
Machine Learning Molecular Dynamics
Simulations for Enhanced Student Learning

Fanbo Sun, JCS Kadupitiya, Geoffrey Fox, Vikram Jadhao
Intelligent Systems Engineering

Indiana University
Bloomington, Indiana 47408

{fanbsun,kadu,gcf,vjadhao}@iu.edu

Abstract—Molecular dynamics (MD) simulations accel-
erated by the use of high-performance computing (HPC)
have enabled the understanding of microscopic mechanisms
underlying the material and biological phenomena such
as protein folding, ion transport across cell membranes,
and nanoparticle self-assembly. In the context of using MD
simulations in education, rapid simulation-driven responses
to students in classroom settings are desirable in elucidating
concepts and demonstrating the application potential of
HPC. We explore the idea of integrating machine learning
(ML) with HPC-accelerated MD simulations to enhance
their usability for education applications. The idea is illus-
trated using parallelized MD simulations deployed as a web
application on nanoHUB and designed to extract the distri-
bution of ions in nanoconfinement. We find that an artificial
neural network-based regression model successfully learns
nearly all the interesting features associated with the output
ionic density profiles and rapidly generates predictions that
are in excellent agreement with the results from explicit
MD simulations. The inference time associated with the
ML surrogate is over a factor of 10,000 smaller than the
corresponding parallel MD simulation time. The dynamic,
real-time and anytime engagement with the ML-integrated
simulation framework can enable enhanced student learn-
ing of concepts associated with basic and advanced topics
in computational science and engineering.

Index Terms—Machine Learning, Molecular Dynamics
Simulations, Parallel Computing, Scientific Computing

I. INTRODUCTION

Particle or molecular dynamics simulations are pow-
erful tools for investigating the behavior of materials
at the molecular and nanoscale. These simulations have
enabled the understanding of microscopic mechanisms
underlying the material and biological phenomena such
as protein folding, ion transport across cell membrane,
flow of polymeric liquids, and self-assembly of nanos-
tructures. The molecular dynamics (MD) method solves
the Newton’s equation of motion for a system of many
particles and evolves the positions, velocities, and forces
associated with these particles at each time step. While
MD simulations are generalizable to study a broad range
of molecular and nanoscale phenomena, they incur high
computational costs because the computational complex-

ity per time step is proportional to the square of the total
number of particles (system size).

The high computational costs associated with
MD simulations are mitigated by employing high-
performance computing (HPC) resources and utilizing
parallel computing techniques such as OpenMP and
MPI. An example of an MD simulation of confined ions
[1], [2] illustrates the power of HPC-enabled simulations.
For this system, ≈ 1 nanosecond of dynamics of ≈ 500
ions on one processor takes ≈ 12 hours of runtime,
which is prohibitively large to extract converged results
for ion distributions within reasonable time frame. Using
MPI or hybrid OpenMP/MPI techniques dramatically
enhances the simulation performance: for systems with
thousands of ions, speedup of over 400 can be achieved,
enabling rapid generation of the needed data for evalu-
ating converged ionic distributions.

The HPC-driven acceleration enables MD simulations
that can explore the dynamics of systems of a large
number of particles with fewer controlled approxima-
tions for long physical time over a wider range of
physical parameters. Such enhanced MD simulations are
not only useful for state-of-the-art research, but can be
employed as cutting-edge educational tools for teaching
related computational science and engineering concepts.
However, despite the employment of the optimal par-
allelization model suited for the size and complexity of
the system, MD simulations can often take hours or days
to furnish accurate output data and desired information.
In the context of using simulations in education, rapid
access to simulation-driven responses to student ques-
tions in classroom settings are desirable in explaining
concepts (e.g., self-assembly in nanoscale materials) as
well as in highlighting the application potential of HPC
(e.g. computational materials design). It is also desirable
to rapidly access accurate trends in the behavior of
physical observables that may be learned based on the
history of data generated from earlier simulation runs.
The high computational costs and long runtimes limit the
use of MD simulations for such purposes in classroom
settings, inhibiting the learning of students interested in

computational science and applied HPC subjects.
As an example, consider an MD simulation frame-

