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Abstract—Large high dimension datasets are of growing im- bounded but rather memory bounded in that any single process
portance in many fields and it is important to be able to visualze or machine cannot hold the whole data in memory any more.
them for understanding the results of data mining approache |, yhis naper, we tackle this problem for developing high
or just for browsing them in a way that distance between poins . . . . .
in visualization (2D or 3D) space tracks that in original high ~Performance visualization for large and high-dimensiateia
dimensional space. Dimension reduction is a well understdo analysis by using distributed resources with parallel com-
approach but can be very time and memory intensive for large putation. For this purpose, we will show how we devel-
problems. Here we report on parallel algorithms for Scaling oped two well-known dimension-reduction-based visuiliza

by MAjorizing a COmplicated Function (SMACOF) to solve ; ;g : ; ;
Multidimensional Scaling problem and Generative Topograhic algorithm Multidimensional Scaling (MDS) and Generative

Mapping (GTM). The former is particularly time consuming Topographlt_:.Mapplng (GTM) |nthe_d|str|buted fashion sattha
with complexity that grows as square of data set size but has one can utilize distributed memories and enable to process
advantage that it does not require explicit vectors for dataet large and high dimensional dataset.

points but just measurement of inter-point dissimilarities. We In this paper, we start with brief introduction of Multidime

compare SMACOF and GTM on a subset of the NIH PubChem . . . . .
database which has binary vectors of length 166 bits. We find sional Scaling (MDS) and Generative Topographic Mapping

good parallel performance for both GTM and SMACOF and (GTM), which are the dimension reduction algorithms to
strong correlation between the dimension-reduced PubChemlata generate a configuration of the given high-dimensional data
from these two methods. into target-dimensional space, and the correlation methed
applied to compare outputs from different data visualarati
|. INTRODUCTION algorithms in Section Il. Details of our parallelized versi
of MDS and GTM will be discussed in Section Ill. In
Thanks to the most recent advancement in science afd next, we show our performance results of our parallel
technologies, the amount of data to be processed or analygggkion of MDS and GTM in various compute cluster settings
is rapidly growing and it is already beyond the capacity qfnd present the result processing up to 100,000 data points

the most commodity hardware we are using nowadays. jfp Section IV followed by our closing discussion and future
keep up with such fast development, study for data-intensiyorks in Section V.

scientific data analyses [1] has been already emerging in
recent years. Including dimension reduction algorithmsgctvh I
produce lower dimensional representation of high-dinmmei
data, which we are focusing in this paper, various machineThere are several kinds of dimension reduction algorithms,
learning algorithms and data mining techniques are also thech as Principle Component Analysis (PCA), Generative
main tasks challenged by such large and high dimensioffapographic Mapping (GTM) [2], [3], Self-Organizing Map
data problem in this data deluge era. Unless developed g8&®M) [4], Multidimensional Scaling (MDS) [5], [6], to name
implemented carefully to overcome such limits, techniquesfew. Among those algorithms, we focus on MDS and GTM
will face soon the limit of usability. in our paper due to their popularity and theoretical strong
Visualization of high-dimensional data in low-dimensien ibackgrounds.
the core of exploratory data analysis in which users wantAlthough both GTM and SOM share the same object to find
to discover meaningful information obscured by the inidnsa map in low-dimensional user-defined space out of the data
complexity of data, usually caused by its high dimensidpali in high-dimensional space, GTM, however, finds a mapping
This task is also getting more difficult and challenged ireréc based probability density model, which SOM lacks of. On
days by the fast increasing amount of data to be analyz#éioe other hand, MDS tries to construct a mapping in target
In most data analysis with such large and high-dimensiordimension with respect to the pairwise proximity infornoati
dataset, we have observed that such task is no more CRUOstly dissimilarity or distance.

. BACKGROUND



A. Multidimensional Scaling (MDS)

Algorithm 1 SMACOF algorithm

Multidimensional scaling (MDS) [5], [6] is a general term 1:
for techniques of constructing a mapping for generally high 2:
dimensional data into a target dimension (typically low dim  3:
sion) with respect to the given pairwise proximity informoat — 4:
Mostly, MDS is used for achieving dimension reduction to vi- 5:
sualize high-dimensional data into Euclidean low-dimenal  6&:
space, i.e. two-dimension or three-dimension. 7

Generally, the proximity information, which is represahte 8:
as anN x N dissimilarity matrix @A = [0;;]), whereN is the o
number of points (objects) any; is the dissimilarity between 10:
pointi andj, is given for the MDS problem, and the dissimi-11:
larity matrix (A) should agree with the following constraints:12:

