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Abstract

We study π∆ photoproduction at high energies 5 ≤ Elab ≤ 16 GeV. We provide predictions for
the beam asymmetry at Jefferson Lab energies of Elab = 9 GeV.

Keywords:
PACS: JLAB-THY-

1. Intro

There is mounting evidence for the existence of exotic hadrons that cannot be accommodated
within the conventional quark model [1]. Specifically, light flavor hybrid mesons are expected to
appear in the spectrum below 2 GeV [2, 3] and to be copiously produced via beam fragmentation
in peripheral photoproduction, with photon energies on the order of 10 GeV [4–6]. Experiments
dedicated to exploration of the hybrid meson spectrum have just begun using GlueX and CLAS12
detectors at Jefferson Lab. The success of these experiments relies on accurate theoretical descrip-
tion of both production and decay characteristics of resonances in peripheral photoproduction [7].
While resonance decays have been extensively studied in recent years, in view of the forthcoming
data, efforts aiming at constraining production mechanisms need to be revisited [8–11]. Photo-
production of the light exotic mesons involves the same, natural (P (−1)J = 1) and unnatural
(P (−1)J = −1) parity Regge exchanges that determine photoproduction of pseudoscalar mesons.
The aforementioned experiments have begun a systematic study of pion and η meson production
with the goal of establishing the production mechanisms [12–15]. Understanding of pion exchange
is of particular interest since virtual pions play an important role in various hadronic process,
inclusive possibly being involved in formation of hadron molecules [16, 17]. In peripheral produc-
tion, pion exchange dominates forward production and by being the lightest, it is also sensitive
to absorption dynamics i.e. final states interactions [18]. In this context the beam asymmetry in
charged pion photoproduction is an important observable as it can be used to disentangle the par-
ity of the exchanged Reggeons and thus to identify the contribution from pion exchanges. In this
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work we give a theoretical prediction for the beam asymmetry, Σ in charged pion photoproduction
associated with production of the ∆ excitation from the proton target. The asymmetry in this
reaction is expected to be soon determined in the GlueX and CLAS12 measurements. Previous
attempts have been made to describe the high-energy observables. These models either fail or do
not attempt to reproduce both the complicated energy and t dependence [8, 19, 20] and the aim
of this work is to give a proper account of these dependencies in the kinematic region relevant to
the JLab experiments.

2. Model

At low momentum transfer, π∆ photoproduction is dominated by pion exchange. At photon
energies in tens of GeV’s and/or −t ' 0.5 GeV2 it is expected to be dominated by natural, vector,
ρ and tensor, a2 exchanges. There is also a contribution from the unnatural, b exchange. In the
Regge pole approximation the asymptotic expression (s→∞) of the s-channel helicity amplitude
describing the reaction 1 + 2→ 3 + 4 is given by [18, 21, 22]

ARµ4µ3,µ2µ1
= βRµ1µ2µ3µ4

(t)PR(s, t). (1)

Here µi are the s-channel helicities and PR(s, t) is the Regge propagator,

PR =
παR1

2

τR + e−iπα
R(t)

sinπαR(t)

(
s

s0

)αR(t)

(2)

with τR and αR1 being the signature and slope of the Regge trajectory, respectively. The s0 =
1 GeV2 is a scale factor. From unitarity it follows that the residues βRµ1µ2µ3µ4

(t) are factorizable,

i.e. βRµ1µ2µ3µ4
(t) = βR,13

µ1µ3(t)βR,24
µ2µ4(t). Angular-momentum and parity conservation determine the

non-analytical dependence on t, βR,ijµiµj (t) =
√−t|µi−µj |β̂R,ijµiµj (t) where the reduced residues, β̂R,ijµiµj (t)

are regular in t [23]. In the case at hand, βRµγµNµ∆
(t) = βR,γπµγ (t)βR,N∆

µNµ∆ (t) with βR,γπµγ (t) ∝ √−t.
That is, in the Regge pole approximation the helicity amplitudes in the photon vertex for pion
production vanish near t = 0. From overall angular momentum conservation it follows, however,
that the s-channel helicity amplitude is proportional to the half-angle factor ξµµ′(s, t) = (s(1 −
zs)/2)|µ−µ

′|((1 + zs)/2)|µ+µ′| where µ = µ1 − µ2 and µ′ = µ3 − µ4 is the net helicity flip in the
initial and final state, respectively. This term incorporates the kinematic singularity in t, and

it asymptotically reduces to
√−t|µ−µ

′|
. Matching with the Regge pole form in the asymptotic

amplitude given in Eq. (1), one finds [21]

ARµ4µ3,µ2µ1
= ξµµ′(s, t)

√
−t−|µ−µ

′| [
βRµ1µ2µ3µ4

(t)PR(s, t)
]

(3)