work, Ions in Nanoconfinement, that we deployed as
a web application on nanoHUB to execute the afore-
mentioned simulations of ionic systems [3]. This tool
has been employed every semester since Spring 2018
in illustrating concepts in a graduate course (Simulat-
ing Nanoscale Systems) and an undergraduate course
(Introduction to Modeling and Simulation) at Indiana
University (IU). A video demonstration of the lecture
on the use of the simulation tool and related compu-
tational nanoscience concepts is available online [4]. In
classroom usage, we observed that the fastest simulations
took about 10 minutes to provide the converged ionic
densities while the slowest ones (generally associated
with larger system sizes) took over 3 hours. Primary
factors contributing to this scenario were the time delays
resulting from the combination of waiting time in a
queue on a computing cluster and the actual runtime
for the simulation. Not having rapid access to expected
trends in the variation of ionic densities with input
parameters made the process of explaining associated
concepts (e.g., self-assembly, steric effects) unwieldy
and time-consuming, and slowed down the training of
students interested in pursuing a class project or per-
forming introductory research on the subject.

Generally, the approach to provide instant simulation
output is to store the previous simulation results in a
cache (simulation caching). nanoHUB provides this as a
feature in computational tools created using their GUI,
Rappture. Cached simulations provide a static environ-
ment with pre-selected parameters defining simulations
that can be “looked up”. This simulation environment
offers limited exploration space, interactivity, and re-
sponsiveness to the student. To encourage and empower
students to directly experiment and explore the nanoscale
system and associated phenomena, a new approach is
needed that delivers an interactive, dynamic, and respon-
sive simulation environment open for wide exploration.

Motivated in part by these challenges in employing
state-of-the-art MD simulations in education, in a re-
cent paper [5], we introduced the idea of integrating
machine learning (ML) methods with MD simulations
to enhance their usability for research and education.
We demonstrated that an artificial neural network (ANN)
based regression model, trained on data generated via
HPC-accelerated MD simulations, successfully learns a
small number of pre-identified features associated with
the simulation output. The ML surrogate instantaneously
generated predictions in excellent agreement with results
obtained from explicit MD simulations.

In this paper, we extend the idea of integrating ML
methods with MD simulations to the more challenging
problem of capturing nearly all the interesting features

of the desired simulation output. We utilize the MD
simulations of ions in nanoconfinement employed in our
earlier work [2], [5] to illustrate the results. While the
earlier paper showed a relatively small number (3) of
ML-generated predictions for the ionic distribution (the
contact, mid-point, and peak ionic densities), we now
demonstrate that the ANN model trained on the same
dataset yields accurate predictions for ≈ 150 output
parameters, enabling the estimation of almost all the
interesting features of the ionic density profile for a
wide range of system parameters. The inference time
associated with the ML surrogate is over a factor of
10, 000 smaller than the corresponding MD simulation
time. We anticipate that such an integration of ML with
simulations to enhance their usability holds enormous
potential for the use of simulation tools in education.
The resulting overall improvement in the interactivity
with the simulation framework in terms of dynamic,
real-time engagement and anytime access can enable en-
hanced student learning of concepts associated with more
complex systems and state-of-the-art research topics.

II. BACKGROUND AND RELATED WORK

MD simulations serve as important tools for under-
standing diverse self-assembly phenomena in nanoscale
materials [6]–[8], predicting material behavior in prac-
tical applications [9], and isolating interesting regions
of parameter space for experimental exploration [10].
Recent years have seen a tremendous rise in the use
of ML in enhancing simulations to predict parameters,
generate configurations, and classify materials properties
[11]–[17]. Despite the surge in computational materials
research, the use of ML for associated education appli-
cations has been relatively unexplored.

