Java Thread and Process Performance for Parallel
Machine Learning on Multicore HPC Clusters

Saliya Ekanayake, Supun Kamburugamuve, Pulasthi Wickramasinghe, Geoffrey C. Fox
School of Informatics and Computing
Indiana University, Bloomington
sekanaya@indiana.edu, skamburu@indiana.edu, pswickra@indiana.edu, gcf@indiana.edu

Abstract—The growing use of Big Data frameworks on large
machines highlights the importance of performance issues and the
value of High Performance Computing (HPC) technology. This
paper looks carefully at three major frameworks Spark, Flink
and Message Passing Interface (MPI) both in scaling across nodes
and internally over the many cores inside modern nodes. We focus
on the special challenges of the Java Virtual Machine (JYM)
using an Intel Haswell HPC cluster with 24 cores per node. Two
parallel machine learning algorithms, K-Means clustering and
Multidimensional Scaling (MDS) are used in our performance
studies. We identify three major issues — thread models, affinity
patterns, and communication mechanisms — as factors affecting
performance by large factors and show how to optimize them
so that Java can match the performance of traditional HPC
languages like C. Further we suggest approaches that preserve
the user interface and elegant dataflow approach of Flink and
Spark but modify the runtime so that these Big Data frameworks
can achieve excellent performance and realize the goals of HPC-
Big Data convergence.

Index Terms—Big Data; Machine Learning; Java; Multicore;
HPC;

I. INTRODUCTION

Parallel machine learning is a blooming area in Big Data
with a high demand for performance. A primary challenge
with parallel machine learning is its sensitivity to performance
variations in individual tasks. To elaborate, these algorithms
are typically iterative in nature and require collective com-
munications that are not easily overlapped with computations;
hence the performance is susceptible to communication over-
heads and noise caused by slow performing tasks. Beyond the
nature of these applications, The Java runtime on multicore
Non-Uniform Memory Access (NUMA) nodes brings out
additional challenges in keeping constant performance when
scaling over the many cores within a node as well as across
nodes. In this paper, we focus on such special challenges
of the Java Virtual Machine (JVM) for parallel machine
learning. In particular, we identify three major factors — thread
models, affinity patterns, and communication mechanisms —
that affect performance by large factors and show optimization
techniques to bring Java performance closer to traditional High
Performance Computing (HPC) applications in languages like
C.

In studying performance, we carefully look at three major
frameworks — Message Passing Interface (MPI), Spark, and
Flink. Two parallel machine learning algorithms — K-Means
clustering and Multidimensional Scaling (MDS) — are used to

evaluate these frameworks using an Intel Haswell HPC cluster
consisting of 24-core nodes. Most of the parallel machine
learning algorithms employ global collective communications,
hence the choice of MDS and K-Means to cover them broadly.
Based on the results, we further suggest approaches to improve
the runtime of Flink and Spark, while preserving their elegant
dataflow programming model.

The remaining sections are organized as follows. Section II
presents a comparison of execution models of MPI, Spark, and
Flink, which paves the way to explain performance differences
observed in later sections. Section III elaborates the three
major factors affecting performance of Big Data applications.
It describes two thread models, six affinity patterns, and two
communication mechanisms used to evaluate performance.
Section IV outlines the two machine learning applications
and their various implementations in MPI, Spark, and Flink.
Section V describes the testing of these applications using an
Intel Haswell HPC cluster followed by a discussion on Big
Data frameworks and MPI in Section VI. Section VII and
Section VIII present our conclusion based on the experiments
and future plans to improve Spark and Flink.

II. COMPARISON OF EXECUTION MODELS

The MPI and Big Data platform implementations that we
study, follow two different execution models, message passing
and dataflow [1]. The key differences are with the task
distribution and communication. MPI is a rich execution model
that can support different styles of programming including
Bulk Synchronous Parallel (BSP) and many-task models. On
the other hand, Big Data platforms primarily follow the
data oriented execution model that is termed the dataflow
model [1]. Flink [2] is a direct realization of the dataflow
execution model, where as Spark resembles the dataflow model
but executes the parallel program as a series of transformations
over its distributed data model — Resilient Distributed Dataset
(RDD) [3].

In the dataflow model, the parallel program is expressed as
a Directed Acyclic Graph (DAG). Parallel tasks are assigned
to nodes of the DAG and the flow of data between nodes
completes the “wiring”. In contrast, classic parallel applica-
tions employ the message passing model, where long run-
ning tasks are orchestrated using point-to-point and collective
communication calls. We sometimes term this an “in-place”
execution model to distinguish it from dataflow. The dataflow

LRT-FJ LRT-BSP

I Serial work
I Non-trivial parallel work

=== Busy thread synchronization

Fig. 1: Long Running Threads Fork-Join (LRT-FJ) vs. Long
Running Threads Bulk Synchronous Parallel (LRT-BSP)

Data Set
<Points>

Data Set
<Updated
Centroids>

Data Set
<Initial
Centroids>

Reduce
(update
centroids)

Map (nearest
centroid
calculation)

~ Broadcast

Fig. 2: Flink and Spark K-Means algorithm. Both Flink and
Spark implementations follow the same data-flow

model permits both batch and stream processing [4] of data,
which are supported in Flink and Spark. Apache Beam [5]
is a unified dataflow programming Application Programming
Interface (API), which can be used to write both streaming
and batch data processing applications compatible to run on
either Spark or Flink.

