
 1

Abstract— In this paper we describe our efforts to build a
Web Services based architecture to support both real-time
and archived geographic data in Geographical Information
System (GIS) Grids. We have built and tested Web Service
version of OGC Web Feature Service (WFS) that can be used
to provide archived geospatial data to various clients. Due to
several performance issues described in this paper we also
built a streaming version of Web Feature Service for large
data sets where high performance is desired. We are also
building a Sensor Filter Grid to process and serve real-time
GPS messages over a publish/subscribe messaging
middleware. We describe several filters built for this purpose
and discuss initial performance results. As an example of how
we can couple scientific simulation codes with our Grid
architecture we describe coupling of a scientific data analysis
application with GPS streams.

Index Terms—GIS, Grids, Web Services, Real-Time data
analysis.

I. INTRODUCTION

eospatial data can be classified in two major categories
in terms of their sources: a) archival data and b) real-

time data collected from sensors. Traditional GIS
applications such as map interfaces or geo-processing
applications require access to spatial databases to extract
both geographic data and associated metadata. On the other
hand with the emergence of the sensors as an important new
technology for real-time data acquisition, a new breed of
applications developed to analyze the sensor observations
in real-time or near-real time are appearing. These new type

of applications require immediate access to data.
Consequently a complete GIS Data Grid layer must provide
support for data of both kinds.

The organization of the paper is as follows: The rest of
the paper is divided into two sections; in Section 2 we
review our efforts to build two different versions of Web
Feature Service [1] for supporting archival geographic data
in GIS Grids. We give summaries for both non-streaming and
streaming versions and briefly compare their performances.
In Section 3 we describe our initial implementation of a
Sensor Filter Grid that supports real-time processing of GPS
sensor measurements and coupling scientific applications
with real-time data. We discuss the filters built for this
purpose and give their initial performance tests results. We
also review a sample application integration scenario with
our architecture.

II. SUPPORTING ARCHIVAL GEOGRAPHIC DATA IN
GEOGRAPHICAL INFORMATION SERVICE GRIDS

A. Open Standards for Geographical Information Systems

It is estimated that around 80% of all data available to
humans contain some sort of a geospatial component [2].
This is the major reason for enormous interest from industry
and academia to develop Geographic Information System
applications which in turn caused use of a wide variety of
software methodologies over the years. Several
organizations produced geographic data adhering to
proprietary representation schemes and employed different

Streaming Data Services to Support Archival and
Real-Time Geographical Information System

Grids

Galip Aydin1,2, Geoffrey C. Fox1,2,3, Harshawardhan Gadgil1,2 and Marlon E. Pierce1
1Community Grids Laboratory

2Department of Computer Science
3Department of Physics

Indiana University
{gaydin,, hgadgil,, mpierce}@cs.indiana.edu

{gcf}@grids.ucs.indiana.edu

G

 2

distributed computing practices to serve them. Furthermore
because the data sources are owned and operated by
individual groups or organizations, geospatial data is in
vastly distributed repositories. As a result today the GIS
community faces unique challenges to support
interoperability between diverse set of data and service
standards.

In recent years several organizations have developed data
standards and implementation specifications for geospatial
and location based services, in a bid to make geographic
information and services neutral and available across any
network, application, or platform. Two major players in this
area are Open Geospatial Consortium (OGC) and the
Technical Committee tasked by the International Standards
Organization (ISO/TC211). The OGC is an international
industry consortium of more than 270 companies,
government agencies and universities participating in a
consensus process to develop publicly available interface
specifications. OGC Specifications support interoperable
solutions that "geo-enable" the Web, wireless and location-
based services, and mainstream IT. OGC has produced many
specifications for web based GIS applications such as Web
Feature Service [1] and the Web Map Service (WMS) [3].
Geography Markup Language (GML) [4] is widely accepted
as the universal encoding for geo-referenced data. The
OGC is also defining the SensorML [26] family of
specifications for describing properties of sensors and
sensor constellations. On the other hand ISO Standards
proposes a standard framework for the description and
management of geographic information and geographic
information services. ISO/TC 211 did not specify the actual
implementation specifications for different platforms and the
private software vendors. Instead, ISO/TC 211 defines a
high-level data model for the public sector, such as
governments, federal agencies, and professional
organizations [5].

