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for Large High-Dimensional Data Visualization
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Abstract —Technical advancements produces a huge amount of scientific data which are usually in high dimensional formats,
and it is getting more important to analyze those large-scale high-dimensional data. Dimension reduction is a well-known
approach for high-dimensional data visualization, but can be very time and memory demanding for large problems. Among
many dimension reduction methods, multidimensional scaling does not require explicit vector representation but uses pair-wise
dissimilarities of data, so that it has a broader applicability than the other algorithms which can handle only vector representation.
In this paper, we propose an efficient parallel implementation of a well-known multidimensional scaling algorithm, called SMACOF
(Scaling by MAjorizing a COmplicated Function) which is time and memory consuming with a quadratic complexity, via a Message
Passing Interface (MPI). We have achieved load balancing in the proposed parallel SMACOF implementation which results in high
efficiency. The proposed parallel SMACOF implementation shows the efficient parallel performance through the experimental
results, and it increases the computing capacity of the SMACOF algorithm to several hundreds of thousands of data via using a
32-node cluster system.

Index Terms —Multidimensional scaling, Parallelism, Distributed applications, Data visualization.

✦

1 INTRODUCTION

Due to the innovative advancements in science and
technology, the amount of data to be processed or
analyzed is rapidly growing and it is already beyond
the capacity of most commodity hardware we are us-
ing currently. To keep up with such fast development,
study for data-intensive scientific data analyses [1] has
been already emerging in recent years. It is a challenge
for various computing research communities, such as
high-performance computing, database, and machine
learning and data mining communities, to learn how
to deal with such large and high dimensional data in
this data deluged era. Unless developed and imple-
mented carefully to overcome such limits, techniques
will face soon the limits of usability. Parallelism is
not an optional technology any more but an essential
factor for various data mining algorithms, including
dimension reduction algorithms, by the result of the
enormous size of the data to be dealt by those algo-
rithms (especially since the data size keeps increas-
ing).
Visualization of high-dimensional data in low-

dimensional space is an essential tool for exploratory
data analysis, when people try to discover meaningful
information which is concealed by the inherent com-
plexity of the data, a characteristic which is mainly
dependent on the high dimensionality of the data.
That is why the dimension reduction algorithms are
highly used to do a visualization of high-dimensional
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data. Among several kinds of dimension reduction
algorithms, such as Principle Component Analysis
(PCA), Generative Topographic Mapping (GTM) [2],
[3], Self-Organizing Map (SOM) [4], Multidimensional
Scaling (MDS) [5]–[7], to name a few, we focus on the
MDS in our paper due to its wide applicability and
theoretical robustness.
The task of visualizing high-dimensional data is

getting more difficult and challenged by the huge
amount of the given data. In most data analysis with
such large and high-dimensional dataset, we have
observed that such a task is not only CPU bounded
but also memory bounded, in that any single process
or machine cannot hold the whole data in its memory
any longer. In this paper, we tackle this problem
for developing a high performance visualization for
large and high-dimensional data analysis by using
distributed resources with parallel computation. For
this purpose, we will show how we developed a well-
known MDS algorithm, which is a useful tool for data
visualization, in a distributed fashion so that one can
utilize distributed memories and be able to process
large and high dimensional datasets.
This paper is an extended version of [8], and this

paper shows a slight update of parallel implemen-
tation and more experimental analyses in detail. 1

In Section 2, we provide an overview of what the mul-
tidimensional scaling (MDS) is, and briefly introduce
a well-known MDS algorithm, named SMACOF [9],
[10] (Scaling by MAjorizing a COmplicated Function).
We explain the details of the proposed parallelized

1. An earlier version of this paper was presented at the 10th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing (CCGrid 2010), and was published in its proceedings.
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version of the SMACOF algorithm, called parallel
SMACOF, in Section 3. In the next, we show our
performance results of our parallel version of MDS
in various compute cluster settings, and we present
the results of processing up to 100,000 data points
in Section 4 followed by the related work in Section 5.
We summarize the conclusion and future works of this
paper in Section 6.

2 MULTIDIMENSIONAL SCALING (MDS)

Multidimensional scaling (MDS) [5]–[7] is a general
term that refers to techniques for constructing a map
of generally high-dimensional data into a target di-
mension (typically a low dimension) with respect
to the given pairwise proximity information. Mostly,
MDS is used to visualize given high dimensional data
or abstract data by generating a configuration of the
given data which utilizes Euclidean low-dimensional
space, i.e. two-dimension or three-dimension.
Generally, proximity information, which is repre-

sented as an N × N dissimilarity matrix (∆ = [δij ]),
where N is the number of points (objects) and δij

is the dissimilarity between point i and j, is given
for the MDS problem, and the dissimilarity matrix
(∆) should agree with the following constraints: (1)
symmetricity (δij = δji), (2) nonnegativity (δij ≥ 0),
and (3) zero diagonal elements (δii = 0).
The objective of the MDS technique is to construct

a configuration of a given high-dimensional data into
low-dimensional Euclidean space, where each dis-
tance between a pair of points in the configuration
is approximated to the corresponding dissimilarity
value as much as possible. The output of MDS algo-
rithms could be represented as an N×L configuration
matrix X , whose rows represent each data point xi

(i = 1, . . . , N ) in L-dimensional space. It is quite
straightforward to compute the Euclidean distance
between xi and xj in the configuration matrix X ,
i.e. dij(X) = ‖xi − xj‖, and we are able to evaluate
how well the given points are configured in the L-
dimensional space by using the suggested objective
functions of MDS, called STRESS [11] or SSTRESS [12].
Definitions of STRESS (1) and SSTRESS (2) are follow-
ing:

