the computations near data and handles failures through rerunning of tasks and duplicate instance
execution. Data for the computations need to be partitioned manually and stored beforehand in the
local disks of the computational nodes via windows shared directories. Dryad is available for
academic usage through the DryadLINQ API. DryadLINQ [4] is a high level declarative language
layer on top of Dryad. DryadLINQ queries get translated in to distributed Dryad computational
graphs in the run time. Latest version of DryadLINQ operates only on Window HPC clusters.

The DryadLINQ implementation of the framework uses the DryadLINQ “select” operator on the
data partitions to perform the distributed computation. The resulting computation graph looks much
similar to the figure 2, where instead of using HDFS, Dryad will use the windows shared local
directories for data storage. Data partitioning, distribution and the generation of metadata files for the
data partitions is implemented as part of our pleasingly parallel framework.

2.4. Usability of the technologies
As expected, implementing the above mentioned application framework using already existing

Hadoop and DryadLINQ data processing frameworks was easier than implementing them using cloud
services as building blocks. Hadoop and DryadLINQ take care of scheduling, monitoring and fault
tolerance. With Hadoop we had to implement a Map function, which contained the logic to copy the
input file from HDFS to the working directory, execute the external program as a process and to
upload the results files to the HDFS. In addition to this, we had to implement a custom InputFormat
and a RecordReader to support file inputs to the map tasks. With DryadLINQ we had implement a

side effect free function to execute the program on the given data and to copy the result to the output
shared directory. But significant effort had to be spent on implementing the data partitioning and the
distribution programs to support DryadLINQ.

Table 3: Summary of cloud technology features

 AWS/ Azure Hadoop DryadLINQ
Programming
patterns

Independent job execution,
More structure can be
imposed using client side
driver program.

Map Reduce DAG execution, Extensible
to MapReduce and other
patterns

Fault Tolerance Task re-execution based on
a configurable time out

Re-execution of failed and
slow tasks.

Re-execution of failed and
slow tasks.

Data Storage &
Communication

S3/Azure Storage. Data
retrieved through HTTP.

HDFS parallel file system.
TCP/IP based Communication

Local files

Environment EC2/Azure virtual instances,
local compute resources

Linux cluster, Amazon Elastic
MapReduce

Windows HPCS cluster

Scheduling &
Load Balancing

Dynamic scheduling
through a global queue,
providing natural load
balancing

Data locality, rack aware
dynamic task scheduling
through a global queue,
providing natural load
balancing

Data locality, network
topology aware scheduling.
Static task partitions at the
node level, suboptimal load
balancing

EC2 and Azure classic cloud implementations involved more effort than the Hadoop and
DryadLINQ implementations, as all the scheduling, monitoring and fault tolerance had to be
implemented from the scratch using the features of the cloud services. Amazon EC2 provides
infrastructure as a service by allowing users to access the raw virtual machine instances while
windows Azure provides the .net platform as a service allowing users to deploy .net applications in
the virtual machines through a web interface. Hence the deployment process was easier with Azure as
oppose to the EC2 where we had to manually create instances, install software and start the worker
instances. On the other hand the EC2 infrastructure as a service gives more flexibility and control to
the developers. Azure SDK provides better development and testing support through the visual studio
integration. The local development compute fabric and the local development storage of the Azure
SDK make it much easier to test and debug the Azure applications. Azure platform is heading
towards providing a more developer friendly environment, but as of today (Oct 2010) the Azure
platform is less matured compared to the AWS, with deployment glitches and with the non-
deterministic times taken for the deployment process.

3. Performance Methodology

In the performance studies we use parallel efficiency as the measure to evaluate the different
frameworks. Parallel efficiency is a relatively good measure to evaluate the different approaches we
use in our studies as we don’t have the possibility to use identical configurations across the different
environments. At the same time we cannot use efficiency to directly compare the different
technologies. Even though efficiency accounts the system dissimilarities which affect the sequential
running time as well as the parallel running time, it does not reflect other dissimilarities such as
memory size, memory bandwidth and network bandwidth that can affect when running parallel
computations. Parallel efficiency is calculated using the following formula.

T(1) is the best sequential execution time for the application in a particular environment using the
same data set or a representative subset. In all the cases the sequential time was measured with no
data transfers with input files already present in the local disks. T(is the parallel run time for the
application while “p” is the number of processor cores used.

