
A Summary of Grid Computing Environments 
 

Geoffrey Fox1,2,3, Dennis Gannon2, Mary Thomas4 
1Community Grid Computing Laboratory, Indiana University  

501 N Morton Suite 224, Bloomington IN 47404 
2Computer Science Department, Indiana University 

3School of Informatics and Physics Department, Indiana University 
4Texas Advanced Computing Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas  78758 

gcf@indiana.edu, ,mthomas@tacc.utexas.edugannon@cs.indiana.edu  
 
1 Introduction 
This short paper summarizes a set of 28 papers gathered together by the GCE (Grid 
Computing Environment) group of the Global Grid Forum. This set is published in 2002 
as a special issue of Concurrency and Computation: Practice and Experience. The papers 
are listed at the end of this report together with associated papers in a Grid Computing 
book [32].   

We can define a Grid Computing Environment as a set of tools and technologies 
that allow users “easy” access to Grid resources and applications.  Often it takes the form 
of a Web portal that provides the user interface to a multi-tier Grid application 
development stack, but it may also be as simple as a Grid Shell that allows a user access 
to and control over Grid resources in the same way a conventional shell allows the user 
access to the file system and process space of a regular operating system. 
 
2 Overall Classification 
Grid Computing Environments can be classified in several different ways. One 
straightforward classification is in terms of technologies used. The different projects 
differ in terms of languages used, nature of treatment of objects (if any), use of particular 
technology like Java servlets, the Globus toolkit, or GridFTP, and other implementation 
issues. Some of these issues are important for performance or architecture but often can 
look to the user as not so important. For instance, there is a trend to use more heavily 
Java, XML and Web Services but this will only be interesting if the resultant systems 
have important properties such as better customizability, sustainability and ease of use 
without sacrificing too much in areas like performance. Maybe the ease of development 
using modern technologies is shown up as greater functionality in the GCE for a given 
amount of implementation effort. Technology differences in the projects are important 
but more interesting at this stage are the differences in capabilities and the model of 
computing explicit or implicit in the GCE. 
 
All GCE systems assume there are some backend remote resources (the Grid) and 
endeavor to provide convenient access to their capabilities. This implies one needs some 
sort of model for “computing”. At the simplest this is running a job, which already has 
non trivial consequences as data usually needs to be properly set up, and access is 
required to the running job status and final output. More complicatedly, computing 
requires coordinated gathering of data, many simulations (either linked at a given time or 
following each other), visualization, analysis of results etc. Some of these actions require 
substantial work with other researchers and sharing of results and ideas are needed. This 
leads to the concept of GCE collaboratories supporting sharing among scientific teams 
working on the same problem area. 

mailto:gcf@indiana.edu
mailto:gannon@cs.indiana.edu


 
We can build a picture of different GCE approaches by viewing the problem as some sort 
of generalization of the task of computing on a single computer. So we can highlight the 
following classes of features: 
1) Handling of the basic components of a distributed computing system – files, 

computing and data resources, programs, and accounts. The GCE will typically 
interface with an environment like that of the Globus project or a batch scheduler like 
PBS to actually handle the back-end resources. However it will present the user 
interfaces to handle these resources. This interface can be simple or complex and 
often constructed hierarchically to reflect tools built in such a fashion. We can follow 
the lead of UNIX (and Legion [37] in its distributed extension) and define a basic 
GCEShell providing access to the core distributed computing functions. For example, 
JXTA [49] also builds Grid-like capabilities with a UNIX shell model. GCEShell 
would support running and compiling jobs, moving among file systems etc. 
GCEShell can have a command line or more visually appealing graphical user 
interface. 

2) The 3-tier model, which is typically used for most systems, implies than any given 
capability (say run a matrix inversion program) can appear at multiple levels. Maybe 
there is a backend parallel computer running an MPI job; this is front-ended perhaps 

as a service by some middle-tier 
component running on a totally 
different computer, which could 
even be in a different security 
domain. One can “interact” with 
this service at either level; a high 
performance I/O transfer at the 
parallel computing level and/or 
by a slower middle-tier protocol 
like SOAP at the service level. 
These two (or more) calls 
(component interactions) can 
represent different functions or 
the middle tier call can be 
coupled with a high performance 
mirror; typically the middle tier 

provides control and the back end “raw data transfer”. The resultant rather 
complicated model is shown in fig.1. We have each component (service) represented 
in both middle and HPC (raw) tiers. Intra-tier and inter-tier linkage is shown. Ref. 
[33] has an excellent review of the different programming models for the Grid. 

