
SPIDAL Java: High Performance Data Analytics with Java
and MPI on Large Multicore HPC Clusters

Saliya Ekanayake
School of Informatics and

Computing
Indiana University,

Bloomington
sekanaya@indiana.edu

Supun Kamburugamuve
School of Informatics and

Computing
Indiana University,

Bloomington
skamburu@indiana.edu

Geoffrey C. Fox
School of Informatics and

Computing
Indiana University,

Bloomington
gcf@indiana.edu

ABSTRACT
Within the last few years, there have been significant con-
tributions to Java-based big data frameworks and libraries
such as Apache Hadoop, Spark, and Storm. While these
systems are rich in interoperability and features, develop-
ing high performance big data analytic applications is chal-
lenging. Also, the study of performance characteristics and
high performance optimizations is lacking in the literature for
these applications. By contrast, these features are well doc-
umented in the High Performance Computing (HPC) domain
and some of the techniques have potential performance ben-
efits in the big data domain as well. This paper presents the
implementation of a high performance big data analytics li-
brary - SPIDAL Java - with a comprehensive discussion on
five performance challenges, solutions, and speedup results.
SPIDAL Java captures a class of global machine learning ap-
plications with significant computation and communication
that can serve as a yardstick in studying performance bot-
tlenecks with Java big data analytics. The five challenges
present here are the cost of intra-node messaging, inefficient
cache utilization, performance costs with threads, overhead
of garbage collection, and the costs of heap allocated objects.
SPIDAL Java presents its solutions to these and demonstrates
significant performance gains and scalability when running
on up to 3072 cores in one of the latest Intel Haswell-based
multicore clusters.

Author Keywords
HPC; data analytics; Java; MPI; Multicore

ACM Classification Keywords
D.1.3 Concurrent Programming (e.g. Parallel Applications)

1. INTRODUCTION
A collection of Java-based big data frameworks have arisen
since Apache Hadoop [24] - the open source MapReduce [5]
implementation - including Spark, Storm, and Apache Tez.
The High Performance Computing (HPC) enhanced Apache
Big Data Stack (ABDS) [9] identifies over 300 frameworks
and libraries across 21 different layers that are currently used

SpringSim-HPC 2016 April 3-6, Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International (SCS)

in big data analytics. Notably, most of these software pieces
are written in Java due to its interoperability, productivity,
and ecosystem of supporting tools and libraries. While these
big data frameworks have proven successful, a comprehen-
sive study of performance characteristics is lacking in the lit-
erature. This paper investigates the performance challenges
with Java big data applications through the implementation
of Scalable, Parallel, and Interoperable Data Analytics Li-
brary (SPIDAL) Java - a highly optimized suite of parallel
machine learning algorithms written in Java. It identifies five
performance challenges that are not discussed well in the big
data literature. Namely, these are the cost of intra-node mes-
saging, inefficient cache utilization, performance costs with
threads, overhead of garbage collection, and the cost of heap
allocated objects. It presents optimizations in SPIDAL Java
to overcome these and demonstrates significant performance
gains on large multicore clusters. The novelty of this research
is the comprehensive performance study of Java based big
data analytics and the implementation SPIDAL Java applica-
tion suite. While some of these challenges are studied in the
High Performance Computing (HPC) domain, no published
work appear to discuss these with regard to Java based big
data applications.

Big data applications are diverse and this paper uses the
Global Machine Learning (GML) class [7] as a yardstick due
to its significant computation and communication. GML ap-
plications resemble Bulk Synchronous Parallel (BSP) model
except the communication is global and does not overlap with
computations. Also, they generally run multiple iterations of
such compute and communicate phases until a stopping crite-
rion is met.

SPIDAL Java is a suite of high performance GML applica-
tions with optimizations to overcome the above challenges.
While these optimizations are not limited to HPC environ-
ments, SPIDAL Java is intended to run on large-scale modern
day HPC clusters due to demanding computation and com-
munication nature. The performance results of running on a
latest production grade Intel Haswell HPC cluster - Juliet -
demonstrate significant performance improvement over tra-
ditional implementations on the same advanced hardware.