Per core per computation time is calculated in each test to give an idea about the actual execution
times in the different environments.

When composing results for this paper, we considered a single EC2 Extra-Large instance, with 20

EC2 compute units, as 8 actual CPU cores while an Azure small instance was considered as a single
CPU core. In all the test cases, it is assumed that the data was already present in the frameworks
preferred storage location. We used Apache Hadoop version 0.20.2 and DryadLINQ version
1.0.1411.2 (November 2009) for our studies.

3.1. Performance of different EC2 instance types
Due to the richness of the instance type choices Amazon EC2 provides, it is important to select an

instance type which optimizes the balance between performance and cost. We perform an instance
type study for each of our applications using the EC2 instance types mentioned in Table 1 using 16
CPU cores for each study. We do not perform such studies for Azure as features of the Azure
instance types scale linearly with the price as shown in table 2. EC2 small instances were not included
in our study as they do not support 64 bit operating systems.

Cloud virtual machine instances are hourly billed. When presenting the results, compute cost (hour
units) assumes that particular instances are used only for that particular computation and no useful
work is done for the remainder of the hour, effectively making the computation responsible for the
whole hourly charge. The amortized cost assumes that the instance will be used for useful work for
the remainder of the hour, making the computation responsible only for the actual fraction of time it
got executed. The horizontal axis labeling of the graphs are in the format ‘Instance Type’ – ‘Number
of Instances’ X ‘Number of Workers per Instance’. For an example, HCXL – 2 X 8 means two High-
CPU-Extra-Large instances are used with 8 workers per instance.

4. Cap3

Cap3 [5] is a sequence assembly program which assembles DNA sequences by aligning and
merging sequence fragments to construct whole genome sequences. Sequence assembly is an integral
part of genomics as the current DNA sequencing technology, such as shotgun sequencing, is capable
of reading only parts of genomes at once. The Cap3 algorithm operates on a collection of gene
sequence fragments presented as FASTA formatted files. It removes the poor regions of the DNA
fragments, calculates the overlaps between the fragments, identifies and removes the false overlaps,
joins the fragments to form contigs of one or more overlapping DNA segments and finally through
multiple sequence alignment generates consensus sequences.

The increased availability of DNA Sequencers is generating massive amounts of sequencing data
that needs to be assembled. Cap3 program is often used in parallel with lots of input files due to the
pleasingly parallel nature of the application. The run time of the Cap3 application depends on the
contents of the input file. Cap3 is relatively not memory intensive compared to the interpolation
algorithms we discuss below. Size of a typical data input file for Cap3 program and the result data file
range from hundreds of kilobytes to few megabytes. Output files resulting from the input data files
can be collected independently and do not need any combining steps.

4.1. Performance with different EC2 cloud instance types

Figure 3 : Cap3 cost with different EC2 instance types

0

500

1000

1500

2000

C o m p u t e

 T i m e

 (s)

Cap3 Compute Time

Figure 4 : Cap3 compute time with different

instance types

Figure 3 and Figure 4 present the benchmark results for Cap3 application on different EC2 instance
types. These experiments processed 200 FASTA files, each containing 200 reads using 16 compute
cores. According to these results we can infer that memory is not a bottleneck for the Cap3 program
and that the performance depends primarily on the computational power. While EC2 High-Memory-
Quadruple-Extra-Large instances show the best performance due to the higher clock rated processors,
the most cost effective performance for the Cap3 EC2 classic cloud application is gained using the
EC2 High-CPU-Extra-Large instances.

4.2. Scalability study

Figure 5 : Cap3 parallel efficiency

Figure 6 : Cap3 execution time for single file per core

We benchmarked the Cap3 classic cloud implementation performance using a replicated set of
FASTA formatted data files, each file containing 458 reads, and compared with our previous
performance results [11] for Cap3 DryadLINQ and Cap3 Hadoop. 16 High-CPU-Extra-Large
instances were used for the EC2 testing and 128 small Azure instances were used for the Azure Cap3
testing. DryadLINQ and Hadoop bare metal results were obtained using a 32 node X 8 core (2.5 Ghz)
cluster with 16 GB memory on each node.

Load balancing across the different sub tasks do not pose a significant overhead in the Cap3
performance studies, as we used a replicated set of input data files making each sub task identical. We
performed a detailed study of the performance of Hadoop and DryadLINQ in the face of
inhomogeneous data in one of our previous works [11], where we noticed better natural load
balancing in Hadoop due to its dynamic global level scheduling than in DryadLINQ, which uses static

task partitioning. We assume cloud frameworks will be able perform load balancing similar to
Hadoop as they share the same dynamic scheduling global queue architecture.

