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Abstract—Cloud computing has become an important driver
for delivering infrastructure as a service (IaaS) to users with
demand for customized environments and sophisticated software
stacks. Within the FutureGrid (FG) project we offer different
IaaS frameworks as well as high performance computing infras-
tructures allowing users to explore them as part of a testbed. To
ease the of use of these infrastructures, as part of performance
experiments, we have designed an image management framework
that allows us to create user defined software stacks based on
abstract image management and uniform image registration. As a
consequence users can create their own customized environments
very easily without worrying about the details of each of
the underlying infrastructures. Besides being able to manage
deployments on IaaS frameworks, we also allow the deployment
of the images onto bare metal. This level of functionality is
typically not offered in a HPC infrastructure. However, our
approach provides users with the ability to create their own
environments changing the paradigm of administrator-controlled
dynamic provisioning to user-controlled dynamic provisioning,
which we also call raining. Thus, users obtain access to a
testbed with the ability to manage state-of-the-art software
stacks that would otherwise not be supported in typical compute
centers. In this paper we focus on the design and evaluation of
image creation and image registration. We find that our design
and implementation can support our current user community
interested in such capabilities.

I. INTRODUCTION

FutureGrid (FG) [1] is a testbed providing users with grid,
cloud, and high performance computing infrastructures. FG
employs both virtualized and non-virtualized infrastructures.
The testbed is composed of a high-speed network connected
to distributed clusters of high-performance computers. This
innovative infrastructure can support state-of-the-art research
in distributed and parallel computing including grid, cloud
computing, as well as HPC. As such, FG offers researchers
a flexible reconfigurable testbed to test functionality, perfor-
mance and interoperability of software systems in a repro-
ducible fashion. Users can customize their environment and
place suitable images onto the FG fabric. Therefore, users
are not locked into a specific computational environment
offered typically by HPC centers. Instead users may choose a
variety of software stacks that are packaged as part of abstract
and reusable images. Such images may provide additional
services while exposing platforms, libraries and tools to the
users. Users do have the ability to select from a variety of
preconfigured images that may suite their needs. If these needs
cannot be met users can create their own images and share
them with the community.

An important achievement of our image management frame-
work is the ability to support user-controlled dynamic pro-
visioning allowing users to create, deploy and register the
images not only in virtualized, but also in non-virtualized
infrastructures. Thus they have access to bare-metal provision-
ing. This is a departure of the limited dynamic provisioning
that may be provided by typical HPC centers where the
administrator governs control about images available for use.
To support our more general approach we have designed and
implemented a set up tools expanding upon the traditional
dynamic provisioning frameworks.

As the term dynamic provisioning is often not consistently
used in the community, and our user-controlled dynamic
provisioning drastically enhances the available functionality
to integrate bare-metal resources, we instead will use the
term rain to indicate the process of placing a customized
environment onto resources. The process of raining goes
beyond the services offered by existing scheduling tools due to
its higher-level toolset targeting virtualized and non-virtualized
resources. We also use the term rain to refer to the toolkit that
combines a set of tools enabling the process of raining. In this
context managing various image management workflows for
a variety of distinct infrastructures becomes an essential part
of the overall components and services to support rain.

In this paper we will focus on a subset of issues related to
the process of raining that deal with image management. It
addresses every stage of the image management life cycle,
from the creation, adaptation, storage, registration, and the
instantiation of images into virtualized and non-virtualized
resources. Other aspects such as the experiment management
design and scalability experiments anticipated to use the
concept of raining are discussed ele management life cycle,
from the creation, adsewhere [2].

The rest of the paper is organized as follows. In Section II,
we present a brief background followed by the description of
the processes involved in image management in Section III.
In Section IV we present our design and the tools that we use
to mange images for virtualized and non-virtualized resources.
Section VI presents performance studies to evaluates charac-
teristics of our tools in the FG testbed. We conclude the paper
in Section VII with our findings and provide information about
our future activities.
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II. BACKGROUND

Image management is a key component in any modern com-
pute infrastructure, regardless if used for virtualized or non-
virtualized resources. We distinguish a number of important
processes that are integral part of the life-cycle management
of images. They include (a) image creation and customization,
(b) sharing the images via a repository, (c) image registration
into the infrastructure where the image is supposed to run,
and (c) the image instantiation (see Figure 1). The problem
of targeting not one, but multiple infrastructures amplifies the
need for tools supporting these processes. Without them, only
the most experienced users will be able to mange them under
great investment of time.
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Fig. 1. Processof the image management framework

