
Grid Services for Earthquake Science

Geoffrey Fox
Departments of Computer Science and Physics, School of Informatics
Community Grids Laboratory, Indiana University
Sung-Hoon Ko, Marlon Pierce
School of Computational Science and Information Technology
Florida State University
Ozgur Balsoy, Jake Kim, Sangmi Lee
Computer Science Department, Florida State University
Kangseok Kim, Sangyoon Oh, Xi Rao, Mustafa Varank
Computer Science Department, Indiana University
Hasan Bulut, Gurhan Gunduz, Xiaohong Qiu, Shrideep Pallickara, Ahmet Uyar,
Choonhan Youn
Department of Electrical Engineering & Computer Science, Syracuse University

Abstract
We describe an information system architecture for the ACES (Asia-Pacific Cooperation
for Earthquake Simulation) community. It addresses several key features of the field –
simulations at multiple scales that need to be coupled together; real-time and archival
observational data, which needs to be analyzed for patterns and linked to the simulations;
a variety of important algorithms including partial differential equation solvers, particle
dynamics, signal processing and data analysis; a natural three dimensional space (plus
time) setting for both visualization and observations; the linkage of field to real-time
events both as an aid to crisis management and to scientific discovery. We also address
the need to support education and research for a field whose computational sophistication
is increasing rapidly and spans a broad range. The information system assumes that all
significant data is defined by an XML layer which could be virtual but whose existence
ensures that all data is object-based and can be accessed and searched in this form. The
various capabilities needed by ACES are defined as Grid Services, which are conformant
with emerging standards and implemented with different levels of fidelity and
performance appropriate for the application. Grid Services can be composed in a
hierarchical fashion to address complex problems. The real-time needs of the field are
addressed by high performance implementation of data transfer and simulation services;
further the environment is linked to real-time collaboration to support interactions
between scientists in geographically distant locations.

1. ACES Grid and .opennet Grid Architecture
We consider an ACES [1] computational environment (ACESCE) built in terms of a
web-based user interfaces accessing services, which are built in a broker-based fashion
[2]. The client machine contacts a server that acts as an intermediary to back-end
resources and also as a conduit for clients to access services. One can also view the
brokers as middleware wrappers that allow a heterogeneous collection of resources to be
accessed in a relatively uniform fashion. In the simplest technology, these brokers or
wrappers would be implemented as a Perl CGI program running on a web server. As
discussed later, there are more sophisticated approaches but the basic model is correct;

ACESCE consists of web clients connecting to a collection of web servers, which host a
collection of resources. In fig. 1, we illustrate this with a particular set of resources;

ground and satellite sensors,
field data, computers,
software and compiled
geophysical data such as
positions of faults. The user
uses a portal (described in
sec. 2) to access a set of
services, which roughly
correspond to the servers of
the simple model described
above– one server per
resource [3]. The overall
environment can be termed a
a Web or a Grid. The serv
available to users can be
divided into two. Firstly w

have the “system” or general services such as security (authentication, authorizatio
communication encryption), and collaboration, which are important to most application
areas. Then we have the more application specific services such as those of fig. 1. Here
some are very specific to this application area (field data and geophysical fault data),
others are very general (such as simulation), while others are specializations of general
services. In the figure, we show a general sensor service used by two application
sensors for which it must be specialized. Again the application software service wou
specialized into those especially important for ACES. These could be a Green’s function
solver or a finite element solver service linked to earthquake specific kernels.
Visualization and Information services are also general capabilities, which could be
specialized to this field.

Field Data
Logging ServiceSensor

Service

Geophysical
XML Database,

Faults ...

Information
Service

Visualization
Service

Simulation
Service

Host
Computer
Service

Software
ServiceACES Portal

Figure 1: Service Model for ACES Computational Environment

s
ices

e
n, and

-specific
ld be

The Host computer and Software services would be invoked by other services –
especially the simulation service. This is described in section 2 and is itself further
broken up into other services corresponding to parameter specification, login, execution,
job status, etc. Any interesting task typically involves multiple services – for example the
visualization service might access the sensor data, the Geophysical database and the
Simulation service. We do not show all these possible links in fig. 1 and they are left
implicit. ACES has the opportunity to develop a next generation computational
environment built around such interacting web services. Each service can be thought of
as a component in the general software engineering sense and more specifically as a
component such as is being defined by the major DoE-led Common Component
Architecture (CCA). The CCA, described at [4], is developing high performance
components aimed at scientific computing. We expect CCA to be compatible with
WSDL (Web Services Definition Language), which is the current industry standard for
web-based components. WSDL [5,6] is being developed as an XML based framework
that can describe distributed objects built from any of the major approaches (SOAP,
CORBA, Java) and allows one to define input and output data streams with a mix of

transport protocols. Thus, it enables one to build networks of heterogeneous services,
which interoperate with well-defined interfaces. This is the library or component model
for Grid or Web programming. WSDL is augmented by other important and still
developing technologies. For example UDDI [7] allows registration and discovery
services and WSFL [5] describes the linking of services together [8]. The W3C standard
SOAP protocol is becoming very popular as a generic XML transport layer to be used in
web services when performance is not critical [9]. A key feature of WSDL is its support
of multiple transport protocols with a common application interface; this way we can
choose between say the flexibility of SOAP and the performance of GridFTP [10].

