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Abstract—Accelerated loss of ice from Greenland
and Antarctica has been observed in recent decades.
The melting of polar ice sheets and mountain glaciers
has a considerable influence on sea level rise in
a changing climate. Ice thickness is a key factor
in making predictions about the future of massive
ice reservoirs. The ice thickness can be estimated
by calculating the exact location of the ice surface
and sub-glacial topography beneath the ice in radar
imagery. Identifying the locations of ice surface and
bottom is typically performed manually which is a
very time consuming procedure. Here we propose an
approach which automatically detects ice surface and
bottom boundaries using distance regularized level
set evolution. In this approach the complex topology
of ice surface and bottom boundary layers can be
detected simultaneously by evolving an initial curve in
the radar imagery. Using a distance regularized term,
the regularity of the level set function is intrinsically
maintained which solves the reinitialization issues
arising from conventional level set approaches. The
results are evaluated on a large dataset of airborne
radar imagery collected during IceBridge mission over
Antarctica and Greenland and show promising results
with respect to manually picked data.

I. INTRODUCTION

In recent years global warming has caused severe
threats to our environment. Accelerated loss of ice
from Greenland and Antarctica has been observed
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in recent decades [1]. The melting of polar ice
sheets and mountain glaciers has a considerable
influence on sea level rise and ocean currents,
potentially leading to the flooding of coastal regions
and putting millions of people around the world at
risk. Therefore precise calculation of ice thickness
is very important for sea level and flood monitoring.
Moreover the shape of the landscape hidden beneath
the thick ice sheets is a key factor in predicting ice
flow and their future contribution to sea level rise
in response to a changing climate. The sub-glacial
topography beneath the ice sheets has been inves-
tigated using geophysical methods since the 1950s.
Radar sensors are one of the instruments that can
penetrate through ice and give information about
the hidden sub-glacial topography over large areas.
The multichannel coherent radar depth sounder was
used during the IceBridge mission [2]] to provide
important information about ice sheet thickness.
Ice thickness can be determined by distinguishing
layers of different dielectric constants such as air,
ice, and rock in radar echograms. Figure 1 shows
sample echogram images produced by the radar.
The images used in this work are the CReSIS
standard output product [3] and are formed using
pulse compression, synthetic aperture radar (SAR)
processing, and multilooking. Full details of the
processing are provided in Gogineni et al. [4]. The
horizontal axis is along flight path and the vertical
axis represents the two-way travel time of the radio
wave. The dark line on the top of the image is
the boundary between air and ice while the more
irregular lower boundary represents the ice bottom
which is the boundary between the ice and the



sub-glacial topography. The sub-glacial topography
hidden beneath the thick ice sheets can take any
shape from smooth to mountainous (Figure [I).

For ice surface and bottom identification, usually
manual (human) picking of radargrams is taken.
Manual boundary identification is a very time con-
suming and tedious task which can introduce errors.
As radar data volumes continue to increase and to
improve the reliability of boundary identification,
we seek to develop automatic techniques for this
process.

There are several challenges in automatic pro-
cessing of ice surface and bottom layers. These
challenges can be split into three categories. The
first is that the ice bottom may suffer from low
signal to interference and noise ratios (SINR).
Low SINR is caused by several factors: a) signal
attenuation while traveling through ice, b) radar
clutter energy, and c) thermal noise and occasional
electromagnetic interference. The second is that
the subglacial topography is highly variable on a
continental scale ranging from flat to mountainous.
Finally, artifacts in the data, such has surface mul-
tiples (ringing of the radar signal between the large
metal aircraft and the ice surface), can lead to false
identification of the ice bottom layer.

In this paper, we propose an automatic technique
which can overcome most of the aforementioned
challenges. Here we propose a novel level set ap-
proach to automatically identify the ice surface and
bottom layers in a large dataset of radar imagery.
In this approach, using an initial curve, the image
will be divided into two parts: inside the curve
and outside the curve. In the next step, by help of
external and internal forces, each point on the curve
starts moving at a variable speed and the curves will
gradually evolve until all boundaries are detected. In
the conventional level set formulation, the level set
function typically develops irregularities during its
evolution and needs re-initialization to periodically
replace the degraded level-set function. Here we
used a variational level set function in which the
regularity of the level set function is maintained
intrinsically.