The rest of the paper is organized as follows. Section 2 re-
views related work and Section 3 introduces SPIDAL Java.
Section 4 elaborates the high performance challenges and op-



timizations in SPIDAL Java. Section 5 presents experimental
results from running the weighted Deterministic Annealing
(DA) Multidimensional Scaling (MDS) algorithm [22] - in
SPIDAL Java against real life health data. It includes speedup
and scaling results for a variety of data sizes and compute
cores (up to 3072 cores). Section 6 discusses open ques-
tions and possible improvements.Finally, Section 7 presents
the conclusions of this work.

2. RELATED WORK
The high performance stream processing paper [13] de-
scribes a novel approach of using shared memory maps
within Apache Storm. This is similar to SPIDAL Java’s
intra-node implementation except it implements a custom
memory mapped based queue to coordinate between workers
within a node. The results show considerable performance
improvement over using TCP within a node.

Le Chai’s Ph.D. [3] work identifies the bottleneck in intra-
node communication with the traditional share-nothing ap-
proach of MPI and presents two approaches to exploit shared
memory-based message passing for MVAPICH2. First is to
use a user level shared memory map similar to SPIDAL Java.
Second is to get kernel assistance to directly copy messages
from one process’s memory to the other. It also discusses how
cache optimizations help in communication and how to ad-
dress Non Uniform Memory Access (NUMA) environments.

Hybrid MPI (HMPI) [25] presents a similar idea to the zero
intra-node messaging in SPIDAL Java. It implements a cus-
tom memory allocation layer that enables MPI ranks running
within a node to have a shared heap space, thereby making
it possible to copy messages directly within memory without
external communication. HMPI optimizes for point-to-point
messages only but provides seamless support over Xeon Phi
accelerators.

An extension to HMPI that provides an efficient MPI collec-
tive implementation is discussed in [16]. It provides details on
different techniques to implement collective primitives and
how to select the best algorithm for a given collective in a
NUMA setting. Also, it provides a comparison for reductions
within a node against the popular OpenMP [4] library.

NCCL (pronounced ”Nickel”) [18] is an ongoing project from
NVIDIA to provide an MPI-like collective library to use with
multiple Graphical Processing Units (GPU) within a node.
Traditional data transfer between GPUs involves communi-
cation with the host. NCCL instead avoids it and uses their
GPUDirect implementation to copy data directly from one
GPU to another. This is similar to our approach of data
transfer between processes, except it happens between GPU
nodes.

Project Tungsten from the company Databricks is a series
of optimization techniques targeting Apache Spark [26]
to bring its performance closer to native level. It includes
several concepts similar to optimizations in SPIDAL Java
such as off-heap data structures, in memory data transfer, and
cache-aware computing.

3. SPIDAL JAVA
SPIDAL Java provides several multidimensional scaling, and
clustering implementations. It is written in Java for produc-
tivity and interoperability. Also, with the optimizations dis-
cussed in Section 4 and the use of Just In Time (JIT) com-
piler, Java implementations give comparable performance to
C/C++ code.

• DA-MDS implements an efficient weighted version of
Scaling by MAjorization of a COmplicated Function
(SMACOF) [1] that effectively runs in O(N2) compared
to the original O(N3) implementation [22]. It also uses a
deterministic annealing optimization technique [21, 14] to
find the global optimum instead of local optima. Given an
NxN distance matrix for N high dimensional data items,
DA-MDS finds N lower dimensional points (usually 3 for
visualization purposes) such that the sum of error squared
is minimum. The error is defined as the difference between
mapped and original distances for a given pair of points.
DA-MDS also supports arbitrary weights and fixed points
- data points that already have the same low dimensional
mapping.

• DA-PWC is Deterministic Annealing Pairwise Clustering,
which also uses the concept of DA, but for clustering [10,
21]. Its time complexity is O(NlogN), which is better
than existing O(N2) implementations [6]. Similar to DA-
MDS, it accepts an NxN pairwise distance matrix and pro-
duces a mapping from point number to cluster number. It
can also find cluster centers based on the smallest mean
distance, i.e. the point with the smallest mean distance
to all other points in a given cluster. If provided with a
coordinate mapping for each point, it could also produce
centers based on the smallest mean Euclidean distance and
Euclidean center.

• DA-VS is Deterministic Annealing Vector Sponge, which
is a recent addition to SPIDAL. It can perform clustering
in both vector and metric spaces. Algorithmic details and
an application of DA-VS to Proteomics data is available at
[8].