This architecture of interlinked web modules has some generally attractive features – all
components have web views making it easier to document them, while the universality of
the web allows us to implement this model on essentially any distributed system. One
must break an application into modules (components) carefully. Smaller components are
easier to maintain but all components must also interact via communication channels.
Typically these communication channels correspond to an overhead that increases as the
modules get smaller and the ratio of edge (communication) to volume (computation)
increases. The situation is further exacerbated for high performance problems where
parallel algorithms usually require low latency; the bandwidth of Internet and Intranet
connections is rapidly increasing but the latency of Web service component
communication is likely to be in the 200 microsecond to one millisecond range – one
hundred times slower than that of a shared memory or dedicated parallel computing
system. Thus one should carefully evaluate where to break one’s system into web
components and keep these reasonably coarse grain. So in ACES, one probably would
not make an adaptive mesh as a web service but rather bundle it with the solver as a
Parallel finite-element solver web service. However one would take separate simulations
(say particle dynamics and fast multipole Green’s function solver) and make these as
separate services. Similarly pattern dynamics analysis would be a web service that can be
used either on empirical data or on the results of a simulation. We would design a
standard interface for such data analysis systems and so allow different users to build and
test modules with this functionality. Image processing modules would be treated in a
similar way; there will be a generic image processing web service, which is subclassed
for different algorithms. Analysis of a particular image could require piping it through
multiple such services. We need research to see how far one can go – for instance can a
friction model be made a web component?

If we look at the special features of the ACES applications, we see need for multi-scale
and multi-disciplinary simulations. The service model naturally supports the multi-
disciplinary requirement as one builds complex applications out of say separate particle
dynamic and finite element components. Multi-scale can also exploit this feature and the
availability of general services (like visualization), which can be shared by multiple
simulations. One can build a simulation out of the different types of services needed and
then substitute in different components corresponding to say different approaches with
different algorithms or different resolutions. This capability of supporting different “plug-
and-play” versions is also important in education as discussed in the next section. One

can substitute smaller data sets or simpler software to enable a classroom version of an
ACES simulation.

In fig. 2, we show key features of a typical implementation of what we sometimes call
.opennet – the collection of open web technologies which can be used to build robust

multi-tier systems. The simple client—
broker—resource triplet is a three-tier
model; however once we link multiple
services and build hierarchical service
bundles we get a general multi-tier
model. The model of fig. 2 builds
modularity into the software model.
Databases are used to store and support
access and search of data but they do not
define the structure. The data structures
are defined in XML, which has the
important implication that all data is n
viewed as an object. Later in sectio
we discuss in detail the potential us
XML in ACES. We term the XML la
in fig. 2 as virtual because we do not
need to turn all data into an XML syntax
– that would often be very inefficient.
Rather we need to be able to reference

the data with XML query languages and manipulate it as though it had the XML form. In
our implementations of this architecture, we use Castor [to automatically gener
classes equivalent to the XML Schema object specification. As discussed in section 4, we
suggest that the earthquake community develop appropriate XML Schema to describe
those quantities that are characteristic of their field. This should be built on activities in
related fields and on relevant general standards.

Database

(Virtual)
 XML Layer

Enterprise
Javabeans

JAVA

Servlet

Persistent Managed Store

Object Layer

Virtual Machine

Control

Form Input/Output Processing

System User

Figure 2: 6 Layer Architecture for GEM Software

ow
n 4,
e of

yer

ate Java

Section 2 describes the ACES portal and how it can support both research and education
while in the third section we describe how one can share resources and build a
collaborative environment. Section 4 describes the way XML can be used by ACES.
Note that we can see two facets of interoperability in ACESCE; macroscopically the Grid
Service distributed object architecture supports this while “in the small” the use of XML
to define object properties is the key enabling technology. Systematic use of Java to build
the middleware gives ACESCE good software engineering and portability features.
Conclusions are given in section 5.

2. Computational Web Portals
A computing web portal, as shown in fig. 3, is designed to simplify remote access to
computing resources. Typically, high performance computing centers are interested in
outreach to potential new users. The problem faced in doing this is that many of these
users are unfamiliar with the peripheral details of using these machines: using the Unix
operating system, creating and submitting batch scripts to queuing systems, transferring

files, etc. All of this is in addition to problems associated with learning to use a new
code. These difficulties are further compounded by the introduction of grid technologies
for distributing jobs among several institutions. None of these problems singularly is
insurmountable, but taken together they can be very frustrating for new users and force
them to become experts in particular computer operating systems instead of allowing

them to focus on scientific and
engineering tasks.

These usage problems apply equally well
to the educational community.
Computing techniques have become
important in a wide range of disciplines,
and high-quality commercial and
academic codes are available. Instructors
must however devote time to teaching
students esoteric operating system deta
The limited student-instructor interaction
time would be better spent teaching the
students about the different computational
techniques that are available, the

ap
pr
alg
try

ils.

On
de
sy
re
in
Ty

By
pa
is
se

W
De
Figure 3: Gateway's “Welcome Page” provides
is an entry point for users and administrators.
propriate problem domain for each technique, and the actual business of solving
oblems with the correct application. Matlab is a well known portal to areas like
ebra and signal processing and illustrates some of the basic ideas, which Web portals
 to

 linear

generalize [11].

e solution that computing centers have chosen in order to simplify access is the
velopment of computational web portals. Typically these can be grouped as either
stem portals or application portals. The former are geared toward assisting users
motely login to and use general resources at the computing center through a browser
terface, and the latter are more specialized browser portals devoted to particular codes.
pical services provided by system portals include

1. Secure login, access control and authorization
2. Information services describing available host computers and applications
3. Job submission and monitoring
4. File transfer
5. Remote file access and manipulation
6. Session archiving.

 session archiving, we refer to the ability of the user to revisit old sessions, edit the
rameters of that session, and resubmit that job. A simple interface for a session archive
shown in fig. 4. Application portals might provide all of these services plus additional
rvices specific to the code, such as input file creation.

e have developed a system portal, called Gateway [12,13,14], for the Department of
fense’s High Performance Computing Modernization Program. Several similar

projects are under development at many computing centers, and descriptions and
additional references may be found at the Grid Computing Environments web site [15].