σ(X) =
∑

i<j≤N

wij(dij(X) − δij)
2 (1)

σ2(X) =
∑

i<j≤N

wij [(dij(X))2 − (δij)
2]2 (2)

where 1 ≤ i < j ≤ N and wij is a weight value, so
wij ≥ 0.
As shown in the STRESS and SSTRESS functions,

the MDS problems could be considered to be non-
linear optimization problems, which minimizes the
STRESS or the SSTRESS function in the process of

Fig. 1. An example of the data visualization of 30,000
biological sequences by an MDS algorithm, which is
colored by a clustering algorithm.

configuring an L-dimensional mapping of the high-
dimensional data.
Fig. 1 is an example of the data visualization of

30,000 biological sequence data, which is related to
a metagenomics study, by an MDS algorithm, named
SMACOF [9], [10] explained in Section 2.1. The colors
of the points in Fig. 1 represent the clusters of the
data, which is generated by a pairwise clustering
algorithm by deterministic annealing [13]. The data
visualization in Fig. 1 shows the value of the di-
mension reduction algorithms which produced lower
dimensional mapping for the given data. We can see
clearly the clusters without quantifying the quality of
the clustering methods statistically.

2.1 SMACOF and its Complexity

There are a lot of different algorithms which could
be used to solve the MDS problem, and Scaling by
MAjorizing a COmplicated Function (SMACOF) [9],
[10] is one of them. SMACOF is an iterative ma-
jorization algorithm used to solve the MDS problem
with the STRESS criterion. The iterative majorization
procedure of the SMACOF could be thought of as
an Expectation-Maximization (EM) [14] approach. Al-
though SMACOF has a tendency to find local minima
due to its hill-climbing attribute, it is still a powerful
method since the algorithm, theoretically, guarantees
a decrease in the STRESS (σ) criterion monotonically.
Instead of a mathematically detail explanation of the
SMACOF algorithm, we illustrate the SMACOF pro-
cedure in this section. For the mathematical details of
the SMACOF algorithm, please refer to [7].
Alg. 1 illustrates the SMACOF algorithm for the

MDS solution. The main procedure of the SMACOF
are its iterative matrix multiplications, called the
Guttman transform, as shown in Line 8 in Alg. 1, where
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Algorithm 1 SMACOF algorithm

1: Z ⇐ X
[0];

2: k ⇐ 0;
3: ε ⇐ small positive number;
4: MAX ⇐ maximum iteration;
5: Compute σ[0] = σ(X [0]);
6: while k = 0 or (∆σ > ε and k ≤ MAX) do
7: k ⇐ k + 1;
8: X

[k] = V
†
B(X [k−1])X [k−1]

9: Compute σ[k] = σ(X [k])
10: Z ⇐ X

[k];
11: end while
12: return Z;

V
† is the Moore-Penrose inverse [15], [16] (or pseudo-

inverse) of matrix V . The N×N matrices V and B(Z)
are defined as follows:

V = [vij ] (3)

vij =

{

−wij if i 6= j
∑

i6=j wij if i = j
(4)

B(Z) = [bij ] (5)

bij =











−wijδij/dij(Z) if i 6= j

0 if dij(Z) = 0, i 6= j

−
∑

i6=j bij if i = j

(6)

If the weights are equal to one (wij = 1) for all
pairwise dissimilarities, then V and V

† are simplified
as follows:

V = N

(

I −
ee

t

N

)

(7)

V
† =

1

N

(

I −
ee

t

N

)

(8)

where e = (1, . . . , 1)t is one vector whose length is
N . In this paper, we generate mappings based on the
equal weights weighting scheme and we use (8) for
V

†.
As in Alg. 1, the computational complexity of the

SMACOF algorithm is O(N2), since the Guttman
transform performs a multiplication of an N × N
matrix and an N × L matrix twice, typically N ≫ L
(L = 2 or 3), and the computation of the STRESS
value, B(X [k]), and D(X [k]) also take O(N2). In addi-
tion, the SMACOF algorithm requires O(N2) memory
because it needs several N ×N matrices, as in Table 1.
Due to the trends of digitization, data sizes have
increased enormously, so it is critical that we are able
to investigate large data sets. However, it is impossible
to run SMACOF for a large data set under a typical
single node computer due to the memory requirement
increases in O(N2). In order to remedy the shortage
of memory in a single node, we illustrate how to

TABLE 1
Main matrices used in SMACOF

Matrix Size Description

∆ N × N Matrix for the given pairwise dissimilar-
ity [δij ]

D(X) N × N Matrix for the pairwise Euclidean dis-
tance of mappings in target dimension
[dij ]

V N × N Matrix defined by the value vij in (3)

V
† N × N Matrix for pseudo-inverse of V

B(Z) N × N Matrix defined by the value bij in (5)

W N × N Matrix for the weight of the dissimilarity
[wij ]

X
[k] N × L Matrix for current L-dimensional con-

figuration of N data points x
[k]
i

(i =
1, . . . , N)

X
[k−1] N × L Matrix for previous L-dimensional con-

figuration of N data points x
[k−1]
i

(i =
1, . . . , N)

parallelize the SMACOF algorithm via message pass-
ing interface (MPI) for utilizing distributed-memory
cluster systems in Section 3.