Database

Database
Service

Compute
Service

Compute
Service

MPP
Service

Portal

HPC or             “Native”               Linkage

Middle Tier         or Proxy             Linkage

Figure 1. Middle-Tier and Raw (HPC) 
Linked Components of an Application 

3) One broadly important general-purpose feature is Security (authentication, 
authorization and privacy), which is addressed in some way or other by essentially all 
environments. 

4) Data management is a broadly important topic, which gets even more important on a 
distributed system than it is on single machines. It includes file manipulation, 
databases and access to raw signals from instruments such as satellites and 
accelerators. 



5) One augments the basic GCEShell with a library of other general purpose tools and 
this can be supported by the GCE. Such tools include (Grid)FTP, (Grid)MPI, 
parameter sweep and more general workflow, and the composition of GCEShell 
primitives.  

6) Other higher-level tools are also important and many tend to be rather application 
dependent; visualization and intelligent decision support as to what type of algorithm 
to use can be put here. 

7) Looking at commercial portals, one finds that they usually support sophisticated user 
interfaces with multiple sub-windows aggregated in the user interface. The Apache 
Jetspeed project is a well-known toolkit supporting this [47]. This user interface 
aggregation is often supported by a GCE. This aggregation is not stressed in any 
paper in this special issue although implicitly it is provided. 

 
 As well as particular features, a GCE usually implies a particular computing model for 
the Grid and this model is reflected in the GCE architecture and the view of the Grid 
presented to the user. For example object models for applications are very popular and 
this object view is reflected in the view of the Grid presented to the user by the GCE. 
Note the programming model for a GCE is usually the programming of rather large 
objects – one can describe programs and hardware resources as objects without this 
object model necessarily changing the software model used in applications. 
 
With this preamble, we can now classify the papers in this special issue.  There are, as 
always, no absolute classifications for a complex topic like distributed Grid systems. 
Hence it is often the case that these projects can be looked at from many overlapping 
points of view. 
 
3 Summary of GCE Projects and Features 
 
3.1 Technology for building GCE Systems 
There is one set of papers describing convenient interfaces to the Grid and in particular 
the Globus toolkit [32, 46]. Refs. [6, 38], [14], [15] and [27] describe respectively Java, 
CORBA, Python and Perl interfaces to the Globus toolkit. These are the basic building 
blocks of full GCE’s. The middleware of Ref. [1] as well as the problem solving 
environments in Refs. [7], [8] and [20] build on top of the Java Commodity Grid Kit [6]. 
The portals described in Ref. [26] build directly on top of the Perl Commodity Grid Kit 
[27]. 

Ref. [1] is higher level than the toolkit of Ref. [6] and builds a suite of JavaBeans 
suitable for Java based GCE environments; the technology is designed to support JSP 
(Java Server Pages) displays. Ref. [9] provides C support for interfacing to the Globus 
toolkit and portals exposing the toolkit’s capabilities can be built on the infrastructure of 
this paper. 

Ref. [17] proposes interesting XML based technology for supporting the runtime 
coupling of multidisciplinary applications with matching of geometries. 

Ref. [21, 43] notes that current Grid architectures build more and more on 
message-based middleware and this is particularly clear for Web Services; this paper 
designs and prototypes a possible event or messaging support for the Grid. 



Ref. [28] describes a rather different technology; namely a Grid simulator aimed 
at testing new scheduling algorithms. 
 
3.2 Largely Problem Solving Environments 
We have crudely divided those GCE’s offering user interfaces into two classes. One class 
focusing on a particular application (set) which are sometimes called application portals 
or Problem Solving Environments (PSE’s). The second class offer generic application 
capabilities and have been termed user portals; in our notation introduced above, we can 
call them GCEShell portals.  Actually one tends to have a hierarchy with PSE’s building 
on GCEShell portals; the latter building on middleware like GPDK [1]; GPDK builds on 
the Java CoG Kit [6] which itself builds on the Globus toolkit that finally builds on the 
native capabilities of the Grid component resources. This hierarchy is for one set of 
technologies and architecture but other approaches are similarly built in a layered 
fashion. 