After this introduction, the related works will be
discussed in section 2. The details of the proposed

method will be discussed in section 3. Experimental
results will be discussed in section 4. The results
are evaluated in section 5. Section 6 highlights the
conclusions of this work.

II. RELATED WORKS

Research on subsurface imaging (including seis-
mic methods) is too vast to review here; see Turk
et al [3)] for an extensive review. Several semi-
automated and automated methods have been in-
troduced in the literature for layer finding and ice
thickness in radar images [6], [[Z], [8], [9], [LOI,
(LLD, (120, (130, (14), [15], [16], (17], (18], [19],
[20]. Freeman et al. [9] finds near surface ice layers
in images from the shallow subsurface radar on
NASA’s Mars reconnaissance Orbiter (SHARAD).
First the layers were transformed to horizontal
layers and then several filtering and thresholding
techniques were applied to enhance the image and
discard unclear layers. Finally the layers were trans-
formed back to image space. Our algorithm is
quite distinct from this method in the sense that it
does not need any intermediate thresholding which
might be different from one image to another. Ferro
& Bruzzone [8] proposed an algorithm to extract
the deepest scattering area visible in radargrams
from the SHARAD mission acquired on the north
polar layered deposits of Mars. Their algorithm is
based on discriminating the statistical properties
of subsurface targets and finding a suitable fitting
model. This method is unable to find exact layers in
the ice and only provides approximate locations of
different sub-regions based merely on the statistical
analysis of the signal.

Several works in the literature use graphical mod-
els to detect ice layers [6] [14] in radar echograms.
Crandall et al. [6] used probabilistic graphical mod-
els for detecting ice layer boundary in echogram
images. Their model incorporates several types of
evidence and constraints including that layer bound-
aries should lie along areas of high image contrast
and that layer boundaries should be continuous
and not intersect. The extension of this work was
presented in [14] where they used Markov-Chain
Monte Carlo to sample from the joint distribution
over all possible layers conditioned on an image. A



Fig. 1.

Gibbs sampling instead of dynamic programming
based solver was used for performing inference.
The problem with using graphical models is that
it needs a lot of training samples (around half of
the actual dataset) which are ground-truth images
labeled manually by a human. Given the fact that
manual ice layer detection is a very time consuming
and expensive task, the last three methods are not
practical for large datasets.

In another work, Gifford et al. [11] compared
the performance of two methods, edge based and
active contour, for automating the task of estimating
polar ice and bedrock layers from airborne radar
data acquired over Greenland and Antarctica. They
showed that their edge-based approach offers faster
processing but suffers from lack of continuity and
smoothness that active contour provides. In their
active contour approach, the contour’s shape is
adaptively modified and evaluated to minimize the
cost or energy in the image [21], [22]. The main
disadvantage of the active contour model is the
incapability of maintaining the topology of the
evolving curve. This difficulty does not arise in the
level set model as it embeds the evolving curve into
a higher dimensional surface. Mitchell et al. [13]
used a level set technique for estimating bedrock
and surface layers. However for each single image
the user needs to re-initialize the curve manually
and as a result the method is quite slow and was

Ice surface and bottom depicted in radar echograms gathered by the Multichannel Coherent Radar Depth.

applied only to a small dataset. In this paper, the
regularity of level set is intrinsically maintained
using a distance regularization term. Therefore it
does not need any manual re-initialization and was
automatically applied on a large dataset.

III. METHODOLOGY

Here we propose to use level sets technique to
precisely detect the ice surface and the bottom
boundary. The level set method (LSM) is essentially
a successor to the active contour method. Ac-
tive contour method (ACM), also known as Snake
Model, was first introduced by Kass et al. [22]]. The
ACM is designed to detect interfaces and bound-
aries by a set of parametrized curves (contours) that
march successively toward the desired object until
the desired interfaces are captured. Assume these
parametrized curves are expressed as

Cls,t) = (2(s,1),y(s.t)  s€[0,1], te€0,00)

ey
where s is the parameter of the curve length and
t is the temporal variable. One can think of the
curve C(s,t) as the moving front of a current that
approaches the boundaries of the desired object as
time increases until it captures the desired interface.
The moving current represents a vector field, which
in its turn, influences the motion of the front curve.
In our case, this vector field is precisely created
based on properties of the desired feature in the



image, so that it can eventually lead the front curve
to the boundaries of the desired object.