These portals can play an obvious
role in education. Because they
hide the details of using remote
computers with a particular
operating system behind a
browser-based user interface,
students can chose applications,
submit jobs and analyze output by
using a simple point-and-click
interface. These portals can also
play an important role in distance
education, simplifying access for
students taking the class remotely.
The browser interface can be
easily augmented with o
documentation and examples. A

more sophisticated interface may provide expertise in helping students choose the correct
codes for their particular problem.

Figure 4: Users can access old problem sessions
through for editing and resubmission. nline

Application portals can be built on top of the basic services of system portals. For
example, Gateway has been designed to be application-neutral, making it simple to add
new applications to the portal. Gateway tools are also modular with well-defined
interfaces, so developers wishing to add more sophisticated user interfaces to create
application portals can easily integrate these web pages into the system portal. Other
portal projects, such as NPACI’s HotPage [16], similarly provide base functionality that
can be extended for specific applications[17].

Computing portals for education possess a slightly different focus than computing portals
for working scientists and researchers. First, collaboration and shared control of the input
pages are important. When giving initial instructions on setting up input decks and
running codes, instructors will need to be able to share displays (in the fashion described
below) with all students (especially remote students) to show them the steps involved.
For post processing and visualization, instructors and students will want to share
visualization so that typical problems, such as common mistakes in input decks that
produce invalid results, can be identified. Secondly, the portal must have multiple user
privilege levels. The instructor, for instance, will need to be able to examine the
students’ problem archives and assume control over applications started by students, but
students should not be allowed to access instructor areas. Thirdly, problem archiving
acquires a new usage and would benefit from different access permission levels.
Instructors, for example, will want to create a series of sample input problems for the
students to run and modify.

3. Collaborative Portal
One of the general services introduced in section 1 was collaboration. This is the
capability for geographically distributed users to share information and work together on
a single problem. The basic distributed object and Web Service model described in sec. 1
allows one to develop a powerful collaborative model. In fact one of the attractive
features of the web and distributed objects is the natural support of asynchronous
collaboration. One can post a web-page or host a Web Service and then others can access
it on their own time. Search and registration capabilities such as those provided by UDDI
are key to a good asynchronous environment. XML also is an important technology as it
can build metadata to describe resources. This metadata will enable more precise search

methods as envisaged by the
Semantic Web [18,19].
Asynchronous collaboration as
enabled by the basic web
infrastructure of sec. 1, must be
supplemented by synchronous or
real-time interactions between
the ACES community members.
The field of synchronous
collaboration is very active at the

moment and we can identify several important areas:

Fig. 6: Typical Shared
Document System from Centra

Fig. 5: Access Grid at
Indiana with some of
the authors

(1) Basic Interactive tools including Text chat, Instant Messenger and White boards
(2) Shared resources including shared documents (e.g. PowerPoint presentation,), as well

shared visualization, earthquake maps, or data streaming from sensor.
(3) Audio-video conferencing illustrated by both commercial systems and the recent

high-end Access Grid from Argonne [20] shown in fig. 5.
There are several commercial tools that support (1) and (2) – Centra, Placeware and
WebEx are best known [21,22,23]. They look to the user similar to the screen in fig. 6 – a
shared document window surrounded by windows and control panels supporting the
collaborative function. All clients are presented the same or a similar view and this is
ensured by an event service that transmits messages whenever an object is updated. There
are several ways objects can be shared:
Shared Display: The master system brings up an application and the system shares the
bitmap defining display window of this application [24]. This approach has the advantage
that essentially all applications can be shared and the application does not need any
modification. The disadvantage is that faithful sharing of dynamic windows can be CPU
intensive (on the client holding the frame-buffer). If the display changes rapidly, it may
not be possible to accurately track this and further the network traffic could be excessive,
as this application requires relatively large messages to record the object changes
Native Shared Object: Here one changes the object to be shared so that it generates
messages defining its state changes. These messages are received by collaborating clients
and used to maintain consistency between the shared object’s representations on the
different machines. In some cases this is essentially impossible, as one has no access to
the code or data-structures defining the object. In general developing a native shared
object is a time consuming and difficult process. It is an approach used if you can both
access the relevant code and if the shared display option has the problems alluded to

earlier. Usually this approach produces much smaller messages and lower network traffic
than shared display – this or some variant of it (see below) can be the only viable
approach if some clients have poor network connectivity.
Shared Export: This applies the above approach but chooses a client form that can be
used by several applications. Development of this client is still hard but worth the cost if
useable in many applications. For example one could export applications to the Web and
build a general shared web browser, which in its simplest form just shares the defining
URL of the page. The effort in building a shared browser can be amortized over many
applications. We have built quite complex systems around this concept – these systems
track frames, changes in HTML forms, JSP (Java Server Page) and other events. Note the
characteristic of this approach – the required sharing bandwidth is very low but one now
needs each client to use the shared URL and access common (or set of mirrored) servers.
The need for each client to access servers to fetch the object can lead to substantial
bandwidth requirements, which are addressed by the static shared archive model
described below. Other natural shared export models are PDF, SVG, Java3D or whatever
formats ones scientific visualization system uses.
Static Shared Archive: This is an important special case of shared export that can be
used when one knows ahead of time what objects are to be shared, and all that changes in
the presentation is the choice of object and not the state within the object. The system

downloads copies of the objects to
participating clients (these could be
URL’s, PowerPoint foils or Word
documents). Sharing requires
synchronous notification as to which of
the objects to view. This is the least
flexible approach but gives in real-time,
the highest quality with negligible real-
time network bandwidth. This approach
requires substantially more bandwidth
for the archive download – for example,
exporting a PowerPoint foil to JPEG or
Windows Meta File (WMF) format

increases the total size but can be done as we described before the real-time session.