With MPI machine learning applications, all parts of the
program are executed on a set of pre-allocated tasks that
define the parallelism of the execution. The same (reflecting
in-place model) tasks are responsible for the computing and
communications of the program. On the other hand, dataflow
implementations allocate separate tasks for different stages
of the application and connect them through communication
channels. These tasks and communication links form the exe-
cution graph. The MPI programming model permits complete
control over the execution in a single task including memory
management and thread execution. The dataflow execution
model hides these details from the user and provides only
a high level APIL.

With current implementations of Big Data frameworks, pro-
gramming models and execution models are coupled together
even though they could be independent of each other. For
example the dataflow programming models in Spark and Flink
are implemented as dataflow execution graphs compared to an
in-place execution as in MPI applications.

It is important to note the differences in how the iterations
are handled in pure dataflow applications. With dataflow
applications, iterations are handled as unrolled for loops. Even
though the user specifies a for loop execution, it translates

to a lengthy dataflow graph. This implies that the data from
one loop’s tasks that is relevant to the next needs to be sent
through communications. The MPI model doesn’t have this
requirement because a for loop is a regular in memory loop
and data from the iteration is available to the next via the
task’s memory.

III. PERFORMANCE FACTORS
A. Thread Models

Threads offer a convenient construct to implement shared
memory parallelism. A common pattern used in both Big Data
and HPC is the Fork-Join (FJ) thread model. In this approach, a
master thread spawns parallel regions dynamically as required.
FJ regions are implicitly synchronized at the end, after which
the worker threads are terminated and only the master thread
will continue until a new parallel region is created. Thread
creation and termination are expensive; therefore, FJ imple-
mentations employ thread pools to hand over forked tasks.
Pooled threads are long-lived yet short-activated; they release
CPU resources and switch to idle state after executing their
tasks. This model is subsequently referred to as LRT-FJ in
this paper. Java has built-in support for LRT-FJ through its
java.util.concurrent.ForkJoinPool !. Habanero
Java [6], an OpenMP [7]-like implementation in Java, also
supports LRT-FJ via its forall and forallChunked
constructs.

We experimented with another approach to shared memory
parallelism, hereafter referred to as LRT-BSP. It resembles
the classic BSP style but with threads. Fig. 1 depicts a side-
by-side view of LRT-FJ and LRT-BSP models. The notable
difference is that in LRT-BSP, threads are busy from start
to finish of the program, not just within the parallel region
as in LRT-FJ. The next important difference is the use of
explicit synchronization constructs (blue horizontal lines) after
non-trivial parallel work (red bars in the figure) in LRT-BSP.
There are constructs such as CyclicBarrier in Java to aid
the implementation of these synchronization steps. However,
we employed native compare-and-swap (CAS) operations and
busy loops for performance as well as to keep threads “hot” on
cores. A third difference in LRT-BSP is that the serial part of
the code (green bars) is replicated across workers, where as in
LRT-FJ it is executed by just the master thread. Performance
results show that despite the replication of serial work in
LRT-BSP, it does not add significant overhead. The reason for
this behavior is that in a well-designed parallel application, the
serial portions are trivial compared to the parallel work loads
and the total amount of memory accesses in LRT-BSP is equal
to that of LRT-FJ for these parts.

Beyond the differences in the execution model, we ob-
served a significant performance improvement with LRT-BSP
compared to LRT-FJ for parallel Java applications. Ana-
lyzing perf statistics revealed that LRT-FJ experiences a
higher number of context switches, CPU migrations, and data
Translation Lookaside Buffer (dTLB) load/store misses than

! https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

TABLE I: Affinity patterns

Process Affinity
Cores | Socket | None (All)
Thread Inherit CI SI NI
Affinity | Explicit per Core CE SE NE

LRT-BSP. In an MDS run, the factors were over 15x and 70x
for context switches and CPU migrations respectively. These
inefficiencies coupled with the overhead of scheduling threads
lead to noise in computation times within parallel FJ regions.
Consequently, synchronization points become significantly ex-
pensive, and performance measurements indicate performance
degredation with increasing number of threads in LRT-FJ.

B. Thread and Process Affinity Patterns

Modern multicore HPC cluster nodes typically contain more
than one physical CPU. Although memory is shared between
these central processing units (CPUs), memory access is not
uniform. CPUs with their local memory compose NUMA
domains or NUMA nodes. Developing parallel applications
in these settings requires paying attention to the locality of
memory access to improve performance.

In supported Operating Systems (OSs), process affinity
determines where the OS can schedule a given process as
well as the part of memory it can access. Threads spawned
within a process by default inherit the affinity policy of the
process. Also, it is possible to set affinity explicitly to threads
as desired for performance reasons. This research explores six
affinity patterns and identifies binding options that produce the
best and worst performance.

Details of the three process affinity patterns in Table I are:
Core - binds the process to N cores, where N is the number
of threads used for shared memory parallelism.

Socket - binds the process to a physical CPU or socket.
None (All) - binds the process to all available cores, which is
equivalent to being unbound.