There are two interplaying approaches to simplify access.
The first is the introduction of standards and best practices
to interface with the infrastructure. The second is to provide
a set of tools that interfaces with these standards and allow
exposure of common functionality to the users while hiding
the underlying complexities when dealing with subtle differ-
ences between the solutions. Standrads relevant for our efforts
include for example OVF which we plan to integrate in our
design. Abstractions on the infrastructure level are provided
by each of the different infrastructure supporting frameworks
and tools. Of relevance are Nimbus, Eucalyptus, OpenStack,
OpenNebula, and Moab. They are supported by various tools
on the operating system level and configuration management
tools including kickstart, chef, puppet, juju, to name only a
few. A number of tools have recently been developed that
allow the creation of images view a GUI or Web interface
such as SUSE Studio [3] and Easyvmx [4].

One of the issues we see with such tools is that they
are limited and bound to a particular infrastructure or have
dependencies on a particular operating system.

While providing a higher level abstraction, we strive towards
removing such dependencies and offer users a tool that can
integrate much more easily with the different infrastructures.
It will support the management of images for Nimbus, Euca-
lyptus, OpenStack, OpenNebula, and bare-metal HPC.

III. PROCESSES

As are depicting in Figure 1 a number of processes that
need to be coordinated to properly support abstract image

management and universal image registration for Cloud and
HPC infrastructures. We explain in more detail the activities
conducted in each of the processes.

a) Creating and Customizing Images: Advanced users of
modern cyber-infrastructure demand creation and customiza-
tion of images that fit their particular needs. The image
creation can be performed using an interactive or a non-
interactive method.

In case of the interactive method, a virtual machine (VM)
image file is created as part of a semi-interactive process and
delivers an image that is going to be booted with an OS media
disk attached to it. It starts the installation process like if we
were installing a physical machine. This process is achieved
using the tools provided by the hypervisors to create and boot
VMs.

The second method of creating images based on autom-
atizing even this interactive process to the extend that no
interaction is needed. This method can be more complicated
but provides the opportunity for greater automation as part of
processes that require the manipulation or update of images in
a repetitive process. To support this automation, tools provided
by most of the GNU/Linux OSs to bootstrap images can be
used. They basically install a fresh copy of the OS into a
directory. This installation will have the essential packages
and binaries needed in a basic image and updates can be
readily integrated. Examples of these tools are debootstrap
in Debian/Ubuntu, yum in CentOS/RedHat or febootstrap in
Fedora.

The problem of the first method lies in the need of human
interaction that prevent us from automatizing the process or
integrating it with other software. Moreover, they produce
images aimed for an specific purpose like being compatible
with a particular hypervisor or acting as liveCD. On the other
hand, the second method is very flexible and allows us not
only to integrate it with other software, but also to establish
a clear separation between image creation and customization
for a specific infrastructure.

While separating the steps that are dependent on a specific
infrastructure it becomes possible for the same image to be
slightly adapted and to be used in different infrastructures.
Typically, this procedure is different for each infrastructure
we target and is typically done by users or administrators. For
example, in cloud frameworks users have to select or upload
the kernel and ramdisk images to be used, which require strong
knowledge of the OS. Hence they must either be experts in the
field or they have to spend a considerable amount of time to
accomplish this task. Moreover, after customizing the image,
it has to be registered in the framework that manages the
deployment of the image onto the selected infrastructure. In
bare metal, this is usually restricted to system administrators
while in the cloud frameworks it can be done by any user.

b) Storing Abstract Images: Once we have created an
image we have to store it into a repository. As there are
significant differences on how images are managed between
IaaS and bare-metal it is necessary to provide an image
repository in which we store abstract images that get further
modified in the registration process.
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c) Registering Images: Once an Image is created we
must register it with the infrastructure in which we intend to
deploy it. Image registration is typically provided in some form
by the underlying environment. As such Nimbus, Eucalyptus,
OpenStack, as well as Moab provide their own mechanisms
for image registration. However, the images need to be slightly
modified to allow utilizing them. Furthermore, we need to
provide a significant toolset to expose registration functionality
in bare metal to non-administrators. To save space utilization
of the images should be monitored and images rarely used
should be purged from the infrastructure repository while
replacing it with a mechanism to simply regenerate it on-
demand.

d) Instantiating Images: Once the image is registered
with the infrastructure, it can be instantiated by the user
as part of the deployment framework available within the
infrastructure.