Fig. 7: A NASA P2P Grid

It can be noted that in all four approaches, sharing objects does not require identical
representations on all the collaborating systems. Even for shared display, one can choose
to resize images on some machines – this we do for a palmtop device with a low-
resolution screen sharing a display from a desktop. In fig. 7, we illustrate this, showing a
collection of clients (peers) supported by central servers, which provide Grid resources
and control of the collaborative synchronization process. Real-time collaborative systems
can be used as a tool in Earthquake Science in three different modes:
(a) Traditional scientific interactions – seminars, brainstorming, conferences – but done

at a distance. Here the easiest to implement are structured sessions such as seminars.
(b) Interactions driven by events (earthquakes, need to respond to error-condition in a

sensor) that require collaborative scientific interactions, which must be at a distance
to respond to a non-planned event in a timely fashion. Note this type of use suggests

the importance of collaborating with diverse clients – a key expert may be needed in a
session but he or she may only have access through a PDA.

(c) As well as scientific interactions in an earthquake, collaborative technology can be
and is used to manage and enhance the response to the crisis. The first collaborative
system TangoInteractive that we built [25,26] was in fact designed for Command and
Control operations, which is the military equivalent of crisis management. It was later
evolved to address scientific collaboration and distance education[27,28].

Areas (b) and (c) are characteristic for this field while (a) and (b) are relevant for this
paper. ACES has some special needs that would suggest custom collaborative
applications – for instance special native shared event or shared export applications. We
need to share Geographical Information Systems (GIS) or equivalent 2D and 3D
approaches for representing maps and related data. This could involve either a detailed
sharing at something like the openGIS level [29] or in a less custom fashion, sharing of
the export of a GIS to a standard visualization format [30,31]. We are developing a
shared SVG browser as the new SVG standard has some very attractive features [30]. It is
a 2D vector graphics standard, which allows hyperlinked 2D canvases with a full range of
graphics support – Adobe Illustrator supports it well. SVG is a natural export format for
2D maps on which one can overlay simulations and sensor data. As well as its use in 2D
scientific visualization, SVG is a natural framework for high quality educational material
– we are building a filter that automates the PowerPoint to SVG conversion and already
one can achieve this by the complex PowerPoint to WMF (Windows Metafile) to
Illustrator to SVG export pipeline.

There are some important new developments in collaboration that come from the peer-to-
peer (P2P) networking field[32]. Traditional systems such as TangoInteractive and our
current Garnet environment [33] have rather structured ways of forming communities and
controlling them with centralized servers. The P2P approach [34] exemplified by
Napster, Gnutella and JXTA [35] uses search techniques with “waves of agents”
establishing communities and finding resources. P2P and Grid ideas can be usefully
combined as a Peer-to-Peer Grid [36] shown in figs. 7 and 8. We expect these

developments to be important in all
scientific areas with the application to real-
time communities centered on earthquake
events as particularly important for ACES.

GMS Server
Cloud

GMS
Server

GMS
Server

GMS
Server

Database

Laptop computer Desktops

Desktop

Desktops

Figure 8: Distributed GMS Architecture

Our Garnet system uses a central

publish-subscribe server for coordinating
the collaboration with the current
implementation using a commercial JMS
(Java Message Service) [37] system. This
has proved very successful, with JMS
allowing the integration of real-time and
asynchronous collaboration with a more
flexible implementation than the custom
Java Server used in TangoInteractive.

However, our use of the publish/subscribe model is rather different than that for
which JMS was developed and we have proposed some extensions which we have
prototyped in GMS – The Grid Message or Event Service.[38] GMS was first described
in the PhD thesis of Pallickara[39]. We suggest that GMS needs the following
capabilities
• The matching of Published messages with subscribers is based on the comparison of

XML based publisher topics or advertisements (in a JXTA parlance) with XML based
subscriber profiles.

• The matching involves software agents and not just SQL-like property comparisons at
the server as used by JMS.

• GMS servers form a distributed network with servers created and terminated as
needed to get high performance fault tolerant delivery.

The GMS server network is
illustrated in fig. 8 where each
cluster of clients instantiates a GMS
server. The servers communicate
with each other while peer-to-peer
methods are used within a client
subgroup. Fig. 9 illustrates some
results from our initial research
where we studied the message
delivery latency as a function of
load. We found that the distributed
network scaled well with adequate
latency (a few milliseconds) unless
the system became saturated. The

distributed cluster architecture allows the GMS service to support large heterogeneous
client configurations that scale to arbitrary size.

Subscriber 1 server hop from publisher - Matching 10%

0 100 200 300 400 500 600 700 800 900 1000
Publish Rate (Msg/sec) 0

50
100

150
200

250
300

350
400

450
500

Message Size (Bytes)

0
5

10
15
20
25
30
35
40

Latencies (MilliSeconds)

Figure 9: Latencies for a GMS Prototype

We mentioned audio-video conferencing earlier in this section where we have used a
variety of commercial and research tools with the Access Grid as the preferred high-end
system (fig. 5). We are investigating using the Grid Service ideas of sec. 2 to build a Grid
Conferencing service with audio-video systems using publish-subscribe metaphor to post
to a web service that integrates the different systems using standards like H323 and SIP.

4. XML Descriptors of Data Structures
A crucial problem for developing information technology-based tools for earthquake
science is the definition of data structures that describe and organize the metadata
associated with the field. Here it is important to distinguish between the raw data
generated either by codes or by scientific instruments and the metadata that describes the
raw data. The metadata is appropriately described by a specialized XML dialect. XML
has the advantage of being human-readable and hierarchically organized, but is verbose
and thus not ideal for very large datasets. Instead it is more often useful to have the XML
metadata description point to the location of the data and describe how that data is
formatted, compressed, and to be handled. This is related to Virtual XML architecture
described in fig. 2. Let us consider first an example of using XML data from computing

portals and then examine some of the specific issues that will need to be addressed by the
earthquake science community.