Based on figure 5 & 6 we can conclude that all four implementations exhibit similar (within 20%)
reasonable efficiency with low parallelization overheads. When interpreting figure 6, it should be
noted that the Cap3 program performs ~12.5% faster on windows environment than on the Linux
environment. As we mentioned earlier we cannot use these results to claim that a given framework
performs better than another, as only approximations are possible given that the underlying
infrastructure configurations of the cloud environments are unknown.

4.3. Cost comparison
Table 4 : Cost Comparison

Amazon Web Services Azure
Compute Cost 10.88 $ (0.68$ X 16 HCXL) 15.36$ (0.12$ X 128 Azure Small)
Queue messages (~10,000) 0.01 $ 0.01 $
Storage (1GB, 1 month) 0.15 $ 0.15 $
Data transfer in/out (1 GB) 0.15 $ 0.25 $ (0.10$ + 0.15$)

Total Cost 11.19 $ 15.77 $
Below we estimate the cost to assemble 4096 FASTA files using classic computing

implementations of EC2 and on Azure. For the sake of comparison, we also approximate the cost for
the computation using one of our internal compute clusters (32 node 24 core, 48 GB memory per
node with Infiniband interconnects) , with the cluster purchase cost (~500,000$) depreciated over 3
years in addition to the yearly maintenance fee (~150,000$), which includes power and administration
costs. Application executed in 58 minutes on EC2, in 59 minutes on Azure and in 10.9 minutes on the
internal cluster. Cost for computation using the internal cluster was approximated to 8.25$ for 80%
utilization, 9.43$ for 70% utilization and 11.01$ for 60% utilization. For simplicity, we did not
consider other factors such as the opportunity costs of the upfront investment, equipment failures and
the upgradability. Also there will be additional costs in the cloud environments for the instance time
required for environment preparation and minor miscellaneous platform specific charges such as
number of storage requests.

5. BLAST

NCBI BLAST+ [12] is a very popular bioinformatics application that is used to handle sequence
similarity searching. It is the latest version of BLAST [13], a multi-letter command line tool
developed using the NCBI C++ toolkit, to translate a FASTA formatted nucleotide query and to
compare it to a protein database. Queries are processed independently and have no dependencies
between them. This makes it possible to use multiple BLAST instances to process queries in a
pleasingly parallel manner. We used a sub-set of a real-world protein sequence data set as the input
BLAST queries and used NCBI’s non-redundent (NR) protein sequence database (8.7 GB), updated
on 6/23/2010, as the BLAST database. In order to make the tasks coarser granular, we bundled 100
queries in to each data input file resulting in files with sizes in the range of 7-8 KB. The output files
for these input data range from few bytes to few Megabytes.

We implemented distributed BLAST applications for Amazon EC2, Microsoft Azure, DryadLINQ
and for Apache Hadoop using the framewroks we presented in section 2. All the implementations
download the BLAST database to a local disk partition of each worker prior to start processing of the
tasks. Hadoop-Blast uses the Hadoop distributed cache feature to distribute the database. We added a
similar data preloading feature to the classic cloud frameworks, where each worker will download the
specified file from the cloud storage at the time of startup. In the case of DryadLINQ, we manually

distributed the database to each node using Windows shared directories. The performance results
presented in this paper do not include the database distribution times.

5.1. Performance with different EC2 cloud instance types

Figure 7 : Cost to process 64 query files using Blast in EC2

0

500

1000

1500

2000

2500

C o m p u t e

 T i m e

 (s)

BLAST Compute Time

Figure 8 : Time to process 64 query files using

Blast in EC2

Figure 7 and Figure 8 present the benchmark results for Blast classic cloud application on different
EC2 instance types. These experiments processed 64 query files, each containing 100 seqeunces using
16 compute cores. While we expected the memory size to have a strong correlation to the BLAST
performance, due to querying of a large database, the performance results do not show a significant
effect with the memory size, as High-CPU-Extra-Large (HCXL) instances with less than 1GB
memory per CPU core was able to perform comparatively to Large and Extra-Large instances with
3.75GB per CPU core. However it should be noted that there exist a slight correlation to the memory
size, as the lower clock rated Extra-Large (~2.0Ghz) instances, but with more memory per core,
performed similar to the HCXL (~2.5Ghz) instances. The High-Memory-Quadruple-Large (HM4XL)
instances (~3.25Ghz) have a higher clock rate, which partially explains the faster processing time.
Once again EC2 HCXL instances gave the most cost-effective performance offsetting the
performance advantages by other instance types.