Worker threads may either inherit the process binding or
be pinned to a separate core. K-Means and MDS performance
tests revealed that selecting proper affinity settings out of these
patterns can substantially improve overall performance.

C. Communication Mechanisms

Processes within a node offer an alternative approach from
threads to exploiting intra-node parallelism. Long running
processes as in MPI programs avoid frequent scheduling over-
heads and other pitfalls discussed with short-activated threads.
However, the shared nothing nature of processes imposes a
higher communication burden than with threads, especially
when making collective calls. Increasing process count to
utilize all cores on modern chips with higher core counts
makes this effect even worse, degrading any computational
advantages of using processes.

A solution typically employed in HPC is to use the node
shared memory to communicate between processes running
in the same node. In [8] we have shown significant perfor-
mance improvement in Java inter-process communication by

implementing a memory maps-based communication layer.
We have later applied the same technique in [9] to improve
communication between the Big Data Apache Storm tasks.

IV. APPLICATIONS

To evaluate the performance of different aspects discussed
in Section III, we have implemented six variants of K-
Means clustering. Four of them are OpenMPI-based in both
Java and C supporting LRT-FJ and LRT-BSP thread models.
The remainder are based on Flink and Spark. We have
also implemented two flavors of Deterministic Annealing
Multidimensional Scaling (DA-MDS) [10] with optimizations
discussed in [8] to support the two thread models in Java and
OpenMPI. The following subsections describe the details of
these applications.

A. MPI Java and C K-Means

The two C implementations use OpenMPI for message
passing and OpenMP for shared memory parallelism. The
LRT-FJ follows the conventional MPI plus #pragma omp
parallel regions. LRT-BSP, on the other hand, starts an
OpenMP parallel region after MPI_INIT and continues to
follow the models illustrated in Fig. 1. Intermediate thread
synchronization is done through atomic built-ins of GNU
Compiler Collection (GCC).

The Java implementations use OpenMPI’s Java bind-
ing [11], [12] and Habanero-Java [6] thread library, which
provides similar parallel constructs to OpenMP. In LRT-BSP,
intermediate thread synchronization uses Java atomic support,
which is more efficient than other lock mechanisms in Java.

B. Flink K-Means

Flink provides a dataflow-based programming and execution
model. The dataflow computations composed by the user
are converted to an execution dataflow graph by Flink and
executed on a distributed set of nodes.

Flink K-Means’ dataflow graph is shown in Fig. 2. Inputs
to the algorithm are a set of points and a set of centroids
read from the disk. At each iteration, a new set of centroids
are calculated and fed back to the beginning of the iteration.
The algorithm partitions the points into multiple map tasks
and uses the full set of centroids in each map task. Each map
task assigns its points to their nearest centroid. The average
of such points is reduced (sum) for each centroid to get the
new set of centroids, which are broadcast to the next iteration.
This is essentially the same algorithm as that used in MPI
but expressed as a stream of dataflow transformations. In
particular, the Flink reduction and broadcast are equivalent
to MPI_Allreduce semantics.

C. Spark K-Means

Spark is a distributed in-memory data processing engine.
The data model in Spark is based around RDDs [3]. The
execution model of Spark is based on RDDs and lineage
graphs. The lineage graph captures dependencies between
RDDs and their transformations. The logical execution model

is expressed through a chain of transformations on RDDs by
the user.

We used a slightly modified version > of the K-Means
implementation provided in Spark MLIib [13] library . The
overall dataflow is shown in Fig. 2, which is as same as that
of Flink K-Means. Also, the inputs are read in a similar fashion
from disk. The points data file is partitioned and parallel map
operations are performed on each partition. Each point in a
data partition is cached to increase performance. Within the
map operations, points are assigned to their closest centers.
The reduce step gathers all this information to the driver
program, where the new set of centers are calculated and
boradcast to all the worker nodes for the next iteration.

D. MPI Java MDS

MDS is a technique to visualize high dimensional data
in a lower dimension, typically in 3D. We extended our
DA-MDS [8] implementation, which is based on LRT-FJ,
to include a version of LRT-BSP as well. Also, both these
versions include shared memory based inter-process communi-
cation support. Note, computations in DA-MDS grow O(N?)
and communications O (N). Moreover, unlike K-Means, where
only one parallel region is required, DA-MDS requires mul-
tiple parallel regions revisited on each iteration until con-
verged. This hierarchical iteration pattern (parallel conjugate
gradient iteration inside a classic expectation maximization
loop) causes issues with the Big Data frameworks that we
will explore elsewhere.

V. EVALUATION

The experiments were run on Juliet, which is an Intel
Haswell HPC cluster with 128 nodes total. We tested on 96
nodes that have 24 cores over 2 sockets. The other 32 nodes
have 36 cores per node. Each node consists of 128GB of
main memory and 56Gbps Infiniband (IB) interconnect and
1Gbps dedicated Ethernet connections. MPI runs used the IB
except when comparing against Flink and Spark, where all
three frameworks used Transmission Control Protocol (TCP)
communications. TCP over IB was not available in this cluster.