Z < X,
k < 0;
¢ < small positive number;
MAX < maximum iteration;
Computes?) = o(X0);
while £k =0 or (Ao > ¢ andk < MAX) do
k<k+1;
x K — VTB(X[kfl])X[kfl]
Computes® = o(X )
Z < x .
end while
return Z;

(1) symmetricity §;; = ¢;;), (2) nonnegativity {;; > 0), and

(3) zero diagonal elements;{ = 0). The objective of MDS

techniques is to construct a configuration of the given high-A|g_ 1 illustrates the SMACOF algorithm for MDS solution.

dimensional data into low-dimensional Euclidean spacélewhThe main procedure of SMACOF is iterative matrix multi-

each distance between a pair of points in the configuratigfications, called Guttman transform, as shown at Line 8 in
is approximated to the corresponding dissimilarity valse @g. 1, whereV'' is the Moore-Penrose inverse [12], [13] (or

much as possible. The output of MDS algorithms could Rgseydo-inverse) of matri%. The N x N matricesV and
represented as anV x L configuration matrixX, whose B(z) are defined as follows:

rows represent each data points (: = 1,...,N) in L-
dimensional space. It is quite straightforward to compute
Euclidean distance betweery and z; in the configuration Vo= [vy] (3)
matrix X, i.e.d;; (X) = ||z;—x;||, and we are able to evaluate —wy if i £ j
how well the given points are configured in thedimensional Vi = { ! i 4)
space by using suggested objective functions of MDS, called Dipjwij 1=
STRESS [7] or SSTRESS [8]. Definitions of STRESS (1) and B(Z) = [bi;] (5)
SSTRESS (2) are following: —w;;0i;/di;(Z) if i #£j
bij = 0 if dij(Z)=0,i%#j (6)
o(X) = Y wy(di(X)—diy)? 1) — iz bis if =
i<j<N
If the weights are equal to oneuf; = 1) for all pairwise
2 _ . . 2 . \212 J
oi(X) = Z wiz[(di (X)) (6i5)°] (2) dissimilarity, then
i<j<N
wherel <i < j < N andw;; is a weight value, sav;; > 0. .
As shown in the STRESS and SSTRESS functions, the V = N (I— ﬁ) @)
MDS problems could be considered as a non-linear optimiza- N

tion problem, which minimizes STRESS or SSTRESS function v - 1 I ee' )
in the process of configuring-dimensional mapping of the N N

high-dimensional data. ) )
wheree = (1,...,1)! is one vector whose length &. In

B. SMACOF & its Complexity this paper, equal weights is assumed and we use (8yfor

There are a lot of different algorithms to solve MDS As in Alg. 1, the computational complexity of SMA-
problem, and Scaling by MAjorizing a COmplicated Func€OF algorithm isO(N?), since Guttman transform performs
tion (SMACOF) [9], [10] is one of them. SMACOF is anmultiplication of N x N matrix and N x L matrix twice,
iterative majorization algorithm to solve MDS problem withtypically N > L, and computing STRESS vaIuB(XV“]),
STRESS criterion. The iterative majorization proceduréhef and D(X*) also takeO(N2). In addition, the SMACOF
SMACOF could be thought of as Expectation-Maximizatioalgorithm requiresO(N?) memory because it needs several
(EM) [11] approach. Although SMACOF has a tendencyV x N matrices as in Table I. Due to the trends of digitization,
to find local minima due to its hill-climbing attribute, it isdata size increases enormously so it is critical to be able
still a powerful method since it is guaranteed to decreas® investigate large data set. However, it is impossible to
STRESS §) criterion monotonically. Instead of mathematicaltun SMACOF for large data set under a typical single node
detail explanation of SMACOF algorithm, we illustrate th&omputer due to the memory requirement increas€(iN?).
SMACOF procedure in this paper. For the mathematical detaih order to remedy the shortage of memory in a single
of SMACOF algorithm, please refer to [6]. node, the authors illustrate how to parallelize the SMACOF



algorithm via message passing interface (MPI) for utiliginresponsibility whos€k, n)-th element isry,, as in (11), and

distributed-memory cluster systems in Section IlI-A . G is an K x K diagonal matrix whosé-th diagonal element
. . . gk = Zflvzl Tkn. Main matrices used in GTM are summarized
C. Generative Topographic Mapping (GTM) in Table Il

Generative Topographic Mapping (GTM) is an unsupervised Since the details of GTM algorithm is out of this paper’s
learning algorithm for modeling the probability densitydz#ta scope, we recommend readers to refer to the original GTM
and finding a non-linear mapping of high-dimensional daggapers [2], [3] for more details. In Section I, we will disss
in a low-dimension space. Contrast to the Self-Organizingw we develop parallel GTM implementation based on the
Map (SOM) [4] which does not have any density model [2kbove algorithm.

