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lejlitff)imance and Algorithm Research, Support Vector Machines is one of the widely used lightweight machine learning
Lawrence Berkeley National Laboratory, algorithm which can do efficient training on smaller data sets. In this research, we
California, United States focused on highly scaleable gradient descent based approach. In providing a scal-
Correspondence able solution, we propose to use high-performance computing model and big data
*Vibhatha Abeykoon. School of Informatics, computing model (dataflow). Designing this algorithm with MPI like programming
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vlabeyko@iu.edu model designed by us with math kernels and analyze how C++ and Java program-

model has been widely used. In this paper, our, objective is to enhance a training

ming languages can be used to design optimized algorithms. We also discuss the
overheads in the applications and optimization techniques used to improve the per-
formance. In this research, our objective is to build this algorithm with the support
of multiple dataflow design mechanisms involving iterative and ensemble training
models. For this purpose, we use Twister2, a big data tool kit which provides the
basic infrastructure to address this kind of problems. And also we compare the
performance of Twister2-APIs with Spark RDD and MPI. In our research, we show-
case how the high-performance computing stack and big data programming stack
can be used to optimize the training of SGD-based SVM algorithm in distributed

environments.
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1 | INTRODUCTION

Support vector machines are one of the most used classification algorithms in the machine learning domain. In designing a highly
scale-able algorithm, the most important thing is to identify the bottlenecks in the existing implementations. The batch size is
a very sensitive number which affects the accuracy and the execution time of the algorithm. For various use cases, there is a
requirement of designing appropriate programming models to support these requirements. In an early research', we thoroughly
analyzed how the batch size can affect the performance and accuracy of the application. In this research, our main purpose is
to optimize our existing model and scale the training process on a much higher scale in a cluster. In order to achieve higher
performance at the process level, we also consider the usage of math kernels especially considering BLAS level optimization. In
application development for machine learning, another important concept is to consider the nature of application development
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based on programming languages. In this research, we analyze how C++ and Java programming languages can be used to
design optimized applications. Performance improvement under optimized library usage and default compiler optimization are
discussed in this paper. In terms of data, there can be streaming data and already existing batch data. In terms of programming
models, high-performance programming model and dataflow programming models are used by most of the researchers.

For batch data, high-performance computing model has been used over a couple of decades with great success. But the appli-
cation development overhead involved with big data processing and data pipeline design needs to be handled with effective
solutions. In order to do effective computations each of these data types, dataflow methods have to be used. In the high-
performance computing world, MPIZ programming model is the most prominent methods adopted in solving computationally
intensive problems on large datasets. In Dataflow community, Hadoop™,#, Apache Spark®, Apache Flink®, Apache StormZ,
Twitter Heron® and Google Dataflow? are prominent tools. The dataflow programming models also have different types of
abstractions. The low-level dataflow programming model involves designing a task graph and designing the full dataflow model
using basic building blocks. This model is very flexible and easy to add optimization. But the programming model abstraction is
important in designing better design patters for the ease in designing complex models. Providing all these programming abstrac-
tions along with high-performance model compatibility is vital in designing scientific applications. Twister2'%is such a big data
tool kit which allows designing applications supporting both HPC and dataflow model applications. Twister2 implicitly sup-
ports MPI applications to run within its programming model. Aforementioned communication level APIs, task-level APIs and
higher-level data abstraction APIs are available in Twister2. In this paper, first, we discuss how the SGD-based SVM algorithm
can be scaled in a single node and multiple nodes with basic MPI programming models. We design these models on Java and
C++ programming languages. On top of these models, we try to optimize the process level performance by using BLAS level
operations on vector vs vector dot products and vector vs scalar products. In parallel to this, we also observe how each language
is behaving with this optimization to provide optimum performance. In addition to this, we also analyze how ensemble model
SGD-based SVM can be implemented in Twister2, Spark and MPI and compare how each framework provides optimization.

