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Abstract

Ground-penetrating radar systems are useful for a
variety scientific studies, including monitoring changes
to the polar ice sheets that may give clues to climate
change. A key step in analyzing radar echograms is
to identify boundaries between layers of material (such
as air, ice, rock, etc.). In this paper, we propose an
automated technique for identifying these boundaries,
posing this as an inference problem on a probabilistic
graphical model. We show how to learn model param-
eters from labeled training data and how to perform in-
ference efficiently, as well as how additional sources of
evidence, such as feedback from a human operator, can
be naturally incorporated. We evaluate the approach on
over 800 echograms of the Antarctic ice sheets, measur-
ing error with respect to hand-labeled ground truth.

1. Introduction
In recent years, scientists in a wide range of disci-

plines have used ground-penetrating radar systems to
study subterranean structures, including searching for
landmines and other buried objects [9], characterizing
the internal structure of planetary bodies [3], and mon-
itoring changes in polar ice sheets on Earth [1]. These
systems are often mounted on airplanes or spacecraft,
producing radar echograms that give a cross-section of
underground structures along the vehicle’s path.

Figure 1 shows a sample echogram produced by
the Multichannel Radar Depth Sounder instrument on-
board an aircraft flown over part of Antarctica [1]. An
echogram is an image in which the horizontal axis is
distance along the flight path, the vertical distance rep-
resents depth, and pixel intensity represents degree of
radar signal return. The dark line near the top of the
echogram is the boundary between the air and the ice
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sheet, while the more irregular lower line is the bound-
ary between the bottom of the ice and the terrain un-
derneath. This basal terrain is quite varied, and may be
smooth or mountainous, wet or dry, and made of till,
sand, soil and/or rock. This large variability together
with the uncertainty inherent of the radar sensing pro-
cess (e.g. unpredictable signal scatter and reflection pat-
terns) causes echograms to be noisy and difficult to in-
terpret. Human experts thus analyze these echograms,
marking the positions of layer boundaries by hand,
and then subsequent processing produces derivative
data useful for scientists. Unfortunately, manual layer-
finding is tedious and labor-intensive, especially as ever
greater quantities of echograms are produced.

In this paper we present an automatic technique for
finding layer boundaries in noisy echogram images.
Our approach poses layer-finding as an inference prob-
lem on a probabilistic graphical model. The model in-
corporates several types of evidence and constraints, in-
cluding that layer boundaries should lie along areas of
high image contrast and that layer boundaries should be
continuous and not intersect. An advantage of this prob-
abilistic approach is robustness to noise, because it ex-
plicitly models uncertainty and combines evidence from
multiple sources before making decisions. We learn
the model parameters from labeled training data and
show how to perform inference efficiently for new im-
ages. We test our approach on a large echogram dataset,
demonstrating an improvement over several baselines.
We also show how human feedback can be added to the
model to further improve its accuracy.

2. Related work
Work on subsurface imaging (including both hard-

ware systems and data processing) is too vast to review
here; see Turk et al [14] for an extensive treatment.
There has been relatively little work on the specific
problem of layer-finding in echogram images. Freeman
et al [8] find layer boundaries in echograms from Mars,
applying band-pass filters and thresholds to find linear



Figure 1. Sample radar echogram of part of the Antarctic ice sheet: (left) raw echogram, (center)
layer boundaries found with our approach, and (right) ground truth. The upper (red) boundary
is between air and ice layers, and the lower (green) boundary is between ice and terrain.

subsurface structures. Ferro & Bruzzone [7] identify
subterranean features in Martian data using an iterative
region-growing approach and pre-processing steps. Our
approach is distinct to either of these in that we avoid
intermediate thresholding and local search by solving a
single inference problem on a graphical model (albeit
approximately). Frigui et al [9] use graphical models
on echograms as we do, but their task is to detect land-
mines and their models are thus quite different.

General-purpose image segmentation has also been
studied extensively. Active contour models [10] are re-
lated to our work in that they combine image features
with continuity constraints, but require good initializa-
tion. Hough transforms [4] are difficult to apply to
echograms because layer boundaries do not fit a para-
metric model. Our approach is related to Markov Ran-
dom Field-based image segmentation [5], and in partic-
ular to the tiered labeling approach of [6]. We develop
an alternative model that captures unique assumptions
of layer-finding in echogram images, explained below.

3. A graphical model for layer-finding
Given a radar echogram I of size m × n pixels, we

wish to find the location of each of K layer boundaries
in each column of I . More formally, let lik denote a
random variable corresponding to the row index of the
k-th layer boundary in the i-th column of the image.
Since the boundary could occur at any pixel within the
column, there are m possible discrete values that could
be assigned to each lki . Let Li = (l1i , ..., l

K
i ) denote all

of the partition labels for the i-th image column, and
L = (L1, ..., Ln) denote a labeling of the entire image.