Several papers in this issue include discussion of Grid PSE’s. Ref. [5] has an 
interesting discussion of the architectural changes to a “legacy” PSE consequent on 
switching to a Grid Portal approach. Ref. [11] illustrates the richness of PSE with a 
survey of several operational systems; these share a common heritage with the PSE’s of 
Ref. [16] although the latter paper is mainly focused on a recommender tool described 
later.  

Five further papers describe PSE’s that differ in terms of GCE infrastructure used 
and applications addressed. Ref. [7] describes two PSE’s built on top of a GCEShell 
portal with an object computing model. A similar portal is the XCAT Science portal [29], 
which is based on the concept of application Notebooks that contain web pages, Python 
scripts and control code specific to an application. In this case the Python script code 
plays the role of the GCEShell.  The astrophysics collaboratory [20] includes the Globus 
toolkit link via Java [6] and the portal toolkit of [1]; it also interfaces to the powerful 
Cactus distributed environment [31]. Ref. [18, 41] presents a portal for computational 
physics using Web services – especially for data manipulation services. The Polder 
system [24] and SCIRun [25] offer rich visualization capabilities within several 
applications including biomedicine. SCIRun has been linked to several Grid technologies 
including NetSolve [10], and it supports a component model (the CCA [48] not directly 
covered in this special issue) with powerful workflow capabilities. 
 
3.3 Largely Basic GCEShell Portals 
Here we describe the set of portals designed to support generic computing capabilities on 
the Grid. Ref. [3] is interesting as it is a Grid portal designed to support the stringent 
requirements of DoE’s ASCI program. This reflects not only security and performance 
issues but the particular and well established computing model for the computational 
physicists using the ASCI machines. Ref. [4] describes a portal interface to the very 
sophisticated Legion Grid which has through the Legion Shell a powerful generic 
interface to the shared object (file) system supported by Legion [37]. This paper also 
describes how specific problem solving environments can be built on topic of the basic 
GCEShell portal.  

Ref. [1] provides, via the Java CoG Kit [6] interfacing to the Globus toolkit, a set 
of middleware JavaBeans, which are at the GCEShell abstraction level and support 



problem solving environments as we have already discussed for Ref. [20]. Unicore [23, 
44] was one of the pioneering full featured GCEShell portals developed originally to 
support access to a specific set of European supercomputers but recently has been 
interfaced to the Globus toolkit. Unicore has developed an interesting abstract job object 
(AJO) with full workflow support. 
Refs. [7], [13] and [26] describe well developed GCEShell portals on which application 
specific PSE’s have been built. Ref. [26, 45] builds HotPage, a GCEShell on top of 
GridPort which is middleware using the Perl Community Grid Kit [27] to access the 
Globus toolkit. 
 
3.4 Security 
Security is discussed in most of the papers of this special issue with the Public Key 
Infrastructure pioneered by the Globus project being most popular. Kerberos is required 
by some installations (DoD and DoE for instance in the USA) and Grid Computing 
Environments developed for them [3] [7] [13] are based on this security model. 
 
3.5 Workflow 
Workflow corresponds to composing a complete job from multiple distributed 
components. This is broadly important and is also a major topic within the commercial 
Web service community. It is also inherently a part of a GCEShell or PSE, since these 
systems are compositions of specific sequences of tasks. Several projects have addressed 
this but currently there is no consensus how workflow should be expressed, although 
several groups have developed visual user interfaces to define the linkage between 
components. Workflow is discussed in papers [3], [8], [17], [23] and [25]. The latter 
integrates Grid workflow with the dataflow paradigm, which is well established in the 
visualization community. Ref. [17] has stressed the need for powerful runtime to support 
the coupling of applications and this is implicit in other papers including Ref. [8]. 
 
3.6 Data Management 
Data intensive applications are expected to be critical on the Grid but support of this is 
not covered in the papers of this special issue. Interfaces with file systems, databases and 
data transfer through mechanisms like GridFTP are covered in several papers. This is 
primarily due to the fact that data management software is still relatively new on the grid. 
 
 
3.7 GCEShell Tools 
In our GCE computing model, one expects a library of tools to be built up that add value 
to the basic GCEShell capabilities. The previous two subsections describe two tools – 
workflow and data management of special interest and here we present a broad range of 
other tools which appeared in several papers in this special issue.  