The authors are members of a relatively new engineer-
ing department launched in 2016, Intelligent Systems
Engineering (ISE), at IU. The ISE curriculum at both un-
dergraduate and graduate levels builds on a strong HPC,
information technology, and modeling and simulation
core informed by application areas such as nanoengineer-
ing and bioengineering. The last author teaches two core
courses in the curriculum (Introduction to Modeling &
Simulation, and Simulating Nanoscale Systems) that are
taken by ISE and IU students with interests in diverse
focus areas including computer engineering, nanoscale
engineering, bioengineering, cyber-physical systems en-
gineering, chemistry, and physics. The courses feature
application-based learning of basic scientific computing
concepts and simulation techniques including the use of
parallel computing methods. Applications are designed
employing the state-of-the-art research in nanomaterials
engineering including the shape, assembly, and flow of
soft materials such as self-assembling nanoparticles [18],
ionic channels [6], and polymeric fluids [9].

Fig. 1. Ecosystem of a computational tool deployed on nanoHUB.

The HPC-accelerated MD simulations are key parts
of these courses. To facilitate their use by students in
classrooms and for solving homework problems, the
simulations are deployed as computational tools on
nanoHUB [19]. nanoHUB provides online access for
executing simulation codes to students and educators
interested in nanoscale science and engineering. The
authors and the extended research group members have
launched 4 nanoHUB tools [3], [20], [21] exploring
diverse self-assembly phenomena in nanomaterials. One
of these tools, “Ions in nanoconfinement” [3], has been
extensively employed by IU students to learn nanoscale
self-assembly concepts [4], solve homework problems,
and conduct work on final projects focusing on topics
in computational materials science. In less than 2 years
of its launch, this nanoHUB tool has been used by over
90 users and run over 2000 times [3]. Most of these
users are IU students. This application is designed to
launch MD simulations that use virtual machines or HPC
resources depending on user-selected inputs to reduce the
associated simulation job wait and run times.

These nanoHUB tools provide an interactive user
interface to students for examining the links between
nanomaterial system parameters and their structural and
dynamical behavior via movie downloads and renderings
of simulation output on the tool canvas. The tools also
enable students to learn the workflows associated with
a large scientific simulation software ecosystem such as
nanoHUB (Figure 1). Two of the 4 tools have already
been employed in teaching materials associated with the
aforementioned ISE courses, and all 4 tools are planned
to be employed in teaching activities in the 2019-2020
academic year. Further, 3 new nanoHUB tools based on
MD simulations are under development.

III. ML SURROGATES FOR MD SIMULATIONS

We now describe a general approach, first introduced
in Ref. [5], that utilizes ML to enable dynamic, real-

time and anytime engagement with MD simulations,
significantly enhancing the potential for their use in both
education and research. The “ML surrogates for MD
simulations” framework can be broadly defined as the
approach to use ML to learn from MD simulations,
and produce learned surrogates for MD simulations.
Figure 2 shows the overview of this framework in the
context of nanoscale materials engineering applications
to predict the structure and/or dynamical properties (out-
puts) characterizing the nanoscale system over a broad
range of experimental control parameters (inputs). First,
the attributes of the nanoscale system and the control
parameters are fed to the framework (Figure 2). These
inputs are used to launch the MD simulation on the
HPC cluster. Simultaneously, these inputs are fed to the
ML-based prediction module. Both the MD and ML
methods are designed to extract (predict) the desired
output quantities. Error handler aborts the MD simula-
tion program and displays appropriate error messages
when a simulation fails due to any pre-defined criteria.
At the end of the simulation run, the output quantities
are saved for future retraining of the ML model, which
occurs after a set number of new successful simulation
runs. After yielding a sufficiently large set of predictions,
ML surrogate rapidly provides trendlines capturing the
behavior of output quantities as a function of variation
in input parameters.

ML surrogates for MD simulations can enable several
capabilities which have particular significance in educa-
tion: (i) learning pre-identified interesting features asso-
ciated with the simulation outputs, (ii) almost instanta-
neously generating accurate predictions for unsimulated
state points, (iii) enabling anytime and anywhere access
to simulation results, and iv) exhibiting auto-tunability
with the ML model making increasingly accurate predic-
tions after being trained on data from new simulations.