2 | RELATED WORK

In the machine learning domain, Support Vector Machines (SVM) by Cortes and Vapnik™! can be considered as the groundwork
done on developing this classification algorithm. SVM is one of the lightweight algorithms in machine learning domain for
supervised learning-based classification problems. Inspired by this work, Libsvm''? one of the initial work done on developing a
complete library on providing a wide range of programming tools to do SVM based classifications for multi-class classifications.
It also supports multiple kernels and multiple optimization algorithms. One of the most important works done on optimizing the
sequential SVM algorithm is the Sequential Minimal Optimization-based SVM by Platt'3. This is one of the prominent sequential
optimization done. Followed by this work, simplified versions of SMO"# has also been widely used to develop a lightweight
version of this algorithm. But the main issue with the simplified model is the lesser accuracy. In improving performance by means
of sequential optimization, DC-SVM> a divide and conquer based sequential model was developed with K-Means clustering
involved. Sequential level optimization can provide performance improvement to a certain level. When the data size is increasing,
adistributed version of this algorithm is vital to provide the required performance. PSVM19,is one of the prominent work done
on a parallel version of SVM algorithm. But in this approach, the traditional Lagrangian multiplier based optimization is not used,
but a matrix-based decomposition method is used to do factorization to find the solution to the optimization problem. SMO based
parallel applications have also been developed by Keerthi et al'®. In the progression of SVM optimization, stochastic gradient
descent based approach is heavily discussed in Pegasos!®. Using an adaptive learning rate to provide an efficient training model
is discussed by solving the optimization problem using stochastic gradient descent (SGD) based approach. For distributed SVM
with SGD-based approach, P-PackSVM“Y and parallel stochastic gradient descent! can be recognized as prominent research
work done to influence optimized distributed models. In addition to that fast feature extraction based SVM models have also
been developed to provide efficient training to SVM algorithm2, In a distributed application, the main goal is to make sure
the communication overhead caused by model synchronization is lesser compared to the performance gain compared by the
division of computation load. Distributed application development to solve this problem can be done in multiple ways. MPI*
model is the prominent solution when the problem needs to be solved by means of adopting high-performance computing. In
application development with MPI, collective communications like reduce, allreduce, gather, allgather, broadcast and scatter
can be used to synchronize models in a distributed environment. MPI programming model supports distributed data and does
a process level performance improvement. In addition to this, it is vital to improving performance within a process. In order to
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obtain performance boost within a process, BLAS?23,2425 26/ 27 1eve] operators are vital to do vector-based calculations in an
efficient manner. In improving SMO-based SVM, BLAS operations have been used in previous research as well as?®. On the
other hand, it is very important to see how compiler level optimization involves providing performance improvement.

Java-related JIT(Just-In-Time)? is a runtime performance improving compiler. In C++ similarly, compile-time optimiza-
tion is done using O3, O2 and OFast level optimization“Y. In big data related frameworks like Apache Spark®, Apache Flink®,
Google Dataflow”, Apache Storm”,*!, Heron® dataflow based solutions has been provided to solve big data-related problems in
both streaming and batch mode datasets. In each of these frameworks, a well-defined data pipeline is provided for the applica-
tion users to design big data applications on distributed environments. All these frameworks provide big data-oriented solutions.
Twister232,10 3 big data tool kit designed to provide a variety of functionality to both HPC and Big Data world, provides a set of
programming abstractions to design distributed applications. Twister2: Net®? an optimized communication library contains an
MPI-like communication style with MPI-like communication and TCP-based communication. Application development abstrac-
tions are important to design applications with efficiency. TSet*# API in Twister2 is another big data programming abstraction
to develop optimized applications similar to Spark RDD format. SGD-based SVM is a very flexible model that can be developed
in both the HPC model and dataflow model with less development complexity.

3 | METHODOLOGY

In this research, we develop our scope of analysis in the following way. The methodology adopted in this research is divided
into two main components. The first one is the HPC model-based performance analysis with BLAS routines and without BLAS
routines. The other model is to conduct experiments on distributed dataflow model on Big Data stack. In the HPC model, we
discuss how MPI based parallel processing improves performance. Then we observe how within process performance can be
improved with BLAS operations. For the distributed applications, we consider an ensemble model of the distributed algorithm.
In this, we use the same core algorithm but we only focus on model design and scale-up. For this, we use Spark-RDD, Twister2-
Task and Twister2-TSet frameworks to develop the application. On top of this, we also design the same ensemble model with
MPI designed with OpenMPI 3.0.0 and compare HPC vs Dataflow model performance on a distributed scale.

3.1 | Anatomy of the Algorithm

The core optimizer iterates through the data points and does the optimization to calculate the weights. The distributed algorithm
shows how the iterative training is done for a considered amount of iterations (or iterations until convergence).