Netbuild [2] supports distributed libraries with automatic configuration of 
software on the wide variety of target machines on the Grids of growing heterogeneity.  

NetSolve [10, 40] pioneered the use of agents to aid the mapping of appropriate 
Grid resources to client needs. Ref. [16] describes a recommendation system which uses 
detailed performance information to help users on a PSE, choose the best algorithms to 
address their problem. 



Many projects have noted the importance of “parameter sweep” problems where a 
given application is run many times with different input parameters. Such problems are 
very suitable for Grid environments and Ref. [22] describes a particular parameter sweep 
system Nimrod-G. This paper focuses on a different tool – namely a novel scheduling 
tool based on an economic model of Grid suppliers and consumers. Ref.  [34] describes a 
another well regarded parameter sweep system APST building on the AppLeS 
application level scheduling system. 

HotPage [26, 45] is well known for pioneering the provision of job status 
information to portals; such a tool is clearly broadly important.  

Finally we should stress visualization as a critical tool for many users and here 
Refs. [25] and [17] describe this area. There are many other important tools like data-
mining which fall into this category. 
 
3.8 GCE Computing Model 
In the preamble we suggested that it was interesting to consider the computing model 
underlying Grid Computing Environments. This refers to the way we think about the 

world of files, 
computers, databases 
and programs e
through a portal. 
NetSolve describe
[10, 40] together with
the Ninf effort [30, 
35] in Japan has 
developed the 
important Netw
Service model for
distributed 
computing. Rather 
than each user 
downloading a library 
to solve some part of 
their problem, this 
task is dispatched to a 
Network resource 
providing this 
computational 
service. Using Web 
Services allows one t

view NetSolve as a distributed object model for the Grid. Both Ninf and NetSolve 
support the new GridRPC remote procedure call standard, which encapsulates a key core 
part of their Grid computing model [33]. GridRPC supports scientific data structures as 
well as Grid specific security and resource management.  

Application 
Service

Application
Software

HPC Facing
Ports

Service
Facing Ports

User
Facing Ports

“Middle-
Tier”

Raw (HPC) 
Resource

Figure 2. A Proxy Service Programming Model showing 4 
types of Interactions :to and from  users (portal interface), 

between proxy and raw  resource, other middle-tier 
components and between other raw (hpc) resources 

xposed 

d in 
 

ork 
 

o 

Ref.  [12] describes Grid implementations of MPI (message passing standard for 
parallel computing), which address the incompatibilities between MPI implementations 
and binary representations on different parallel computers. Note that in the notation of 



Fig. 1, MPI is at the “HPC backend linkage” layer and not at the middleware layer. Ref. 
[20] supports the Cactus environment [31, 36] which has well developed support for Grid 
computing at the HPC layer i.e. it supports backend programming interfaces and not the 
middle-tier GCEShell environment. The astrophysics problem solving environment of 
Ref. [20] augments Cactus with a full middle tier environment. 
 

Legion in Refs.  [4] and [37] built a very complete Grid object model. Ref.  [8] 
describes a CORBA distributed object model for the Grid and Ref. [19, 42] describes the 
surprisingly hard issues involved in providing interoperability between multiple CORBA 
GCE’s. We can hope that Web services will prove to be easy to make interoperable, as 
the technology used (XML, SOAP) is more open than CORBA, which has evolved with 
several often incompatible implementations as listed in Ref. [14]. 
 
Refs. [7, 39, [13, 39],[23, 44] and the XCAT Science Portal [29] also present an object 
model for GCE computing but with one critical feature – namely the middle tier objects 
are always proxies, which hold the meta-data that describe “real resources” which operate 

in conventional 
environments. This 
proxy strategy 
appears useful for 
many Grid resources 
although the true 
Network service 
model of NetSolve is 
also essential. Let us 
give a simple e
from UNIX and 
suppose one want
to send data between
two programs
different machines). 
One could choose the 
mechanism within th
program and use a 

simple socket or FTP or RMI interaction mechanism. Alternatively the programs could 
be written generically with output and input or “standard I/O”. The programs could t
have the output of one “piped” to the input of the other from a UNIX shell command
Such a hybrid programming model with actions partly specified internally and partly 
specified at service level is important of the success of the Grid and should be built into 
programming models for it. 

as a 
Service

User
Facing Ports

Service
Facing Ports

“Middle-
Tier”

Figure 3. A Wrapped Application Programming Model 
showing 3 types of Interactions to and from  users (portal 
interface) to and from  other middle-tier components and 

between other raw (HPC) resources 

Application
wrapped

HPC Facing
Ports

Raw (HPC) 
Resource

xample 

ed 
 

 (in 

e 

hen 
. 