B. Web Service implementation of Web Feature Service

 The Open Geospatial Consortium Web Feature Service
implementation specification [1] defines interfaces for data
access and manipulation operations on geographic features
using HTTP as the distributed computing platform. Via
these interfaces, a web user or service can combine, use and
manage geographic data from different sources by invoking
several standard operations. Without having to consider the
underlying data stores clients can access and manipulate
geographic data via Web Feature Service. Also one Web
Feature Service instance can be integrated with various
types of data stores at the same time.

OGC Web Feature Service implementation specification
defines HTTP as the only explicitly supported distributed
computing platform which requires use of one of the two
request methods: GET and POST. Although SOAP

messages are also supported, they are also required to be
transported using HTTP POST method. However HTTP
significantly limits both service providers and consumers in
terms of various capabilities Grid services can provide.
These capabilities include providing standard WSDL
interfaces to access various services, which can
communicate with various databases or remote resources,
ability to launch and manage applications remotely, or
control collaborative sessions etc. Furthermore complex
scientific applications require access to various data
sources and run several services consecutively or at the
same time. This is not in the scope of HTTP but can be
supported using rapidly developing workflow technologies
for Web and Grid Services. For these reasons we have
based our Web Feature Service implementation on Web
Services principals. Our goal is to make seamless coupling
of GIS Data sources with other applications possible in a
Grid environment.

We have initially implemented a Web Service version of
basic Web Feature Service which supports three mandatory
operations via a WSDL interface: GetCapabilities,
DescribeFeatureType and GetFeature. Request and
response of these operations are XML encoded GML
documents. We chose to represent these XML documents
in <xsd:string> type in our programming implementation.
Although ideally we would define these in the <wsdl:types>
section of our WSDL service definition, support for
complicated, developer-defined types in Apache Axis [6]
(our deployment framework) is limited and we wanted to
keep our implementation as simple as possible for a wide
variety of applications. However since the Web Service
returns the XML document as an <xsd:string>, it first has to
be constructed in memory and the maximum size of this
document will depend on several parameters such as the
hardware configuration of the system and memory allocated
to the Java Virtual Machine etc. Consequently there will be a
limit on the size of the returned XML documents.

Our Web Feature Service implementation has been used
in several scenarios such as producing fault maps of
Southern California, displaying seismic history of particular
regions on the map and providing natural gas and electrical
energy components for IEISS, a simulation application used
by Los Alamos National Laboratory to analyze
interdependency between energy nodes. Another
interesting application domain was integrating our Web
Feature Service with Pattern Informatics [7] code to forecast
future seismic activities in a selected geographic region.
This is described in more detail in [8]. Apart from these use
cases we have done extensive performance tests to find the
limits of our Web Feature Service implementation; these
tests are explained in detail in [9]. From these performance
tests we draw following conclusions. First, for small data
payloads the response time is acceptable. However for
larger data sets the performance decreases sharply and the

 3

response time is relatively long. Second, there exists a
maximum threshold for the amount of data to be transported.

C. Streaming Web Feature Service

Our Web Service implementation of Web Feature Service
proved to be useful for transporting relatively smaller data
sets with transmission rates allowed by HTTP. However
scientific applications such as RDAHMM (a time series data
analysis program useful for mode change detection in a
given series of data) [10], Pattern Informatics and IEISS may
require larger amounts of data to be transferred between
servers and clients with high transmission rates. Fast
transfer of data payloads is also very important in crisis
management and early warning systems where GIS
applications are often used. For these reasons we have
researched publish/subscribe based messaging systems as
alternative to HTTP. Our research showed that
NaradaBrokering [11] [12] can be used to transfer large
amounts of data between publishers and subscribers
without significant overhead.