• MDSasChisq is a general MDS implementation based on
the LevenbergMarquardt algorithm [15]. Similar to DA-
MDS, it supports arbitrary weights and fixed points. Addi-
tionally, it supports scaling and rotation of MDS mappings,
which is useful when visually comparing 3D MDS outputs
for the same data, but with different distance measures.

4. PERFORMANCE CHALLENGES WITH JAVA BIG DATA
ANALYTICS

This section identifies the performance challenges with Java
big data analytic applications and presents performance op-
timizations in SPIDAL Java to overcome them. While some
of the optimizations are specific to SPIDAL Java, they can be
used as general guidelines in developing other Java based big
data applications.

4.1 Intra-node Communication
Intra-node communication on large multicore nodes causes
a significant performance loss. Shared memory approaches



have been studied as successful alternatives in Message Pass-
ing Interface (MPI) oriented researches [3],[25], and [16],
however, none are available for Java. Also, popular big data
frameworks too uses TCP for intra-node communications,
which is prohibitively expensive for applications in SPIDAL
Java.

SPIDAL Java uses OpenMPI for inter-node communication,
but its shared memory support is very limited and does not
include collectives such as variants of allgather, which is
used in multidimensional scaling applications.

Figure 1: MPI allgatherv performance with different
MPI implementations and varying intra-node parallelisms

Figure 1 plots arithmetic average (hereafter referred to sim-
ply as average) running times over 50 iterations of the MPI
allgatherv collective against varying intra-node paral-
lelism over 48 nodes in Juliet. Note all MPI implementations
were using their default settings other than the use of Infini-
band transport. This was a micro-benchmark based on the
popular OSU Micro-Benchmarks (OMB) suite [20].

The purple and black lines show C implementations compiled
against OpenMPI and MVAPICH2 [11], while the green is
the same program in Java compiled against OpenMPI’s Java
binding. The Java binding is a thin wrapper around OpenMPI
C implementation. All tests used a constant 24 million bytes
(or 3 million double values) across different intra-node par-
allelism patterns to mimic the communication of DA-MDS,
which uses allgatherv heavily, for large data. The ex-
periment shows that the communication cost becomes signif-
icant with increasing processes per node and the effect is in-
dependent of the choice of MPI implementation and the use
of Java binding in OpenMPI. However, an encouraging dis-
covery is that all implementations produce a nearly identical
performance for the single process per node case. While it is
computationally efficient to exploit more processes, reducing
the communication to a single process per node was further
studied and successfully achieved with Java shared memory
maps as discussed below.

SPIDAL Java’s shared memory intra-node communication
uses a custom memory maps implementation from Open-
HFT’s JavaLang[19] project to perform inter-process com-
munication for processes within a node, thus eliminating any
intra-node MPI calls. The standard MPI programming would
require O(R2) of communications in a collective call, where
R is the number of processes. In this optimization, we have
effectively reduced this to O(N̂2), where N̂ is the number of
nodes. Note this is an application level optimization rather

Figure 2: Intra-node message passing with Java shared
memory maps

Figure 3: Heterogeneous shared memory intra-node
messaging

than an improvement to a particular MPI implementation,
thus, it will be possible for SPIDAL Java to be ported for
future MPI Java bindings with minimal changes.

Figure 2 shows the general architecture of this optimization
where two nodes, each with three processes, are used as
an example. Process ranks go from P0 to P5 and belong
to MPI COMM WORLD. One process from each node acts as
the communication leader - C0 and C1. These leaders have
a separate MPI communicator called COLLECTIVE COMM.
Similarly, processes within a node belong to a separate
MMAP COMM, for example, M00 to M02 in one communicator
for node 0 and M10 to M12 in another for node 1. Also, all
processes within a node map the same memory region as an
off-heap buffer in Java and compute necessary offsets at the
beginning of the program. The takeaway point of this setup is
the use of memory maps to communicate between processes
and the reduction in communication calls. A typical call to an
MPI collective will internally go through the following mod-
ified steps.

1. All processes, P0 to P5, write their partial data to the
mapped memory region offset by their rank and node. See
downward blue arrows for node 0 and gray arrows for node
1 in the figure.

2. Communication leaders, C0 and C1, wait for the peers,
{M01,M02} and {M10,M11} to finish writing. Note lead-
ers wait only for their peers in the same node.