3 HIGH PERFORMANCE MULTIDIMEN-
SIONAL SCALING

We have observed that processing a very large dataset
is not only a cpu-bounded but also a memory-bounded
computation, in that memory consumption is beyond
the ability of a single process or even a single machine,
and that it will take an unacceptable running time to
run a large data set even if the required memory is
available in a single machine. Thus, running machine
learning algorithms to process a large dataset, includ-
ing MDS discussed in this paper, in a distributed
fashion is crucial so that we can utilize multiple
processes and distributed resources to handle very
large data. The memory shortage problem becomes
more obvious if the running OS is 32-bit which can
handle at most 4GB virtual memory per process. To
process large data with efficiency, we have developed
a parallel version of the MDS by using a Message
Passing Interface (MPI) fashion. In the following, we
will discuss more details on how we decompose data
used by the MDS algorithm to fit in the memory
limit of a single process or machine. We will also
discuss how to implement an MDS algorithm, called
SMACOF, by using MPI primitives to get some com-
putational benefits of parallel computing.

3.1 Parallel SMACOF

Table 1 describes frequently used matrices in the
SMACOF algorithm. As shown in Table 1, the mem-
ory requirement of the SMACOF algorithm increases
quadratically as N increases. For the small dataset,
memory would not be any problem. However, it turns
out to be a critical problem when we deal with a
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large data set, such as hundreds of thousands or even
millions. For instance, if N = 10, 000, then one N ×N
matrix of 8-byte double-precision numbers consumes
800 MB of main memory, and if N = 100, 000, then
one N × N matrix uses 80 GB of main memory. To
make matters worse, the SMACOF algorithm gener-
ally needs six N ×N matrices as described in Table 1,
so at least 480 GB of memory is required to run SMA-
COF with 100,000 data points without considering
two N ×L configuration matrices in Table 1 and some
required temporary buffers.
If the weight is uniform (wij = 1, ∀i, j), we can use

only four constants for representing N × N V and
V

† matrices in order to saving memory space. We,
however, still need at least three N × N matrices, i.e.
D(X), ∆, and B(X), which requires 240 GB memory
for the above case, which is still an unfeasible amount
of memory for a typical computer. That is why we
have to implement a parallel version of SMACOFwith
MPI.
To parallelize SMACOF, it is essential to ensure load

balanced data decomposition as much as possible.
Load balance is important not only for memory distri-
bution but also for computational distribution, since
parallelization implicitly benefits computation as well
as memory distribution, due to less computing per
process. One simple approach of data decomposition
is that we assume p = n2, where p is the number
of processes and n is an integer. Though it is a
relatively less complicated decomposition than others,
one major problem of this approach is that it is a
quite strict constraint to utilize available computing
processors (or cores). In order to release that con-
straint, we decompose an N × N matrix to m × n
block decomposition, where m is the number of block
rows and n is the number of block columns, and the
only constraint of the decomposition is m × n = p,
where 1 ≤ m, n ≤ p. Thus, each process requires only
approximately 1/p of the full memory requirements
of SMACOF algorithm. Fig. 2 illustrates how we
decompose each N × N matrix with 6 processes and
m = 2, n = 3. Without a loss of generality, we assume
N%m = N%n = 0 in Fig. 2.
A process Pk, 0 ≤ k < p (sometimes, we will use

Pij for matching Mij) is assigned to one rectangular
block Mij with respect to the simple block assignment
equation in (9):

k = i × n + j (9)

where 0 ≤ i < m, 0 ≤ j < n. For N × N matrices,
such as ∆, V †, B(X [k]), and so on, each block Mij

is assigned to the corresponding process Pij , and for
X

[k] and X
[k−1] matrices, N × L matrices where

L is the target dimension, each process has a full
N ×L matrix because these matrices have a relatively
smaller size, and this results in reducing the number
of additional message passing routine calls. By scat-

M00 M01 M02

M10 M11 M12

Fig. 2. An example of an N ×N matrix decomposition
of parallel SMACOF with 6 processes and 2 × 3 block
decomposition. Dashed line represents where diago-
nal elements are.

Algorithm 2 Pseudo-code for block row and column
assignment for each process for high load balance.

Input: pNum, N, myRank
1: if N%pNum = 0 then
2: nRows = N / pNum;
3: else
4: if myRank ≥ (N%pNum) then
5: nRows = N / pNum;
6: else
7: nRows = N / pNum + 1;
8: end if
9: end if
10: return nRows;

tering decomposed blocks throughout the distributed
memory, we are now able to run SMACOF with as
huge a data set as the distributed memory will allow,
via paying the cost of message passing overheads and
a complicated implementation.
Although we assume N%m = N%n = 0 in Fig. 2,

there is always the possibility that N%m 6= 0 or
N%n 6= 0. In order to achieve a high load balance
under the N%m 6= 0 or N%n 6= 0 cases, we use a
simple modular operation to allocate blocks to each
process with at most ONE row or column difference
between them. The block assignment algorithm is
illustrated in Alg. 2.
At the iteration k in Alg. 1, the application should

acquire up-to-date information of the following matri-
ces: ∆, V †, B(X [k−1]), X [k−1], and σ[k], to implement
Line 8 and Line 9 in Alg. 1. One good feature of
the SMACOF algorithm is that some of matrices are
invariable, i.e. ∆ and V

†, through the iteration. On
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x =

M
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M10 M11 M12
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Fig. 3. Parallel matrix multiplication of N × N matrix
and N ×L matrix based on the decomposition of Fig. 2

the other hand, B(X [k−1]) and STRESS (σ[k]) value
keep changing at each iteration, since X