NaradaBrokering is a distributed publish/subscribe
messaging system which supports many-to-many
messaging between entities such as clients, resources,
services and proxies. It allows us to choose between
different transport protocols such as UDP, SSL, HTTP, RTP,
GridFTP etc. and between different qualities of service such

as guaranteed delivery, once-only delivery, replayed
delivery, secure delivery, and so forth. For more information
about NaradaBrokering capabilities see [13]. Such
capabilities already inherent in NaradaBrokering led us to
develop a novel Web Feature Service that integrates OGC
Web Feature Service specification with Web Service-SOAP
calls and NaradaBrokering messaging system.

The difference between our streaming and non-streaming
Web Feature Service implementations is that the streaming
service employs NaradaBrokering topics to publish query
results. The user queries are made with standard SOAP
messages however instead of returning the results over
HTTP, they are published to a pre-determined topic. In
addition to the transport method the streaming-WFS has
another important advantage: we utilize MySQL’s ability to
stream results from database row by row thus create and
publish the GML feature members as they become available.
This allows us to start publishing the results after a short
query processing time without waiting for the whole result
set to be returned from the database as in the conventional
implementation.

Initial performance test results for out streaming-WFS
implementation is discussed in brief in [14]. A more detailed
discussion is given in [9]. Figure 1 shows the performance
comparison of two Web Feature Service implementations.
Note the ‘Request Processing Time’ plots the total amount
of time it takes for the Web Feature Service to process the
user requests. Overall the streaming-WFS outperforms non-
streaming version by a significant margin for large data
payloads and demonstrate an equal or better performance
for smaller data sizes. Another important point is that there
is no size limit for the data to be transported between Web
Feature Service server and the client in streaming version
which is a major advantage.

III. STREAMING SUPPORT FOR REAL-TIME SENSOR DATA

A. Background

Sensors are changing the way we acquire data about
various entities. Recent advancements in sensor
technologies such as micro-circuitry, nano-technology and
low-power electronics allowed sensors to be deployed in a
wide variety of environments [15] [16] [17] [18] [19]. The
trend in this field shows us that in the near future we will see
thousands of sensor nodes being deployed either
individually or as part of sensor networks. For instance
Southern California Integrated GPS Network (SCIGN) [20]
has deployed 250 continuously-operating GPS stations in
Southern California whereas several hundred more operating
elsewhere in the United States.

Sensor networks constitute several sensors and
advanced communication and computation infrastructures.
They can be used to collect fine-grain information about the

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5 4.5 4 3.5 3

Non-Streaming WFS
Operations

Streaming WFS
Operations

Fig. 1. Performance comparisons of the streaming and non-streaming
WFS implementations showing the advantage of streaming the data
over a messaging broker.

 4

entity individual devices sense such as soil moisture or
weather quality of a particular area. Several aspects of
sensors and sensor networks such as power consumption,
efficient data routing and security are the topics of much
research. In this section we describe a service oriented
approach to support coupling real-time sensor messages
with scientific applications in a Grid environment. We
discuss an interesting use case of scientific sensors, the
GPS station networks and our efforts to make GPS messages
available to clients such as RDAHMM and displacement
filters.

GPS stations deployed alongside the active fault lines [20]
are a good exa mple of distributed scientific sensors.
Instantaneous measurements from GPS stations are
continuously collected and archived by several
organizations throughout the world. These measurements
are valuable for understanding the mechanics behind long
term tectonic movements and seismic activities.