A. MPI Java and C K-Means

Fig. 3 and Fig. 4 show K-Means Java and C total runtime
for 1 million 2D points and 1000 centroids respectively. Each
figure presents performance of both LRT-FJ and LRT-BSP
models over the six binding patterns identified in Table I.
These were run on 24-core nodes; hence the abscissa shows
all the eight possible combinations of threads and processes
within a node to exploit the full 24-way parallelism. The left
most pattern, 1x24, indicates all processes and the right most
pattern, 24x1 indicates all threads within a node. Note, patterns
8x3 and 24x1 imply that processes span across NUMA mem-
ory boundaries, which is known to be inefficient but presented
here for completeness. The red and orange lines represent
inherited thread affinity for LRT-FJ and LRT-BSP respectively.

2 https://github.com/DSC-SPIDAL/spark/tree/1.6.1.modifiedKmeans

Similarly, the black and green lines illustrate explicit thread
pinning, each to a core, for these two thread models.

Java results suggest LRT-FJ is the worst whatever the
affinity strategy for any pattern other than 1x24, which is all
MPI and does not use thread parallel regions. A primary reason
for this poor performance is the thread scheduling overhead in
Java as FJ threads are short-activated. Also, the JVM spawns
extra bookkeeping threads for Garbage Collection (GC) and
other tasks, which compete for CPU resources as well. Of
the LRT-BSP lines, the unbound threads (NI) show the worst
performance. Affinity patterns NE and CE seem to give the
best runtime with increasing number of threads.

C results show the same behavior for unbounded and ex-
plicitly bound threads. The two thread models, however, show
similar performance, unlike Java. Further investigation of this
behavior revealed OpenMP threads keep the CPUs occupied
at 100% between FJ regions suggesting OpenMP internally
optimizes threads similar to the Java LRT-BSP implementation
introduced in this paper. This could be adopted in Java to give
efficient FJ implementations employing LRT-BSP model.

Fig. 5 illustrates the effect of affinity patterns CE and NE
for varying data sizes on LRT-BSP. They performed similar
to each other, but numbers favor pattern CE over NE.

Fig. 6 compares Java and C LRT-BSP runtimes for K-
Means over varying data sizes across thread and process
combinations. Results demonstrate Java performance is on par
with C.

Fig. 7 and presents LRT-FJ and LRT-BSP performance
over varying data sizes for affinity pattern CE. In this figure,
the number of centroids were incremented as 1k,10k, and
100k. LRT-BSP shows constant performance across thread
and process combinations for all data sizes, where as LRT-FJ
exhibits abysmal performance with increasing threads and data
sizes.

B. MPI Java MDS

Fig. 8 through Fig. 10 illustrate DA-MDS performance
for data sizes 50k, 100k, and 200k on 24-core and 36-core
nodes. Each figure presents DA-MDS runtime for the two
thread models and affinity patterns CE, SE, NE, and NI.
Patterns CI and SI were omitted as they showed similar
abysmal performance as NI in earlier K-Means results. Thread
and process combinations for 24-core nodes are as same as
the ones used in K-Means experiments. On 36-core nodes,
nine patterns were tested from 1x36 to 36x1. However, as
LRT-FJ allocates data for all threads at process level, 200k
decomposition over 16 nodes produced more data than what
Java 1D arrays could hold. Therefore, this pattern could not be
tested for 200k data. Note, thread local data allocation could
solve this but it would require a major rewrite of the code to
support 2D arrays over 1D. LRT-BSP did not face this situation
as data structures are local to threads and each allocates only
data required for the thread, which is within Java’s array limit
of 231 — 1 elements.

The above results confirm that Java LRT-FJ has the lowest
performance irrespective of the binding, data size or the num-

Tg —&— LRT-FI CI —— LRT-FJ SI —@— LRT-FJ NI
= —&— LRT-FJ CE —— LRT-FJ SE —@— LRT-FJ NE
g —#— LRT-BSP CI ~—#&— LRT-BSP S| —&— LRT-BSP NI
= —#— LRT-BSP CE —&— LRT-BSP SE —— LRT-BSP NE

5.0E+4

4.5E+4

4.0E+4 +

3.5E+4 +

3.0E+4 +

2.5E+4 A

2.0E+4

1.5E+4

1x24 2x12 3x8 4x6 6x4 8x3 12x2 24x1
Threads per process x Processes per node

Fig. 3: Java K-Means 1 mil points and 1k centers performance
on 16 nodes for LRT-FJ and LRT-BSP with varying affinity
patterns over varying threads and processes.

—— LRT-BSP CE 1k —A— LRT-BSP CE 10k
#— LRT-BSP CE 50k ©— LRT-BSP CE 100k
—o— LRT-BSP CE 500k —&— LRT-BSP NE 1k

% A LRT-BSP NE 10k A LRT-BSP NE 50k
2 @ LRT-BSP NE 100k ©— LRT-BSP NE 500k
="}
216 § 6—6— o o6 —06—6—06—0
£
E 1645 § &9) 4 ® —o ¢ ?
() A—h— A ———h—h ———h—A—A
£ 1E+4 1
=

1E+3

1x24 2x12 = 3x 4x6 x4 8x3 12x2 24x1
Threads per process x Processes per node

Fig. 5: Java K-Means LRT-BSP affinity CE vs NE performance
for 1 mil points with 1k,10k,50k,100k, and 500k centers on
16 nodes over varying threads and processes.

TABLE II: Linux perf statistics for DA-MDS run of 18x2
on 32 nodes. Affinity pattern is CE.