We pose layer-finding as an inference problem on a
statistical graphical model. Our goal is to find a choice
of L (denoted L∗) that maximizes the probability of the
labels given the image data, P (L|I). From Bayes’ Law,

L∗ = arg max
L

P (L|I) = arg max
L

P (I|L)P (L). (1)

This Bayesian factorization has a very natural interpre-
tation in our problem: the likelihood P (I|L) measures

how well a given labeling agrees with the observed im-
age data in I (capturing, for example, how well the layer
boundaries fall along edges in the image) while P (L)
captures prior constraints on the labeling, such as that
boundaries should be continuous and should not cross.

The space of possible labelings in the maximization
in equation (1) is enormous (O(mKn)), so maximizing
it is not possible in general. Fortunately the prior and
likelihood terms can be factored using reasonable as-
sumptions about echograms. We assume that P (I|L)
can be factored over the columns of the image,

P (I|L) =
∏

i∈[1,n]

P (Ii|Li),

where Ii refers to the i-th image column. We define a
template model Tk of fixed size 1 × s (we use s = 11
pixels) for the vertical profile of each type of layer
boundary k. For each pixel p in the template, we esti-
mate a mean µk

p and variance σk
p on greyscale intensity

assuming that the template is centered at the location of
the boundary. We also estimate a background model for
non-boundary pixels, with parameters µ0 and σ0. Then
P (Ii|Li) is given by,∏
p∈Ii

P (I(p)|µ0, σ0)
∏

k∈[1,K]

∏
p∈Tk

P (I(p+ lki )|µk
p, σ

k
p)

P (I(p+ lki )|µ0, σ0)
,

which can be computed efficiently using convolu-
tions. This factorization assumes that image data across
columns is independent given layer locations, and that
layer boundary templates do not intersect; neither of
these are strictly true but we have found that the model
still yields reasonable results in practice.

We design the prior P (L) to encourage continuous
boundaries that do not intersect. We make a Markovian
assumption that the prior can be factored as a product
over both neighboring columns within the same layer
and over neighboring layers within the same column,

P (L) ∝
∏

i∈[2,n]

∏
k∈[1,K]

P (lki |lki−1)P (lki |lk−1
i ).
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Figure 2. Graphical model for finding 3
layers in a 4-column image. Each lki
is a hidden variable, horizontal edges
are P (lki |lki−1), and vertical edges are
P (lki |l

k−1
i ). Not shown is the observed im-

age data connected to each hidden node.

The two probabilities in this factorization serve differ-
ent purposes. P (lki |lki−1) is the pairwise conditional
probability distribution on neighboring pixels within the
same layer boundary, which we model as a Gaussian
with zero mean and variance σk. This distribution en-
courages neighboring pixels to have similar vertical la-
bels, thus encouraging layer boundaries to be continu-
ous lines. The other term, P (lki |l

k−1
i ), is the pairwise

conditional probability distribution on neighboring lay-
ers of the same column. To prevent label boundaries
from crossing, we use a repulsive probability distribu-
tion here that is 0 if lki < lk−1

i and is uniform otherwise.
We use labeled training data to learn the parameters

of the MRF. For the priors, we model P (lki |P k
i−1) for

each k as a zero-mean Gaussian distribution, learning
its variance σk by maximum-likelihood estimation from
the layer boundaries in the training data. We similarly
use maximum-likelihood estimation for the parameters
in the templates of the likelihood functions.

3.1. Inference
By plugging these likelihood and prior factorizations

into equation (1), we see that we need to maximize∏
i∈[1,n]

P (Ii|li)
∏

i∈[2,n]

∏
k∈[1,K]

P (lki |lki−1)P (lki |lk−1
i ).

(2)
This is a first-order Markov Random Field (MRF)
model [11], with observed variables consisting of im-
age data, hidden variables consisting of the unknown
row labels for each column and layer (lki ), and pairwise
probability functions between neighboring hidden vari-
ables. Figure 2 presents an illustration of this MRF. Un-
fortunately, exact inference on an MRF is NP hard in
general. Approximate algorithms yield good results for
some MRFs [2, 12], but are relatively slow and some
(like loopy BP) are not even guaranteed to converge.

Here we take an alternative approach that breaks the

Table 1. Evaluation of our technique and
baselines, in terms of columnwise mean
and mean-squared error (in pixels).