B. GPS Networks

The Global Positioning System stations deployed
alongside the seismically active fault lines have been used
to identify long-term tectonic deformation and static
displacements. Continuous GPS has proven very effective
for measurement of the interseismic, coseismic and
postseismic deformation [21]. GPS Stations are effectively
independent sensors that calculate and broadcast their
instant geographic positions. They can run for long periods
of times without need for frequent maintenance and can
communicate with the data collection points using various
connection types such as Wi-Fi, modems and phone lines
or fiber-optic lines. Scripps Orbit and Permanent Array
Center (SOPAC) [22] in University of California, San Diego
is one of the several organizations that maintains several
sub-networks of Southern California Integrated GPS
Network (SCIGN) [20]. The raw measurements from the GPS
sensors are continuously collected and locally stored by a
Common Link Proxy (RTD) Server and later made available
to public via FTP sites. The GPS networks provide real-time
position data (less than 1 sec latency) and operate at high
rate (1 – 2 Hz). The RTD server also broadcasts real-time
positions in a proprietary binary format called RYO. Each
RYO message contains the positions of the stations that
reported for that epoch.

C. Filter Chains

To process GPS sensor streams in real-time we have
developed several filters and Web Services to make real-time
position messages available to scientific applications. In
summary, the core of the system is to implement filter chains
that convert or otherwise process the incoming data
streams. These filters serve as both subscribers (data sinks)
and publishers (data sources). NaradaBrokering topics are
used to organize different data stream sources into
hierarchies as shown in Table 1. Currently we are testing our
system for 8 networks with 85 GPS Stations maintained by
SOPAC. SOPAC RTD servers broadcast one message per
network per second.

In our architecture filters are small applications designed
to realize simple tasks such as transforming or aggregating
messages. We have developed an abstract filter interface
which can be extended to create new filters. A basic filter is
consisted of three parts: a NaradaBrokering subscriber, a
publisher and a data processing unit. The abstract filter
interface provides subscriber and publisher capabilities.
Typically a filter subscribes to a specified NaradaBrokering
topic to receive streaming messages, process the received
data and publishes the results to another topic. However
outputs need not be always published, for instance a
Database Filter may only receive the station positions to
insert into the database. Furthermore filters can be
connected in parallel or serial for realizing more complicated
tasks.

The first filters we have developed are format converters
that present original binary messages in different formats
since GIS applications require different representations of
geographic data. Since the original RYO messages contain
multiple stations we also developed filters to extract and
process individual station messages. Figure 2 shows our
system architecture and current deployment of several
filters. Here we give a brief overview of the filters we use in
our architecture:

ryo2nb Filter: This is a simple message forwarding
application that opens a TCP socket connection to the RTD
server to receive the RYO messages and publishes to a
NaradaBrokering topic (i.e. /RYO).

ryo2ascii filter: Subscribes to the RYO topic to receive
binary messages, converts them to simple ASCII format and
publishes to another topic (i.e. /ASCII).

ascii2gml filter: Geography Markup Language is
perhaps today’s most popular geographic data format
produced by OGC. We have developed a GML Schema
conformant with the latest Observations and Measurements
[23] extension to describe GPS station messages. This filter
converts the ASCII position messages into GML and
publishes to a new topic (i.e /GML). We expect that in the
near future most GIS applications will be developed to
conform to OGC standards and presenting GPS messages in
GML will help us easily integrate scientific applications.

TABLE I
SAMPLE NARADABROKERING TOPICS FOR

PARKFIELD GPS NETWORK .

Filter Topic

ryo2ascii /SOPAC/GPS/PARKFIEL/ASCII
ascii2pos /SOPAC/GPS/PARKFIELD/POS
ascii2gml /SOPAC/GPS/PARKFIELD/GML
Single Station /SOPAC/GPS/PARKFIELD/HOGS

 5

Fig. 2. Real-Time GPS messages are processed and served using various filters connected via
NaradaBrokering messaging substrate.

ascii2pos filter: The RYO message type contains several

sub parts other than physical position of the station such as
position quality and several optional blocks. However most
of this extra information is not required by the applications.
This filter eliminates optional blocks and unnecessary
information from the ASCII messages to create concise
position messages which only include a time stamp, station
id and position measurements.