[k−1] and X
[k]

are changed in every iteration. In addition, in order
to update B(X [k−1]) and the STRESS (σ[k]) value in
each iteration, we have to take the N × N matrices’
information into account, so that related processes
should communicate via MPI primitives to obtain the
necessary information. Therefore, it is necessary to de-
sign message passing schemes to do parallelization for
calculating the B(X [k−1]) and STRESS (σ[k]) values as
well as the parallel matrix multiplication in Line 8 in
Alg. 1.
Computing the STRESS (Eq. (10)) can be imple-

mented simply by a partial error sum of Dij and ∆ij

followed by an MPI_Allreduce:

σ(X) =
∑

i<j≤N

wij(dij(X) − δij)
2 (10)

where 1 ≤ i < j ≤ N and wij is a weight value, so
wij ≥ 0. On the other hand, calculation of B(X [k−1]),
as shown at Eq. (5), and parallel matrix multiplication
are not simple, especially for the case of m 6= n.
Fig. 3 depicts how parallel matrix multiplication

applies between an N × N matrix M and an N × L
matrix X . Parallel matrix multiplication for SMACOF
algorithm is implemented in a three-step process of
message communication via MPI primitives. Block
matrix multiplication of Fig. 3 for acquiring Ci (i =
0, 1) can be written as follows:

Ci =
∑

0≤j<3

Mij · Xj . (11)

Since Mij of N × N matrix is accessed only by the
corresponding process Pij , computing Mij · Xj part
is done by Pij . Each computed sub-matrix by Pij ,
which is N

2 ×L matrix for Fig. 3, is sent to the process
assigned Mi0, and the process assigned Mi0, say Pi0,
sums the received sub-matrices to generate Ci by one
collective MPI primitive call, such as MPI_Reduce
with the Addition operation. Then Pi0 sends Ci

block to P00 by one collective MPI call, named

Algorithm 3 Pseudo-code for distributed parallel ma-
trix multiplication in parallel SMACOF algorithm

Input: M ij , X
1: /* m = Row Blocks, n = Column Blocks */
2: /* i = Rank-In-Row, j = Rank-In-Column */
3: /* rowCommi : Row Communicator of row i,

rowCommi ∈ Pi0, Pi1, Pi2, . . . , Pi(n−1) */
4: /* colComm0: Column Communicator of col-

umn 0, colComm0 ∈ Pi0 where 0 ≤ i < n */
5: T ij = M ij · Xj

6: if j 6= 0 then
7: /* Assume MPI_Reduce is defined as

MPI_Reduce(data, operation, root) */
8: Send T ij to Pi0 by calling MPI_Reduce (T ij ,

Addition, Pi0).
9: else
10: Generate Ci = MPI_Reduce (T i0, Addition,

Pi0).
11: end if

12: if i == 0 and j == 0 then
13: /* Assume MPI_Gather is defined as

MPI_Gather(data, root) */
14: Gather Ci where i = 0, . . . , m − 1 by calling

MPI_Gather (C0, P00)
15: Combine C with Ci where 0 ≤ i < m
16: Broadcast C to all processes
17: else if j == 0 then
18: Send Ci to P00 by calling MPI_Gather(Ci, P00)
19: Receive C Broadcasted by P00

20: else
21: Receive C Broadcasted by P00

22: end if

MPI_Gather, as well. Note that we are able to use
MPI_Reduce and MPI_Gather instead of MPI_Send
and MPI_Receive by establishing row- and column-
communicators for each process Pij . MPI_Reduce is
called under an established row-communicator, say
rowCommi which is constructed by Pij where 0 ≤ j <
n, and MPI_Gather is called under defined column-
communicator of Pi0, say colComm0 whose members
are Pi0 where 0 ≤ i < m. Finally, P00 combines the
gathered sub-matrix blocks Ci, where 0 ≤ i < m, to
construct N × L matrix C, and broadcasts it to all
other processes by MPI_Broadcast call.

Each arrow in Fig. 3 represents message passing
direction. Thin dashed arrow lines describes message
passing of N

2 ×L sub-matrices by either MPI_Reduce
or MPI_Gather, and message passing of matrix C

by MPI_Broadcast is represented by thick dashed
arrow lines. The pseudo code for parallel matrix
multiplication in SMACOF algorithm is in Alg. 3

For the purpose of computing B(X [k−1]) in paral-
lel, whose elements bij is defined in (6), the message
passing mechanism in Fig. 4 should be applied under
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B00 B01 B02

B11 B12B10

Fig. 4. Calculation of B(X [k−1]) matrix with regard to
the decomposition of Fig. 2.

a 2 × 3 block decomposition, as in Fig. 2. Since
bss = −

∑

s6=j bsj , a process Pij assigned to Bij should
communicate a vector sij , whose element is the sum
of corresponding rows, with processes assigned sub-
matrix of the same block-row Pik , where k = 0, . . . , n−
1, unless the number of column blocks is 1 (n == 1).
In Fig. 4, the diagonal dashed line indicates the di-
agonal elements, and the green colored blocks are
diagonal blocks for each block-row. Note that the
definition of diagonal blocks is a block which contains
at least one diagonal element of the matrix B(X [k]).
Also, dashed arrow lines illustrate the message pass-
ing direction. The same as in parallel matrix multipli-
cation, we use a collective call, i.e. MPI_Allreduce
of row-communicator with Addition operation, to
calculate row sums for the diagonal values of B

instead of using pairwise communicate routines, such
as MPI_Send and MPI_Receive. Alg. 4 shows the
pseudo-code of computing sub-block Bij in process
Pij with MPI primitives.