We now describe the application of this framework to
the specific case of MD simulations of ions in nanocon-

Fig. 2. System overview of the ML surrogate for MD simulation approach for generating rapid and accurate predictions associated with
nanoscale phenomena for use in classroom teaching.

finement to illustrate the approach in further detail. Here,
the goal is to extract the distribution of ions confined by
two material surfaces represented as identical, uncharged
parallel plates at z = −h/2 and z = h/2 (creating
a confinement length of h). Here, the inputs include
the nanoscale system of self-assembling electrolyte ions
characterized by attributes such as valency and size, and
the control parameters such as electrolyte concentration
and interface separation. The outputs include the ionic
density profiles or distribution functions in confinement.

Our earlier work [5] showed that an ANN model can
accurately predict 3 key output features: contact density,
peak density, and mid-point density of confined ions.
ANN outperformed other ML techniques such as polyno-
mial regression, support vector regression, decision tree
regression, and random forest regression. In this paper,
we show that the ANN model can generate predictions
for nearly all the desired features of the ionic density
profile, producing almost the entire ionic distribution in
excellent agreement with explicit MD simulation results.

A. Data Generation, Preparation, and Preprocessing
Prior domain experience and backward elimination

using the adjusted R squared is used for selecting the
most significant input parameters for creating the training
data set. Using this process, five input parameters charac-
terizing the ionic system are selected: confinement length
h, salt (electrolyte) concentration c, positive ion valency
zp, negative ion valency zn, and the ion diameter d. All
ions are assumed to have the same diameter; in general,
oppositely charged ions have different sizes. The range
of each parameter is selected as follows: h ∈ (3.0, 4.0)
nm, c ∈ (0.3, 0.9) M, zp ∈ 1, 2, 3, zn ∈ −1, and
d ∈ (0.5, 0.75) nm. The salt concentration is defined
as the number of negative ions per unit volume [2], [5].
Min-max normalization filter is applied to normalize the
input data at the preprocessing stage.

The converged distribution for positive ions is selected
as the output. The dataset created for investigations in

the earlier work [5] is reused. This dataset was generated
by sweeping over a few discrete values for each of the
input/output parameters to create and run 6,864 MD
simulations utilizing HPC resources. On average, each
MD simulation was performed for over ≈ 5 nanoseconds
of ionic dynamics, and took 4200 CPU hours (≈ 36 min-
utes per simulation with MPI/OpenMP parallelization).
The training dataset creation took approximately 25 days
including the queue wait times on the IU BigRed2
supercomputing cluster. The entire data set is separated
into training and testing sets using a ratio of 0.8:0.2.

Each MD simulation produces positive ion distribution
characterized by 300 points as output. For simplicity,
using the symmetry of ionic density around the confine-
ment center z = 0, approximately half of the 300 points
are selected as the output parameters. Accordingly, in
the experiments that follow, ML is employed to make
P ≈ 150 predictions characterizing the density of ions
in the left half of the confinement (with z ∈ (−h/2, 0)).

B. Feature Extraction and Regression
Following earlier paper [5], the ANN architecture with

2 hidden layers is implemented in Python for regression
and prediction of P ≈ 150 continuous (output) variables.
Higher dimensions of output enforced the dimension
of hidden layer size to be over 150. By performing a
grid search, hyper-parameters such as the number of
first hidden layer units, second hidden layer units, batch
size, and the number of epochs are optimized to 512,
256, 25, and 4000 respectively. Adam optimizer is used
as the backpropagation algorithm. The learning rate of
Adam optimizer is fixed to 0.0001 and dropout rate in
the dropout layer is set to 0.15 to prevent overfitting.
The weights in the hidden layers and in the output layer
are initialized using a Xavier normal distribution at the
beginning. The mean square loss function is used for
error calculation. ANN implementation, training, and
testing are programmed using scikit-learn, Keras, and
TensorFlow ML libraries [22]–[24].

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80 100 120

S
u
c
c
e
s
s
 R

a
te

n
th

 Prediction

Fig. 3. Success rate An associated with the nth prediction made the
ML surrogate (An is defined in Eq. 1).

IV. RESULTS

A. Validation of the ML approach

To validate the ML approach, we compare the training
loss on training data and validation loss on test data
to assess overfitting, and measure the success rate (or
accuracy) associated with the ANN predictions on the
test data. The training loss on 5491 simulations and
validation loss (mean square error or MSE) on 1373
simulations decrease to 0.000194 and 0.000024 respec-
tively within 4000 epochs of training. Similar reduction
in training and validation losses indicates that the ML
model is not overfitted.