IV. DESIGN

Our design targets support of an end-to-end workflow to
support the desired customization by the users in order to
simplify the processes and make abstract image management
across different infrastructures available. Hence even non-
experts can with our simple tools create images that can be
run on Eucalyptus, Nimbus, OpenStack, or bare-metal. It is
obvious that such a capability is advantageous to support
repeatable performance experiments across a testbed such as
FutureGrid. It supports the processes identified in Section III
to be able to manage the life cycle of images in transparent
fashion. Within this paper we will focus our attention on the
first three processes as we are describing the last process in
more detail elsewhere [5].

To summarize the idea behind our design we like users to
be able to specify a list of requirements like OS, software,
libraries, and more in order to generate a customized but
abstract image. This image is generic enough that through
small manipulations it can be customized for an IaaS or
HPC environment with little effort by the users. As we have
deployed in FG OpenStack [6], Eucalyptus [7], Nimbus [8]
and OpenNebula [9], we are targeting deployment of such
images in such infrastructures.
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Fig. 2. FutureGrid Image Management Architecture.

Figure 2 shows the architecture of the image management
framework capable of supporting the required processes as
identified earlier (see Figure 1). To support a modular design
we have devised for each of the processes a component.
This includes (a) the image generation component that cre-
ates images following the user requirements, (b) the image
repository component that is in charge of storing, cataloging
and sharing images, and (c) the image registration component
that prepares, upload and register the images into specific
infrastructures like HPC or different clouds.

The components are conveniently separated in client and
server components in order to allow users easily to interact
with hosted services that mange our processes. Our design
allows users to for access to the various processes via a
python API a REST service, a convenient commandline shell,
as well as a portal interface. The image management server
has the task to generate, store, and register the images with
the infrastructure. It also interacts with additional external
tools as to utilize external services we can benefit from
in our implementation. Such services include configuration
management services and security services.

One important feature in our design is that we are not simply
storing an image but rather focus on the way an image is
created through abstract templating. Thus it is possible at any
time to regenerate an image based on the template describing
the software stack and services for a given image. This enables
us also to optimize the storage needs for users that mange
many such images. Instead of storing each image individually,
we could just store the template or a pedigree of templates that
are used to generate the images.

To aid storage reduction, our design also includes data
that assists in measuring usage and performance. This data
can be used to purge rarely used images, while they can
be recreated on-demand by leveraging the use of templating.
Moreover, the use of abstract image templating will allow
us to automatically generate images for diverse environments
including a variety of hypervisors and hardware platforms
on-demand. Autonomous services could be added to reduce
the time needed to create images or deploy them in advance.
Reusing images amongst groups of users and the introduction
of a cache as part of the image generation will reduce the
memory footprint or avoid the generation all together if an
image with the same properties is already available.

In the next sections we will describe in more detail the
various components.

A. Image Generation

The image generator provides the first step in our image
creation process allowing the specification of an image that
is applicable for IaaS frameworks and the bare-metal deploy-
ment. The benefit of our image generation tools and services is
that we are not just targeting a single infrastructure type, but
that we can generate images for a range of infrastructures.
At this time we are able to generate images for Nimbus,
Eucalyptus, OpenStack, Open Nebula, and bare-metal.

The process is depicted in Figure 3. Users initiate the
process by specifying their requirements. These requirements
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Fig. 3. Image Generation Process.

can include the selection of the OS type, version, architecture,
software, services, and more. First, the image generation tool
looks into the image repository to identify a base image that
can be cloned and if there is no good candidate the base
image is created from scratch. Once we have a base image,
the image generation tool installs the software required by
the user. This software must be in the official OS repositories
or in the FG software repository. The later contains software
developed by FG team or other approved software. The instal-
lation procedure may be aided by chef [10], a configuration
management tools that ensures that the software is installed
and configured properly. After updating the image, it is stored
in the image repository and becomes available for registration
into a FG infrastructure supported by our image management
framework. Security tools and services could be integrated to
identify if the generated and registered images fulfill a set
of specifiable security requirements. For example, one of the
tasks we envision is to keep images automatically up to date.
We envision a service that takes a users image, applies the
updates and lets the user test if the updates have successfully
been installed. If they are not the user can still use his older
image and identify pathways to complete the update. Other
noteworthy envisioned workflows include the integration of
authentication and authorization mechanisms readily available
within FG. The process is able to leverage information about
users and project groups stored in our LDAP server and
managed via the FG portal.