The residual, analytical dependence on t is not predicted by the Regge theory alone and in the
following, we use the single-particle exchange model and the data as guidance. Specifically, if e
represents the lightest meson on the trajectory R, one expects that for small momentum transfer
β̂R,ij(t) ≈ β̂e,ij(t), since the Regge and particle exchange residues must be equal at the pole t→ m2

e.
The residues β̂e,ij(t) are proportional to constant couplings ge,ij in an effective Lagrangian (see
Table 3) and the single-meson exchange amplitude in the s→∞ limit have the form given by,

Aeµ∆,µNµγ
=
√
−t|µγ |

√
−t|µN−µ∆|β̂e,N∆

µNµ∆
(t)β̂e,γπµγ (t)Pe(s, t) , (4)
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where Pe = (s/s0)Je/(m2
e−t) is the exchange particle propagator. The Regge propagator in Eq. (2)

is normalized such that for t → m2
e, PR → Pe. By comparing with Eq. (3) one determines the

relation between the reduced Regge residues and the elementary couplings, which is summarized
in Table 3. Besides pion exchanges, in the following we include the ρ, a2 and b exchanges with
signatures, τπ,a2 = +1 and τρ,b = −1, respectively. We use coupling constants extracted from the
corresponding decay widths, as shown in Table 1 and assume degenerate ρ and a2 trajectories,
αN ≡ αR=ρ,a2(t) = 0.9(t − m2

ρ) + 1, while for the unnatural π and b exchanges we use αU ≡
αR=π,b(t) = 0.7(t −m2

π). The pion exchange is known to be strongly affected by absorption [18],
which can be effectively accounted for by a simple modification of Regge pole amplitude, known as
the ‘William’s poor man absorption model’ (PMA) [24]. In PMA the

√−t factors in the residues
that are required by factorization but not by the overall angular momentum conservation are
evaluated at the pion pole. Although different in the underlying physics assumptions, in practice,
PMA approximation is equivalent to a model in which an s-channel electric Born term is added to
t-channel pion exchange [25, 26]. We analyze the differential cross section, beam asymmetry and
the differential cross section for photons polarized parallel and perpendicular to the reaction plane
for γp→ π−∆++ and γp→ π+∆0 [27, 28]. In terms of the helicity amplitudes these are given by

dσ

dt
=
K

4

∑
µ∆,µN ,µγ

|Aµ∆,µNµγ |2, (5)

Σ
dσ

dt
=
K

4

∑
µ∆,µN

2 ReAµ∆,µNµγ=+1A
∗
µ∆,µNµγ=−1, (6)

dσ⊥/‖

dt
=
K

4

∑
µ∆,µN

|Aµ∆,µNµγ=+1 ±Aµ∆,µNµγ=−1|2, (7)

with K = (64πsp2
s12)−1. In the first step we extract the effective trajectory αeff(t) from the

energy dependence of the differential cross section, see Fig. 1. As expected, we find that pion
exchange αeff ' 0 dominates at small −t, while natural exchange contributions become important
at −t ≥ 0.5 GeV2 resulting in αeff(t) ' 0.5. Overall, however, αeff(t) is not as steep as compared
to the expectation from a pure Regge pole indicating presence Reggeon-Pomeron interference or
daughter poles, which in general flatten the t dependence. Guided by this observation consider
two scenarios. In one, the ρ and a2 exchanges are described as pure Regge poles and in the
other we include final state interaction corrections. In the later case we simply replace the pole
trajectory by, αN (t)→ αC(t) = αN0 + αP

0 − 1 + t(αN1 α
P
1)/(αN1 + αP

1). Here, αN,P0 and αN,P1 are the
intercepts and slopes of the natural Regge pole and the Pomeron trajectory. For the latter we use
αP(t) = 1.08 + 0.25t [29]. In addition the amplitude is multiplied be a factor (ln s/s0)−1 [18]. Even
though the cut trajectory and effective trajectory do not fully match (see Fig. 1), the remaining
factors in the Regge amplitude, i.e the half-angle factor and the extra ln s/s0 dependence ultimately
results in a good agreement with the data (see Fig. 2). While in the Regge-Pomeron cut model for
the ρ and a2, the connection between the Regge and single-particle residues is lost, we still apply
the same parametrization since it provides enough freedom in the fit. It has been verified that
alternative parameterizations for the t-dependence of the residues of the natural exchanges do not
change the conclusions of the following analysis, nor do they significantly alter the predictions for
JLab energies.