3. Once the partial data is written, the leaders participate in
the MPI collective call with partial data from their peers -
upward blue arrows for node 0 and gray arrows for node



1. Also, the leaders may perform the collective opera-
tion locally on the partial data and use its results for the
MPI communication depending on the type of collective
required. MPI allgatherv, for example, will not have
any local operation to be performed, but something like
allreducemay benefit from doing the reduction locally.
Note, the peers wait while their leader performs MPI com-
munication.

4. At the end of the MPI communication, the leaders write
the results to the respective memory maps - downward gray
arrows for node 0 and blue arrows for node 1. This data is
then immediately available to their peers without requiring
further communication - upward gray arrows for node 0
and blue arrows for node 1.

This approach reduces MPI communication to just 2 pro-
cesses, in contrast to a typical MPI program, where 6 pro-
cesses would be communicating with each other. The two
wait operations mentioned above can be implemented using
memory mapped variables or with an MPI barrier on the
MMAP COMM; although the latter will cause intra-node mes-
saging, experiments showed it to incur negligible costs com-
pared to actual data communication.

While the uniform rank distribution across nodes and a sin-
gle memory map group per node in Figure 2 is the optimal
pattern to reduce communication, SPIDAL supports two het-
erogeneous settings as well. Figure 3 shows these two modes.

Non-uniform rank distribution - Juliet HPC cluster, for ex-
ample, has two groups of nodes with different core counts (24
and 36) per node. SPIDAL Java supports different process
counts per node to utilize all available cores in situations like
this. Also, it automatically detects the heterogeneous config-
urations and adjusts its shared memory buffers accordingly.

Multiple memory groups per node - If more than 1 mem-
ory map per node (M ) is specified, SPIDAL Java will se-
lect one communication leader per group even for groups
within the same node. Figure 3 shows 2 memory maps per
node. As a result, O(N̂2) communication is now changed to
O((N̂M)2), so it is highly recommended to use a smaller M ,
ideally, M = 1.

4.2 Cache and Memory Utilization
While this is a generic performance consideration in com-
puting, big data applications iterating over large arrays suffer
significant performance loss if not properly utilized. SPIDAL
Java employs 3 classic techniques from the linear algebra do-
main to improve cache and memory costs - blocked loops, 1D
arrays, and loop ordering.

Blocked loops - Nested loops that access matrix structures
use blocking such that the chunks of data will fit in cache and
reside there for the duration of its use.

1D arrays for 2D data - 2D arrays representing 2D data re-
quire 2 indirect memory references to get an element. This
is significant with increasing data sizes, so SPIDAL Java uses
1D arrays to represent 2D data. As such with 1 memory refer-
ence and computed indices, it can access 2D data efficiently.

Figure 4: The architecture of utilizing threads for
intra-process parallelism

This also improves cache utilization as 1D arrays are contigu-
ous in memory.

Loop ordering - Data decomposition in SPIDAL Java blocks
full data into rectangular matrices, so to efficiently use cache,
it restructures nested loops that access these to go along the
longest dimension within the inner loop. Note, this is neces-
sary only when 2D array representation is necessary.

4.3 The Cost of Java Threads
While many of the big data frameworks employ threads to ex-
ecute tasks, a comparison of performance against processes is
not available for big data applications. SPIDAL Java applica-
tions support the hybrid approach of threads within MPI to
create parallel for regions using Habanero Java library [12].
Note, threads perform computations only and do not invoke
MPI operations. The parent process aggregates the results
from threads locally as appropriate before using it in col-
lective communications. Also, the previous shared memory
messaging adds a second level of result aggregation within
processes of the same node to further reduce communication.
Figure 4 shows the usage of threads in SPIDAL Java with
different levels of result aggregation.

Applications decompose data at the process level first and
split further for threads. This guarantees that threads operate
on non-conflicting data arrays; however, Figure 5, 6, and 9
show a rapid degrade in performance with increasing number
of threads per process. Internal timings of the code suggest
poor performance occurs in computations with arrays, which
suggests possible false sharing and suboptimal cache usage.
Therefore, while the communication bottleneck with default
MPI implementations favored the use of threads, with shared
memory intra-node messaging optimization in SPIDAL Java
they offer no advantage, hence, processes are a better choice
than threads for these applications.