4.1 XML Use in Gateway
Computational Web Portals are described in more detail in section 2 in this paper, but one
may consider them in summary to be browser-based systems for accessing computing
resources for composing and submitting jobs and monitoring their progress. Numerous
supporting services to this basic concept can be defined, such as security, file transfer,
resource monitoring and selection, and session archiving. Many computing portal
projects are underway and a partial listing can be found at the Grid Computing
Environments web site [15]. The Gateway Web Portal is one such project.

XML metadata descriptions form the basis for Gateway and are used to describe static
data about host machines and codes. These data in turn can be used to generate browser
forms in the user interface and to construct requests for backend resources. Here, static
data means data that should remain relatively constant. This is somewhat idealized but is
distinguished from dynamic data, which by definition will change every time a user
accesses the web portal. For example, the location of the executable for a particular code
on a particular machine is static data, but the actual code and machine a user selects in a
particular session, as well as his or her input file and code parameters, is dynamic.

Let us now examine this in practice. For Gateway, we have defined three sets of static
data: code descriptions, host descriptions, and service descriptions. For the first two we
have chosen to use XSIL, an XML dialect for the description of scientific data. We
determined that this approach had sufficient flexibility to be extended to the description
of codes that would use scientific data, as well as the data itself.

XSIL: A Convenient XML Dialect
In developing our XML descriptions for Gateway we were motivated by a desire to
move quickly and so we decided to adopt XSIL (eXtensible Scientific Interchange
Language) developed by Roy Williams at CalTech [40]. XSIL is primarily designed to
describe scientific data, but we found it to be generally useful and to provide a single
solution for both scientific and non-scientific data. XSIL comes with software (in Java)
for parsing documents and extracting name-value pairs from the XML data. XSIL also
allows you to identify in the XML the piece of Java code that you wish to handle a
particular set of tags, which we found to be quite useful. There are other important
approaches to the description of scientific data , including the ICE project at the Army
Research Laboratory [41]. Likewise, the Castor project described in sec. 1 can be used to
automatically generate the XML-handling code.

Application Description
First, we should clarify our use of the word application. We use this term to refer
specifically to third party codes, whatever they may be (scientific and engineering codes
such as Gaussian, visual analysis tools such as Gnuplot or MatLab, and so on). All of
these have common characteristics for running on a command line, so in our application
description we seek to capture this information in a XML data record. Dynamically

generated web forms, such as the one shown in fig. 10, can then be generated from this
descriptor. The code for generating the pages (in this case, Java code in a JavaServer
Page) can be reused to create pages for many different codes.

For a particular application, we need to capture at least the following to run it:

1. The number of input files the code takes.
2. The number of input parameters the code takes.
3. The number of output files the code generates.
4. The number of output parameters the code generates (for symmetry).
5. The input/output style the code uses.

By input and output files, we
refer specifically to data files.
Parameters are anything else
that you might need to pass to
the code, such as the version of
the code to use, the number of
nodes to use in parallel
computation, a user-written
Fortran subroutine to
dynamically link, and so on.
I/O style is typically either by
standard Unix redirects ,< and
>, or C-style command line
arguments.

The following is the

a

T
f
p
X
o

W
r
X
n
p
d

Figure 10: Job Input forms are generated using the HPC and
Application Descriptors.
pplication description for ANSYS, a structural mechanics code:

<XSIL Name="ANSYS" Type="csm.parseXMLDesc">
 <Param Name="NumberOfInParams">0</Param>
 <Param Name="NumberOfInFiles">1</Param>
 <Param Name="NumberOfOutParams">0</Param>
 <Param Name="NumberOfOutFiles">1</Param>
 <Param Name="IOStyle">StandardIO</Param>

…

he “Type” attribute of the <XSIL> tag specifies the code that extracts this information
rom the XML file and makes it available to other components. In this example, it is
arseXMLDesc, a custom written Java class that extracts the name /value pairs from the
ML document and defines accessor (getter) methods to by used by other components
f the portal to retrieve the information in the descriptor.

e have not attempted to be complete in this description but rather are motivated by the
equirements of the codes we currently need to support. One of the advantages of using
SIL’s “shallow” tree structure is that it is simple to add further parameter tags as we
eed. Code command line flags are an obvious additional parameter we would want to
rovide. This is just a parameter again, and the parseXMLDesc code is general and
oesn’t care what name and value we provide.

HPC Description

We have developed a description of
HPC systems using the same
viewpoint as our Application
Description: we primarily want to
capture enough information to
generate a queue script so that the
code can run on a particular machine.
For each application, we need a
further description of all the host
machines on which that application
can run, and the details for executing
the code on that particular platform
This again is stored in an XML

descriptor file that can be used to
automatically generate web forms. For
example, as shown in fig. 11, this

can be used to generate a list of codes and hosts that are available

.

record

in the portal.

Figure 11: The "Code Selection" page lists available
applications and hosts.

Let us now examine the minimal contents of a Host Descriptor. We take as an example
the ANSYS application on Modi4 at NCSA. This can be described by the following
descriptor.

 <XSIL Name="Modi4 Type="csm.parseXMLHost">
 <Param Name="HostName">modi4.ncsa.uiuc.edu</Param>
 <Param Name="QueueType">LSF</Param>
 <Param Name="ExecPath">/usr/apps/fe/bin/ansys57</Param>
 <Param Name="WorkDir">/scratch</Param>
 <Param Name="QsubPath">/usr/local/bin/bsub</Param>

 …

Again, we use a shallow tree description. The handler code (parseXMLHost) doesn’t
care what name/value pairs we give for a particular parameter, so we can add as many
additional parameters to our list as we need. For example, if an application needs to have
a number of environment variables set in its queue script file before it can run on a
particular host, we can add these to the description list.

Service Description
We have identified a number of generic services that we wish to implement in our portal,
such as job submission and file transfer. These are implemented using WebFlow (Java
and CORBA-based middleware). However, we believe the services to be general and so
the interface to a particular service should be independent of the implementation. Thus
all computational portals could potentially use the same interface description for a
particular set of services, and any particular portal could radically redesign its
middleware without changing the user interface. This will be possible once the
community develops WSDL-based Portal standards and is the first step towards portal
interoperability.