S = {x;,y;}
where i = [1,2,3,...,n], x; € R?, y, € [+1,—1] (1)
ae (1) 2
g(w; (x,y)) = max(0, I — y(w]|x)) 3)
J' = min %wz + nyzes g(w; (x,y)) @

The sample space of the data distribution is defined in[I] Learning rate a range is defined in[2] In the SGD approach, minimize
the objective function in (@) with the constraint on the optimization defined in (3).

3.2 | HPC Model Based Performance Analysis

In designing an HPC model, the tool we selected is MPI with OpenMPI 3.0.0 standard. In the first step, we design a methodology
to test the performance of Java and C++ applications developed to solve the SVM optimization problem. The compiler level
optimization-based performance tuning is the first aspect that is evaluated on MPI based C++ and Java applications. Along
with this we also research how each language is sensitive to providing performance boost with BLAS on variable data sizes and
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Algorithm 1 SGD SVM Algorithm 2 PSGD SVM
1. INPUT : [x,y) € S,w € Rt € R* 1. INPUT : X,Y,w
2 OUTPUT : w e R? 2: OUTPUT : we R?
3: procedure SGDSVM(S, w, 1) 3: procedure PSGDSVM(S, w)
4 fori =0tondo 4: In Parallel in K Machines [.5},....5,] C §
5: if (g(w; (x,y)) == 0) then 5: Wipea = W
6: VJ'=w 6: fori =1to T do
7: else 7: procedure SGDSVM(S,,, w; .- 1)
8: VJ'=w—-Cx,y, 8: end procedure
9: end if 9: Weippar = MPI_Al1Reduce(w,,.,)
10: w=w-—aVJ' 10: w= wg;abm/l(
11 end for 11 end for
return w 12: end procedure
12: end procedure return w
FIGURE 1 SGD SVM Algorithm FIGURE 2 PSGD SVM Algorithm

feature sizes, especially with Java. From the conclusions obtained from the work done in the parallel stochastic gradient descent
with model synchronization research'l, algorithm in figure 2| was designed by calling the core optimizer algorithm in figure m

3.2.1 | BLAS Optimization

In considering the core algorithm ] to optimize the dot products and vector scalar multiplications, BLASlevel operations can
be applied. For this research, we selected the OpenBlas standard of Blas implementations on Red Hat Enterprise Linux Server
7.6 (Maipo) operating system. In order to implement Blas level operations, the equation and BLAS operation mappings are in

Bh6 7land 8]

g(w; (x,y)) = max(0,1 — y(w|x)) = max(0,1 - ddot(d, x, inc,, w, inc))); 5)
(X}, ;) = daxpy(d, y;, X;, inc,, xiyi,inc,); 6)
w=w-aCX,;y, = daxpy(d, a, xiyi,inc, ., w, incy) 7
w=w-aw= daxpy(d,a,w,inc,, w, incy); (8)

3.3 | Big Data Frameworks for SVM

In previous sections, we described how HPC based solution can work on different application development platforms. In consid-
ering big data frameworks, developed to create well-defined data pipelines and computation channels, it is important to identify
how big data stack can fit in solving similar problems that can be solved using HPC based solutions. In referring to the big data
stack, Spark can be identified as one of the most prominent tools used by many data scientists and big data application devel-
opers. In Big data application stack, the problem we are trying to optimize comes under the iterative batch applications. To do
iterative computations Spark provides a data level abstraction called RDD (resilient distributed data). To support big data stack
Digital Science Center in Indiana University Bloomington has produced a framework, Twister2 which supports both HPC and
Big data stack application development on a task level API and a TSet level APIL. The task-level API in Twister2 refers to a
higher-level abstraction on top of communication level API and TSet is a data level abstraction on top of task API which is sim-
ilar to the RDD API in Spark. We developed the SVM algorithm in an ensemble way in MPI using Java, Spark RDD, Twister2
Task API and Twister2 TSet APIL.
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TABLE 1 Datasets

DataSet Training Data (80%) | Testing Data (80%) | Sparsity | Features
Ijennl 39992 9998 40.91 22
Webspam | 280000 70000 99.9 254
Epsilon 320000 80000 449 2000