GTM defines an explicit probability density model based on . .

Gaussian distribution. For this reason, GTM is also knowa ad- Correlation measurement for comparison

principled alternative to SOM [2]. The problem challenggd b In the fields of data analysis and machine learning area,
the GTM is to find the best set of parameters associated witle have various types of visualization algorithms avadabl
Gaussian mixtures by using an optimization method, notaihge and each of them has its own purposes and characteristics
the Expectation-Maximization (EM) algorithm [3]. which will differentiate its output from others even withing

More specifically, The GTM algorithm is to find a nonthe same dataset as an input. To compare such different
linear manifold embedding of user-definéd latent discrete outputs, we need to quantify similarities (or dissimilies)
variables z;, usually form a rectangular grid, in lowi- of outputs generated from different algorithms.
dimension space, callddtent spacesuch thatz;, € R (k = In our paper, we have measured correlations between two
1,...,K), which can optimally represent the gived data outputs by using so-called Canonical Correlations Analysi
pointsx,, € RP(n = 1,...,N) in the higher D-dimension (CCA). CCA is a classical statistical method to measure cor-
space, calledlata space(usually L <« D). This is achieved relations between two sets of variables in their lineartiafa
by the three steps: First, mapping the latent variablgsn ships [14]. Different from ordinary correlation measurere
the latent space to the data space with respect to a nomsthods, CCA has the ability to measure correlations of
linear mappingf : RY — RP, such that map the point multidimensional datasets by finding an optimal projection
Yy, — f(zr, W) with non-linear functionf and its parameter maximize the correlation in the subspace spanned by feature
set W to the data space. Secondly, estimating probabilignd it has been successfully used in various areas [15}-{17]
density between the mapped poinjs and the data points Given two column vectors = (z1,...,2n,)" andY =
x,, by using the radially-symmetric Gaussian model in whicty1, ..., y»)" of random variables with finite second moments,
the distribution is defined as an isotropic Gaussian prdibabi one may define the cross-covariantgy = cov(z,y) to
centered oy, with variance3~!, such that be then x m matrix whose(i, j)-th entry is the covariance

5D/ 8 cov(z;, y;). CCA seeks two coefficient vectogsandb, known

N @y, B) = (_) exp {_§|wn _ yk|2}_ (9) as canonical variablessuch that the random variabla$X

27 andb’Y maximize the correlation such that
. . . . . t t
Thirdly, finding an optimal parameter s.e{tVV., 3} which ) — argmasx cov(a'X,b'Y) (13)
makes the following log-likelihood maximized: ap  ||atX]|[[ptY ]|

N 1 & We call the random variables = a!X andv = b'Y are
LW, 5) = ar%,mﬁalen {E ZN(mnwk’ﬂ)} - (20) the first pair of canonical variables. Then, one seeks vector
Ton=l k=1 uncorrelated with the first pair of canonical variables;sthi
Since the last step is intractable, the GTM uses the Edives the second pair of canonical variables. This proaedur
method [11] to find an optimized solution as follows: Ircontinuesmin(m,n). In a nutshell, canonical variablés and
the E-step, compute the posterior probabilities, known &5 are can be obtained by
responsibilities of each mapped poiny,, for every data point
x,, in the following form: el .
N a = eig(X1] L12X55 Xo1) (14)
Tk = —& @nlyi:5) (11) b= eig(Sy; 21 Tyy Tr2) (15)
Zk’:l N(mn|yk/7 B)

L. . . . where Y12 = COV(X, Y), Y11 = COV(X,X), Yog =
In the M-step, maximize the expectation of log-likelihod®) cov(Y,Y), and cig(A) computes eigenvectors of matris.

with respect to the paramet#/. As a result, the optimalV' 516 detailed steps for derivation can be found from [15],
can be obtained by using the following matrix equation: [18], [19]

t _ t
P'GPW = &'RX, (12) IIl. HIGH PERFORMANCEV ISUALIZATION

where® is the K x M design matrix which hold¥” = ®W We have observed that processing very large dataset is
for the K x D matrix Y containing mapped pointsX is the no morecpu-boundeccomputation but rather it isnemory-
N x D matrix containing the data point#®? is the K x N boundedin that memory consumption is beyond the ability



TABLE |
MAIN MATRICES USED INSMACOF

Matrix Size Description
N MO(),\‘ MOl M()Q

N x N Matrix for the given pairwise dissimilaritys; ;]
D(X) N x N Matrix for the pairwise Euclidean distance of
mapped in target dimensida;]