4.4 The Overhead of Garbage Collection
It is critical to maintain a minimal memory footprint and re-
duce memory management costs in performance sensitive ap-
plications with large memory requirements such as those in
SPIDAL Java. The Java Virtual Machine (JVM) automati-
cally manages memory allocations and performs GC to re-
duce memory growth. It does so by segmenting the program’s
heap into regions called generations, and moving objects be-
tween these regions depending on their longevity. Every ob-
ject starts in Young Generation (YG) and gets promoted to



Old Generation (OG) if they have lived long enough. Mi-
nor garbage collections happen in YG frequently and short-
lived objects are removed without GC going through the en-
tire Heap. Also, long-lived objects are moved to the OG.
When OG has reached its maximum capacity, a full GC hap-
pens, which is an expensive operation depending on the size
of the heap and can take considerable time. Also, both mi-
nor and major collections have to stop all the threads running
in the process while moving the objects. Such GC pauses in-
cur significant delays, especially for GML applications where
slowness in one process affects all others as they have to syn-
chronize on global communications.

Initial versions of SPIDAL Java followed the standard Ob-
ject Oriented Programming (OOP), where objects were cre-
ated as and when necessary while letting GC take care of the
heap. The performance results, however, showed inconsistent
behavior, and detailed GC log analysis revealed processes
were paused most of the time to perform GC. Also, the max
heap required (JVM -Xmx setting) to get reasonable timing
quickly surpassed the physical memory in Juliet cluster with
increasing data sizes.

The optimization to overcome these memory challenges was
to compute the total memory allocation required for a given
data size and statically allocate required arrays. Also, the
computation codes reuse these arrays creating no garbage.
Another optimization is to use off-heap buffers for commu-
nications and other static data, which is discussed in the next
subsection.

While precomputing memory requirements is application de-
pendent, static allocation and array reuse can bring down GC
costs to negligible levels. Benefits of this approach in SPI-
DAL Java are as follows.

Zero GC - Objects are placed in the OG and no transfer of
objects from YG to OG happens in run-time, which avoids
full GC.

Predictable performance - With GC out of the way, the per-
formance numbers agreed with expected behavior of increas-
ing data and parallelism.

Reduction in memory footprint - A DA-MDS run of 200K
points running with 1152 way parallelism required about 5GB
heap per process or 120 GB per node (24 processes on 1
node), which hits the maximum memory per node in our clus-
ter, which is 128GB. The improved version required less than
1GB per process for the same parallelism, giving about 5x
improvement on memory footprint.

4.5 The Cost of Heap Allocated Objects
With traditional heap allocated objects, the JVM has to make
extra copies whenever a native operation is performed on it.
One reason for this is JVM cannot guarantee that the mem-
ory reference to a buffer will stay intact during a native call
because it is possible for a GC compaction to happen and
move the buffer to a different place in the heap. The solution
employed in SPIDAL Java is to use direct buffers, which are
off-heap data structures, that allows the JVM to perform fast
native operations without data copying.

SPIDAL Java uses off-heap buffers efficiently for the follow-
ing 3 tasks.

Initial data loading - Input data in SPIDAL Java are
NxN binary matrices stored in 16-byte (short) big-endian
or little-endian format. Java stream APIs such as the typi-
cal DataInputStream class are very inefficient in loading
these matrices. Instead, SPIDAL Java memory maps these
matrices (each process maps only the chunk it operates on) as
Java direct buffers.

Intra-node messaging - Intra-node process-to-process com-
munications happen through custom off heap memory maps,
thus avoiding MPI within a node. While Java memory maps
allow multiple processes to map the same memory region, it
does not guarantee writes from one process will be visible
to the other immediately. The OpenHFT Java Lang Bytes
[19] used here is an efficient off-heap buffer implementation,
which guarantees write consistency.

MPI communications - While OpenMPI supports both on-
and off-heap buffers for communication, SPIDAL Java uses
statically allocated direct buffers, which greatly reduce the
cost of MPI communication calls.

5. TECHNICAL EVALUATION
This section presents performance results of SPIDAL Java to
demonstrate the improvements of previously discussed opti-
mization techniques. These were run on Juliet, which is a
production grade Intel Haswell HPC cluster with 128 nodes
total, where 96 nodes have 24 cores (2 sockets x 12 cores
each) and 32 nodes have 36 cores (2 sockets x 18 cores each)
per node. Each node consists of 128GB of main memory and
56Gbps Infiniband interconnect. The total core count of the
cluster is 3456, which can be utilized with SPIDAL Java’s
heterogeneous support, however, performance testings were
done with a uniform rank distribution of 24x128 - 3072 cores.