The Regge propagator in Eq. (2) contains ghost poles which must be canceled by zeros in
the residues. Exchange degeneracy (EXD) forces these zeros to be present in the residue of the
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EXD partner as well, implying zeros in the amplitude. The latter are referred to as nonsense
wrong-signature zeros (NWSZ). Since EXD does not in general hold for the overall residue in
photoproduction reactions, we only remove those ghost poles for each individual Reggeon that are
closest to the physical region under consideration, without including NWSZ. In particular, we only
remove the ghost poles1 at spins, α = −2 for π, α = −1 for b, α = −1 for ρ and α = 0 and
α = −2 for the a2. The unnatural and natural contributions have an overall exponential factor
which accounts for the phenomenological falloff at large values of −t. Explicitly,

β̂R=π
µγµNµ∆

(t) = gπβ̂
e=π
µγµNµ∆

(t)ebU t(α+ 2)/2 (8)

β̂R=b
µγµNµ∆

(t) = gπβ̂
e=b
µγµNµ∆

(t)ebU t(α+ 1) (9)

β̂R=ρ
µγµNµ∆

(t) = β̂e=ρµγµNµ∆
(t)ebN t(α+ 1)/2 (10)

β̂R=a2
µγµNµ∆

(t) = β̂e=a2
µγµNµ∆

(t)ebN tα(α+ 2)/3 (11)

The β̂ on the left and right hand side of the above equations are the Regge and single-particle
residues respectively. We introduced an additional factor gπ in order to allow small deviations
from the estimated pion couplings. We require β̂a2,p∆++

(t) =
√
s0β̂

ρp∆++
(t) and β̂bp∆

++
(t) =√

s0β̂
πp∆++

(t) up to the ghost killing factors. For the photon vertex we use the radiative decay
couplings from Table 1. At this point, it is worth mentioning that NWSZ are not favored by the
data. Absence of such zeros was noted in the analysis of Yu et al. [8], where to fill in the dips,
the authors replace the signature factors of the ρ and a2 with a different phase. While the physics
behind such a phase is not well justified in principle2, the effect of this substitution is to remove
the NWSZ in both contributions. Finally we note that two π∆ channels are related by isospin,
(neglecting isospin 2)

A(γp→ π+∆0) = (A+ +A−)/
√

3 (12)

A(γp→ π−∆++) = A+ −A− (13)

where the AG (G is the t-channel G-parity) receive contributions from ρ and b, A+ = Aρ +Ab and
a2 and π, A− = Aa2 +Aπ, respectively.

3. Results

The available data set includes the differential cross sections, polarization cross sections and
beam asymmetries at a single energy Elab = 16 GeV for the two isospin channels π+∆0 and π−∆++.
High-energy data at other energies in the range 5 ≤ Elab ≤ 16 GeV are available for π−∆++ only.
For definite parity exchanges, the polarization cross sections are useful, since they are sensitive to
a given naturality in the t-channel. Specifically, dσ⊥ (dσ‖) are determined by natural (unnatural)
contributions [13], respectively, thus dσ‖ allows to study π exchange in isolation. It should be
noted, however, that absorption effectively changes the naturality of the π exchange and PMA
specifically results, in the forward region, in an equal contribution to both naturalities.

1In removing these ghost poles we respect the normalization of the residues on the lightest mass pole of the EXD
trajectories.

2EXD is an equality between two Reggeons. The constant and rotating phases are in principle obtained when
two Regge contributions with equal residues are added or subtracted.
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Figure 1: Effective trajectory of the cross section, αeff(t) extracted using in dσ/dt = f(t)s2αeff(t)−2 (red). The green
and purple solid curves illustrate the Regge trajectories used in this work, together with observed particles. The
orange line depicts the ρ⊗ P or a2 ⊗ P cut trajectory.

From the analysis of radiative decays and Table 3, we find βa2πγ/βρπγ = 1.82 and βππγ/βbπγ =
4.38. Hence, the ρ and b contributions are suppressed with respect to their opposite signature
partners. In Refs. [19] the authors used the average value of 3 both ratios. The obtained gπ value
is consistent with unity and is mainly fixed by the dσ‖ data, which is dominated by π exchange.
Observing a significant difference in dσ⊥ between the two isospin channels in the region around√−t = 0.4 GeV, one concludes that the ρ and a2 contributions must have a rather strong t-
dependence. Indeed, one can exclude the presence of strong variations in t in the pion residue due
to the rather featureless t dependence of dσ‖. Since the ρN∆ couplings are not well constrained, we
obtain them from a fit. The PMA model reproduces well the forward behavior, thereby correctly
matching the natural and unnatural contributions. Indeed, all natural contributions stemming from
ρ and a2 exchanges are suppressed in the forward direction by the

√−t factors. By neglecting the b
exchange contribution, the difference between the isospin channels is attributed to the interference
of the a2 with the ρ and π terms. If the ρ exchange has a NWSZ at t = −0.55 GeV2, A+ ≈ 0 and
the two isospin channels would coincide in this region. This is not observed in the data. Hence,
the residues of ρ cannot contain NWSZ within the pure Regge pole model. The NWSZ in the
π+p → π0∆++ cross section must therefore be accounted for by the ρππ residue. A similar lack
of NWSZ in the ρ exchange in photoproduction reactions was found in Ref. [14], where a detailed
mapping of the t-dependence of the residues was carried out through the use of finite-energy sum
rules.