1% N x N Matrix defined the value;; in (3)
1%l N x N Matrix for pseudo-inverse oV 7‘ 1 7‘1 T
B(Z) N x N Matrix defined the valué;; in (5) 10 11 M12

w N x N Matrix for the weight of the dissimilarityw; ;]
X [k] N x L Matrix for current L-dimensional configuration
of N data pointsn[k] i=1,...,N)

i
x[k=1 N x L  Matrix for previous L-dimensional configuration

of N data pointse* Y =1.... N Fig. 1. N x N matrix decom‘p_osmon of para_IIeI SMACOF with 6 processes

P v @ s N) and 2 x 3 block decomposition. Dashed line represents where didgona

elements are.

of a single process or even a single machine. Thus, running ) o i o o
machine learning algorithms to process large dataseydigy Computation distribution, since parallelization makepligit
MDS and GTM discussed in this paper, in a distributefenefit to computation as well as memory distribution, due to
fashion is crucial so that we can utilize multiple procesmes €SS computing per process. One simple approach of data de-
distributed resources to handle very large data which iysuafOmPposition is that we assurpe= n~, wherep is the number
not fit in the memory of a single process or a compute nodd, Processes and is an integer. Though it is relatively less
The problem becomes more obvious if the running OS is 32-@Mplicated decomposition than others, one major probiem o
which can handle at most 4GB virtual memory per process. #§JS approach is that it is a quite strict constraint to 2élli
process large data with efficiency, we have developed garaftvailable computing processors (or cores). In order toasele
version of MDS and GTM by using Message Passing Interfaltt constraint, we decompose &hx N matrix tom x n
(MPI) fashion. In the following we will discuss more detail?l0ck decomposition, where: is the number of block rows
how we decompose the MDS and GTM algorithm to fit in gndn is the number of block columns, and the only constraint
memory limit in a single process or machine and implement&f the decomposition isn x n = p, wherel < m,n < p.

them by using MPI primitives. Thus, each process requires only approximately of full
memory requirements of SMACOF algorithm. Fig. 1 illusteate
A. Parallel SMACOF how we decompose eadi x N matrices with 6 processes

O?ﬁndm = 2,n = 3. Without loss of generality, we assume

Table | d ibes fi tl d tri in SMAC B
able escribes frequently used matrices in nz'\l%m:]\f%n:() in Fig. 1.

algorithm, and memory requirement of SMACOF algorith A D0 <k " il use.. f
increases quadratically &€ increases. For the small dataset, ‘ %r_oc?\/s[s wUSE< g t(some |mets, Wel W'blus K ?hr
memory would not be any problem. However, it turns out tg'ac 9 i) 18 assigned to one rectangular blakk; wi

be critical problem when we deal with large data set, suéﬁSpeCt to simple block assignment equation in (16):

as thousands or even millions. For instancelNif= 10, 000, ) .

then oneN x N matrix of 8-byte double-precision numbers k=ixn+j (16)

consumes 800 MB of main memory, and = 100,000, where0 < i < m,0 < j < n. For N x N matrices, such

then oneN x N matrix uses 80 GB of main memory. Toas A, V' B(X*)), and so on, each block/;; is assigned

make matters worse, SMACOF algorithm generally needs six the corresponding process;, and for X ¥l and X [*—1]

N x N matrices, so at least 480 GB of memory is required imatrices,V x L matrices, each process has flix L matrices

run SMACOF with 100,000 data points without consideringecause these matrices are relatively much small size and it

two NV x L configuration matrices in Table I. results in reducing a number of additional message passing.
If the weight is uniform {;; = 1, Vi, j), we can use only By scattering decomposed blocks to distributed memory, now

four constants for representily x N V and V' matrices we are able to run SMACOF with huge data set as much

in order to saving memory space. We, however, still need @4 distributed memory allows in the cost of message passing

least threeV x N matrices, i.eD(X), A, and B(X), which overheads and complicated implementation.

requires 240 GB memory for the above case, which is still At the iteration & in Alg. 1, the application should be

infeasible amount of memory for a typical computer. That igossible to acquire following information to do Line 8 and

why we have to implement parallel version of SMACOF withLine 9 in Alg. 1: A, VT, B(XF-1) xk=1 and ol*],

MPI. One good feature of SMACOF algorithm is that some of
To parallelize SMACOF, it is essential to ensure load balnatrices are invariable, i.eA and V', through the iteration.