Figures 5, 6, and 9 show the results for 3 DA-MDS runs with
100K (2E10 bytes), 200K (4E10 bytes), and 400K (1.6E11
bytes) data points. Note, with O(N2) runtime, 400K tests
take 4 times that of 200k, hence these were done with less
number of iterations to meet HPC resource allocation times.
This does not affect performance characteristics in anyway
as each iteration is independent and the number of iterations
determine only the accuracy of results. The green line is
for SPIDAL Java with shared memory intra-node messaging,
zero GC, and cache optimizations. The blue line is for Java
and OpenMPI with shared memory intra-node messaging and
zero GC, but no cache optimizations. The red line represents
Java and OpenMPI with no optimizations. The default im-
plementation (red line) could not handle 400K points on 48
nodes, hence, it is not shown in Figure 9.

Patterns on the X-axis of the graphs show the combination
of threads (T ), processes (P ), and the number of nodes. The
total number of cores per node was 24 (12 on each socket),
so the Figure 5 through 8 show all possible combinations that
give 24-way parallelism per node. OpenMPI has a number
of allgather implementations and these were using the
linear ring implementation of MPI allgatherv as it gave
the best performance. The Bruck [2] algorithm, which is an



Figure 5: DA-MDS 100K performance with varying
intra-node parallelism

Figure 6: DA-MDS 200K performance with varying
intra-node parallelism

Figure 7: DA-MDS 100K allgatherv performance with
varying intra-node parallelism

Figure 8: DA-MDS 200K allgatherv performance with
varying intra-node parallelism

Figure 9: DA-MDS 400K performance with varying
intra-node parallelism

Figure 10: DA-MDS speedup for 200K with different
optimization techniques

Figure 11: DA-MDS speedup with varying data sizes Figure 12: DA-MDS speedup on 36 core nodes for 200K data



efficient algorithm for all-to-all communications, performed
similarly but was slightly slower than the linear ring for these
tests.

Ideally, all these patterns should perform the same because
the data size per experiment is constant, however, results
show the default Java and OpenMPI based implementa-
tion significantly degrades in performance with large process
counts per node (red-line). In addition, increasing the number
of threads, while showing a reduction in the communication
cost (Figure 7 and 8), does not improve performance. The
Java and OpenMPI memory mapped implementation (blue-
line) surpasses default MPI by a factor of 11x and 7x for 100K
and 200K tests respectively for all process (leftmost 24x48)
cases. Cache optimization further improves performance sig-
nificantly across all patterns especially with large data, as can
be seen from the blue line to the green line (SPIDAL Java).

The DA-MDS implementation in SPIDAL Java, for exam-
ple, has two call sites to MPI allgatherv collective, BC-
Comm and MMComm, written using OpenMPI Java binding
[23]. They both communicate an identical number of data el-
ements, except one routine is called more times than the other.
Figures 7 and 8 show the average times in log scale for both
of these calls during the 100K and 200K runs.

SPIDAL Java achieves a flat communication cost across dif-
ferent patterns with its shared memory-based intra-node mes-
saging in contrast to the drastic variation in default OpenMPI.
Also, the improved communication is now predictable and
acts as a linear function of total points (roughly 1ms to 2ms
when data size increased from 100K to 200K). This was ex-
pected and is due to the number of communicating processes
being constant and 1 per node.

Figure 11 shows speedup for varying core counts for three
data sizes - 100K, 200K, and 400K. These were run as all
processes because threads did not result in good performance.
None of the three data sizes were small enough to have a
serial base case, so the graphs use the 48 core as the base,
which was run as 1x48 - 1 process per node times 48 nodes.
SPIDAL Java computations grow O(N2) while communica-
tions grow O(N), which intuitively suggests larger data sizes
should yield better speedup than smaller ones and the results
confirm this behavior.

Figure 12 shows similar speedup results when run on Juliet’s
36 core nodes. The number of cores used within a node is
equal to the X-axis’ value divided by 32 - the total 36 core
node count. It shows a plateau in speedup after 32 processes
per node, which is due to hitting the memory bandwidth.