The fits are constrained to all the available Elab = 16 GeV data, leaving the Elab = 5, 8, 11 GeV
cross section data as a prediction and model validation. The results of the fits are shown in Fig. 2.
The fitted parameters are given in Table 2. Even though both the pure pole and pole-plus-cut
model describe the data rather well, we observe quite a sensitivity in the normalization of the
ρN∆ couplings. Thus an independent estimate of these parameters, would be very important. In
our fits this is driven by the large difference in the observed beam asymmetry for the two isospin
channels. The model in Ref. [8] was not given as much freedom in a fit to the data as in the
current analysis, but rather the couplings were constrained by symmetry arguments. However,
from a comparison of the presented model with the one in Ref. [8], it becomes clear that pure
pole-like contributions with natural size couplings are not able to reproduce this behavior. The
new experiments at JLab will be able to address this complex feature. The main deficiency of the
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poles-only fit is that it overestimates the s-dependence of the π−∆++ cross section at large −t.
A natural-parity cut contribution coincides with the observed energy dependence, except for the
Elab = 5 GeV data. At such low energies, daughter and additional cut contributions are expected.

We give predictions for the beam asymmetry at JLab energies of Elab = 9 GeV. The predicted
observable appears rather similar to the SLAC data at Elab = 16 GeV [30]. The underlying
dynamics can be interpreted in the following way. At high −t, Σ ≈ +1 indicates dominance of
natural exchanges. As −t becomes smaller, pion exchanges dominate the forward region, which
is reflected by Σ → −1. For t′ → 0, one expects Σ = −1 for purely factorizable exchanges, since
the pion remains the dominant contribution up to extremely forward angles. However, the effect
of Σ → 0 indicates the presence of additional non-pole terms of equal parity in the t-channel, as
successfully included by the PMA model.

Table 1: Decay widths [31] and respective couplings. Normalizations of the couplings are consistent with Table 3.

Expression Γ(g) Γ g

Γρ±→π±γ = g2
ρπγp

3/(12πm2
ρ) 68 keV gρπγ = 0.17

Γb±1 →π±γ
= g2

b1πγ
p3/(12πm2

b1
) 230 keV gb1πγ = 0.24

Γa±2 →π±γ
= g2

a2πγp
5/(20πm4

a2
) 311 keV ga2πγ = 0.71

Γ∆→πN = g2
π∆Np

3(mN +
√
p2 +m2

N )/(12πm3
∆) 116 MeV gπ∆N = 19.16

Table 2: Fitted parameters for the two models.

Pole model Cut model

gπ 1.06 1.04
bU (GeV−2) 0.06 0.14
bN (GeV−2) −0.42 −2.12

g
(1)
ρN∆ −48.2 −370.8

g
(2)
ρN∆ −52.4 −242.4

g
(3)
ρN∆ 40.2 −139.0
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Figure 2: The comparison of pole (dashed) and cut (solid) models with the available (unpolarized) differential cross
section and beam asymmetry data from Refs.[27, 28, 30]. We also show the predictions for plab = 9 GeV which is
relevant for the GlueX experiment. The data and model for γp → π−∆0 have been rescaled by a factor of 3 to
compensate the overall isospin coefficient in Eq. (12).
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Table 3: The s-channel residues from single-meson exchange terms (up to isospin Clebsches). These are obtained by
using the Lagrangians in Refs. [8, 10, 32–35]. All residues must be multiplied by a factor

√
s0
Je where Je is the spin

of the corresponding exchange e.

β̂e,ifµiµf Expression

β̂π,γπ+1 (t)
√

2e

β̂ρ,γπ+1 (t)
gρπγ
2mρ

β̂b1,γπ+1 (t)
gb1πγ
2mb1

β̂a2,γπ
+1 (t)

ga2πγ

2m2
a2

β̂π,N∆

+ 1
2

+ 3
2

(t) gπ∆N (mN+m∆)√
2m∆

β̂π,N∆

− 1
2

+ 1
2

(t)
gπ∆N (−m2

N+mNm∆+2m2
∆+t)√

6m2
∆

β̂π,N∆

+ 1
2

+ 1
2

(t)
−gπ∆N (−m3

N−m
2
Nm∆+m3

∆+2m∆t+mN (m2
∆+t))√

6m2
∆

β̂π,N∆

− 1
2

+ 3
2

(t) −gπ∆N√
2m∆

β̂ρ,N∆

+ 1
2

+ 3
2

(t)
−(2m∆g

(1)
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