The following is an example of the XML interface we use for job submission. For
WebFlow, this must be translated into CORBA’s Interface Definition Language IDL,
which motivated our tag naming.

 <interface name="submitJob" extends="BeanContextChild">
 <method return="void" name="test"></method>
 <method return="string" name="execLocalCommand">
 <arg in="string">command</arg>
 </method>
 <method return="string" name="execRemoteCommand">
 <arg in="string">host</arg>
 <arg in="string">user</arg>
 <arg in="string">command</arg>
 <arg in="string">carrier</arg>
 </method>
 <method return="string" name="copyFileFromBackend">
 <arg in="string">options</arg>
 <arg in="string">user</arg>
 <arg in="string">host</arg>
 <arg in="string">remoteFile</arg>
 <arg in="string">localFile</arg>
 <arg in="string">carrier</arg>
 </method>
 <method return="string" name="copyFileToBackend">
 <arg in="string">options</arg>
 <arg in="string">localFile</arg>
 <arg in="string">user</arg>
 <arg in="string">host</arg>
 <arg in="string">remoteFile</arg>
 <arg in="string">carrier</arg>
 </method>
 </interface>

4.2 XML Descriptors for Earthquake Science
Successful XML schema [42] development is a community process that is best done
under the auspices of standards-setting organizations within a particular field. Problems
exist with this approach because there are often multiple stake-holding organizations,
introducing the possibility of multiple, incompatible “standards”. Federating these
groups presents an additional challenge: large, multiple group consortia often lack the
“nimbleness” to quickly develop and test straw man schemas. Smaller groups may
possess the required nimbleness but lack the authority to see their schemas widely
adopted.

Consider the problem of developing schemas for earthquake science [43]. Stake-holding
groups include, but are not limited to, ACES, EarthScope [44][45], GEM [46], IRIS [45],

the Southern California Earthquake Center [47], and the United States Geological Survey
[48]. Any and all of these organizations may develop schemas, but for interoperability
and data sharing, these efforts must eventually be standardized. However, a consortium
of these groups potentially suffers from the problems outlined above in developing
schemas. Perhaps the better procedure is to have smaller, more focused groups develop
rapid prototype schemas that they can test and refine. This prototype can then serve as
the basis for later, official standards. It is also important that related schemas be
considered and adopted if appropriate. For example, for the case of earthquake science,
related efforts include GML, the Geography Markup Language [49] and XMML, the
Exploration and Mining Markup Language [50]. It is important that the new schemas
standards build upon earlier efforts and avoid duplication.

Some of the capabilities of XML schemas [42,51] can simplify the process. First, XML
namespaces can be used to resolve potential future conflicts in the tag naming process.
For example, if the GEM group decides to develop a prototype schema, it can define its
own namespace, say “GEMRP” for GEM Rapid Prototype. All tag definitions within this
schema then fall within this namespace. Thus conflicts with other definitions can be
automatically resolved. It is also perhaps politically expedient, since it immediately tells
anyone viewing marked up data that this is the GEM group’s attempt at a definition of,
for example, strainmeter data, and so confusion with other groups’ efforts at standard will
be avoided, and there is no presumption that this is the standard definition of strainmeter
data. Successful tag definitions can later be promoted to a more official namespace.

Namespaces also have the advantage of allowing other work to be folded into a particular
XML data description. For example, developers of a rapid prototype schema for
earthquake science will find tag definitions in other schemas such as GML that they will
want to use. Namespaces allow these tags to be directly imported into the prototype data
descriptions.

Another advantage of using XML schemas for data definitions is their simple inheritance
model. This simplifies the prototyping process because tag definitions do not have to be
complete. The prototype version can be general, with specific biases towards the
developing group’s area of interest. As the schema is refined and moves towards
becoming a standard, refined tag definitions can inherit from the prototype definitions
without invalidating data described in the prototype’s language. Furthermore, subgroups
needing more specialized tag definitions can extend the general schema definitions to
adequately represent their more specialized description requirements.

Now we will consider some specific data that must be described. First we will take a
holistic approach and consider everything of potential interest [43]. This organizational
structure can be mapped into an XML data tree.

• Researchers
• Publications
• Institutions

o Universities
 Jet Propulsion Laboratory

o Government Agencies
 US Geological Survey

o Research Organizations
 Jet Propulsion Laboratory
 Los Alamos National Laboratory

o Collaborative Groups
 ACES
 GEM

o Scientific Societies
o For-Profit Corporations

• Data
o Units
o Observational Data

 Seismic
• Siesmicity

o Standard Processed Data
o Reprocessed Data

• Focal Mechanisms
• Waveforms
• Paleoseismic

 Geodetic
• GPS
• INSAR
• VLBI
• Surveying

o Leveling
o Triangulation
o Trilateration

• Creepmeeters
 Stress-strain

• Strainmeter Data
• Stress Measurements

 Gravity
o Simulation Data

 Seismic
• Seismicity
• Waveforms
• Focal Mechanism
• Paleoseismic

 Geodetic
• Displacement and velocity fields
• Fault Slip Rates

 Stress-Strain
 Gravity

• Earth

o Proper Geographic Names
 Regions
 Countries
 States
 Cities
 Geologic Entities with Proper Names

• Faults
• Volcanoes
• Rivers
• Mountains
• Basins

 Earth Structures
• Point Entities

o Hypocenters
o Epicenters

• Linear Entities
• Surfaces

o Faults
o Strata Boundaries
o Seismic Discontinuities

• Volume Entities
o Seismic Velocity
o Seismic Attenuation
o Density
o Pore Pressure
o Electrical Conductivity
o Magnetic Properties
o Rock Type