Figure 10 shows DA-MDS speedup with different optimiza-
tion techniques for 200K data. Also, for each optimization,
it shows the speedup of all threads vs. all processes within a
node. The total cores used range from 48 to 3072, where SP-
IDAL Java’s 48 core performance was taken as the base case
(green line) for all other implementations. The bottom red
line is the Java and OpenMPI default implementation with
no optimizations. Java shared memory intra-node messag-
ing, zero GC, and cache optimizations were added on top of
it. Results show that Java and OpenMPI with the first two

NAS BM Class Fortran
-O3

NAS Java Java with
SPIDAL

Optimizations
CG A 0.97 1.11 s 0.81
CG B 121 138 129
CG C 337 418 353
LU W 4.97 272 8.0
LU A 32 2280 48
LU B 152 – 215
LU C 613 – 904

Table 1: NAS serial benchmark total time in seconds

PxN Total
Cores

C -O3 SPIDAL Java

24x48 1152 401 282
16x48 768 600 421
8x48 384 1260 890
1x48 48 9053 6363
1x1* 1 0.30 0.28

Table 2: DA-MDS block matrix multiplication time per
iteration. 1x1* is the serial version and mimics a single

process in 24x48.

optimizations (blue line) and all processes within a node sur-
pass all other thread variations. This is further improved with
cache optimization (SPIDAL Java - green line) and gives the
best overall performance.

Table 1 and 2 show native Fortran and C performance against
Java for a couple of NAS [17] serial benchmarks and block
matrix multiplication in DA-MDS. Note. the native NAS im-
plementations are directly obtained from the NAS benchmark
site. Table 1 also shows default NAS Java performance. Note,
the 1x1 serial pattern in Table 2 mimics the matrix sizes for 1
process in 24x48. The results suggest Java yields competitive
performance using the optimizations discussed in this paper.

6. FUTURE WORK
The current data decomposition in SPIDAL Java assumes a
process would have enough memory to contain the partial in-
put matrix and intermediate data it operates on. This sets an
upper bound on the theoretical maximum data size it could
handle, which is equal to the physical memory in a node.
However, we could improve on this with a multi-step com-
puting approach, where a computation step is split into multi-
ple computation and communication steps. This will increase
the number of communications, but will still be worthwhile
to investigate further.

7. CONCLUSION
Performance results of SPIDAL Java show it scales and per-
forms well in large HPC clusters. Also, the optimizations
to overcome performance challenges made it possible to run
SPIDAL Java applications on much larger data sets than what
was possible in the past while still achieving excellent scaling
results. The improved shared memory intra-node communi-
cation is pivotal to the gains in SPIDAL Java and it is the first
such implementation for Java to the best of our knowledge.



ACKNOWLEDGMENTS
This work was partially supported by NSF CIF21 DIBBS
1443054 and AFOSR FA9550-13-1-0225 awards. We thank
Intel for their support of the Juliet system. Also, we acknowl-
edge the support of system administrators of the Digital Sci-
ence Center (DSC) at Indiana University.

REFERENCES
1. Borg, I., and Groenen, P. Modern Multidimensional

Scaling: Theory and Applications. Springer, 2005.

2. Bruck, J., Ho, C.-T., Upfal, E., Kipnis, S., and
Weathersby, D. Efficient algorithms for all-to-all
communications in multiport message-passing systems.
IEEE Trans. Parallel Distrib. Syst. 8, 11 (Nov. 1997),
1143–1156.

3. Chai, L. High Performance and Scalable MPI
Intra-Node Communication Middleware for Multi-Core
Clusters. PhD thesis, Graduate School of The Ohio State
University, 2009.

4. Dagum, L., and Menon, R. Openmp: An
industry-standard api for shared-memory programming.
IEEE Comput. Sci. Eng. 5, 1 (Jan. 1998), 46–55.

5. Dean, J., and Ghemawat, S. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th
Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, OSDI’04, USENIX
Association (Berkeley, CA, USA, 2004), 10–10.

6. Fox, G. Robust scalable visualized clustering in vector
and non vector semi-metric spaces. Parallel Processing
Letters 23, 2 (2013).

7. Fox, G., Jha, S., Qiu, J., Ekanayake, S., and Luckow, A.
Towards a comprehensive set of big data benchmarks.
Tech. rep., 2015.

8. Fox, G., Mani, D., and Pyne, S. Parallel deterministic
annealing clustering and its application to lc-ms data
analysis. In Big Data, 2013 IEEE International
Conference on (Oct 2013), 665–673.