5.2. Scalability

Figure 9 : Blast Parallel efficiency

Figure 10 : Blast average time to process a single query file

For the scalability test, we replicated the query data set of 128-files (with 100 sequences in each),
one to six times to create the input data sets for the experiments ensuring the linear scalability of the
workload across them. Even though the larger data sets are replicated, the base 128-file data set is
inhomogeneous. The Hadoop-Blast tests were performed on an iDataplex cluster, in which each node

had two 4-core CPUs (Intel Xeon CPU E5410 2.33GHz) and 16 GB memory, and was inter-
connected using Gigabit Ethernet. DryadLINQ tests were performed on a Windows HPC cluster with
16 cores (AMD Opteron 2.3 Ghz) and 16GB memory per node. 16 High-CPU-Extra-Large instances
were used for the EC2 testing and 128 small Azure instances were used for the Azure testing.

Figure 9 depicts the absolute parallel efficiency of the distributed BLAST implementations, while
figure 10 depicts the average time to process a single query file in a single core. From those figures
we can conclude that DryadLINQ, Hadoop and EC2 classic cloud BLAST implementations exhibit
near linear scalability with comparable performance (within 20% efficiency), while DryadLINQ-
BLAST exhibit the best performance. Limited memory of the High-CPU-Extra-Large instances
shared across 8 workers performing different BLAST computations might have contributed to the
relative low efficiency of EC2 BLAST implementation.

Azure classic cloud BLAST implementation exhibited an unusual behavior, where it showed a
large performance overhead in the smallest test case and then scaled super linearly. After performing
more in-depth experiments, we noticed a large variation of the execution time for individual BLAST
tasks. While the variations of execution times are expected due to the inhomogeneous nature of the
data, tasks executed by other frameworks exhibited variations only in the range of +/-10% of the
average execution time. For the Azure the variations were as high as +/-50%, which made the
execution time of the smallest test case (which only had one wave of tasks when scheduling 128 tasks
on 128 CPU cores) equivalent to the execution time of the slowest task. In the subsequent test cases,
which have more than one wave of tasks, the effect of in-homogeneity gets reduced due to the natural
load balancing nature of the global queue based dynamic scheduling of tasks [11].

Further explorations also showed that the slow executing tasks randomly vary from one test run to
another, which made us suspect that this behavior is related to an infrastructure limitation. We are
planning on further exploring the reason for the slowness of random tasks on Azure. BLAST
application also has the ability to parallelize queries in multi-core machines. We are planning on
utilizing that feature to create a hybrid framework, where the classic cloud model will parallelize
tasks across nodes and the BLAST multicore implementation will parallelize inside the node. We plan
on using the resulting framework with Azure large instances to experiment whether it’ll resolve the
above issue.

6. Generative Topographic Mapping Interpolation

Generative Topographic Mapping (GTM)[14] is an algorithm for finding an optimal user-defined
low-dimensional representation of high-dimensional data. This process is known as dimension
reduction, which plays a key role in scientific data visualization. In a nutshell, GTM is an
unsupervised learning method for modeling the density of data and finding a non-linear mapping of
high-dimensional data in a low-dimensional space. Unlike the Kohonen’s Self-Organizing Map
(SOM) [15] which does not have any density model, GTM defines an explicit density model based on
Gaussian distribution [16] and finds the best set of parameters associated with Gaussian mixtures by
using an Expectation-Maximization (EM) optimization algorithm[17].

To reduce the high computational costs and memory requirements in the conventional GTM
process for large and high-dimesional datasets, GTM Interpolation [18] has been developed as an
out-of-sample extension to process much larger data points with minor trade-off of approximation.
Instead of processing full dataset approach, GTM Interpolation takes only a part of the full dataset,
known as samples, for a computer-intensive training process and applies the trained result to the rest
of the dataset, known as out-of-samples, which is usually faster than the former process. With this
interpolation approach in GTM, one can visualize millions of data points with modest amount of

computations and memory requirement. Currently we use GTM and GTM interpolation applications
for DNA sequence studies and cheminformatics data mining & exploration for the analysis of large
chemical compounds in the PubChem database.