Any GCE computing model should support both the meta-data only and wrapped 
styles of Grid objects. Actually going back to point 2) in Section 2, the proxy and 
NetSolve model are not really different as indicated in figures 2 and 3. Both models 
effectively wrap application (software) resources as objects. In the proxy model, one 
exposes the interaction between middle-tier and back-end. In the wrapped service model 
of NetSolve and Ninf, one presents a single entity to the user. In both cases, one can have 



separate middle-tier and HPC (“real”) communication. To complicate the classification, 
there can of course be a difference between programming model abstraction (proxy or 
not) and implementation.  In the XCAT model, a software component system [48] is used 
which implements the wrapped service or proxy model.  The component system is based 
on Web Service standards so it is possible that the wrapped service components may be 
arbitrary Grid Services. 
 
4 References 
The first 28 references are the papers in this special issue. We indicate where these are 
extended by a further article in a book on Grid Computing [32]. 
 
1) Jason Novotny, “The Grid Portal Development Kit”, Concurrency and Computation: 

Practice and Experience Vol. 14, Grid Computing environments Special Issue 13-14, 
2002. This is reprinted in Ref. [32]. 

2) Keith Moore and Jack Dongarra, “NetBuild: Transparent Cross-Platform Access to 
Computational Software Libraries”, Concurrency and Computation: Practice and 
Experience Vol. 14, Grid Computing environments Special Issue 13-14, 2002.  

3) Randal Rheinheimer, Steven L. Humphries, Hugh P. Bivens and Judy I. Beiriger, 
“The ASCI Computational Grid: Initial Deployment”, Concurrency and Computation: 
Practice and Experience Vol. 14, Grid Computing environments Special Issue 13-14, 
2002. 

4) Anand Natrajan, Anh Nguyen-Tuong, Marty A. Humphrey and Andrew S. 
Grimshaw, “The Legion Grid Portal”, Concurrency and Computation: Practice and 
Experience Vol. 14, Grid Computing environments Special Issue 13-14, 2002. See 
Ref. [37]. 

5) Karen Schuchardt, Brett Didier and Gary Black , “Ecce - A Problem Solving 
Environment's Evolution Toward Grid Services and a Web Architecture”, 
Concurrency and Computation: Practice and Experience Vol. 14, Grid Computing 
environments Special Issue 13-14, 2002. 

6) Gregor von Laszewski, Jarek Gawor, Peter Lane, Nell Rehn, and Mike Russell 
“Features of the Java Commodity Grid Kit”, Concurrency and Computation: Practice 
and Experience Vol. 14, Grid Computing environments Special Issue 13-14, 2002. 
See Ref. [38]. 

7) Tomasz Haupt, Purushotham Bangalore and Gregory Henley, “Mississippi 
Computational Web Portal”, Concurrency and Computation: Practice and Experience 
Vol. 14, Grid Computing environments Special Issue 13-14, 2002. See Ref. [39]. 

8) Andreas Schreiber, ”The Integrated Simulation Environment TENT”, Concurrency 
and Computation: Practice and Experience Vol. 14, Grid Computing environments 
Special Issue 13-14, 2002. 

9) Giovanni Aloisio and Massimo Cafaro, “Web-based access to the Grid using the Grid 
Resource Broker Portal”, Concurrency and Computation: Practice and Experience 
Vol. 14, Grid Computing environments Special Issue 13-14, 2002. 

10)  D. Arnold, H. Casanova, and J. Dongarra, “Innovations of the NetSolve Grid 
Computing System”, Concurrency and Computation: Practice and Experience Vol. 
14, Grid Computing environments Special Issue 13-14, 2002. See Ref. [40]. 



11)  Naren Ramakrishnan, Layne T. Watson, Dennis G. Kafura, Calvin J. Ribbens, and 
Clifford A. Shaffer, “Programming Environments for Multidisciplinary Grid 
Communities”, Concurrency and Computation: Practice and Experience Vol. 14, Grid 
Computing environments Special Issue 13-14, 2002. 