anced data decomposition as much as possible. Load balaBeethe other handB(X*~!) and STRESS (%)) value

is important not only for memory distribution but also folkkeep changing at each iteration, sini;»c;(X[’“]) varies every



orithm 2 Pseudo-code for distributed parallel matrix mul-

2o ] ] Alg
X0 tiplication in SMACOF algorithm
| = Input: M ;;, X
I L 1: /* m = Row Bl ocks, n = Col um Bl ocks */
X [ = 2. I* i = Rank- | n- Row, j = Rank- | n- Col um */
| y 3: Tij:Mij'Xj
DA b S X2 4. if j # 0 then
e - 5: SendTij to Py
M X C 6: else
7. forj=1ton—-1do
Fig. 2. Parallel matrix m_ultiplicat_ion ofV x N matrix and N x L matrix 8: ReceiveTl-j from Pij
based on the decomposition of Fig. 1
9: end for
10:  GenerateC;
iteration. In addition, in order to upda®(x*~1) and 1% endif
STRESS ¢!")) value in each iteration, we have to takex N 1. if j —— 0 andj —= 0 then
matrices information into account, so related processesldh 13-  for i =1 tom — 1 do

communicate via MPI primitives to obtain necessary infor,.
mation. Therefore, it is necessary to design message passig.
schemes to do parallelization for calculatii®( X *~!1) and .
STRESS ¢!*!) value as well as parallel matrix multiplication ;7.
in Line 8 in Alg. 1. 18:

Computing STRESS in (1) can be implemented simplyg.
throughMPI _Al | r educe. On the other hand, calculation of 5.
B(x =11y and parallel matrix multiplication is not simple, 5;.

ReceiveC; from Py
end for

CombineC with C; wherei =0,...,m —1

BroadcastC' to all processes
else if j == 0 then

SendC; to Poo

Receive Broadcaste@'

else
specially for the case ofr # n. Fig. 2 depicts how parallel 5. Receive Broadcaste@
matrix multiplication applies between aN x N matrix M 53. end if

and anN x L matrix X. Parallel matrix multiplication for
SMACOF algorithm is implemented in three-step of message
communication via MPI primitives. Block matrix multipliea
tion of Fig. 2 for acquiringC; (i = 0,1) can be written as
follows:

==
N

Bop..

e

C= Y My X, (17) Bos
0<5<3

Since M;; of N x N matrix is accessed only by the corre-

sponding procesk;;, computing)/;; - X; part is done byP;;,

and the each computed sub-matrix, WhicH;—’is< L matrix for

Fig. 2, is sent to the process assigridg, by MPI primitives,

such asMPl _Send and MPl _Recei ve. Then the process

assignedV/;y, say Py, sums the received sub-matrices to gen-

erateC;, and send’; block to Py. Finally, P,o combines sub-

matrix blockC; 0 < i < m to constructV x L matrix C', and Fig. 3. Calculation ofB(X[*~) matrix with regard to the decomposition

broadcast it to all other processesMyi _Br oadcast . Each of Fig. 1.

arrows in Fig. 2 represents message passing direction. Thin

dashed arrow lines describes message passir% ofL sub-

matrices byMPl _Send and MPI _Recei ve, and message

passing of matrixC' by MPI _Br oadcast is represented by processes assigned sub-matrix of the same block-Fyw

thick dashed arrow lines. The pseudo code for parallel matwherek = 0,...,n — 1, unless the number of column blocks

multiplication in SMACOF algorithm is in Alg. 2 is 1 (n == 1). In Fig. 3, the diagonal dashed line indicates the
For the purpose of parallel computiri@(XV“‘”), whose diagonal elements, and the green colored blocks are dihgona

elementsb;; is defined in (6), message passing mechanisoiocks for each block-row. Note that the definitiondsfgonal

in Fig. 3 should be applied und& x 3 block decompo- blocksis a block which contains at least one diagonal element

sition as in Fig. 1. Since,s, = —ZS# bsj, a process of the matrix B(X[’“]). Also, dashed arrow lines illustrate

P;;, which is assigned tdB;;, should communicate a vectormessage passing direction. Alg. 3 shows the pseudo-code of

si;, whose element is the sum of corresponding rows, wittomputing sub-block3;; in processP;; with MPI primitives.

Bio
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~B12
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Algorithm 3 Pseudo-code for calculating assigned sub-matrix

B;; defined in (6) for distributed-memory decomposition in Xl X2 X3

SMACOF algorithm . . .

Input: Mij,X H-+----1 e e T =
1: /* m = Row Bl ocks, n = Col uim Bl ocks */ (I)l |
2: [* i = Rank- | n- Row, j = Rank- | n- Col umm */ |
3: [* We assume that subblock;; is assigned to process :

P * Fl-T - e i =

. . . . 1 1
4: Find diagonal blocks in the same row (rayv (I)Q ! R 11 ! Rio
5: if B;; ¢ diagonal blockghen v v
6: compute elements,; of B;;
7. Send a vectos;;, whose element is the sum of corre-

sponding rows, taP;,, where B;;, € diagonal blocks  Fig. 4. Data decomposition of parallel GTM for computing pessibility
8 else matrix R by using 2-by-3 mesh of computing nodes.