 The size of the input data for the interpolation algorithms consisting of millions of data points
usually ranges in gigabytes, while the size of the output data in lower dimensions is orders of
magnitude smaller than the input data. The input data can be partitioned arbitrarily on the data point
boundaries to generate computational sub tasks. The output data from the sub tasks can be collected
using a simple merging operation and does not require any special combining functions. The GTM
interpolation application is high memory intensive and requires large amount of memory proportional
to the size of the input data.

jks

Figure 11 : GTM cost with different instance types

0

100

200

300

400

500

600

C o m p u t e

 T i m e
 (s)

GTM Compute Time

Figure 12 : GTM interpolation compute

time with different instance types

6.1. Application performance with different cloud instance types
According to the figure Figure 12 : GTM interpolation compute time with different instance types,

we can infer that memory (size & bandwidth) is a bottleneck for the GTM interpolation application.
The GTM interpolation application performs better in the presence of more memory and less number
of processor cores sharing the memory. The high memory quadruple extra large instances give the
best performance, but still the high CPU extra large instances appear as the most economical choice.

6.2. GTM interpolation scalability
We used the PubChem data set of 26.4 million data points with 166 dimensions to analyze the

GTM interpolation applications. PubChem is a NIH funded repository of over 60 million chemical
molecules including their chemical structures and biological activities. We used a 100,000 already
processed subset of the data as a seed for the GTM interpolation. We partitioned the input data in to
264 files with each file containing 100,000 data points. Figure 8 and 9 depicts the performance of the
GTM interpolation implementations.

DryadLINQ Cap3 tests were performed on a 16 core (AMD Opteron 2.3 Ghz) per node, 16GB
memory per node cluster. Hadoop Cap3 tests were performed on a 24 core (Intel Xeon 2.4 Ghz) per
node, 48 GB memory per node cluster which was configured to use only 8 cores per node. Classic
cloud Azure tests we performed on Azure small instances where a single instance is considered as a
single core in the figure 10. Classic cloud EC2 tests were performed on EC2 Large, High-CPU-Extra-
Large (HCXL) as well as on High-Memory-Quadruple-Extra-Large (HM4XL) instances separately.
HM4XL and HCXL instances were considered 8 cores per instance while ‘Large’ instances were
considered 2 cores per instance.

Figure 13: GTM interpolation parallel efficiency

Figure 14 : GTM interpolation performance per core

Characteristics of the GTM interpolation application are different from the Cap3 application as
GTM is more memory intensive and the memory bandwidth becomes the bottleneck, which we
assume as the cause of the lower efficiency numbers. Among the EC2 different instances, large
instances achieved the best parallel efficiency and High-Memory-Quaraple-Extra-Large instances
gave the best performance while High-CPU-Extra-Large instances were the most economical. Azure
small instances achieved the overall best efficiency. The efficiency numbers highlight the memory
bound nature of the GTM interpolation computation, where platforms with less memory contention
(less CPU cores sharing a single memory) performed better. As we can notice, the DryadLINQ GTM
interpolation efficiency is lower than the others. One reason for the lower efficiency would be the
usage of 16 core machines for the computation, which puts more contention on the memory.

Computational tasks of GTM applications were much finer grain than in Cap3 or MDS
interpolation. Compressed data splits, which were unzipped before handing over to the executable,
were used due to the large size of the input data. When the input data size is larger, Hadoop &
DryadLINQ applications have an advantage of data locality based scheduling over EC2. Hadoop and
DryadLINQ model brings computation to the data optimizing the I/O load, while the classic cloud
model brings data to the computations.

7. Related works

There exist many studies [19-21] of benchmarking existing traditional distributed scientific
applications on the cloud. In contrast, we focused on implementing and analyzing the performance of
biomedical applications using cloud services/technologies and cloud oriented programming
frameworks. In one of our earlier works [11] we analyzed the overhead of virtualization and the effect
of inhomogeneous data on the cloud oriented programming frameworks. Also Ekanayake and Fox
[22] analyzed the overhead of MPI running on virtual machines under different VM configurations
and under different MPI stacks.