4 PERFORMANCE ANALYSIS OF THE PAR-
ALLEL SMACOF
For the performance analysis of parallel SMACOF
discussed in this paper, we have applied our parallel
SMACOF algorithm for high-dimensional data visual-
ization in low-dimension to the dataset obtained from
the PubChem database2, which is an NIH-funded
repository for over 60 million chemical molecules.
It provides their chemical structure fingerprints and
biological activities, for the purpose of chemical in-
formation mining and exploration. Among 60 Million
PubChem dataset, in this paper we have used 100,000

2. PubChem,http://pubchem.ncbi.nlm.nih.gov/

Algorithm 4 Pseudo-code for calculating assigned
sub-matrix Bij defined in (6) for distributed-memory
decomposition in parallel SMACOF algorithm

Input: M ij , X
1: /* m = Row Blocks, n = Column Blocks */
2: /* i = Rank-In-Row, j = Rank-In-Column */
3: /* We assume that sub-matrix Bij is assigned to

process Pij */
4: Find diagonal blocks in the same row (row i)
5: if Bij /∈ diagonal blocks then
6: compute elements bst of Bij

7: Send a vector sij , whose element is the sum
of corresponding rows, to Pik, where Bik ∈
diagonal blocks. For simple and efficient im-
plementation, we use MPI_Allreduce call for
this.

8: else
9: compute elements bst of Bij , where s 6= t
10: Receive a vector sik, whose element is the sum

of corresponding rows, where k = 1, . . . , n
from other processes in the same block-row,
and sum them to compute a row-sum vector
by MPI_Allreduce call.

11: Compute bss elements based on the row sums.
12: end if

randomly selected chemical subsets and all of them
have a 166-long binary value as a fingerprint, which
corresponds to the properties of the chemical com-
pounds data.
In the following, we will show the performance

results of our parallel SMACOF implementation with
respect to 6,400, 12,800, 50,000 and 100,000 data points
having 166 dimensions, represented as 6400, 12800,
50K, and 100K datasets, respectively.
In addition to the PubChem dataset, we also use

a biological sequence dataset for our performance
test. The biological sequence dataset contains 30,000
biological sequence data with respect to the metage-
nomics study based on pairwise distance matrix. Us-
ing these data as inputs, we have performed our
experiments on our two decent compute clusters as
summarized in Table 2.
Since we focus on analyzing the parallel perfor-

mance of the parallel SMACOF implementation but
not mapping quality in this paper, every experiment
in this paper is finished after 100 iterations without
regard to the stop condition. In this way, we can
measure parallel runtime performance with the same
number of iterations for each data with different
experimental environments.

4.1 Performance Analysis of the Block Decompo-
sition

Figure 5-(a) and (c) show the overall elapsed time
comparisons for the 6400 and 12800 PubChem data
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TABLE 2
Cluster systems used for the performance analysis

Features Cluster-I Cluster-II

# Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

# CPU / # Cores per node 4 / 16 4 / 24

Total Cores 128 768

L1 (data) Cache per core 64 KB 32 KB

L2 Cache per core 512 KB 1.5 MB

Memory per node 16 GB 48 GB

Network Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit

Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit
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Fig. 5. Overall Runtime and partial runtime of parallel SMACOF for 6400 and 12800 PubChem data with 32
cores in Cluster-I and Cluster-II w.r.t. data decomposition of N × N matrices.

sets with respect to how to decompose the given
N×N matrices with 32 cores in Cluster-I and Cluster-

II. Also, Fig. 5-(b) and (d) illustrate the partial runtime
related to the calculation of B(X) and the calculation
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of D(X) of 6400 and 12800 PubChem data sets. An
interesting characteristic of Fig. 5-(a) and (c) is that
matrix data decomposition does not much affect the
execution runtime for a small data set (here 6400
points, in Fig. 5-(a)), but for a large data set (here
12800 points, in Fig. 5-(c)), row-based decomposition,
such as p × 1, is severely worse in performance
compared to other data decompositions. Fig. 5-(c)
and (d) describe that the overall performance with
respect to data decomposition is highly connected to
the calculation of the distance matrix runtime.
Also, Fig. 6-(a) and (c) show the overall elapsed

time comparisons for the 6400 and 12800 PubChem
data sets with respect to how to decompose the given
N×N matrices with 64 cores in Cluster-I and Cluster-
II. Fig. 6-(b) and (d) illustrate the partial runtimes
related to the calculation of B(X) and the calculation
of D(X) of 6400 and 12800 PubChem data sets, the
same as Fig. 5. Similar to Fig. 5, the data decompo-
sition does not make a substantial difference in the
overall runtime of the parallel SMACOF with a small
data set. However, row-based decomposition, in this
case a 64× 1 block decomposition, takes much longer
for running time than the other decompositions, when
we run the parallel SMACOF with the 12800 points
data set. If we compare Fig. 6-(c) with Fig. 6-(d),
we can easily find that the overall performance with
respect to data decomposition is mostly affected by
the calculation of the distance matrix runtime for the
64 core experiment.
The performance of overall elapsed time and partial

runtimes of the 6400 and 12800 Pubchem data sets
based on different decompositions of the given N ×N
matrices with 128 cores are experimented in only the
Cluster-II system in Table 2. Those performance plots
are shown in Fig. 7. As shown in Fig. 5 and Fig. 6,
the data decomposition does not have a considerable
impact on the performance of the parallel SMACOF
with a small data set but it does have a significant
influence on that performance with a larger data set.
The main reason for the above data decomposition