9: compute elements,; of B;;, wheres # t

10: Receive a vectors;;,, whose element is the sum of )
corresponding rows, wheré = 1,...,n from other row-based sub-block df") and data pointX ; on them-by-n

processes in the same block-row mesh of logical compute grid whei@, j)-th node computes
11:  Sends;; to other processes in the same block-raw ij which consumes onlyl /mn of memory space for the

diagonal blocks full matrix R. Without loss of generality, we assume that
12 Computeb,, elements based on the row sums. K%m = N%n =0 and denotel = K/m and N = N/n.
13- end if Since our parallel GTM algorithm is not a pleasingly

parallel application in which no dependency is needed betwe
TABLE Il compute nodes but r_ather a typical parallel problem which
MAIN MATRICES USED INGTM FOR N DATA POINTS IN D-DIMENSION  €an be solved by using a general map-reduce approach. To
WITH K LATENT POINTS IN L-DIMENSION. have systematic communication model, we can use MPI's
cartesian grid topology in oum-by-n compute grid so that

Matrix Size Description ..
Z K x L Matrix for K latent pontsz(h = I %) each node belongs to both row communications and column
X zZ = . .
. e POINSzy (k= &, - communications, denoted bROW COWM and COL- COVM
[ K x M  Design matrix with M-dimension .
. respectively hereafter.
w M x D Matrix for parameters M detail f lel GTM al ithm i foll
v K xD Matrix for K mapped pointsy, (k = 1, .., ) ore details of our paralle algorithm is as follows.
X N x D Matrix for N data pointsz, (n = 1, ..., N) 1) Initialization Prepare subblock datd®; ;’:01 and
R K x N Matrix for K responsibilities for each N data points {Xj}?;ol and distribute them ta-th row members

and j-th column members respectively in the-by-n
compute grid.
B. Parallel GTM 2) Responsibility Initialize the responsibility matrixR;;
by setting(a, b)-th elementr,, = NV (z3]y,), as defined
Among many matrices allocated in memory for processing  in (9), fora =0,..., K—1andb = 0,..., N—1. Compute
in GTM as summarized in Table I, the responsibility matrix the column sune;; € RN of R;; and exchange it with

R is the most biggest one. For example, the mafixfor row members to get; = Z?;Ol ci; and compute
8,000 latent points, corresponding to 20x20x20 3D gridhwit

100,000 data points needs at least 6.4GB memory space saving R,;=R;;©® (ec§-) (18)
8-byte double precision numbers and even without consideri B

additional memory requirements for other matrices, thilga wheree is a vector of(1, ..., 1) € RX ando represents

prevents us from processing large data set in GTM by using element-wise division.
a single process or machine. Thus, we have focused or8) Optimization Compute a row-sum vectqy;; = R;je

the decomposition of responsibility matriR in developing and exchange it with row members to ggf =
parallel GTM. > g;;- Compute a matrixA; = ®/G;®; where

As shown in Fig. 4, in our parallel GTM we decompose G is a diagonal matrix whose diagonal elements are
the design matrix® € RX*M into m row-based sub-blocks g; and exchange with column members to compute
denoted by{®;} ™ so that each sub-block; has approxi- A = 3", A; Prepare another matridB;; =
mately i /m rows of &. In the same way, we also decompose @i Rij X ?”d exchange it with row-members to get
the data matrixX into n row-based sub-block$X;}7=/, B; =3",_, B, followed by exchanging with column
each of which having approximately /n rows of X. Then, members to computd3 = Z?:OlBi. Finally, solve
we can compute the sub-matri®;; (i = 0,...,.m —1,j = AW = B with respect to the parameter mat#k and

0,...,n—1) for the latent pointy”, = ®; W (Y; is alsoi-th update latent point¥”; = ®; W. The last two steps will



Algorithm 4 Pseudo-code for distributed parallel GTM commych as possible. The reason of the above results is caehe lin
puting running on(z, j)-th compute node.