Therefore, the front curve C(s,t) moves and
should eventually capture the interface of the de-
sired object according to the following differential
equation

aC
5 =FN )

where F' is the velocity function for the mov-
ing curve C' and N determines the direction of
the motion. Here N is the normal vector to the
curve C. Even though the ACM is an efficient
tool in image and video segmentation, it suffers
from certain serious issues. Being a parametrized
approach, the ACM approach can fail, because it
is incapable of consistently handling the topology
of the front moving curve. In fact, in each iter-
ation, certain parts of the curve C' can split or
merge since leading reference points can distance
from or come closer to each other; therefore, the
topology of the front curve can undergo substantial
changes in each iteration. The accumulation of such
changes of topology can introduce unnecessary, or
even misleading, complexities to the process, which
will cause the frontier curve to fail in tracking
the right interface in the image. To overcome the
disadvantages that the snakes model presents, the
level set method (LSM) was proposed by Osher and
Sethian [23]. Rather than following the interface
itself as in ACM, the level set method takes the
original curve and builds it into a surface. In other
words, the LSM takes the problem to one degree
higher in the spatial dimension (Figure ??) and
considers the curve C(s,t) as the zero-level of a
surface z = p(z,y,t) at any given time t. The
function ¢ is called the level set function (LSF).
We then track the changes of C(s,t) as the three
dimensional shape, ¢ evolves at each iteration.

More precisely, assume the curve C(s,t) is the
interface of an open region ©; C R?. We embed
the curve C(s,t) in the surface z = ¢(z,y,t) in
a way that C(s,t) will be the zero level set of the
LSF, ¢, which takes negative values inside €2; and

positive values outside of it; that is

o (x,y,t) =0 for z € 9y, 3)

and

¢ (z,y,t) <0 for € Q,

¢ (z,y,t) >0 for ¢ Q. )

The advantage of the LSM is that it handles
changes in the topology organically and does not
create any unnecessary complexity. However, this
comes with a higher computational price: instead
of a 2D curve, as in ACM, we are now moving
a 3D object in each iteration. But as mentioned,
we should only track the zero level set of the
surface . Therefore, it makes sense to evolve only
a narrow band around the zero-level set to reduce
the computational cost. In fact, this method has been
proposed by the same authors in their later works.
We will also take advantage of this computational
shortcut as we proceed.

In the setting of the level set method, the LSF, ¢,
is the solution of the following dynamical system

dp  OF

ot __% ($7y7t)€QX [0,00] (5)

with a typical initial condition. In Eq. 5} F rep-
resents the level set functional; conventionally, in
image segmentation approaches, the functional F
is defined as the ensemble of several forces, such
as the edge and the area forces:

F = gedge + garea (6)

where

Euige () = A /Q 95 (0) [Veldz  (7)

5area (99) == a/QgH (790) dx (8)

with o , A being real constants and A > 0. The
functions § and H are the Dirac and Heaviside
functions respectively. The function g is the edge



indicator on (2, the area of the image, which is
defined by

1
= 9)
I TrNG, « 1P

where I is the image intensity and G, is a Gaussian
kernel with a standard deviation o.

The edge term, E.qge computes the line inte-
gral along the zero level contour of ¢; that is,
fo 5))|C’(s)|ds, where the curve C' = C(s) :
[0, 1] —> Q is the zero-level contour and s is the
curve length. This term will be minimized when C'
is positioned on the boundary of the desired object.
The area term, E,cq, is basically calculated as a
weighted area of the region inside the zero level
contour. It accelerates the motion of the zero-level
contours toward the desired object.