experimental results is the cache line effect that af-
fects cache reusability, and generally balanced block
decomposition shows better cache reusability so that
it occurs with less cache misses than the skewed de-
compositions [17], [18]. In the parallel implementation
of the SMACOF algorithm, two main components
actually access data multiple times so that will be
affected by cache reusability. One is the [N×N ]·[N×D]
matrix multiplication part. Since we implement the
matrix multiplication part based on the block matrix
multiplication method with a 64 × 64 block for the
purpose of better cache utilization, the runtime of
matrix multiplication parts is almost the same without
regard to data decomposition.
However, the distance matrix updating part is a

tricky part. Since each entry of the distance matrix is
accessed only once whenever the matrix is updated,

it is not easy to think about the entries reusability.
Although each entry of the distance matrix is accessed
only once per each update, the new mapping points
are accessed multiple times for calculation of the
distance matrix. In addition, we update the distance
matrix row-based direction for better locality. Thus,
it is better for the number of columns to be small
enough so that the coordinate values of each accessed
mapping points for updating the assigned distance
sub-matrix remain in the cache memory as much as
necessary.
Fig. 5-(b),(d) through Fig. 7-(b),(d) illustrate the

cache reusability effect on 6400 points data and 12800
points data. For instance, for the row-based decom-
position case, p × 1 decomposition, each process is
assigned an N/p×N block, i.e. 100× 6400 data block
for the cases of N = 6400 and p = 64. When N = 6400,
the runtime of the distance matrix calculation part
does not make much difference with respect to the
data decomposition. We might consider that, if the
number of columns of the assigned block is less than
or equal to 6400, then cache utilization is no more
harmful for the performance of the distance matrix
calculation part of the parallel SMACOF. On the other
hand, when N = 12800 which is doubled, the run-
time of the distance matrix calculation part of row-
based decomposition (p × 1), and which is assigned
a 12800/p × 12800 data block for each process, is
much worse than the other data decomposition cases,
as in sub-figure (d) of Fig. 5 - Fig. 7. For the other
decomposition cases, such as p/2 × 2 through 1 × p
data decomposition cases, the number of columns of
the assigned block is less than or equal to 6400, when
N = 12800, and the runtime performance of distance
matrix calculation part of those cases are similar to
each other and much less than the row-based data
decomposition.
We have also investigated the runtime of the B(X)

calculation, since the message passing mechanism for
computing B(X) is different based on data decom-
position. Since the diagonal elements of B(X) are the
negative sum of elements in the corresponding rows,
it is required to call MPI_Allreduce or MPI_Reduce
MPI APIs for each row-communicator. Thus, the less
number of column blocks means faster (or less MPI
overhead) processes in computing B(X), and even
the row-based decomposition case does not need to
call the MPI API for calculating B(X). The effect of
the different message passing mechanisms of B(X) in
regard to data decomposition is shown in sub-figure
(b) and (d) of Fig. 5 through Fig. 7.
In terms of a system comparison between the two

test systems in Table 2, Cluster-II performs better than
Cluster-I in Fig. 5 through Fig. 7, although the clock
speeds of the cores are similar to each other. There are
two different factors between Cluster-I and Cluster-
II in Table 2. We believe that those factors result in
Cluster-II outperforming Cluster-I, i.e. L2 cache size
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Fig. 6. Overall Runtime and partial runtime of parallel SMACOF for 6400 and 12800 PubChem data with 64
cores in Cluster-I and Cluster-II w.r.t. data decomposition of N × N matrices.

and Networks. The L2 cache size per core is 3 times
bigger in Cluster-II than in Cluster-I, and Cluster-II
is connected by 20Gbps Infiniband but Cluster-I is
connected via 1Gbps Ethernet. Since SMACOF with
large data is a memory-bound application, it is natural
that the bigger cache size results in the faster running
time.

4.2 Performance Analysis of the Efficiency and
Scalability

In addition to data decomposition experiments, we
measured the parallel scalability of parallel SMACOF
in terms of the number of processes p. We investigated
the scalability of parallel SMACOF by running with
different number of processes, e.g. p = 64, 128, 192,
and 256. On the basis of the above data decomposition

experimental results, the balanced decomposition has
been applied to this process scaling experiments. As p
increases, the elapsed time should decrease, but linear
performance improvement could not be achieved due
to the parallel overhead.
We make use of the parallel efficiency value with

respect to the number of parallel units for the purpose
of measuriing scalability. Eq. (12) and Eq. (13) are the
equations of overhead and efficiency calculations:

f =
pT (p)− T (1)

T (1)
(12)

ε =
1

1 + f
=

T (1)

pT (p)
(13)

where p is the number of parallel units, T (p) is the
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Fig. 7. Overall Runtime and partial runtime of parallel SMACOF for 6400 and 12800 PubChem data with 128
cores in Cluster-II w.r.t. data decomposition of N × N matrices.

running time with p parallel units, and T (1) is the
sequential running time. In practice, Eq. (12) and
Eq. (13) can be replaced with Eq. (14) and Eq. (15)
as follows:

f =
αT (p1) − T (p2)

T (p2)
(14)

ε =
1

1 + f
=

T (p2)

αT (p1)
(15)

where α = p1/p2 and p2 is the smallest number of
used cores for the experiment, so α ≥ 1. We use
Eq. (14) and Eq. (15) in order to calculate the overhead
and corresponding efficiency, since it is impossible to
run in a single machine for 50k and 100k data sets.
Note that we used 16 computing nodes in Cluster-II

(total memory size in 16 computing nodes is 768 GB)
to perform the scaling experiment with a large data
set, i.e. 50k and 100k PubChem data, since the SMA-
COF algorithm requires 480 GB memory for dealing
with 100k data points, as we disscussed in Section 3.1,
and Cluster-II can only perform that with more than
10 nodes.