Typically, in regression problems, accuracy or success
rate is inherently not defined. To facilitate the compar-
ison of ML predictions with MD results, we define a
prediction as successful when the density value predicted
by the ML surrogate ρML is within the error ε associated
with the corresponding MD simulation estimate ρMD

(ground truth). Accordingly, the average success rate or
accuracy associated with the ML approach for the nth

prediction (corresponding to the nth element in the output
set) is defined as:

An =
1

Ntest

Ntest∑
i=1

Θ
(∣∣ρML

n,i − ρMD
n,i

∣∣ , εn,i) (1)

where i indicates the simulation index, Ntest is the
number of samples (simulations) in the test data, and
Θ(x, ε) is a step function given by: Θ(x, ε) = 1 for
x < ε, and Θ(x, ε) = 0 for x ≥ ε. The overall
ensemble-average success rate A of the ML prediction
for the entire density profile can be estimated using
A = (1/P)

∑P
n=1An, where the sum is now over the

total number of predictions P .
Figure 3 shows the success rate An associated with

the nth ML prediction for the testing dataset. In order for
the prediction to be well-evaluated, An is only computed

for ML predictions associated with non-vanishing ρMD

(ρMD 6= 0). In other words, results are not shown for
≈ 20 output parameters (out of 150) where the ionic
density and associated error from MD simulations are
exactly 0 (regions near the left wall where finite-sized
ions are prohibited from entering). As Figure 3 shows,
An is very good for all the evaluated ML predictions.
The ensemble-average success rate is found to be A =
0.958, and the lowest and highest recorded values for
accuracy are An = 0.86 and An = 0.997 respectively.

B. Ionic density profiles: comparing ML surrogate pre-
dictions and MD simulations

We now present plots of the positive ion density
profiles showing the comparison between the predictions
made by the ML surrogate and the results obtained from
MD simulations. Results are shown for a set of 4 systems
randomly selected from the entire testing dataset. These
4 systems are: system I (3.2, 1, -1, 0.6, 0.65), system
II (3.6, 3, -1, 0.9, 0.75), system III (3.3, 3, -1, 0.35,
0.714), and system IV (3.6, 1, -1, 0.9, 0.6), where the
parentheses list the 5 aforementioned input parameters
characterizing the ionic system: confinement length h,
positive ion valency zp, negative ion valency zn, salt
concentration c, and ion diameter d. Figure 4 (a) - (d)
shows the ionic density profiles predicted by the ML
surrogate for systems I, II, III, and IV respectively. As
the figure indicates, for each system, the ML-predicted
density profile is in excellent agreement with the result
extracted using MD simulation (ground truth).

To make the comparison between ML predictions
and MD simulation results more quantitative, we extract
the overall accuracy of the ML prediction for each
system (density profile). Similar to Eq. 1, we define this
accuracy or success rate Ai associated with the ith system
(simulation configuration) as:

Ai =
1

P

P∑
n=1

Θ
(∣∣ρML

n,i − ρMD
n,i

∣∣ , εn,i) (2)

where Θ is the step function defined above, and the sum
is now over the total number of predictions P made using
the ML approach (as before, Ai is meaningful only at
non-zero ionic density values, making P ≈ 130). Using
Eq. 2, the success rates Ai for systems I, II, III, and
IV are found to be 0.98, 0.91, 0.78, 0.89 respectively.
In addition to the good success rates, we point out that
the ML inferences are made at a relatively much smaller
time of ≈ 0.2 seconds compared to MD simulations (see
below for further details).

C. Rapid access to trendlines using ML surrogates

The good agreement between ionic densities generated
via ML surrogate and MD simulations as well as the

Fig. 4. Ionic density profiles for systems I (a), II (b), III (c), and IV (d) predicted by ML surrogate (red circles) and extracted with MD
simulation (blue squares) (see main text for system definitions).

much smaller “lookup time” for obtaining the ML infer-
ences enable the generation of trendlines for the entire
density profile almost instantaneously. Figures 5 and 6
show a selected subset of these ML-surrogate-predicted
trendlines exhibiting the variation of ion distributions
with changes in input parameters.