In case an image is created from scratch, the base images
are created using the tools provided by the different OS’es
(yum for CentOS, deboostrap for Ubuntu, etc). Hence, our
tool is general enough to deal with installation particularities of
different operating systems and architectures. We have tackled
this problem by making use of cloud technologies that allow
us to manage a set of VMs in which we pre-stage the image
by using the required OS and architecture. Consequently, each
base image is created inside a VM dedicated for that purpose.
While using a cloud within this process, we can add support
for a variety of operating systems and architectures. It is
obvious that this approach provides us with great flexibility,
architecture independence and high scalability.

We can speed up the generation process by utilizing already
created images because software and packages requested by
the user may have already been installed previously and

TABLE I
METADATA INFORMATION ASSOCIATED TO THE IMAGES.

Field Name Description

imgId Unique identifier
owner Image’s owner
os∗ Operating system
description∗ Description of the image
tag∗ Image’s keywords
vmType∗ Virtual machine type
imgType∗ Aim of the image
permission∗ Access permission to the image
imgStatus∗ Status of the image
imgURI Image location
createdDate Upload date
lastAccess Last time the image was accessed
accessCount # times the image has been accessed
size Size of the image

∗ can be modified by users

some configuration steps are already completed. Our catalog
describing the available base images can be accessed via
a search function returning suitable candidates. To further
automatize this process, our design includes mechanisms that
record the number of successes and failures when an image
creation requests tries to identify suitable base image candi-
dates. Hence, even the image creation can be integrated as
part of our design into an automatic service that gets started
based on-demand and priorities of creating such images could
be devised.

B. Image Repository

The image repository [11] catalogs and stores images in
a unified repository. It offers a common interface that can
distinguish image types for different IaaS frameworks, but
also bare-metal images. This allows us to include a diverse
image set not contributed not only be by the FG development
team, but also by the user community that generates such
images and wishes to share them. The images are augmented
with information about the software stack that is installed
on them including versions, libraries, and available services.
This information is maintained in the catalog and can be
searched by users and/or other FG services. Users looking
for a specific image can discover available images fitting their
needs using the catalog interface. In addition, users can also
register customized images, share them among other users,
and dynamically provision them. Through these mechanisms
we expect our image repository to grow through community
contributed images.

Table I lists a subset of metadata associated with images
stored in the repository. This includes information about prop-
erties of the images, the access permission by users and the
usage. Access permissions allow the image owner to determine
who can access this image from the repository. The simplest
types of sharing include (a) private to owner, (b) shared with
the public or (c) shared with a set of people defined by a
group/project. Usage information is available as part of the
metadata to allow information about usage to be recorded.
This includes how many times an image was accessed and by
whom.
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C. Image Registration

Once the image has been created and stored into the
repository, we need to register it for the targeted infrastructure
before we instantiate it. Registering an image also includes
the process of adapting it for the infrastructure. Often we find
subtle differences between them requiring us to provide further
customizations, security check, the upload of the image to
the infrastructure repository, and finally the registering it for
use. The process of adaptation and registration is depicted in
Figure 4 in more detail. Examples for customizations include
for HPC and cloud infrastructures the configuration of network
IP, DNS, file system table and kernel modules. Additional
configuration is performed depending of the targeted deployed
infrastructure.

In the HPC infrastructure the images are converted to
network bootable images that can run on bare-metal machines.
Here, the customization process configures the image so it can
be integrated into the pool of deployable images accessible by
the scheduler. In our case this is Moab. Hence, if such an image
is specified as part of the job description the scheduler will
conduct the provisioning of the image for us. These images are
stateless and the system is restored by reverting to a default OS
once the running job with a customized image is completed.

Images targeted for cloud infrastructures need to be con-
verted into VM disks. These images also need some additional
configuration to enable VM’s contextualization in the selected
cloud. Our plan is to support the main IaaS clouds namely Eu-
calyptus, Nimbus, OpenStack, OpenNebula and Amazon EC2.
However, as our tool is extensible other cloud frameworks
could be supported.

Of special importance is a security check for images to be
registered in the HPC infrastructure. An image is considered
secure when it has been generated and stored and is marked in
the repository asapproved. Approval can be achieved either by
review, or the invocation of tools minimizing and identifying
security risks. Users may need to modify an image to install
additional software that is not available during the image
generation process or to configure additional services. Modi-
fied images need to go through some additional tests before
they can be registered in the infrastructure. To perform these
security tests we plan to create a platform that instantiates
the images in a controlled environment like a VM with
limited network access. Hence, we can perform some tests

to verify the integrity of the image and detect vulnerabilities
and possible malicious software. If the image passes all the
tests, it is tagged as approved. For virtualized infrastructures
the approval process may include less strict testing.