9. Fox, G., Qiu, J., Kamburugamuve, S., Jha, S., and
Luckow, A. Hpc-abds high performance computing
enhanced apache big data stack. In Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on (May 2015), 1057–1066.

10. Fox, G. C. Deterministic annealing and robust scalable
data mining for the data deluge. In Proceedings of the
2Nd International Workshop on Petascal Data
Analytics: Challenges and Opportunities, PDAC ’11,
ACM (New York, NY, USA, 2011), 39–40.

11. Huang, W., Santhanaraman, G., Jin, H., Gao, Q., and
Panda, D. Design of high performance mvapich2: Mpi2
over infiniband. In Cluster Computing and the Grid,
2006. CCGRID 06. Sixth IEEE International Symposium
on, vol. 1 (May 2006), 43–48.

12. Imam, S., and Sarkar, V. Habanero-java library: A java 8
framework for multicore programming. In Proceedings
of the 2014 International Conference on Principles and
Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, PPPJ ’14, ACM (New
York, NY, USA, 2014), 75–86.

13. Kamburugamuve, S., Ekanayake, S., Pathirage, M., and
Fox, G. Towards High Performance Processing of
Streaming Data in Large Data Centers.
http://dsc.soic.indiana.edu/publications/high_
performance_processing_stream.pdf, 2016. Technical
Report.

14. Klock, H., and Buhmann, J. M. Multidimensional
scaling by deterministic annealing. In Proceedings of the
First International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition,
EMMCVPR ’97, Springer-Verlag (London, UK, UK,
1997), 245–260.

15. Levenberg, K. A method for the solution of certain
non-linear problems in least squares. Quarterly Journal
of Applied Mathmatics II, 2 (1944), 164–168.

16. Li, S., Hoefler, T., and Snir, M. Numa-aware
shared-memory collective communication for mpi. In
Proceedings of the 22Nd International Symposium on
High-performance Parallel and Distributed Computing,
HPDC ’13, ACM (New York, NY, USA, 2013), 85–96.

17. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/publications/npb.html.

18. NVIDIA NCCL. https://github.com/NVIDIA/nccl.

19. OpenHFT JavaLang Project.
https://github.com/OpenHFT/Java-Lang.

20. OSU Micro-Benchmarks.
http://mvapich.cse.ohio-state.edu/benchmarks/.

21. Rose, K., Gurewwitz, E., and Fox, G. A deterministic
annealing approach to clustering. Pattern Recogn. Lett.
11, 9 (Sept. 1990), 589–594.

22. Ruan, Y., and Fox, G. A robust and scalable solution for
interpolative multidimensional scaling with weighting.
In 9th IEEE International Conference on eScience,
eScience 2013, Beijing, China, October 22-25, 2013
(2013), 61–69.

23. Vega-Gisbert, O., Roman, J. E., Groß, S., and Squyres,
J. M. Towards the availability of java bindings in open
mpi. In Proceedings of the 20th European MPI Users’
Group Meeting, EuroMPI ’13, ACM (New York, NY,
USA, 2013), 141–142.

24. White, T. Hadoop: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2009.

25. Wickramasinghe, U. S., Bronevetsky, G., Lumsdaine,
A., and Friedley, A. Hybrid mpi: A case study on the
xeon phi platform. In Proceedings of the 4th
International Workshop on Runtime and Operating
Systems for Supercomputers, ROSS ’14, ACM (New
York, NY, USA, 2014), 6:1–6:8.

26. Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker,
S., and Stoica, I. Spark: Cluster computing with working
sets. In Proceedings of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud’10, USENIX
Association (Berkeley, CA, USA, 2010), 10–10.

http://dsc.soic.indiana.edu/publications/high_performance_processing_stream.pdf
http://dsc.soic.indiana.edu/publications/high_performance_processing_stream.pdf
http://www.nas.nasa.gov/publications/npb.html
https://github.com/NVIDIA/nccl
https://github.com/OpenHFT/Java-Lang
http://mvapich.cse.ohio-state.edu/benchmarks/

	1 Introduction
	2 Related Work
	3 SPIDAL Java
	4 Performance Challenges with Java Big Data Analytics
	4.1 Intra-node Communication
	4.2 Cache and Memory Utilization
	4.3 The Cost of Java Threads
	4.4 The Overhead of Garbage Collection
	4.5 The Cost of Heap Allocated Objects

	5 Technical Evaluation
	6 Future Work
	7 Conclusion