Figure 5 (a) and (b) shows the variation in the density
of positive ions of valency zp = 1, 2, 3 at salt con-
centration c = 0.5 M and 0.9 M respectively. Other
input parameters are fixed to h = 3.0 nm, zn = −1,
and d = 0.7 nm. The ML-generated trendlines are able
to track distinct variations in density for different ion
valencies and salinity conditions. The peak of the ionic
density and the number of oscillations increase with c.
Further, at a given c, increasing the ion valency leads to
the depletion of ions near the left surface (reduced ion
density near z = 0). Both these observations inferred by
the ML surrogate follow the expected behavior in these
systems as reported and elucidated in previous work [2].

Figure 6 shows ML-generated trendlines for systems
that include parameters outside the dataset generated
to train and test the ML model. Here, the density of
positive ions of valency zp = 1, 2, 3 is predicted at a

salt concentration of c = 0.1 M (other input parameters
are the same as above). The depletion effects near the
material surface (z = 0) due to stronger electrostatic
interactions (e.g., at higher ion valencies) are expected
to dominate at this relatively lower salt concentration.
This is indeed borne out in the ML predictions which
yield strong depletion of ions from the surface for
divalent (zp = 2) and trivalent (zp = 3) ions, and
a relatively moderate enrichment near the surface for
monovalent ions (zp = 1). An accurate assessment of
system behavior by the ML surrogate outside its training
range shows its robustness and broad utility.

D. ML inference time and overall speedup

In the earlier paper, we introduced a simple formula
illustrative of the possible gains or speedup S resulting
from the use of scientific ML surrogates:

S =
tsim

tp + ttr ·Ntr/Np
, (3)

where tsim is the time to run the MD simulation via
the sequential model, tp is the time it takes for the ML
surrogate to perform a prediction (or “lookup” time) for

Fig. 5. Trendlines for ionic density variation with positive ion valency at salt concentration (a) c = 0.5 M and (b) 0.9 M. See main text for
values of other input system parameters.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Io
n
 D

e
n
s
it
y
 (

M
)

z (nanometers)

valency = 1

valency = 2

valency = 3

Fig. 6. Trendlines for ionic density variation with positive ion valency
at salt concentration c = 0.1 M. This concentration is slightly outside
the range of c employed to train the ML model (0.3 - 0.9 M). See
main text for values of other input system parameters.

one set of inputs, Np is the number of ML predictions
made, Ntr is the number of elements in the training
dataset, and ttr is the average walltime associated with
the MD simulation to create one of these elements.
Ntrttr represents the total time to create the training
dataset which includes the generation of the training data
using MD simulations and the TensorFlow training time.

In the specific case of the system of confined ions
considered above, the training dataset consisted of 5491
simulation configurations (Ntr = 5491). The time ttr to
generate one element of this training set is similar to the
average runtime of the parallelized MD simulation. For
the MD simulations considered in this work, tsim ≈ 60
hours, ttr ≈ 36 minutes, and ML inference time tp ≈ 0.2
seconds. Comparing the run times of the parallelized MD
simulation and the ML surrogate, we find that the ML
surrogate yields output results over 10,000 (= ttr/tp)
times faster than parallel MD simulation. We also note
that the ML surrogate is using 1 core to infer the result

as compared to 128 cores employed by the parallel simu-
lation, indicating a complementary reduction in resource
utilization by a factor of 128.