12) M. Mueller , E. Gabriel and M. Resch, “A Software Development Environment for 
Grid Computing”, Concurrency and Computation: Practice and Experience Vol. 14, 
Grid Computing environments Special Issue 13-14, 2002. 

13)  Marlon. E. Pierce, Choonhan Youn, and Geoffrey C. Fox, “The Gateway 
Computational Web Portal”, Concurrency and Computation: Practice and Experience 
Vol. 14, Grid Computing environments Special Issue 13-14, 2002. See Ref. [39]. 

14)  Gregor von Laszewski, Manish Parashar, Snigdha Verma, Jarek Gawor, Kate 
Keahey, and Nell Rehn, “A CORBA Commodity Grid Kit”, Concurrency and 
Computation: Practice and Experience Vol. 14, Grid Computing environments 
Special Issue 13-14, 2002. See Ref. [38]. 

15)  Keith Jackson “pyGlobus: A Python interface to the Globus Toolkit”, Concurrency 
and Computation: Practice and Experience Vol. 14, Grid Computing environments 
Special Issue 13-14, 2002. See Ref. [38]. 

16)  E. Houstis, A. C. Catlin, N. Dhanjani and J. R. Rice, N. Ramakrishnan and V. 
Verykios, “MyPYTHIA: A Recommendation Portal for Scientific Software and 
Services”, Concurrency and Computation: Practice and Experience Vol. 14, Grid 
Computing environments Special Issue 13-14, 2002. 

17)  Jerry A. Clarke and Raju R. Namburu, “A Distributed Computing Environment for 
Interdisciplinary Applications”, Concurrency and Computation: Practice and 
Experience Vol. 14, Grid Computing environments Special Issue 13-14, 2002. 

18)  William A. Watson III , Ian Bird, Jie Chen, Bryan Hess, Andy Kowalski and Ying 
Chen, “A Web Services Data Analysis Grid”, Concurrency and Computation: 
Practice and Experience Vol. 14, Grid Computing environments Special Issue 13-14, 
2002. See Ref. [41]. 

19)  Vijay Mann and Manish Parashar, “Engineering an Interoperable Computational 
Collaboratory on the Grid”, Concurrency and Computation: Practice and Experience 
Vol. 14, Grid Computing environments Special Issue 13-14, 2002. See Ref. [42]. 

20)  Gregor von Laszewski, Michael Russell, Ian Foster, John Shalf, Gabrielle Allen, 
Greg Daues, Jason Novotny and Edward Seidel, “Community Software Development 
with the Astrophysics Simulation Collaboratory”, Concurrency and Computation: 
Practice and Experience Vol. 14, Grid Computing environments Special Issue 13-14, 
2002. See Ref. [36]. 

21)  Geoffrey Fox and Shrideep Pallickara, “An Event Service to Support Grid 
Computational Environments”, Concurrency and Computation: Practice and 
Experience Vol. 14, Grid Computing environments Special Issue 13-14, 2002. See 
Ref. [43]. 

22)  Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger, 
“Economics Paradigm for Resource Management and Scheduling in Grid 
Computing”, Concurrency and Computation: Practice and Experience Vol. 14, Grid 
Computing environments Special Issue 13-14, 2002. 



23) Dietmar W. Erwin, “UNICORE – A Grid Computing Environment”, Concurrency 
and Computation: Practice and Experience Vol. 14, Grid Computing environments 
Special Issue 13-14, 2002. See Ref. [44]. 

24) K. A. Iskra,R. G. Belleman, G. D. van Albada, J. Santoso, P. M. A. Sloot, H. E. Bal, 
H. J. W. Spoelder and M. Bubak, “The Polder Computing Environment: a system for 
interactive distributed simulation”, Concurrency and Computation: Practice and 
Experience Vol. 14, Grid Computing environments Special Issue 13-14, 2002. 

25)  Chris Johnson , Steve Parker and David Weinstein, “Component-Based Problem 
Solving Environments for Large-Scale Scientific Computing”, Concurrency and 
Computation: Practice and Experience Vol. 14, Grid Computing environments 
Special Issue 13-14, 2002. 

26)  M. Dahan, K. Mueller, S. Mock, C. Mills, M. Thomas, “Application Portals: Practice 
and Experience”, Concurrency and Computation: Practice and Experience Vol. 14, 
Grid Computing environments Special Issue 13-14, 2002. See Ref. [45]. 