The elapsed time of the parallel SMACOF with two
large data sets, 50k and 100k, is shown in Fig. 8-(a),
and the corresponding relative efficiency of Fig. 8-(a)
is shown in Fig. 8-(b). Note that both coordinates are
log-scaled, in Fig. 8-(a). As shown in Fig. 8-(a), the par-
allel SMACOF achieved performance improvement as
the number of parallel units (p) increases. However,
the performance enhancement ratio (a.k.a. efficiency)
is reduced as p increases, which is demonstrated
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in Fig. 8-(b). A reason for reducing efficiency is that
the ratio of the message passing overhead over the
assigned computation per each process is increased
due to more message overhead and less computing
portion per process as p increases, as shown in Table 3.
Another reason for efficiency decrease is the memory
bandwidth effect, since we used a fixed number of
nodes (16 nodes) for the experiments with the large
data sets, due to large memory requirement for large
data sets, and have increased the used number of
cores per node to increase the parallel units.
Table 3 is the result of the runtime analysis of the

parallel matrix multiplication part of the proposed
parallel SMACOF implementation which detached
the time of the pure block matrix multiplication com-
putation part and the time of the MPI message pass-
ing overhead part for parallel matrix multiplication,
from the overall runtime of the parallel matrix mul-
tiplication part of the parallel SMACOF implementa-
tion. Note that #Procs, tMatMult, tMM Computing,
and tMM Overhead represent the number of pro-
cesses (parallel units), the overall runtime of the par-
allel matrix multiplication part, the time of the pure
block matrix multiplication computation part, and the
time of the MPI message passing overhead part for
parallel matrix multiplication, respectively.
Theoretically, the tMM Computing portion should

be negatively linear with respect to the number of par-
allel units, if the number of points is the same and the
load balance is achieved. Also, the tMM Overhead
portion should be increased as the number of parallel
units is increased, if the number of points is the same.

More specifically, if MPI_Bcast is implemented as
one of the classical algorithms, such as a binomial tree
or a binary tree algorithm [19], in MPI.NET library,
then the tMM Overhead portion will follow some-
what O(⌈lg p⌉) with respect to the number of parallel
units (p), since the MPI_Bcast routine in Alg. 3 could
be the most time consuming MPI method among the
MPI routines of parallel matrix multiplication due
in part to the large message size and the maximum
number of communication participants.
Fig. 9 illustrates the efficiency (calculated by

Eq. (15)) of tMatMult and tMM Computing in Ta-
ble 3 with respect to the number of processes. As
shown in Fig. 9, the pure block matrix multiplication
part shows very high efficiency, which is almost ONE.
In other words, the pure block matrix multiplication
part of the parallel SMACOF implementation achieves
linear speed-up as we expected. Based on the effi-
ciency measurement of tMM Computing in Fig. 9, we
could conclude that the proposed parallel SMACOF
implementation achieved good enough load balance
and the major component of the decrease of the
efficiency is the compulsary MPI overhead for imple-
menting parallelism. By contrast, the efficiency of the
overall runtime of the parallel matrix multiplication
part is decreased to around 0.5, as we expected based
on Table 3.
We also compare the measured MPI overhead of the

parallel matrix multiplication (tMM Overhead) in Ta-
ble 3 with the estimation of the MPI overhead with re-
spect to the number of processes. The MPI overhead is
estimated based on the assumption that MPI_Bcast
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TABLE 3
Runtime Analysis of Parallel Matrix Multiplication part of parallel SMACOF with 50k data set in Cluster-II

#Procs tMatMult tMM Computing tMM Overhead

64 668.8939 552.5348 115.9847

128 420.828 276.1851 144.2233

192 366.1 186.815 179.0401

256 328.2386 140.1671 187.8749
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Fig. 9. Efficiency of tMatMult and tMM Computing
in Table 3 with respect to the number of processes.

is implemented by a binomial tree or a binary tree
algorithm, so that the runtime of MPI_Bcast is in
O(⌈lg(p)⌉) with respect to the number of parallel units
(p). The result is described in Fig. 10. In Fig. 10, it
is shown that the measured MPI overhead of the
parallel matrix multiplication part has a similar shape
with estimation overhead. We could conclude that
the measured MPI overhead of the parallel matrix
multiplication part takes the expected amount of time.

In addition to the experiment with pubChem data,
which is represented by a vector format, we also
experimented on the proposed algorithm with other
real data sets, which contains 30,000 biological se-
quence data with respect to the metagenomics study
(hereafter MC30000 data set). Although it is hard
to present a biological sequence in a feature vector,
researchers can calculate a dissimilarity value between
two different sequences by using some pairwise se-
quence alignment algorithms, like Smith Waterman
- Gotoh (SW-G) algorithm [20], [21] which we used
here.