Input: ®;, X

1:

PrepareR;; € RE*N py setting its(a, b)-th by (9)

t

effect that affects cache reusability, and generally laddn
block decomposition shows better cache reusability soithat
occurs less cache misses than the skewed decompositidns [20

g ii'j:'\g%jeAlerfdeuze((l(;'-j-7|\}F)>| SUM COL_COMM [21]. As in Fig. 5, Difference of data decomposition almost
2 1%” “ R, 0 (ec) A - doubled the elapsed time dfx 128 decomposition compared

5 g, < Rije ! to 8 x 16 decomposition with 10K PubChem data. From
6: g, < MPI _Al | reduce(g,;, VPl _SUM ROW COMM) the above investigation, the balanced data decomposision i
7. A; = ®G;®, whereG; = diag(g;) generally good choice. Furthermore, Cluster-11 perforrmattdr

8 A« Ml _Alreduce(A; Ml _SWMCA_COM than Cluster-I in Fig. 5, although the clock speed of cores is
1?)': g:J: l\%llixl)fjr educe(Bi;, Ml _SUM RON. COVM) similar to each other. T_here are two _different f_actors betwe
11: B« MPl _Al | reduce(B;, Pl _SUM COL_COW) Cluster-l and Cluster-Il in Table Il which we believe thabse

12: SolveW = A™'B
13: UpdateY; <+ &, W

factors result in Cluster-Il outperforms than Cluster, iL2
cache size and Networks, and the L2 cache size per core is 4
times bigger in Cluster-Il than Cluster-I. Since SMACOFHwit
large data is memory-bound application, it is natural that t
continue to run until we find the parameter matiX  bigger cache size results in the faster running time.
converged. In addition to data decomposition experiments, we mea-
Exchanging data with row (or column) members of the griaured the parallel performance of parallel SMACQF in terms
and collecting them, we can use a MPI primitive functio’ the number of processgs The authors investigate the
MPI_Al | reduce with MPI _SUM collective opeartion. A scalability of parallel SMACOF by running with different

pseudo code with MPI functions is shown in Alg. 4. number of processes, e.g.= 64, 128, 256, and 384. On
the basis of the above data decomposition experimentdt,resu
IV. PERFORMANCE AND CORRELATION MEASUREMENT  the balanced decomposition has been applied to this process

For the performance analysis of both parallel SMACOF aritfaling experiments. Ag increases, the elapsed time should
parallel GTM discussed in this paper, we have applied our pé’re dec_reased, but linear performance improvement could not
allel algorithms for high-dimensional data visualizatiodow- P€ achieved due to the parallel overhead. In Fig. 6, both 50k
dimension to the dataset obtained from PubChem dathbadd'd 100k data sets show the performance gaip iasreases.
which is a NIH-funded repository for over 60 million cherrlicaHowever, performance enhancement ratio is reduced, becaus
molecules and provides their chemical structure fingetprii’€ ratio of message passing overhead over the assigned
and biological activities, for the purpose of chemical iafo COMPUtation per each node increases due to more messaging
mation mining and exploration. Among 60 Million PubChen@nd 1€ss computing per node gsincreases. Note that we
dataset, in this paper we have used randomly selected upg'd 16 computing nodes in Cluster-Il (total number of cores
100,000 chemical subsets and all of them have a 166-lofigl6 computing nodes is 384 cores) to perform the scaling
binary value as a fingerprint, which corresponds to maximugPeriment with large data set, i.e. 50k and 100k PubChem
input of 100,000 data points having 166 dimensions. Wiff@t@ since SMACOF algorithm requires 480 GB memory
those data as inputs, we have performed our experimentsfgh déaling with 100,000 data points, as we disscussed in
our two decent compute clusters as summarized in Table I€ction lll-A, and Cluster-Il is only feasible to performath

In the following, we will show the performance results ofVith more than 10 nodes.
our parallel SMACOF and GTM implementation with respegg
to 10,000, 20,000, 50,000 and 100,000 data points having 166 _
dimensions, represented as 10K, 20K, 50K, and 100K datasefVe have measured performance of parallel GTM with re-
respectively and discuss the correlation measuremeneeetwSPECt t0 €ach possibie-by-n decomposition of responsibility

SMACOF and GTM results by using CCA. matrix R to usep = 32, 64, and 128 cores in Cluster-
I and Cluster-Il for 10k and 20k PubChem dataset. In the

A. Performance of Parallel SMACOF following experiments, we have fixed other parameters such

Fig. 5 shows the performance comparisons for 10K and 268 & = 8,000, D = 166, and M = 9.
PubChem data with respect to how to decompose the giverf\S shownin Fig. 7, the performance of parallel GTM shows
N x N matrices with 32, 64, and 128 cores in Cluster-1 anp€ similar pattern of the parallel SMACOF performance in
Cluster-Il. A significant characteristic of those plots i/ Which the balanced decomposition performs better than the
is that skewed data decompositions, suchpasl or 1 x p, skewed decomposition due to the cache line effect.
which decompose by row-base or column-base, are alwaé(s
worse in performance than balanced data decompositiodis, su”
asm x n block decomposition whiclw andn are similar as