Given tp � ttr and approximating tp → 0 in Eq.
3, we find S = SHPCNp/Ntr, where SHPC = tsim/ttr
is the traditional speedup obtained by parallelizing the
MD simulation using HPC resources. We can identify the
ML-only speedup as SML = Np/Ntr, i.e, the number
of predictions made by the ML surrogate divided by
the size of the training dataset. The key feature of the
ML-based approach is thus highlighted: S rises with
increasing Np, that is, the speedup increases as the ML
surrogate is used to make more predictions. We also
observe that for ML-enabled results to generate a “true”
net speedup (S > 1), the number of predictions made by
the surrogate (ANN model) per one forward propagation
must exceed Ntr/SHPC, that is, Np > Ntr/SHPC. For
the example considered here, SHPC = 100, yielding the
relation Np & 60. Considering this inequality, the use
of ML surrogate enhances the overall efficiency of the
simulation framework when it predicts over 60 ionic
density profiles. We note that the classroom use gives a
natural increase in Np (and SML) by a factor proportional
to the number of students in the class.

V. DISCUSSION AND CONCLUSION

In this study, we focused on a particular MD simula-
tion framework to illustrate the idea of developing and
using scientific ML surrogates to enhance the usability of
scientific simulations for education. The overall success
rates and rapid inference times associated with ML
predictions demonstrate the feasibility of this approach in
delivering an interactive, dynamic, and responsive simu-
lation environment open for wide exploration by students
in classroom settings. Results from this investigation are
encouraging and we intend to explore the feasibility of
these ideas in other MD simulation frameworks [21].

Future work will also explore the extent to which the
learned ML surrogates can predict desired simulation
outputs outside the pre-defined range of training datasets.

Based on the aforementioned investigations, we pro-
pose to design and integrate an ML surrogate with
the current version of the “Ions in nanoconfinement”
computational tool deployed on nanoHUB [3].1 In ad-
dition to executing MD simulations, we will introduce
a method in the nanoHUB tool interface to predict the
output density using ML surrogate. The ML-generated
results will be shown as density profile plots on the user
interface almost instantaneously. Based on the outcomes
of this experiment, other nanoHUB tools designed by us
will be explored for similar ML integration [20], [21].

While the results describing the utility of ML-
integrated simulation framework are promising, exper-
imentation with the use of these tools in classroom
settings needs to be done. The use of the integrated ML-
surrogate-MD-simulation framework will begin in Fall
2019 in an IU course (Simulating Nanoscale Systems)
taught by the last author of this paper. We expect several
of such tools to be utilized for classroom teaching over
the next couple of years. Evaluation of the ML-integrated
nanoHUB tools will be performed annually based on
several feedback mechanisms including the test results
and course questionnaires from classes where the tools
will be used to teach course materials. Other feedback
mechanisms include the reviews and questions asked on
the nanoHUB webpage describing the tools.

ACKNOWLEDGMENT

This work is supported by the National Science Foun-
dation under the Network for Computational Nanotech-
nology (NCN) program through Award 1720625 (Net-
work for Computational Nanotechnology - Engineered
nanoBIO Node). Simulations were performed using the
Big Red II supercomputing system supported in part
by Lilly Endowment, Inc., through its support for the
IU Pervasive Technology Institute, and in part by the
Indiana METACyt Initiative. V.J. thanks P. Sharma for
valuable comments on the manuscript.

REFERENCES

[1] R. Allen, J.-P. Hansen, and S. Melchionna, “Electrostatic poten-
tial inside ionic solutions confined by dielectrics: a variational
approach,” Phys. Chem. Chem. Phys., vol. 3, pp. 4177–4186,
2001.

[2] Y. Jing, V. Jadhao, J. W. Zwanikken, and M. Olvera de la Cruz,
“Ionic structure in liquids confined by dielectric interfaces,” The
Journal of chemical physics, vol. 143, no. 19, p. 194508, 2015.

[3] K. Kadupitiya, S. Marru, G. C. Fox, and V. Jadhao,
“Ions in nanoconfinement,” Dec 2017. [Online]. Available:
https://nanohub.org/resources/nanoconfinement

[4] V. Jadhao, “Nanoscale simulations and engineering applications:
Applications - self-assembly in nanoconfinement,” Feb 2019.
[Online]. Available: https://nanohub.org/resources/29671

1The integrated tool is expected to be online in Fall 2019.

[5] J. Kadupitiya, G. C. Fox, and V. Jadhao, “Machine learning
for performance enhancement of molecular dynamics simula-
tions,” in International Conference on Computational Science.
Springer, 2019, pp. 116–130.