 Geological Events
• Earthquakes
• Tsunamis
• Volcanic Eruptions

• Devices
o Computer resources
o Instruments

 Earth sensors
• Seismic graphs
• GPS Receivers
• VLPB Antennae
• Creepmeters
• Strainmeters

 Laboratory
• Rock Mechanics
• Analog Models

o Observatories

 Boreholes
• Computing applications

o Simulation Methods
 Finite Element Methods
 Finite Difference Methods
 Boundary Element Methods
 Mesh definitions

o Data Analysis
o Visualization

Given the expansiveness of information that needs to be described, the next step is to
decide the appropriate scope of the prototype schema. The first points to eliminate are
those that have been covered by other groups. Several groups have developed
descriptions of people and institutions – one example is the IMS project for education
[52,53], publications can be described using XML standards such as the Dublin Core [54]
and RDF [55], and many groups have described computing resources and applications
(such as is described in section 4.1 of this paper). Suggested areas of concentration, then,
are the areas specific to earthquake science, particularly the Data and Devices sections
above.

As a gauge for determining what is in scope and what is out, it will also be useful to have
specific applications in mind. For example, a potential application might be to use
observational data within a specific set of analysis and visualization tools.
In this case, a common data format is needed to serve as a middle ground between
measured data and applications. New measurements records may be written into this
format directly, and application tools may be modified to accept the standard format.
However, legacy formats will have to be supported, so the common data format will need
support tools for conversion between it and legacy data representations and input formats.
A related use to consider is the coarse-grained coupling of applications, in which the
output of one code can be formatted and used as the input for another code. Here the
common data format and conversion tools serve as the glue for the coupling, and future
versions of the codes can be redesigned to use the new data format.

5. Conclusions
We have postulated in section 1 a distributed service components for ACESCE, which
satisfies among other things, the following requirements: a common metadata
description language that can be used to describe the services and how they are to be
accessed, a service lookup and discovery system so that clients can find appropriate
services, a way for describing workflow that links together various service components
into a single meta-service, and wire protocols for accessing remote objects. As described
above, standards and associated software development kits are being developed for each
of these areas. The Web Services Description Language (WSDL) is the industry standard
for describing services. SOAP is the universal transport protocol to be enhanced when
necessary to achieve high performance. Workflow (WSFL) and discovery (UDDI)
capabilities are less far along but powerful systems in these areas will surely emerge.

This macroscopic framework is joined by “in the small” technologies XML and Java to
produce powerful interoperable modular systems. XML needs special attention from the
ACES community to define discipline-specific standards and to participate in the
evolution of related standards such as those in GIS field.In section 3, we showed how the
integration of resources inherent in the Grid can be enhanced by the integration of people
or the construction of Community Grids.

We note that there are several important problems in web services for scientific use that
are not being addressed by the commercial world even though the development of WSDL
is being driven by IBM and Microsoft for e-commerce applications. For example, what
happens if a user’s data file is 10 gigabytes or larger in size? It may not be a good idea
to use a visualization service in Australia (or anywhere else) if that data sits at JPL. This
type of considerations impacts the way we integrate services together. Also,
supercomputers are fragile and go down often (as do networks) so some robustness (or
quality of service) is very important; perhaps more so even than in business-to-business
web services.

Scientific instruments can be on the web service grid, and these have many interesting
requirements for our grid web services system. For example, earthquake events are rare
but important, so the web service grid needs a good event model. Or researchers may
want to use instruments in real time computation and visualization, producing a situation
similar to synchronous collaboration. This is different from the more conventional time-
independent view of web services. These are some of the research issues we will be
addressing.

Acknowledgments
Development of the Collaborative Portal and Gateway Computational Web Portal were
partially funded by the High Performance Computing Modernization Programs, and we
gratefully acknowledge their support. Funding from the Jet Propulsion Laboratory and
the NSF through the PACI Partnership program at NCSA partially supported the
ACES Architecture and Collaboration work.

References

 [1] ACES Asia-Pacific Cooperation for Earthquake Simulation. http://www.quakes.uq.edu.au/ACES/ .

2001.

 [2] Fox, G. C., Hurst, K., Donnellan, A., and Parker, J., "Introducing a New Paradigm for
Computational Earth Science – A web-object-based approach to Earthquake Simulations," in
Rundle, J., Turcotte, D., and Klein, W. (eds.) GeoComplexity and the Physics of Earthquakes 2000,
pp. 219-245.

 [3] Fox, G. C. Portals and Frameworks for Web Based Education and Computational Science. 2000.
Proceedings of the Second International Conference on the Practical Application of Java.

 [4] Presentation on Common Component Architecture by Robert Armstrong of Sandia at DoE
Components Workshop July 23-25, 2001. Livermore, California.
http://www.llnl.gov/CASC/workshops/components_2001/viewgraphs/ RobArmstrong.ppt .

 [5] Presentation on Web Services by Francesco Curbera of IBM at DoE Components Workshop July
23-25, 2001. Livermore, California.
http://www.llnl.gov/CASC/workshops/components_2001/viewgraphs/FranciscoCurbera.ppt .

 [6] WSDL Web Service Framework. http://www.w3.org/TR/wsdl.

 [7] UDDI Universal Description and Discovery Framework. http://www.uddi.org.

 [8] Mehrotra, P and colleagues. Arcade Computational Portal. http://www.cs.odu.edu/~ppvm.

 [9] XML based messaging and protocol specifications SOAP. http://www.w3.org/2000/xp.

 [10] Gannon, D. and Bramley, R. Research on multi-protocol Web Services.
http://www.extreme.indiana.edu.

 [11] The Mathworks Corporation; Matlab Computational framework. http://www.mathworks.com.

 [12] The Gateway Computational Web Portal. http://www.gatewayportal.org.