LRT-FJ LRT-BSP
Context Switches 477913 31433
CPU Migrations 63953 864
dTLB load misses | 17226323 6493703

TABLE III: Java DA-MDS speedup for varying data sizes
on 24-core nodes. Red values indicate the suboptimal perfor-
mance of LRT-FJ model compared to LRT-BSP. Ideally, these
values should be similar to their immediate left cell values.

Data Size
50k 100k 200k
24- 1x24 | 12x2 | 12x2 | 1x24 | 12x2 | 12x2 | 1x24 | 12x2 | 12x2
Core |LRT-|LRT-|LRT-|LRT-|LRT-|LRT-|LRT-|LRT-|LRT-
Nodes | BSP | BSP | FJ | BSP | BSP | FJ | BSP | BSP | FJ
16 1 1 0.6 1 1 0.6 1 1 0.4
32 2.2 2 1.1 1.9 1.9 1.1 1.9 2 0.6
64 39 | 3.6 19 | 3.6 | 3.6 19 | 37 | 38 | 09

ber of threads. On the other hand, the LRT-BSP model pro-
duced constant high performance across all these parameters.
Investigating these effects further, an 18x2 run for 100k data
produced the perf stats in Table II, which show a vast number
of context switches, CPU migrations, and data Translation
Lookaside Buffer load misses for LRT-FJ compared to LRT-FJ.
These statistics are directly related with performance and

mn —®— CLRT-FICI —a&— CLRT-FISI —@— CLRT-FINI
£ —&— CLRT-FJ CE —&— CLRT-FJ SE —@— CLRT-FINE
@ CLRT-BSP CI CLRT-BSP S| C LRT-BSP NI
E —8—CLRT-BSPCE _ —A—CLRT-BSPSE___—@— CLRT-BSP NE
3.2E+4
2.76+4 £
22844 £
17E+4 £
1.2E+4 L
1x24 2x12 3x8 4x6 6x4 8x3 12x2 24x1
Threads per process x Processes per node

Fig. 4: C K-Means 1 mil points and 1k centers performance
on 16 nodes for LRT-FJ and LRT-BSP with varying affinity
patterns over varying threads and processes.

K} - Java LRT-BSP 1k A Java LRT-BSP 10k

I3 A Java LRT-BSP 50k ® Java LRT-BSP 100k

@ © Java LRT-BSP 500k —m— CLRT-BSP 1k

tén —aA— C LRT-BSP 10k —a— C LRT-BSP 50k

E —@— C LRT-BSP 100k —O— C LRT-BSP 500k

= 1E+7

m E

£ &8 88 8—8—8

g —2

F [A— A A — A A —A— A —A

1E+3 -L.:.:.:.:.:.:._
1x24 2x12 3x8 4x6 6x4 8x3 12x2 24x1

Threads per process x Processes per node

Fig. 6: Java vs C K-Means LRT-BSP affinity CE performance
for 1 mil points with 1k,10k,50k,100k, and 500k centers on
16 nodes over varying threads and processes.

hence explain the poor performance of LRT-FJ model.

Table III presents scaling of DA-MDS across nodes for
data sizes 50k, 100k, and 200k. Speedup values are measured
against the all process — 1x24 or 1x36 — base case. With
doubling of the nodes, the performance is expected to double.
However, none of the 12x2 LRT-FJ values came close to
the expected number; hence shown in red. In contrast, 12x2
of LRT-BSP follows the expected doubling in performance
and also can produce slightly better results than 1x24 with
increasing data.

C. Flink and Spark K-Means

We evaluated the performance of K-Means algorithm im-
plemented in Flink and Spark to compare these frameworks
against MPIL. The evaluation was done in 16 nodes, each with
24 cores. We measured the difference between total time and
computation time to estimate overheads including communi-
cation. Note, in both Spark and Flink, communications are
handled internally to the framework and it is not possible
to measure this through the available API functions. The
results are shown in Fig. 11 for 1 million 2D data points
with varying number of centroids. We observed significant
communication overhead in these frameworks compared to
MPI. The primary reason for such poor performance is the
sub-optimal implementation of reductions in Flink and Spark.

Fig. 13 illustrates the dataflow reduction model imple-
mented in Spark and Flink, where all parallel tasks send data
to a single or multiple reduce tasks to perform the reduction.

Q2 —— LRT-BSP CE 1k —— LRT-FJ CE 1k
§ —A— LRT-BSP CE 10k —A— LRT-FJ CE 10k
1) —®— LRT-BSP CE 100k —@— LRT-FJ CE 100k
O 1E+6 F
£ 3 : /._.-/ :
> [
E 1E+5 ¢
o E
£ i A & 4 A& 4
1E+4 +
1E+3 . . . 4 . . L .
1x24 ﬁle 3x8 4x6 Sx4 8x3 12x2 24x1
Threads per process x Processes per node

Fig. 7: Java K-Means 1 mil points with 1k,10k, and 100k
centers performance on 16 nodes for LRT-FJ and LRT-BSP
over varying threads and processes. The affinity pattern is CE.