27)  S. Mock, M. Dahan, M. Thomas and G. von Lazewski, “The Perl Commodity Grid 
Toolkit”, Concurrency and Computation: Practice and Experience Vol. 14, Grid 
Computing environments Special Issue 13-14, 2002. See Ref. [38]. 

28)  Manzur Murshed, Rajkumar Buyya, and David Abramson, “GridSim: A Toolkit for 
the Modeling and Simulation of distributed resource management and scheduling for 
Grid Computing”, Concurrency and Computation: Practice and Experience Vol. 14, Grid 
Computing environments Special Issue 13-14, 2002. 
29) ̀ `The XCAT Science Portal,'' S. Krishnan, R. Bramley, M. Govindaraju, R. Indurkar, 

A. Slominski,  D. Gannon, J. Alameda and D. Alkaire,   Proceedings SC2001, Nov. 
2001, Denver. 

30)  Ninf network server project http://ninf.apgrid.org/   
31)  Cactus Grid Computational Toolkit http://www.cactuscode.org   
32)  Fran Berman, Geoffrey Fox and Tony Hey, ‘Grid Computing: Making the Global 

Infrastructure a Reality’, John Wiley & Sons Ltd, Chichester, 2003. See 
http://www.grid2002.org   

33)  Craig Lee and Domenico Talia, ”Grid Programming Models: Current Tools, Issues 
and Directions”, Chapter in Ref. [32]. 

34)   Henri Casanova and Fran Berman, “Parameter Sweeps on the Grid with APST”, 
Chapter in Ref. [32]. 

35)  Hidemoto Nakada, Yoshio Tanaka, Satoshi Matsuoka and Staoshi Sekiguchi, “Ninf-
G: a GridRPC system on the Globus Toolkit”, Chapter in Ref. [32]. 

36) Gabrielle Allen, Tom Goodale, Michael Russell, Edward Seidel and John Shalf, 
“Classifying and enabling grid applications”, Chapter in Ref. [32]. 

37)  Andrew S. Grimshaw, Anand Natrajan, Marty A. Humphrey, Michael J. Lewis, Anh 
Nguyen-Tuong, John F. Karpovich, Mark M. Morgan and Adam J. Ferrari, “From 
Legion to Avaki: The Persistence of Vision”, Chapter in Ref. [32]. 

38)  Gregor von Laszewski, Jarek Gawor, Sriram Krishnan and Keith Jackson, 
“Commodity Grid Kits - Middleware for Building Grid Computing Environments”, 
Chapter in Ref. [32]. 

39)  Tomasz Haupt and Marlon E. Pierce, “Distributed object-based grid computing 
environments”, Chapter in Ref. [32]. 

http://ninf.apgrid.org/
http://www.cactuscode.org/
http://www.grid2002.org/


40)  Sudesh Agrawal, Jack Dongarra, Keith Seymour, and Sathish Vadhiyar, “NetSolve: 
Past, Present, and Future; A Look at a Grid Enabled Server”, Chapter in Ref. [32]. 

41)  William A. Watson, Ying Chen, Jie Chen and Walt Akers, “Storage Manager and 
File Transfer Web Services”, Chapter in Ref. [32].  

42)  V. Mann and M. Parashar, “DISCOVER: A Computational Collaboratory for 
Interactive Grid Applications”, Chapter in Ref. [32]. 

43)  Geoffrey Fox and Shrideep Pallickara, “NaradaBrokering: An Event Based 
Infrastructure for Building Scaleable Durable Peer-to-Peer Grids”, Chapter in Ref. 
[32]. 

44)  David Snelling, “Unicore and the Open Grid Services Architecture”, Chapter in Ref. 
[32]. 

45) Mary Thomas and Jay Boisseau, "Building Grid Computing Portals: The NPACI Grid 
Portal Toolkit", Chapter in Ref. [32]. 

46)  The Globus Grid Project http://www.globus.org   
47)  Apache Jetspeed Portal http://jakarta.apache.org/jetspeed/site/index.html   
48)  Common Component Architecture http://www.cca-forum.org/   
49)  JXTA Peer-to-Peer Environment http://www.jxta.org   

http://www.globus.org/
http://jakarta.apache.org/jetspeed/site/index.html
http://www.cca-forum.org/
http://www.jxta.org/