Fig. 11 shows: (a) the runtime; and (b) the effi-
ciency of the parallel SMACOF for the MC30000 data
in Cluster-I and Cluster-II in terms of the number
of processes. We tested it with 32, 64, 96, and 128
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Fig. 10. MPI Overhead of parallel matrix multiplication
(tMM Overhead) in Table 3 and the rough Estimation
of the MPI overhead with respect to the number of
processes.

processes for Cluster-I, and experimented on it with
more processes, i.e. 160, 192, 224, and 256 processes,
for Cluster-II. Both (a) and (b) sub-figure of Fig. 11
show similar tendencies to the corresponding sub-
figure of Fig. 8. In contrast to the experiments of large
pubchem data sets, we fixed the number of cores used
per node (8 cores per node) in the experiments of
MC30000 data set, and increased the number of nodes
for the increase of paralle units. Therefore, we may
assume that there is no memory bandwidth effect for
the decrease of the efficiency related to Fig. 11.

5 RELATED WORK

As parallel computing is getting important due to
the broad distribution of multicore chips and the
large-scale datasets, some parallel efforts have been
proposed in MDS community. MDS solution by ap-
plying Genetic Algorithm (GA) [22] (hereafter called
GA-MDS) was proposed by Mathar et al. [23], and
Varoneckas et. al. [24] applied parallel computing to
GA-MDS. In parallel GA-MDS [24], the parallelism is
used for the improving the efficiency and the accuracy
of GA which is applied to solving MDS by using
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Fig. 11. Performance of parallel SMACOF for MC 30000 data in Cluster-I and Cluster-II w.r.t. the number of
processes, i.e. 32, 64, 96, and 128 processes for Cluster-I and Cluster-II, and extended to 160, 192, 224, and 256
processes for Cluster-II. (a) shows runtime and efficiency is shown at (b). We choose balanced decomposition
as much as possible, i.e. 8 × 8 for 64 processes. Note that both x and y axes are log-scaled for (a).

multiple populations as proposed in [25], but not for
dealing with larger data sets in MDS. Pawliczek et.
al. [26] proposed a parallel implementation of MDS
method for the purpose of visualizing large datasets
of multidimensional data. Instead of using traditional
approaches, which utilize minimization methods to
find an optimal (or local optimal) mapping of the
STRESS function, they proposed a heuristic method
based on particle dynamics in [26]. In addition to the
above parallel efforts on MDS methods, a threading-
based shared memory parallel implementation of
SMACOF algorithm was also proposed in [18].

6 CONCLUSION AND FUTURE WORK

In this paper, we have described a well-known di-
mension reduction algorithm, called MDS (SMACOF),
and we have discussed how to utilize the algorithm
for a huge data set. The main issues involved in
dealing with a large amount of data points are not
only lots of computations but also huge memory
requirements. Parallelization via the traditional MPI
approach in order to utilize the distributed memory
computing system, which can support much more
computing power and extend the accessible memory
size, is proposed as a solution for the amendment of
the computation and memory shortage so as to be
able to treat large data with SMACOF.
As we discussed in the performance analysis, the

data decomposition structure is important to maxi-
mize the performance of the parallelized algorithm
since it affects message passing routines and the

message passing overhead as well as the cache-line
effect. We look at overall elapsed time of the parallel
SMACOF based on data decomposition as well as
sub-routine runtimes, such as calculation of BofZ
matrix (B(X)) and distance matrix (D(X)). The cache
reusability affects the performance of updating the
distance matrix of the newly generated mappings
with respect to the data decomposition if we run a
large data set. From the above analysis, balanced data
decomposition (m×n) is generally better than skewed
decomposition (p × 1 or 1 × p) for the parallel MDS
algorithm.
In addition to data decomposition analysis, we also

analyzed the efficiency and the scalability of the par-
allel SMACOF. Although the efficiency of the parallel
SMACOF is decreased by increasing the number of
processes due to the increase of overhead and the de-
crease of pure parallel computing time, the efficiency
is still good enough for a certain degree of parallelism.
Based on the fact that the tMM Computing in Ta-
ble 3 achieved almost linear speedup as in Fig. 9, it
is shown that the parallel SMACOF implementation
deals with the load balance issue very well and the
inevitable message passing overhead for parallelism
is the main factor of the reduction of the efficiency.
There are important problems for which the data

set sizes are too large for even our parallel algorithms
to be practical. Because of this, we developed inter-
polation approaches for the MDS algorithm, which
could be synergied by the proposed parallel SMA-
COF implementation. Here we run normal MDS (or
parallel MDS) with a (random) subset of the dataset
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(called sample data), and the dimension reduction of
the remaining points are interpolated based on the
pre-mapped mapping position of the sample data.
The detail of the interpolation approach is reported
in [27].

In [1], [28], we investigated the overhead of pure
MPI and hybrid (MPI-Threading) model with mul-
ticore cluster systems. In [1], pure MPI outperforms
hybrid model for the application with relatively fast
message passing synchronization overhead. However,
for the case of high MPI synchronization time, hy-
brid model outperforms pure MPI model with high
parallelism. Since the MPI overhead is grown as the
number of processes is increased in Fig. 10, it is worth
to investigate hybrid model SMACOF.
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[19] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. Fagg, E. Gabriel,
and J. Dongarra, “Performance analysis of mpi collective
operations,” Cluster Computing, vol. 10, no. 2, pp. 127–143,
2007.

[20] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of molecular biology, vol. 147,
no. 1, pp. 195–197, 1981.

[21] O. Gotoh, “An improved algorithm for matching biological
sequences,” Journal of Molecular Biology, vol. 162, no. 3, pp.
705–708, 1982.

[22] D. Goldberg, Genetic algorithms in search, optimization, and
machine learning. Addison-wesley, 1989.
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