—8— IRT-FICE ~ —A— LRT-FJSE —@—LRT-FINE ~ —@— LRT-FI NI
—8— LRT-BSPCE —A— LRT-BSPSE —@— LRT-BSPNE —®— LRT-BSP NI
1.5E+6
1.3E+6 A
7 E
E 11E+6 ¢
@ E
€ 9.0E+5 +
[o
7.0E+5 +
5.0E+5 £ —
1x24 2x12 3x8 4x6 6x4 8x3 12x2 24x1
Threads per process x Processes per node

Fig. 9: Java DA-MDS 100k points performance on 16 nodes
for LRT-FJ and LRT-BSP over varying threads and processes.
Affinity patterns are CE,NE,SE, and NI.

K9] mmmm flink-mean mmm spark-mean mEEE mpi-mean
©
3 @ flink-total ® spark-total @ mpi-total
=T
O 1E+7
£
» 1E+6
E
O 1E+5
£
[=
1E+4
1E+3
1k 10k 50k 100k 500k
Number of centroids

Fig. 11: K-Means total and compute times for 1 million 2D
points and 1k,10,50k,100k, and 500k centroids for Spark,
Flink, and MPI Java LRT-BSP CE. Run on 16 nodes as 24x1.

K-Means requires an MPI like A11reduce semantics; hence
the reduction in these programs is followed by a broadcast.
Similar to the reduction operation, the broadcast is imple-
mented serially as well. As the number of parallel tasks and
the message size increase, this two-step approach becomes
highly inefficient in performing global reductions. On the other
hand, MPI uses a recursive doubling algorithm for doing the
reduction and broadcast together, which is very efficient and
happens in-place.

Since the communication overhead was dominant in K-
Means algorithm, we performed a single node experiment with
one process and multiple threads to look at computation costs
more closely. With one process there is no network communi-

—8—(RT-FJCE =~ —A—LRT-FISE =~ —@—LRT-FINE —@— LRT-FINI
—8— [RT-BSPCE —A— LRT-BSPSE —@— LRT-BSPNE —®— LRT-BSP NI
3.5E+5
3.0E45 £

n E

E 25E+5 ¢ < —

) E

€ 2.0E+5 T

= o
1.5E+5 +
10645 £ o o .. .

1x24 2x12 3x8 4x6 6x4 8x3 12x2 24x1
Threads per process x Processes per node

Fig. 8: Java DA-MDS 50k points performance on 16 nodes
for LRT-FJ and LRT-BSP over varying threads and processes.
Affinity patterns are CE,NE,SE, and NI

—— LRT-FJ CE
—— LRT-BSP CE

1.0E+7
9.0E+6
8.0E+6
2 7.0E+6
£ 6.0E+6
£ 5.0E46
= 4.0E+6
3.0E+6
2.0E+6
1.0E+6

—&— LRT-FJ SE
—&— LRT-BSP SE

—@— LRT-FJ NE
—@— LRT-BSP NE

—@— LRT-FJ NI
~—@&— LRT-BSP NI

1x24 2x12 3x8 4x6 6x4 8x3 12x2 24x1
Threads per process x Processes per node

Fig. 10: Java DA-MDS 200k points performance on 16 nodes
for LRT-FJ and LRT-BSP over varying threads and processes.
Affinity patterns are T,S,V, and U.

m flink-mean s spark-mean BN mpi-mean
—@— flink-total ® spark-total —@— mpi-total
1E+5 :

1E+4

Time (ms) in log scale

1E+3

1k 2k a4k 8k 16k
Number of centroids

Fig. 12: K-Means total and compute times for 100k 2D points
and 1k,2k,4k,8k, and 16k centroids for Spark, Flink, and MPI
Java LRT-BSP CE. Run on 1 node as 24x1

cation in Flink or Spark and Fig. 12 illustrates the results. Flink
uses an actor-based execution model using Akka framework to
execute the tasks. The framework creates and destroys LRT-FJ
style threads to execute the individual tasks. Spark uses an
executor/task model where an executor creates at most a single
task for each core that is allocated to the executor. With
this experiment, we have observed execution time imbalances
among the parallel tasks for both Spark and Flink. The same
has been observed with the LRT-FJ Java MPI implementation
of K-Means and we could minimize these effects in MPI
Java with the LRT-BSP style executions. Balanced parallel
computations are vital to efficient parallel algorithms as the
slowest task dominates the parallel computation time.

Spark/Flink All Reduction MPI All Reduction

Time

Iteration

Iteration with
Broadcast

O Message
O Partially reduced result
@ All reduced result

I] Parallel map tasks [| Reduce task I:I MPI Processes

Fig. 13: Spark and Flink’s all reduction vs MPI all reduction.

VI. DISCUSSION

Spark and Flink both are in-memory computation platforms,
unlike Hadoop, which is primarily a disk-based platform.
These systems are designed to handle large amounts of data
and be fault tolerant in case of failures. They can use disks as
an auxiliary storage if the data is too large to fit in the memory.
On the other hand, MPI is a lightweight framework with
excellent communication and execution semantics that are well
suited for HPC. We believe Java MPI implementations with
careful design of threading, computations and communications
as discussed in this work, provide top-notch performance
for Java-based machine learning applications that match C
implementations for big data platforms. This study shows the
many factors that are critical for achieving the best possible
performance and scalability and how they can be carefully
tuned.