4 | EXPERIMENTS

The experiments in this research were conducted in the Victor and Juliet cluster group in the Future Systems cluster at Indiana
University Bloomington. For the single node experiments, we used a maximum of 32 slots in a node and for distributed mode
experiments, we used an equal number of processes per machine over a group of 16 nodes. Victor cluster nodes comprises of
Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz configuration. Juliet cluster nodes comprises of Intel(R) Xeon(R) CPU E5-
2670 v3 @ 2.30GHz configuration. For the single node experiments, we considered a range of parallelisms from 2 to 32 with
powers of 2. In distributed experiments, parallelism from 2 to 256 was used among 16 nodes such that for each parallelism each
machine gets an equal number of processes. From parallelism 2 to 8, a single process per machine among 2 to 8 machines. And
for parallelism 16 to 256, each machine gets an equal number of processes among all 16 machines. For the big data stack based
applications we considered the processor affinity and configured Twister2 and Spark such a way that a single process is run per
core in the distributed mode experiments. And the MPI Java application also consumed a single process per core.

4.1 | Dataset Configuration

For the experiments, we used 3 data sets considering the features per data point, sparsity and data size as shown in table[T}

4.2 | Java and C++ Performance Benchmark

For both Java and C++ based MPI applications. Both applications use the compiler level optimization done by each compiler.
C++ one uses the 03 level optimization while Java uses compiler level optimization along with JIT (Just in Time) compiler
optimization at runtime. The purpose of this experiment is to see how the same algorithm developed in each language performs
to the scaling done within a node. Here we carried out two sets of experiments. The first one just uses compiler optimization
from each language. In the other setting, each language uses the Blas level optimization for vector vs vector and vector vs scalar
multiplications. In these settings, we analyzed how each implementation from each language behaves for three data sets with
various sparsity, features and size.

4.3 | Blas Configurations

For Blas optimizations, we used OpenBlas as the Blas standard for our experiments. C++ applications have complied with the
support of this version directly. To provide support to Java applications, we use netlib-java library which supports Blas level
operations on a Blas installed system.

4.4 | Big Data Benchmark Configurations

For the experiments in Java, Java(TM) SE Runtime Environment (build 1.8.0_101-b13) was used and for C++ OpenMPI 3.0.0
was used for Java and C++ comparisons. In big data stack related benchmarks, for Twister2 experiments, OpenMPI 3.1.2 was
used as it is a required dependency for Twister2. For Spark, 2.4.0 version was used while MPI 3.1.2 was used for Java-based
MPI applications.
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5 | RESULTS

5.1 | Java and C++ based MPI Application

In single-node experiments, the parallelisms 2 to 32 was used in the same machine in the cluster for both Java and C++ exper-
iments. In considering the performance concerning the compiler level optimization in both Java and C++ we can see a clear
pattern concerning each dataset. In figure[6} the results show that compiler level optimization is done by Java and Just In Time
compiler optimization in runtime provides better performance over C++ compiler level performance with 03 level optimization.
Java performance better over C++ language level optimization in single node experiments. In referring to the results from Blas
based optimization in figure[5] in C++ for all three datasets Blas based optimization always do better for all three datasets in
both distributed and single node experiments in figure[3] This behaviour is expected as Blas level operation provides a boost for
vector vs vector and vector vs scalar calculations involved with the SVM algorithm. In Java, the behaviour is entirely different
concerning the figure |4 For Ijcnnl and Webspam datasets the Blas optimization is always slower than the just compiler level
optimized version. But with the epsilon dataset, we can observe that the Blas level optimization has provided a performance
boost. The reason for this behaviour is a part of the process Java using to get this performance boost. To obtain the Blas level
optimization, Java cannot directly obtain it from the Blas level operators. The reason is these optimization libraries are written
in C++4/C by accessing native operating system level functionality. Java cannot obtain the native operating system level func-
tionality as Java is running on a virtual machine called JVM (Java Virtual Machine). To obtain the library functionality written
in C++/C, Java needs to use an interface called JNI (Java Native Interface) which provides the ability to call a native function
or library or to be called by such one. To this to happen, how JNI works have to be understood. JNI native functions are imple-
mented in C4++/C medium. When JVM invokes a native function, a JNIEnv pointer is being passed along with a jobject pointer
and any Java arguments declared by the corresponding Java method. The env pointer holds interface to JVM. In these function
calls going from either side, JNI functions are converting native arrays to and from Java arrays when the vector vs vector or
scalar vs vector computations are called in Blas level operations. To gain a performance improvement, the data conversion time
and the computation time all together must be lesser than the just compiler optimized code in Java. For smaller data sets the
conversion time with computation time is lesser as the array sizes involved in dataset Ijcnnl is 22 and in the dataset, Webspam
is 254. But in dataset epsilon, the array size is 2000 and the computation is 100 to 10 times higher than earlier scenarios. So
the computation advantage obtained with Blas level operations provides better performance. From this observation, we decided
to carry out the distributed experiments with Blas support in both Java and C++ applications. But the main observation is to
keep track of the performance obtained per Epsilon dataset related experiments. Because it is the common dataset which pro-
vides a better performance improvement over Blas optimization. Referring to figure 3] it is clear that Epsilon dataset performs
better with C++ language than Java. The reason for this issue is the Blas level optimization improvement is diluted by the data
conversion to either side from native to Java and Java to native due to the iterative nature of the application over a large dataset.
In analyzing this fact further, we conducted experiments on the sequential version of the algorithm by considering a variable
feature size and constant data size by using random data generated using a Gaussian distribution. The results in figure[9] shows
that the Blas level performance is becoming better than compiler level optimized code when the array size grows up. The data
conversion overhead makes C++ a better platform to develop scalable solutions on larger datasets with higher dimensions. To
improve the performance of Java-based developed applications the JNI function calls have to be minimized meaning the iterative
algorithm can be run in C++ end and do the data conversion just once before algorithm starts and the algorithm ends.