[6] V. Jadhao, F. J. Solis, and M. Olvera de la Cruz,
“Simulation of charged systems in heterogeneous dielectric
media via a true energy functional,” Phys. Rev. Lett.,
vol. 109, p. 223905, Nov 2012. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.109.223905

[7] V. Jadhao, C. K. Thomas, and M. O. de la Cruz, “Electrostatics-
driven shape transitions in soft shells,” Proceedings of the Na-
tional Academy of Sciences, vol. 111, no. 35, pp. 12 673–12 678,
2014.

[8] S. C. Glotzer, “Assembly engineering: Materials design for the
21st century (2013 pv danckwerts lecture),” Chemical Engineer-
ing Science, vol. 121, pp. 3–9, 2015.

[9] V. Jadhao and M. O. Robbins, “Probing large viscosities in glass-
formers with nonequilibrium simulations,” Proceedings of the
National Academy of Sciences, vol. 114, no. 30, pp. 7952–7957,
2017.

[10] N. E. Brunk and V. Jadhao, “Computational studies of shape con-
trol of charged deformable nanocontainers,” Journal of Materials
Chemistry B, 2019.

[11] M. Spellings and S. C. Glotzer, “Machine learning for crystal
identification and discovery,” AIChE Journal, vol. 64, no. 6, pp.
2198–2206, 2018.

[12] S. S. Schoenholz, “Combining machine learning and physics
to understand glassy systems,” Journal of Physics: Conference
Series, vol. 1036, no. 1, p. 012021, 2018.

[13] V. Botu and R. Ramprasad, “Adaptive machine learning frame-
work to accelerate ab initio molecular dynamics,” International
Journal of Quantum Chemistry, vol. 115, no. 16, pp. 1074–1083,
2015.

[14] A. L. Ferguson, “Machine learning and data science in soft
materials engineering,” Journal of Physics: Condensed Matter,
vol. 30, no. 4, p. 043002, 2017.

[15] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, “Ma-
chine learning phases of strongly correlated fermions,” Phys. Rev.
X, vol. 7, p. 031038, Aug 2017.

[16] J. Kadupitiya, G. C. Fox, and V. Jadhao, “Machine learning for
parameter auto-tuning in molecular dynamics simulations: Effi-
cient dynamics of ions near polarizable nanoparticles,” Indiana
University, Nov, 2018.

[17] G. Fox, J. A. Glazier, J. Kadupitiya, V. Jadhao, M. Kim, J. Qiu,
J. P. Sluka, E. Somogyi, M. Marathe, A. Adiga et al., “Learn-
ing everywhere: Pervasive machine learning for effective high-
performance computation,” arXiv preprint arXiv:1902.10810,
2019.

[18] N. E. Brunk, M. Uchida, B. Lee, M. Fukuto, L. Yang, T. Douglas,
and V. Jadhao, “Linker-mediated assembly of virus-like particles
into ordered arrays via electrostatic control,” ACS Applied Bio
Materials, vol. 2, no. 5, pp. 2192–2201, 2019.

[19] G. Klimeck, M. McLennan, S. P. Brophy, G. B. A. III, and M. S.
Lundstrom, “nanohub.org: Advancing education and research in
nanotechnology,” Computing in Science Engineering, vol. 10,
no. 5, pp. 17–23, Sept 2008.

[20] J. Kadupitiya, N. Brunk, S. Ali, G. C. Fox, and V. Jadhao,
“Nanosphere electrostatics lab,” May 2018. [Online]. Available:
https://nanohub.org/tools/nselectrostatic

[21] J. Kadupitiya, N. Brunk, M. Uchida, T. Douglas, and V. Jadhao,
“Nanoparticle assembly lab,” January 2019. [Online]. Available:
https://nanohub.org/tools/npassemblylab

[22] F. Chollet et al., “Keras,” 2015.
[23] L. Buitinck et al., “Api design for machine learning software: ex-

periences from the scikit-learn project,” arXiv:1309.0238, 2013.
[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow:
a system for large-scale machine learning.” in OSDI, vol. 16,
2016, pp. 265–283.