Current implementations of Big Data computation frame-
works lack efficient communication algorithms as imple-
mented in MPI. We have identified inefficient communication
as the most detrimental feature in getting to the best possible
performance with Spark and Flink. For example, a carefully
tuned broadcast operation can work in O(log n) steps while
a sequential implementation needs O(n) where n is the num-
ber of parallel communicators. As the parallelism increases
the communication overhead in terms of both latency and
bandwidth dramatically increases for the sequential approach
compared to the optimized approach.

The computation time variations in the parallel tasks of
Flink and Spark frameworks can be attributed to the LRT-FJ
style invocations and GCs. It is hard to completely avoid GC
overheads but Flink-like systems have adopted off-heap mem-
ory management for reducing this effect. The LRT-BSP style
threads can also help in reducing the compute time variations,
as evident in MPI Java applications. Another factor that can
affect computation is the inefficient use of memory hierarchy.
If cache optimizations are not considered, performance can
show degrade drastically. Also, for larger data sets, it can be
efficient to run multiple processes rather than a single process
with threads due to large page tables required for the single
process.

VII. RELATED WORK

A plethora of libraries are available for Java in HPC envi-
ronments including many MPI implementations; Guillermo et
al. [14] discuss the performance of some of these frameworks
in HPC environments. MPJ-Express [15] and JaMP [16] are
popular pure Java implementation of the MPI standard. In
our work, we used OpenMPI’s Java bindings to develop the
MPI applications. Our preliminary studies showed OpenMPI
performed the best among the available Java MPI implemen-
tations. Rajesh et al. [17] discusses actor-based frameworks
to exploit the multicore machines and Flink uses actor model
for handling concurrency. Java Garbage Collection (GC) plays
a vital role in HPC Java applications because of the slowest
parallel tasks dominating the performance. Maria et al. [18]
shows how to optimize the Java GC in multicore NUMA
machines. Research on improving Spark performance by in-
troducing its own memory management and cache handing
system is being done in Project Tungsten [19], which aims to
greatly reduce the usage of java objects and to reduce Spark’s
memory footprint.

Reaching high performance on multicore clusters using
hybrid execution model of threads and processes is presented
in [20], [21], [22]. They discuss the performance across
NUMA sockets, as well as how threads and processes perform
in conjunction. In this work, we apply these techniques in
the context of machine learning algorithms to get scalable
performance.

Because of the high number of cores available in multicore
nodes, hybrid communication models involving shared mem-
ory communication and network communication are preferred.
In these models, the tasks within a node first communicate
using shared memory and then the results are forwarded to
other nodes in the cluster. Previous work by the authors [§]
focused on improving the collective communications for Java
machine learning algorithms using this hybrid approach.

Hadoop became the first widely used system for big data
processing and it uses a disk based communication among
tasks with HDFS. Hadoop offers only the Map and Reduce
dataflow operations. The later systems such as Twister [23],
Spark, Flink and Google Cloud Dataflow [1] are using in-
memory and network communications among the tasks and
are offering a rich set of data-flow operations compared to
Hadoop. Bacause of the way communication is handled Spark
and Flink, they are much closer to MPI in run-time and can
use the advanced communication features in MPI.

These big data frameworks follow the dataflow model
and the equivalent of collective communications in MPI are
implemented as dataflow operators. These implementations are
elegant but inefficient compared to the optimized collective
communication algorithms implemented in MPI [24], [25]. Re-
cent work by the authors [9] have improved communications
of Apache Storm streaming framework with classical collec-
tive algorithms found in MPI implementations. Harp [26] is a
collective communication framework developed for Hadoop
to speed up the machine learning applications. There has

being efforts to bring HPC enhancements such as RDMA [27]
ASDAto big data frameworks and these have given excellent
performance in HPC environments.

Our findings are in the spirit of HPC-ABDS (the High Per-
formance Computing enhanced Apache Big Data Stack) [28]
and help establish a Big Data - HPC convergence ap-
proach [29].

VIII. CONCLUSION AND FUTURE WORK

In this paper we discussed how to obtain consistent scalable
performance of machine learning algorithms implemented in
Java in large multicore clusters. The deficiencies in perfor-
mance we observed before the improvements in Java MPI
machine learning applications can be observed on the current
implementations of Big Data run-times such as Flink and
Spark, and we are working on bringing these improvements
to such frameworks. In particular we aim to improve the
collective communications of Flink and Spark using efficient
algorithms. As part of the SPIDAL (Scalable parallel interop-
erable data analytics library) [8] machine learning library we
would like to apply these techniques to further algorithms.

ACKNOWLEDGMENT

This work was partially supported by NSF CIF21 DIBBS
1443054 and NSF RaPyDLI 1415459. We thank Intel for
their support of the Juliet system. We extend our gratitude to
the FutureSystems team and the Habanero Java team at Rice
University.

REFERENCES

[1] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernandez-
Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt ef al.,
“The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data process-
ing,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1792—
1803, 2015.

[2] “Apache Flink: Scalable Batch and Stream Data Processing.” [Online].
Available: https://flink.apache.org/

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2-2.

[4] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, ‘“Discretized
streams: an efficient and fault-tolerant model for stream processing on
large clusters,” in Presented as part of the, 2012.