Performance of Parallel GTM

Correlation measurement by CCA

By using the CCA algorithm, we have measured similarity
between MDS and GTM results for using 100K PubChem

1pubChem, http://pubchem.ncbi.nim.nih.gov/ dataset . As a result shown in Fig. 8, the maximum correlation



TABLE Il
CLUSTER SYSTEMS USED FOR THE PERFORMANCE ANALYSIS

Features Cluster-I Cluster-I1

# Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz
# CPU / # Cores per node 4/ 16 4]24

Total Cores 128 768

L2 Cache per core 512 KB 2 MB

Memory per node 16 GB 48 GB

Giga bit Ethernet 20 Gbps Infiniband

Windows Server 2008 HPC Edition Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit (Service Pack 2) - 64 bit

Network
Operating System

Node
-® Cluster-Il
55~ 60-
= Node < Node =
£ e~ Cluster-I £ e~ Cluster-I £
@ 50~ o D oo
£ o~ Cluster-Il £ e~ Cluster-Il £
= = F
o o o
3 3 3
3 3 3
2 2 <
K ke & 20~
w w40~ w
45-
18-
30-
o \o—o-/ .““0‘0-07// 16-
| i i i ) ) | | i i ) ) ) | | | ) i
32x1 16x2 8x4 4x8 2x16 1x32 64x1 32x2 16x4 8x8 4x16 2x32 1x64 128x1 64x2 32x4 6x8 8x16 4x32 2x64 1x128
Decomposition Decomposition Decomposition
(a) 10K with 32 cores (b) 10K with 64 cores (c) 10K with 128 cores
220-
150 - 70 - | Node
-®- Cluster-Il
140~
200~ 65-
130~
= Node = Node =
é -®- Cluster-I é -®- Cluster-1 é
g o~ Cluster-Il £ 120 e~ Cluster-Il g
S £ i 60-
= 180~ = =
5] 3 5]
2 2 110~ 2
o © o
w w w

100~ 55—

160 -
90~
50~
80~

| ) l ' ) ) | | ' l ) ) )
32x1 16x2 84 8 2x16 1x32 64x1 322 16x4 88 4x16 2x32 1x64 1281 64x2  32x4
Decomposition Decomposition

(d) 20K with 32 cores (e) 20K with 64 cores

Fig. 5. Performance of Parallel SMACOF for 10K and 20K Pub@ldata with 32,64, and 128 cores in Cluster-I and Cluster:tltwdata decomposition
of N x N matrices.

6x8 8x16 4x32 2x6: 1x128
Decomposition

(f) 20K with 128 cores

of both results is about 0.90 which is close to the maximum V. CONCLUSIONS ANDFUTURE WORKS

(1.0) and so we can conclude that both MDS and GTM

algorithms produces very similar output for the 100k ddtase |n this paper, we have described two different dimension
Also, we have used the colors in Fig. 8 to identify tw@eduction algorithms, called MDS (SMACOF) and GTM, and
clusters as an output of-mean { = 2) clustering in the how to utilize those algorithms for the huge data set. Main
original 166-dimensional space. The output shows both MG&sues to deal with a large amount of data points are not only
and GTM successfully preserved the cluster information iBts of computation but also huge memory requirements. As

low dimension. we described in Section Ill-A, it takes 480 GB of memory to



Elapsed Time (min)
) N
h

number of processes

Fig. 6. Performance of parallel SMACOF for 50K and 100K Puédhdata
in Cluster-1l w.r.t. the number of processes. Based on tha dacomposition
experiment, we choose balanced decomposition as much siblpose.8 x 8
for 64 processes. Note that both x and y axes are log-scaled.

run SMACOF algorithm with 100,000 data points. Paralleliza
[10]
memory computing system, which can extend the accessible

tion via traditional MPI approach in order to utilize distuted

memory size, is proposed as a solution for the amendmen

memory shortage to treat large data with SMACOF and GTM
[12]

algorithms.
As we discussed in the performance analysis, the d

decomposition structure is important to maximize the per-

on PubChem data and analysis. We would also like to thank
Microsoft for their collaboration and support.
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Fig. 7. Performance of Parallel GTM for 10K and 20K PubCherradeth 32, 64, and 128 cores running on Cluster-1 and Clestertr.t. the m-by-ndata
decomposition running on compute grids. The elapsed tinzsiaverage running time per iteration.
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Fig. 8. MDS and GTM results for 100K PubChem dataset are shiowg) and (b). MDS and GTM correlation computed by CCA is shaw (c) as a
plot with canonical variables. The optimal correlation;csdled canonical correlation coefficient, is 0.90 (maximis 1.00) which shows strong correlation
between MDS and GTM.