In evaluating the performance boost obtain from Blas optimizations, we observed the ratio of training time with BLAS level
operations and without BLAS level operations on dataset epsilon. These experiments were carried out for both single-node and
distributed domain experiments. The performance improvement for Java was not as significant as that of C++. Figures[7]and §]
depicts the aforementioned fact.

5.2 | Big Data Ensemble Model for SVM Training

For the Big data domain and HPC domain performance comparison for distributed SGD-based SVM algorithm, we used par-
allelism 16 to 256 among 16 nodes in Juliet cluster such that each machine gets an equal number of processes. For these
experiments, we used Epsilon dataset. Figure[I0]refers to the performance comparison for MPI-Java, Spark-RDD, Twister2-Task
and Twister2-TSet. It is clear from this experiment that Twister2 APIs provide similar performance concerning MPI implemen-
tation while being faster than the Spark RDD based application. In considering the anatomy of MPI-Java application, it uses
MPI Allreduce communication to do the model synchronization across the processes. Twister2 also supports the allreduce based
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SVM Training Time Variation on Datasets and Optimization
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model synchronization with a binary tree based optimized communication. Spark-based application is based on the worker to
driver and driver to worker based communication model which is another way of doing the model synchronization in iterative
batch applications. The main difference between MPI, Twister2 implementations vs Spark implementation is the way the mod-
els are synchronized. When MPI and Twister2 do a tree-based reduce, Spark provides a reduce by calling back the models from
each task back to the driver programme to do the model synchronization. For an iterative application, this model is costly. That
is the main reason for the performance boost obtained by Twister2 and MPI based implementations over Spark.
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Java Time on Sequential Training on BLAS vs Without BLAS Framework Based SVM Training Time Variation
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6 | CONCLUSION

In obtaining better performance for distributed SGD-based SVM applications, there are multiple tools which can provide a
wide range of benefits over multiple aspects. The performance gain is always a trade-off that has to be dealt with the level
of programming abstractions we trying to adapt to the development model. To gain, the native performance it was evident
that using Blas level operations on top of C++ based solution can provide much better performance with higher scalability.
In comparing this with the same programming abstraction involved with Java, the barrier behind data transformation from the
native environment to JVM and vice versa causes a performance drop down when it is compared to C++ solution. But it was
evident that for smaller vectors the C++ or Java solution can be used to get close performance by using Blas with C++ and just
use Java with compiler level optimization. This fact is not true when it comes to larger vector size and larger data size. In the
development life cycle, managing a Java application is much easier than a C++ application and this trade-off has to be handled
with good care when developing applications. But it was evident from the experiments that, the development abstraction in Java
can be leveraged to design the data pipeline but using C++ based application to run the iterative algorithm and sending the final
results back to Java-based data pipeline can gain performance and a better application development abstraction. In referring to
the big data stack-based application benchmark, by using a similar optimization done in MPI for model synchronization, big
data stack can also leverage a performance boost.
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