In addition to the biomedical applications we have discussed in this paper, we also developed
distributed pair-wise sequence alignment applications using the Map Reduce programming models
[11]. There are other bio-medical applications developed using Map Reduce programming
frameworks such as CloudBurst[23], which performs parallel genome read mappings.
CloudBLAST[23] performs distributed BLAST computations using Hadoop and implements an
architecture similar to the Hadoop-Blast used in this paper. AzureBlast [24] presents a distributed
BLAST implementation similar to the BLAST implementation we implemented using our classic
cloud model.

CloudMapReduce[25] is an effort to implement a map reduce framework utilizing the Amazon
cloud infrastructure services. Amazon Web Services [6] also offer MapReduce as an one demand
cloud service through the Elastic Map Reduce service. We are developing a MapReduce framework
for Windows Azure, AzureMapReduce [26], using Azure cloud infrastructure services.

Walker [27] presents a more detailed model for buying versus leasing decisions for CPU power
based on lease-or-buy budgeting models, pure CPU hours, Moore’s law, etc,. Our cost estimation in
4.3 is based on pure performance of the application in different environments, purchase cost of the
cluster and the estimation of maintenance cost. Walker also highlights the advantages of the mobility
user’s gain through the ability to perform short-term leases from clouds computing environments,
allowing them to adopt the latest technology. Wilkening et al[28] presents a cost based feasibility
study for using BLAST in EC2 and concludes the cost in clouds is slightly higher than using compute
clusters. They benchmarked the BLAST computation directly inside the EC2 instances without using
a distributed computing framework and also assume the local cluster utilization to be 100%.

8. Conclusion

We have demonstrated that clouds offer attractive computing paradigms for three loosely coupled
scientific computation applications. Cloud infrastructure based models as well as the MapReduce
based frameworks offered good parallel efficiencies in most of the cases, given sufficiently coarser
grain task decompositions. The higher level MapReduce paradigm offered a simpler programming
model. Also by using three different kinds of applications we showed that selecting an instance type
which suits your application can give significant time and monetary advantages. Our previous work
has tackled a broader range of data intensive applications under MapReduce and also compared them
to MPI on raw hardware. The cost effectiveness of cloud data centers combined with the comparable
performance reported here suggests that loosely coupled science applications will increasingly be
implemented on clouds and that using MapReduce frameworks will offer convenient user interfaces
with little overhead.

Acknowledgment

We would also like extend our gratitude to our collaborators David Wild and Bin Chen. We
appreciate Microsoft for their technical support on Dryad and Azure. This work is supported by the
National Institutes of Health under grant 5 RC2 HG005806-02. This work was made possible using
the compute use grant provided by Amazon Web Service which is titled "Proof of concepts linking
FutureGrid users to AWS". We would like to thank Joe Rinkovsky, Jenett Tillotson and Ryan
Hartman for their technical support.

9. References

[1] T. Hey, S. Tansley, and K. Tolle, Jim Gray on eScience: a transformed scientific method:
Microsoft Research, 2009.

[2] J. Dean, and S. Ghemawat, “MapReduce: simplified data processing on large clusters,”
Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

[3] Apache Hadoop, Retrieved April 20, 2010, from ASF: http://hadoop.apache.org/core/.
[4] Y. Yu, M. Isard, D. Fetterly et al., “DryadLINQ: A System for General-Purpose Distributed

Data-Parallel Computing Using a High-Level Language,” in Symposium on Operating System
Design and Implementation (OSDI), San Diego, CA, 2008.

[5] X. Huang, and A. Madan, “CAP3: A DNA sequence assembly program.,” Genome Res, vol. 9,
no. 9, pp. 868-77, 1999.

[6] Amazon Web Services, vol. 2010, Retrieved April 20, 2010, from Amazon:
http://aws.amazon.com/.

[7] Windows Azure Platform, Retrieved April 20, 2010, from Microsoft:
http://www.microsoft.com/windowsazure/.

[8] J. Varia, Cloud Architectures, Amazon Web Services. Retrieved April 20, 2010 :
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf.

[9] D. Chappell, Introducing Windows Azure, December, 2009:
http://go.microsoft.com/?linkid=9682907.

[10] M. Isard, M. Budiu, Y. Yu et al., “Dryad: Distributed data-parallel programs from sequential
building blocks,” in ACM SIGOPS Operating Systems Review, 2007, pp. 59-72.

[11] J. Ekanayake, T. Gunarathne, J. Qiu, and G. Fox. Cloud Technologies for Bioinformatics
Applications, Accepted for publication in Journal of IEEE Transactions on Parallel and
Distributed Systems, 2010.