Station Displacement Filter: One of the use cases of GPS
stations is to detect seismic activities. We have developed a
simple filter that analyzes position information of a GPS
Station and outputs its real-time physical displacement. The
filter allows displacements to be calculated based on
different time intervals, i.e. actual displacement of the station
in last hour or in last 24 hours.

Station Health Filter: One advantage of dealing with the
real-time measurements is that we can instantly see if any of
the sensors in a network is not publishing information. We
have developed a filter that logs the down times of the
stations and (potentially) alerts administrator if a threshold
value is reached. For instance it can be tolerable for a GPS
station to be down for a few minutes due to network
problems etc. but if a station has not been publishing
position information for over an hour a maintenance call may
be required. Currently this filter is under development
however we are planning to add alerting capabilities using e-
mail etc.

Single Station Filter: As mentioned above the original
messages imported from the RTD server contains position
information for multiple stations. However most of our filters
and applications analyze data for a particular station. For
this reason we have developed this filter to strip the original
message of unwanted parts and publish only the position
information.

D. Application integration Use Case: Coupling
RDAHMM with streaming data

RDAHMM is a data analysis program that employs
Hidden Markov Models to identify different modes of the
system and their probabilistic descriptions. An earlier, non-
streaming version of this application was discussed in [24].
RDAHMM has been used to identify mode changes in GPS

Fig. 3. System Architecture diagram for coupling RDAHMM with
real-time GPS messages.

 6

time series data. With the development of our real-time GPS
data support architecture a new version of RDAHMM has
been under development to analyze streaming data. Current
version operates in two phases: Training and Evaluation. In
our case first the application is trained on a set of data for a
particular station. Then it can be run continuously on
accumulated data once a pre-determined time window is
reached. Although this version is not completely real-time
we can run it near-real time by keeping the time window
relatively small.

To integrate RDAHMM with our architecture we use
HPSearch [25], a scripting based management interface to
manage publish-subscribe systems. HPSearch also provides
tools to wrap existing codes as Web Services and provides
a scripting based workflow management interface [8] to
connect different components of the workflow. HPSearch
uses NaradaBrokering's publish/subscribe based messaging
architecture to stream data between various services. Ref.
[25] describes an initial version of RDAHMM using
HPSearch. Figure 3 illustrates newer architecture for
RDAHMM integration. As shown in the figure, the system
consists of 3 Web Services, a NaradaBrokering server and
an HPSearch node.

The Web Services in this architecture are as follows:
1- DataTransfer Service: This service transfers position

messages accumulated by the RDAHMM Filter via
NaradaBrokering to the server where RDAHMM actually
runs.

2- RDAHMMRunner Service: Invokes RDAHMM to run
on the transferred data set.

3- GraphPlotter Service: Runs Matlab to plot RDAHMM
results as TIFF files and copies figures to a Web accessible
folder.

Additionally HPSearch kernel also has a WSDL interface
which is used by RDAHMM Filter to start the flow.

The system components are distributed over three
servers. RDAHMM Filter and Data Transfer Service runs on
Server-1. HPSearch kernel and NaradaBrokering server are
installed on Server-2, whereas RDAHMM application,
RDAHMM Runner Service and Graph Plotter Service run on
Server-3. We also run an Apache Tomcat Web Server on
Server-3 to present the generated TIFF images online.

The system uses following real-time filters described
above: ryo2nb, ryo2ascii, ascii2pos and Single Station Filter.
Additionally the RDAHMM Filter subscribes to a single
station topic to save that station’s position information.

The experimental system works as follows: The
RDAHMM Filter is a part of the architecture discussed
previously and shown in Figure 2. It accumulates the
position messages of a particular station in a file (data.xyz)
for a certain amount of time (i.e. 10 minutes for 600 lines, or
30 minutes for 3600 lines). Once the time threshold is
reached it invokes HPSearch to start the process. HPSearch
starts executing the script that defines the service locations

and the order of the services to be executed. It first invokes
the DataTransfer Service to start transferring the data.xyz
file created by RDAHMM Filter to Server-3. Once this
transfer is completed HPSearch engine invokes
RDAHMMRunner Service and waits until it finishes the
evaluation. Then it invokes GraphPlotter Service to read the
RDAHMM outputs and plot the resulting graphic. This
cycle is repeated every time the RDAHMM Filter reaches
the time threshold.