 [13] Fox, G., Haupt, T., Akarsu E., Kalinichenko, A., Kim, K., Sheethalnath, P., and Youn, C. The
Gateway System: Uniform Web Based Access to Remote Resources. 1999. ACM Java Grande
Conference.

 [14] Pierce, M., Fox, G., and Youn, C., "The Gateway Computational Web Portal," Concurrency and
Computation: Practice and Experience, 2001.

 [15] Grid Computing Environments. http://www.computingportals.org.

 [16] NPACI HotPage. https://hotpage.npaci.edu.

 [17] Thomas, M., Mock, S., Dahan, M., Mueller, K., Sutton, D., and Boisseau, J. The GridPort Toolkit: a
System for Building Grid Portals. 2001. Proceedings of the Tenth IEEE International Symposium
on High Performance Distributed Computing, August 2001.

 [18] Semantic Web from W3C to describe self organizing Intelligence from enhanced web resources.
http://www.w3.org/2001/sw.

 [19] Berners-Lee, T., Hendler, J., and Lassila, O., "The Semantic Web," Scientific American, May2001.

 [20] Argonne National Laboratory. Access Grid. http://www.mcs.anl.gov/fl/accessgrid.

 [21] Centra Collaboration Environment. http://www.centra.com.

 [22] Placeware Collaboration Environment. http://www.placeware.com.

 [23] WebEx Collaboration Environment. http://www.webex.com.

 [24] Virtual Network Computing System (VNC). http://www.uk.research.att.com/vnc.

 [25] Beca, L., Cheng, G., Fox, G., Jurga, T., Olszewski, K., Podgorny, M., Sokolowski, P., and Walczak,
K., "Java Enabling Collaborative Education Health Care and Computing," Concurrency: Practice
and Experience, vol. 9, no. 6, pp. 521-533, May1997.

 [26] Beca, L., Cheng, G., Fox, G., Jurga, T., Olszewski, K., Podgorny, M., and Walczak, K. Web
Technologies for Collaborative Visualization and Simulation. 1997. Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific Computing.

 [27] Fox, G. and Podgorny, M. Real Time Training and Integration of Simulation and Planning using the
TANGO Interactive Collaborative System. 1998. International Test and Evaluation Workshop on High
Performance Computing.

 [28] Fox, G., Scavo, T., Bernholdt, D., Markowski, R., McCracken, N., Podgorny, M., Mitra, D., and
Malluhi, Q. Synchronous Learning at a Distance: Experiences with TANGO Interative. 1998.
Supercomputing 98 Conference.

 [29] Open GIS Consortium. Open Geodata Interoperability Specification. http://opengis.net/gml/ . 2001.

 [30] W3C Scalable Vector Graphics Standard SVG. http://www.w3.org/Graphics/SVG .

 [31] X3D. http://www.web3d.org/x3d.html .

 [32] openp2p. http://www.openp2p.com .

 [33] Fox, G. Report on Architecture and Implementation of a Collaborative Computing and Education
Portal. http://aspen.csit.fsu.edu/collabtools/updatejuly01/erdcgarnet.pdf . 2001.

 [34] Fox, G., "Peer-to-Peer Networks," Computing in Science & Engineering, vol. 3, no. 3, May2001.

 [35] Sun Microsystems JXTA Peer to Peer technology. http://www.jxta.org .

 [36] Fox, G. and Gannon, D., "Computational Grids," Computing in Science & Engineering, vol. 3, no. 4,
July2001.

 [37] Sun Microsystems. Java Message Service. http://java.sun.com/products/jms.

 [38] Fox, G. and Pallickara, S., "An Event Service to Support Grid Computational Environments,"
Concurrency and Computation: Practice & Experience, no. Special Issue on Grid Computing
Environments, 2001.

 [39] Pallickara, S., "A Grid Event Service." PhD Syracuse University, 2001.

 [40] XSIL: Extensible Scientific Interchange Language. http://www.cacr.caltech.edu/SDA/xsil .

 [41] ICE Interdisciplinary framework and eXtensible Data model and Format (XDMF).
http://www.arl.hpc.mil/SciVis/dice/ and http://www.arl.hpc.mil/PET/training/SEM77.html .

 [42] XML Schema. http://www.w3c.org/XML/Schema .

 [43] Tullis, T. Private Communication, August 2001.

 [44] EarthScope. http://www.earthscope.org .

 [45] The IRIS Consortium. http://www.iris.edu .

 [46] General Earthquake Models. http://geodynamics.jpl.nasa.gov/gem/ .

 [47] The Southern California Earthquake Center. http://www.scec.org .

 [48] United States Geological Survey. http://www.usgs.gov .

 [49] Geography Markup Language. http://opengis.net/gml/01-029/GML2.html .

 [50] Exploration and Mining Markup Language. http://www.ned.dem.csiro.au/XMML .

 [51] XML Schema Primer. http://www.w3c.org/TR/xmlschema-0/ .

 [52] Instructional Management Systems (IMS). http://www.imsproject.org .

 [53] Advanced Distributed Learning Initiative. http://www.adlnet.org .

 [54] The Dublin Core Metadata. http://dublincore.org/ .

 [55] Resource Description Framework (RDF). http://www.w3.org/TR/REC-rdf-syntax . 2001.

[56] Castor Java XML Linkage http://castor.exolab.org/

	Grid Services for Earthquake Science
	Geoffrey Fox
	Sung-Hoon Ko, Marlon Pierce
	Ozgur Balsoy, Jake Kim, Sangmi Lee
	Kangseok Kim, Sangyoon Oh, Xi Rao, Mustafa Varank
	Hasan Bulut, Gurhan Gunduz, Xiaohong Qiu, Shrideep Pallickara, Ahmet Uyar, Choonhan Youn
	Abstract
	2. Computational Web Portals
	4. XML Descriptors of Data Structures

	5. Conclusions
	Acknowledgments
	
	
	References