[12] G. C. Christiam Camacho, Vahram Avagyan, Ning Ma, Jason Papadopoulos, Kevin Bealer
and Thomas L Madden, “BLAST+: architecture and applications,” BMC Bioinformatics 2009,
10:421, 2009.

[13] NCBI. "BLAST," http://blast.ncbi.nlm.nih.gov
[14] J. Y. Choi, Deterministic Annealing for Generative Topographic Mapping GTM, 2009.
[15] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, pp. 1--6, 1998.
[16] C. M. Bishop, and M. Svensén, “GTM: A principled alternative to the self-organizing map,”

Advances in neural information processing systems, pp. 354--360, 1997.
[17] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from incomplete data via the

EM algorithm,” Journal of the Royal Statistical Society. Series B, pp. 1--38, 1977.
[18] S.-H. Bae, J. Y. Choi, J. Qiu et al., “Dimension reduction and visualization of large high-

dimensional data via interpolation,” in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, Chicago, Illinois, 2010.

[19] E. Walker, “Benchmarking Amazon EC2 for high-performance scientific computing,”;login:
The USENIX Magazine, vol. 33, no. 5.

[20] C. Evangelinos, and C. N. Hill, “Cloud Computing for parallel Scientific HPC Applications:
Feasibility of running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2.,” in
Cloud computing and it's applications (CCA-08), Chicago, IL, 2008.

[21] J. Ekanayake, and G. Fox, "High Performance Parallel Computing with Clouds and Cloud
Technologies."

[22] J. Ekanayake, and G. Fox, “High Performance Parallel Computing with Clouds and Cloud
Technologies,” in 1st International Conference on Cloud Computing, Munich, Germany, 2009.

[23] A. Matsunaga, M. Tsugawa, and J. Fortes, "CloudBLAST: Combining MapReduce and
Virtualization on Distributed Resources for Bioinformatics Applications ".

[24] W. Lu,J. Jackson, and R. Barga, “AzureBlast: A Case Study of Developing Science
Applications on the Cloud,” in ScienceCloud: 1st Workshop on Scientific Cloud Computing
co-located with HPDC 2010 (High Performance Distributed Computing), Chicago, IL, 2010.

[25] cloudmapreduce, Retrieved April 20, 2010: http://code.google.com/p/cloudmapreduce/.
[26] T. Gunarathne,T.L. Wu, J. Qui and G. Fox, "MapReduce in the Clouds for Science ",

Accepted for 2nd International Conference on Cloud Computing 2010, Indianapolis.
[27] W. Edward, “The Real Cost of a CPU Hour,”, Computer, vol. 42, pp. 35-41, 2009.
[28] J. Wilkening, A. Wilke, N. Desai et al., "Using clouds for metagenomics: A case study.",

IEEE international conference on Cluster Computing, CLUSTER '09, New Orleans, LA

	1. Introduction
	2. Cloud technologies and application architecture
	2.1. Classic cloud architecture
	2.1.1. Amazon Web Services. Amazon Web Services (AWS) [6] are a set of cloud computing services by Amazon, offering on demand compute and storage services including but not limited to Elastic Compute Cloud (EC2), Simple Storage Service (S3) and Simple Queue Service (SQS).
	2.1.2. Microsoft Azure Platform. Microsoft Azure platform [7] is a cloud computing platform offering a set of cloud computing services similar to the Amazon Web Services. Windows Azure compute, Azure Storage Queues and Azure Storage blob services are the Azure counterparts for Amazon EC2, Amazon SQS and the Amazon S3 services. Features of the Azure services are more or less similar to the features of the AWS services we discussed above, except for the following.
	2.1.3. Classic cloud processing model

	2.2. Apache Hadoop MapReduce
	2.3. DryadLINQ
	2.4. Usability of the technologies

	3. Performance Methodology
	3.1. Performance of different EC2 instance types

	4. Cap3
	4.1. Performance with different EC2 cloud instance types
	4.2. Scalability study
	4.3. Cost comparison

	5. BLAST
	5.1. Performance with different EC2 cloud instance types
	5.2. Scalability

	6. Generative Topographic Mapping Interpolation
	6.1. Application performance with different cloud instance types
	6.2. GTM interpolation scalability

	7. Related works
	8. Conclusion
	Acknowledgment
	9. References