Therefore, to minimize the energy functional, F,
it is necessary to solve the following PDE system:

82 = \a(p)div (9785 ) + agd(v);
p(x,0) = ¢o(x); (z,1) € 2 x [0,00).
(10)
This system is subject to the no-flux boundary
conditions on (2, which signifies that there is no
external force outside the image area. To carry out
a numerical process to solve this PDE system, the
spatial derivatives are discretized using the upwind
scheme. The use of the central difference scheme
will result in instability in the numerical procedure.
The numerical procedure also involves the assump-
tion that |Vp| = 1. We initialize the procedure
with a function that satisfies this property, but the
numerical scheme will not pass on this property;
consequently at each step an extra care, known
as re-initialization, must be taken to avoid the
error accumulation. The reinitialization procedure
involves solving the following PDE system for
in each step

o .

= = sign()(1 V4.
This severely slows down the computation. To

overcome this difficulty we use the distance reg-

ularized level set evolution (DRLSE) method as

(1)

proposed in [24] — also see [21] . In the DRLSE
method, the level set functional F is defined as

12)

where £, represents the distance regularization term

defined by
I / p|Veldz,

Q

F = 5edge + garea + gpy

& (p) = 13)

with a potential function p and a constant ;o > 0. As
suggested in [24] , we use a double-well function
for the potential function p as follows

[ (1 —cos(2ms))/4m? s <1,
p(s) = { (s —1)%/2 s>1, U9
with s € [0, 00).
We have
5L = —mdiv(DY ), (1)

where the diffusion coefficient D = D(yp) is given
by

P (Vo))
Vel

It is discussed in [24] that p has two minimum

D(y) = (16)

points at s = 0 and s = 1; and it is twice
differentiable with the following properties
/
‘p7(5)| <1 for s >0, and
s
/ /
i 20— 20 g (17
s—=0 s s—o0 S

Given the above properties, one can easily see
that

P (Vel),
e <
Vel
That means the diffusion coefficient in (I3) remains
bounded. Now the new energy functional F can be
minimized by solving the following gradient flow:

(18)

92 = \o(p)div (g%) +agd(p) + pdiv(DV ),
¢(x,0) = ¢o(),
(z,t) € Q2 x [0, 00). 19



Thanks to the distance regularization term, the
central difference scheme can be used to discretize
spatial derivatives, which leads to a stable numerical
procedure without need of re-initialization .

It also must be noted that, in practice, the func-
tions § and H are approximated by the smooth
functions . and H. defined by

= (T4cos (%)) |z| <e,
oy = { =) H=s an)
and
142+ dsn()  ll<e,
H. () = 1 2] > e,
0 |z] < —e;
2D

for £ > 0. ¢ is often considered to be 3/2.

As mentioned before, the above equation is gov-
erned by the no-flux boundary condition. For the
initial condition, we will consider a simple step
function defined by

.%'EQ(),
HASS Q/QQ,

_ ) —%
900—{ co

where ¢y > 0 is a constant, and €2 is a region
inside the image region ).

(22)

IV. EXPERIMENTAL RESULTS

We tested our ice layer identification approach
on publicly available radar images from the 2009
NASA Operation IceBridge Mission. The images
were collected with the airborne Multichannel Co-
herent Radar Depth Sounder system described in
[2]. The images have a resolution of 900 pixels in
the horizontal direction, which covers around 50km
on the ground, and 700 pixels in the vertical direc-
tion, which corresponds to O to 4km of ice thick-
ness. For these images there are manually picked in-
terfaces and we compare our ice layer identification
approach with them. The manually picked interfaces
have been produced by human annotators and some
of them are inaccurate and contain only one layer.
We chose the images that have both ice surface
and bottom layers and tested our method on a total
of 323 images. Figure 2| shows the corresponding
map and data segments of our entire dataset from

Data Segment  Frames
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Fig. 2. The map and data segments of our dataset, 1)
Fig. 1 right, frame ID 2009110202008, 2) Fig. 3, frame ID
2009101601021, 3) Fig. 4, Fig. 1 left, frame ID 2009101601026,
4) Fig. 5, frame ID 2009110202023, 5) Fig. 6, frame ID
2009110202032

CReSIS website (https://data.cresis.ku.edu/data/rds/
). Since our method is fully automatic we do
not need any training dataset and our method is
not affected by inaccurate ground-truth. Moreover
human annotation is quite time consuming and
because our method does not need any training and
is independent of ground-truthing, it is quite fast.
We used the same iteration number of 800 for all
of the images.