For this system we have created a simple application that
acts as the RTD server to publish RYO messages once per
second. We used an RYO data set collected by 13 Parkfield
GPS Network sensors for a 24-hour period between 09-27-
2004, 06:59:47 PM and 09-28-2004, 06:59:46 PM. The latest
major Parkfield earthquake occurred on 09-28-2004 at
10:15:24 AM.

The RDAHMM outputs tell us the number of different
states detected in the input and information useful for
plotting these states. Previous versions of RDAHMM were
used to analyze archived GPS daily time-series and
successfully detected state changes in the inputs which
correspond to seismic events.

Our tests show that the real-time filters used in this
architecture do not introduce any overhead. Since the GPS
messages are received every second it is expected from the
real-time filters to complete processing under one second
not to skip the next message. According to our timing
measurements all of the four real-time filters finish message
processing under 100ms.

Currently we have successfully deployed and tested the
system for one GPS station in the Parkfield test data. We
tested RDAHMM using two different methods. First we
used a sliding window method and run RDAHMM for every
1000, 3000, 5000 etc. lines of data. Next we applied an
increasing window method by transferring every 1000 lines
to RDAHMM server add appending this to previous data
file. Thus RDAHMM was run on increasing data sizes.

IV. CONCLUSION AND FUTURE WORK

In this paper we described several applications built to
support two different layers of GIS Data Grids. Although
most of today’s GIS applications are based on consuming
archival data, it is clear that sensors will be generating large
amounts of data in the near future. For this reason real-time
processing and evaluation of the sensor measurements is
critical. We believe that our approach is fundamental and
can be generalized to other problem domains besides GIS
applications. The concept of distributed filters
communicating via a messaging broker supports natural
scaling.

We are currently working on to expand our system to test
all of the stations included in the original RYO messages.
Later we will plug-in to several real-time GPS networks.

 7

We are also planning to use the sensor filter architecture
to experiment whether we can use RDAHMM with real-time
sensor data collected once per second and pick any patterns
about the seismic activities.

ACKNOWLEDGMENT

This work is supported by the NASA Advanced
Information Systems Technology program. We thank Dr.
Yehuda Bock and Michael Scharber at SOPAC for help
developing and deploying GPS sensor grid services.

REFERENCES

[1] Editor: Panagiotis A. Vretanos, Web Feature Service

Implementation Specification, OGC document reference
number: OGC 04-094, May 2005

[2] Liping Di, “Distributed Geospatial Information Services-
Architectures, Standards, and Research Issues.” ISPRS, Istanbul
2004

[3] Jeff De La Beaujardiere, OpenGIS Consortium Web Mapping
Server Implementation Specification 1.3, OGC document
reference number: 04-024, August 2002.

[4] Simon Cox , Paul Daisey, Ron Lake, Clemens Portele, Arliss
Whiteside, Geography Language (GML) specification 3.0, OGC
document reference number: 02-023r4., January 2003.

[5] Zhong-Ren Peng and Ming-Hsiang Tsou, Internet GIS:
Distributed Geographic Information Services for the Internet
and Wireless Networks, available from
http://map.sdsu.edu/gisbook

[6] Apache Axis project web site: http://ws.apache.org/axis/
[7] Tiampo, K. F., Rundle, J. B., McGinnis, S. A., & Klein, W.:

“Pattern dynamics and forecast methods in seismically active
regions”, Pure Applied Geophysics 159, 2429-2467 (2002).