[5] “Apache Beam.” [Online]. Available: http://beam.incubator.apache.org/

[6] S. Imam and V. Sarkar, “Habanero-java library: A java 8 framework
for multicore programming,” in Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, ser. PPPJ ’14.
New York, NY, USA: ACM, 2014, pp. 75-86. [Online]. Available:
http://doi.acm.org/10.1145/2647508.2647514

[71 L. Dagum and R. Menon, “Openmp: An industry-standard api
for shared-memory programming,” I[EEE Comput. Sci. Eng.,
vol. 5, no. 1, pp. 46-55, Jan. 1998. [Online]. Available:
http://dx.doi.org/10.1109/99.660313

[8] S. Ekanayake, S. Kamburugamuve, and G. Fox, “Spidal: High perfor-
mance data analytics with java and mpi on large multicore hpc clus-
ters,” in Proceedings of the 2016 Spring Simulation Multi-Conference
(SPRINGSIM), Pasadena, CA, USA, 3-6, 2016.

[9] S. Kamburugamuve, S. Ekanayake, M. Pathirage, and G. Fox, “Towards
High Performance Processing of Streaming Data in Large Data Centers,”
in HPBDC 2016 IEEE International Workshop on High-Performance
Big Data Computing in conjunction with The 30th IEEE International

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Parallel and Distributed Processing Symposium (IPDPS 2016), Chicago,
Illinois USA, 2016.

Y. Ruan and G. Fox, “A robust and scalable solution for interpolative
multidimensional scaling with weighting,” in Proceedings of the 2013
IEEE 9th International Conference on e-Science, ser. ESCIENCE ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 61-69.
[Online]. Available: http://dx.doi.org/10.1109/eScience.2013.30

0. Vega-Gisbert, J. E. Roman, S. GroB3, and J. M. Squyres, “Towards
the availability of java bindings in open mpi,” in Proceedings of
the 20th European MPI Users’ Group Meeting, ser. EuroMPI *13.
New York, NY, USA: ACM, 2013, pp. 141-142. [Online]. Available:
http://doi.acm.org/10.1145/2488551.2488599

J. M. S. Oscar Vega-Gisbert, Jose E. Roman, “Design and
implementation of java bindings in open mpi,” 2014. [Online].
Available: users.dsic.upv.es/ jroman/preprints/ompi-java.pdf

X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” JMLR, vol. 17, no. 34, pp. 1-7, 2016.

G. L. Taboada, S. Ramos, R. R. Expésito, J. Tourifio, and R. Doallo,
“Java in the high performance computing arena: Research, practice and
experience,” Science of Computer Programming, vol. 78, no. 5, pp. 425—
444, 2013.

M. Baker, B. Carpenter, and A. Shafi, “MPJ Express: towards thread
safe Java HPC,” in 2006 IEEE International Conference on Cluster
Computing. 1EEE, 2006, pp. 1-10.

M. Klemm, M. Bezold, R. Veldema, and M. Philippsen, “JaMP: an
implementation of OpenMP for a Java DSM,” Concurrency and Com-
putation: Practice and Experience, vol. 19, no. 18, pp. 2333-2352, 2007.
R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks for the
JVM platform: a comparative analysis,” in Proceedings of the 7th
International Conference on Principles and Practice of Programming
in Java. ACM, 2009, pp. 11-20.

M. Carpen-Amarie, P. Marlier, P. Felber, and G. Thomas, “A perfor-
mance study of java garbage collectors on multicore architectures,”
in Proceedings of the Sixth International Workshop on Programming
Models and Applications for Multicores and Manycores. ACM, 2015,
pp. 20-29.

(2015) Project Tungsten: Bringing Apache Spark Closer to Bare Metal.
[Online]. Available: https://databricks.com/blog/2015/04/28/project-
tungsten-bringing-spark-closer-to-bare-metal.html

M. J. Chorley and D. W. Walker, ‘“Performance analysis of a hybrid
MPI/OpenMP application on multi-core clusters,” Journal of Computa-
tional Science, vol. 1, no. 3, pp. 168-174, 2010.

R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP parallel
programming on clusters of multi-core SMP nodes,” in 2009 17th
Euromicro international conference on parallel, distributed and network-
based processing. 1EEE, 2009, pp. 427-436.

D. Camp, C. Garth, H. Childs, D. Pugmire, and K. Joy, “Streamline inte-
gration using MPI-hybrid parallelism on a large multicore architecture,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 11, pp. 1702-1713, 2011.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, “Twister: A Runtime for Iterative MapReduce,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 810-818. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851593

J. Pjesivac-Grbovié, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, no. 2, pp. 127-143, 2007.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49-66, 2005.
B. Zhang, Y. Ruan, and J. Qiu, “Harp: Collective communication
on hadoop,” in Cloud Engineering (IC2E), 2015 IEEE International
Conference on. 1EEE, 2015, pp. 228-233.

X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda, “High-performance design of hadoop rpc
with rdma over infiniband,” in 2013 42nd International Conference on
Parallel Processing. 1EEE, 2013, pp. 641-650.

HPC-ABDS Kaleidoscope of over 350 Apache Big Data Stack and HPC
Technologies. [Online]. Available: http://hpc-abds.org/kaleidoscope/

G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve, “Big
data, simulations and hpc convergence,” Technical Report- January 2016,
DOI: 10.13140/RG. 2.1, Tech. Rep., 1858.