(a) Comparing our approach with baselines:
Air-ice boundary Ice-terrain boundary

Mean Err Mean SE Mean Err Mean SE
Fixed 69.0 10955.9 89.7 14975.2
AppearOnly 19.6 2949.8 42.1 7686.2
Our approach 14.1 1719.6 32.0 5078.9

(b) Results with user-provided constraint points:
Ours, 1 pt 11.1 926.5 22.3 2652.5
Ours, 2 pts 10.1 718.6 18.3 1927.9
Ours, 3 pts 9.6 602.8 15.7 1470.2

MRF into a set of non-loopy graphs, and then greed-
ily performs exact inference on each of these graphs in
sequence. This is sensible because the only constraints
between rows of the MRF in Figure 2 are the repul-
sion factors that prevent boundaries from crossing. We
thus perform inference on each row of the MRF in se-
quence, fixing the labels found for the row above it and
then solving only for the hidden variables in that row.
The graph in each of these subproblems is a chain, or a
Hidden Markov Model (HMM).

We perform inference on each of these HMMs using
the Viterbi algorithm [13]. Viterbi uses dynamic pro-
gramming to compute a max-marginal distribution for
each variable based on the distribution from the previ-
ous variable in the chain, somewhat similar to Dijkstra’s
algorithm. The usual implementation of Viterbi takes
time quadratic in the number of possible labels per vari-
able, which in our case is m (the number of rows in
the image). To speed this up, we use the linear-time
generalized distance transform of [5] to compute the
max-marginal distributions efficiently; this is possible
because of our assumption that the prior P (lki |lki−1) is
a Gaussian. The running time for each HMM is thus
O(mn), yielding an overall running time of O(Kmn).

4. Experimental results
We tested our layer-finder on publicly-available

radar echograms from the 2009 NASA Operation Ice
Bridge program, collected with the airborne Multichan-
nel Coherent Radar Depth Sounder system [1]. We
used a total of 827 echograms, each with a resolution
of 700× 900 pixels (which corresponds to about 30km
of data on the x-axis, and ice thickness of about 0 to
4 km on the y-axis). For these images we also have
(noisy) human-labeled layer boundaries, which we use
as ground truth. Data and source code are available at
http://vision.soic.indiana.edu/icelayers.

To evaluate our system, we split the data into train-
ing and test image sets (413 training images, 414 test
images) and learned the model parameters from the



Figure 3. The automatic algorithm found correct layers in the left and center images, but in the
right image found an incorrect terrain-ice boundary (green). A user provided a single constraint
point (black/cyan asterisk) and layer-finding was re-run, giving a correct result (cyan line).

training images. There are two layers of interest in
this dataset (the ice-terrain and ice-air boundaries), so
K=2. We then ran inference on each of the test images
and calculated the error with respect to human-labeled
ground truth, as shown in Table 1(a). The mean error
is 14.1 pixels per column for the air-ice boundary, and
32.0 pixels for the ice-terrain boundary. To give some
context, we compare our results to two simple base-
lines: Fixed always chooses a straight horizontal line
for each layer at the position of its mean location in the
training images, while AppearOnly uses a uniform prior
in the MRF, thus choosing the layer boundaries by max-
imizing P (Ii|Li) for each column i independently. Our
approach performs significantly better than either base-
line. Our algorithm is very fast, taking an average of
about 0.23 seconds per image on a 3.0GHz machine.
The left two panes of Fig. 3 show some sample results.

Additional evidence can be easily incorporated into
our probabilistic formulation. For example, actual
ground-truth data (e.g. from ice bores) may be available
for some locations, or a human operator might provide
feedback by marking true layer boundaries for a sparse
set of points. Either source of evidence can be incorpo-
rated by setting P (Ii|Li) for the corresponding column
i such that the probability is 1 for the known label and
0 for all others. Inference is then performed as before.

We tested the effectiveness of this technique by sim-
ulating feedback from a human operator. For each im-
age, we computed initial layer boundaries using the
MRF as before. Then we compared those boundaries
to ground truth and found the column at which the er-
ror was highest. We simulated user feedback by con-
straining the boundary to pass through the correct row
at that column, by changing the likelihood function as
explained above. We repeated inference to find a new
solution given this constraint, and re-computed the er-
ror with respect to ground truth. Table 1(b) presents the
results, showing that adding just a single correct con-
straint decreases mean error significantly (from 14.1 to
11.1 pixels for the air-ice boundary, and from 32.0 to
22.3 for the ice-terrain boundary), while adding addi-
tional constraints further decreases the error. This ex-

periment suggests that we could increase accuracy sig-
nificantly with a minimal amount of human interac-
tion, in which a user clicks a single point on each layer
boundary. The right pane of Fig. 3 shows a result cor-
rected through this feedback.

5. Conclusion
We presented a technique for automatic layer finding

in radar echograms using statistical graphical models.
These models can robustly handle noisy echograms be-
cause they explicitly reason about uncertainty and avoid
making hard decisions (like thresholding) until after all
evidence has been combined together. In future work
we plan to explore alternative inference strategies for
this MRF, and to apply our work to other sources of
radar echograms with larger numbers of layers.
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