[8] Galip Aydin, Mehmet S. Aktas, Geoffrey C. Fox, Harshawardhan
Gadgil, Marlon Pierce, Ahmet Sayar SERVOGrid Complexity
Computational Environments (CCE) Integrated Performance
Analysis Proceedings of Grid Computing Conference, 2005. The
6th IEEE/ACM International Workshop 13-14 Nov. 2005.
Page(s): 256 - 261 DOI

[9] Galip Aydin et al, “Building and Applying Geographical
Information System Grids”, Community Grids Lab Technical
Report, submitted to special issue of Concurrency and
Computation, Practice and Experience.

[10] Robert A. Granat: Regularized Deterministic Annealing EM for
Hidden Markov Models, Doctoral Dissertation, University of
California, Los Angeles, June, 2004

[11] Shrideep Pallickara, Geoffrey Fox: NaradaBrokering: A
Distributed Middleware Framework and Architecture for
Enabling Durable Peer-to-Peer Grids. Middleware 2003: 41-61.

[12] Geoffrey Fox, Shrideep Pallickara, Marlon Pierce,
Harshawardhan Gadgil, Building Messaging Substrates for Web
and Grid Applications to be published in special Issue on
Scientific Applications of Grid Computing in Philosophical
Transactions of the Royal Society of London 2005

[13] NaradaBrokering project web site:
http://www.naradabrokering.org

[14] Geoffrey C. Fox, Mehmet S. Aktas, Galip Aydin, Hasan Bulut,
Harshawardhan Gadgil, Sangyoon Oh, Shrideep Pallickara,
Marlon E. Pierce, Ahmet Sayar, and Gang Zhai Grids for Real
Time Data Applications Invited talk in proceedings of PPAM
2005 – 6th International Conference on Parallel Processing and
Applied Mathematics Poznan Poland September 11-14 2005

[15] Kevin A. Delin and Shannon P. Jackson, “The Sensor Web: A
New Instrument Concept”, SPIE’s Symposium on Integrated
Optics, 20-26 January 2001, San Jose, CA

[16] Kevin A. Delin, “The Sensor Web: A Macro-Instrument for
Coordinated Sensing.”, Sensors, Vol. 2, (2002), pp. 270-285

[17] K. Martinez, J.K Hart and R. Ong, “Environmental Sensor
Networks”, Computer, Vol. 37, No. 8, pp 50-56, 2004.

[18] Chee-Yee Chong, Kumar, S.P, “Sensor networks: evolution,
opportunities, and challenges”, Proceedings of the IEEE,
Volume 91, Issue 8, Aug. 2003 Page(s): 1247 – 1256

[19] Akyildiz, I.F., W. Su, Y. Sankarasubramaniam, E. Cayirci, "A
Survey on Sensor Networks", IEEE Communications Magazine,
August, 102-114 (2002).

[20] Southern California Integrated GPS Network web site:
http://www.scign.org/

[21] Bock, Y., Prawirodirdjo, L, Melbourne, T I. : “Detection of
arbitrarily large dynamic ground motions with a dense high-rate
GPS network” GEOPHYSICAL RESEARCH LETTERS, VOL.
31, 2004

[22] “SOPAC: Scripps Orbit and Permanent Array Center” web site:
http://sopac.ucsd.edu/

[23] Open Geospatial Consortium Discussion Paper, Editor Simon
Cox: “Observations and Measurements”. OGC Document
Number: OGC 03-022r3

[24] Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara,
Marlon Pierce, Robert Granat , “A Scripting based Architecture
for Management of Streams and Services in Real-time Grid
Applications”, Proceedings of the IEEE/ACM Cluster
Computing and Grid 2005 Conference (CCGrid 2005). Cardiff,
UK May 2005 Pages 710-717. No DOI

[25] Harshawardhan Gadgil, Jin-Yong Choi, Bernie Engel, Geoffrey
Fox, Sunghoon Ko, Shrideep Pallickara, Marlon Pierce:
“Management of Data Streams for a Real Time Flood
Simulation”, Community Grids Lab Technical Report , June 2004

[26] Botts, Mike, Sensor Model Language (SensorML) for In-situ and
Remote Sensors, OGC document reference number 04-019r2