Figure [3] through [6] show the results of our
approach with respect to the manually picked in-
terfaces in a diverse dataset which includes images
with clutter from englacial scattering, large variabil-
ity of sub-glacial topography, surface multiples and
faint ice bottoms.

A. Clutter

It was explained in the introduction that there are
several challenges in automatic processing of radar
imagery. The first challenge is low SINR. All of the
images in our dataset contain clutter from englacial
scattering. For example, Figure 3 through [6] display
the representative images that contain clutter. The
background noise did not affect the performance of
our proposed technique. Figure 3 shows the initial



curve. This initial curve was drawn automatically
and there is no need for user input in any step of
the procedure. Figure 3p-e shows the results after
iteration 200, 400, 600, and 800 respectively. As it
can be seen in Figure , after 200 iterations the
ice surface is approximately detected but the ice
bottom is still not detected. After 400 iterations,
part of the ice bottom is detected, but after 800
iterations both the ice surface and bottom layers
are detected perfectly. Figure [3f shows the manually
picked interfaces which is the result of labeling the
layers by a human operator. Comparing Figure [3g,
the result of the proposed approach, with Figure
BF, the manually picked interfaces, we notice that
our result is very close to the manually picked
interfaces and appears to be even more accurate
in some parts as shown in Figure [3g and Figure
[Bh. The automated approach removes much of the
tedium from the task by providing automated results
for most of the ice bottom and allowing the operator
to focus on the harder to track regions where the
automated algorithm fails.

B. Diverse sub-glacial topology

The subglacial topography can vary from a
smooth shape to a very rough topology due to varia-
tion in landscape relief. Figure [ shows an example
where the ice bottom is rougher. The same initial
curve as the previous example was utilized in Figure
Hh. After 400 iterations (Figure[dk), the approximate
shape of the ice surface and bottom is detected.
After 600 iterations the solution is converged and
the exact shape of both layers are detected. Here
we continued the iteration to 800 to have the same
conditions for all images. As can be seen in Figure
M, the perfect shapes of the ice surface and bottom
are maintained and the extra iterations did not make
the situation worse. Comparing our results (Figure
M) with the manually picked interfaces (Figure ),
we find our results are more smooth and accurate
than the manually picked interfaces. Figure @f and
g show the magnified sections of images in Figure

Md and e.

C. Surface multiple

Strong surface reflections can occur due to re-
flecting the energy back from the ice sheet surface
to the receiver antenna and back to the surface
again. The Surface multiple is another challenging
factor in processing and identification of the ice
surface and bottom. Figure [5]shows an example of a
surface multiple with a more complicated shape of
ice bottom and with a high level of clutter in the im-
age. Here it takes the full 800 iterations for the level
set solution to converge, but it shows a satisfactory
results compared to the manually picked interfaces.
This representative result show the robustness of our
algorithm to the surface multiple.

V. EVALUATION

To evaluate the performance of our approach,
first we need to set up some benchmarks. For any
particular pixel in the image that we are evaluating,
there are four cases in comparison with the man-
ually picked interfaces (ground-truth); these four
cases are true positive (TP) or correct result, false
positive (FP) or unexpected result, false negative
(FN) or missing results, and finally true negative
(TN) [25]. For example, in a radar image, pixels
that are located on the interfaces in the ground-truth
image and are classified the same by our method
are TP. Pixels that are not on any interfaces in
the ground-truth image and are not classified in
any of them by our method are TN, etc. From the
confusion matrix, precision (P) and recall (R) are
calculated as follow:

TP
SR — 2
R= TP N @3

TP
P=—"_ 24
TP+ FP 4

Precision, the exactness of a classifier, and recall,
the completeness of a classifier, can be combined
to produce a single metric known as F-measure,
which is the weighted harmonic mean of precision
and recall. The F-measure defined as:

1 (B2 +1) PR

F= =
oz%Jr(lfoz)% B?P+ R

(25)



Fig. 3. Contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to ice surface and bottom layers after
200, 400, 600, and 800 iterations correspondingly, (f) manually picked interfaces, (g)-(h) the magnified section of (e) and (f)

f g
Fig. 4. Contour evolution throughout processing. a) Initial curve, (b)-(d) contour adaptation to ice surface and bottom after 200,
400, and 800 iterations correspondingly, (e) manually picked interfaces, (f)-(g) the magnified section of (d) and (e)



Fig. FlE

captures the precision and recall tradeoff. The F-
measure is valued between O and 1, where larger
values are more desirable. In this paper we used a
balanced F-measure, i.e. with § =1 .

The assumption is that human labeled images
(ground-truth) contain perfect results and then the
performance of our method was evaluated with
respect to manually picked interfaces. We calculated
the precision, recall and F-measure for all of the

Fig. [f|F
Fig. 5. Contour evolution throughout processing. Fig A is the initial curve, Fig B-E are contour adaptation to ice surface and
bottom after 200, 400, 600, and 800 iterations respectively, Fig ElF is the manually picked interfaces

images in the dataset. Around 65% of the images
in our dataset have invisible or faint ice bottom due
to attenuation of radio-waves by thick warm ice. For
the images that ice bottom is not completely visible
in the image (Figure[6]) our approach is not able to
detect the invisible part accurately. For these images
it is better to stop the iteration early otherwise its
error will be accumulated. However to avoid human
interference we kept the 800" iteration for all of the



| @ ';:- &1
Hard ;‘0 deﬁ# ﬁq -

Fig. 6. Our approach is not able to detect the invisible parts of ice bottom, left: the ice surface and bottom detected by our

approach, right: manually picked interfaces

images and reached 75% F-measure for the entire
dataset. For the images that have visible ice bottom
layers (1/3 of dataset), we reached the average F-
measure of 96% (Table [ ).

F-measure
Entire dataset (visible and invisible ice bottom) 75%
Images with visible ice bottom 96%

TABLE 1. Average F-measure of our approach for the entire
dataset and also for the images with visible ice bottom.
We also calculated the accuracy by computing

the mean absolute deviation between the manually
picked and the estimated layer boundaries by our
algorithm. We used two summary statistics: mean
column-wise absolute error over all images in the
visible datatset and the median of the column-wise
mean absolute errors across images (Table [II} ).

Metrics | Ice Surface  Ice Bottom
Mean Error (pixel) 11.15 6.60
Median Error (pixel) 6.56 2.07

TABLE II. Mean and median error on ice surface and bottom

Our algorithm is very fast, taking an average of
30 second to process each image on a 2.7 GHz
machine. Moreover it does not need any training

phase with human labeled images which speeds up
the entire process significantly. Usually it takes up
to 5-10 minutes per file to manually label the image

(.

VI. CONCLUSION AND FUTURE WORK

We presented an automatic approach to estimate
ice surface and bottom in radar echo sounding
imagery. In this approach the complex topology of
ice surface and bottom were detected by evolving
an initial curve using distance regularized level-
set. The results were evaluated on a large dataset
of airborne radar imagery collected during the Ice-
Bridge Mission over Antarctica and Greenland and
show promising results in respect to hand-labeled
ground truth. We reached the high accuracy of 75%
for the entire dataset which contains images with
noise, diverse ice bottom topology, surface multiple
and faint ice bottom using a fully automatic tech-
nique. Our algorithm is robust to noise and surface
multiple and can detect subglacial topography with
any smooth or rough shape. For images without
the faint subglacial topography we reached the F-
measure of 96%. However 65% of the images in
the dataset present faint or invisible ice bottom.
For those images, it is better to first separate them
from the images that have a visible ice bottom
layer and then apply our algorithm with different



numbers of iterations. In the future, we are planning
to extend this work by improving the quality of

the

images with faint or currently undetectable

ice bottom signals prior to applying the level set
algorithm. In future, we will be looking at other
dataset especially those with internal ice layers. We
will also try to implement the Viterbi method [19],
[20] for providing a faster solution in comparing to
level-set algorithm.
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