The process of registering an image only needs to be done
once per infrastructure. Therefore, after registering an image in
a particular infrastructure, it can be used anytime to instantiate
as many VMs or in case of HPC as many physical machines
as available to meet the users requirements.

V. IMPLEMENTATION

Our implementation uses currently xCAT [12], Moab [13]
and Torque [14] to manage HPC images. Although these tools
should in theory simplify the management, we found that
readily deployable patterns from Moab were not available.
Furthermore, we identified hardware and operating system
restrictions imposed by XCAT. This motivates us for our future
development to remove the dependencies of both XCAT and
MOAB while targeting alternatives providing more suitable
free and opensource solutions. Our internal cloud to manage
the image generation process for IaaS environments is based
on OpenNebula. On the IaaS side we have already interface
with Nimbus, Eucalyptus 2.0.3, OpenStack, and OpenNebula.
We are targeting next AWS, and Eucalyptus 3.0. Our image
generation is supported by a parallel virtual machine pool in
order to support concurrent requests.

VI. EVALUATION

In this section we describe our newest performance experi-
ments while focusing our attention on the analysis of the image
generator and image registration process. The performance of
the image repository was already evaluated earlier and the
results are available in [11].

Our performance study uses resources and services de-
ployed on FG. In particular we used the FG India cluster,
which is composed by Intel Xeon X5570 servers with 24GB
of memory, a single drive 500GB with 7200RPMm 3Gb/s, and
an interconnection network of 1Gb Ethernet.

As part of our study, we configured the image management
components as follows:

• The image repository has been configured using Mon-
goDB to store the image metadata. Cumulus is used to
store the image files. This configuration was identified to
be very good as part of our earlier experiments with the
image repository, that are documented in [11].

• To be able to generate images (see Section IV-A) in
parallel, we are using OpenNebula. Although we could
have used other IaaS frameworks, we chose open Nebula
due to its easy of deployment as documented in [5]. In
this setup we have instantiated a VM disk image targeting
each of our supported operating systems. However, in our
test reported here we only tested the creation of images
based on Ubuntu and CentOS.

• In order to support the image registration we provide
two independent services: (a) one that register images
into a cloud and (b) one that registers it in the FG
HPC infrastructures. The later requires write access by
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Fig. 5. Average wallclock time needed to process all image generation
requests depending on the number of OpenNebula compute nodes. Each graph
in the figure represents the number of available OpenNebula compute nodes.

the service to the xCAT image directory and execution
permissions to use the xCAT client commands.

• The image management client has been deployed in the
India login node to allow access of the image manage-
ment by authorized users.

Next we describe the tests performed and the results ob-
tained in each case. All tests have been performed three times
to obtain average results.

Image Generator: First we study the scalability of the image
generator tool. We performed experiments that varied the
number of concurrent image generation requests (from one to
eight) to create CentOS images from scratch. As part of our
experiments we increased the number of OpenNebula compute
nodes from one to four to highlight the scalability of the ser-
vice. Figure 5 shows the results of these tests. We observe that
the overall performance using a single OpenNebula compute
node is quite good as the minimum average wallclock time
to create an image with this setup is around six minutes for
a single request. When using the same node to handle eight
requests we see an overall time of 16 minutes. To reduce this
time, we can increase the number of compute nodes we can
distribute the workload on other nodes. Finally, we observe
that the performance degrades when we generate more than
two images per compute node. Therefore, this limitation must
be considered when deploying a production environment of
our image management framework.

Next, we analyze where the time is spend within the image
creation process. For these tests we used our lessons learned
from the previous test and used a single OpenNebula com-
pute node while varying over different number of concurrent
requests to generate CentOS, as well as Ubuntu images. The
results of these tests are shown in the stacked bar charts and
include times for the sub processes to boot the VM, generate
the image, compress the image, and upload the image to the
repository; in particular, Figure 6 (a) for Centos and Figure 6
(b) for Ubuntu.

In the Figure 6 we observe that the virtualization layer in-
troduces significant overhead in the process (1). This overhead
is higher in the case of CentOS images and indicates that our
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Fig. 6. Average walltime needed to process all image generation requests
with time associated to the different phases of the process.

CentOS golden image need to be optimized to speed up this
phase.

The time to create the base image and the installation of the
software requested by the user is the most time consuming in
this process (2) and is worse for Ubuntu. In particular the
overall time use for this phase is up to a 69% for CentOS and
a 83% for Ubuntu. The remaining time of this phase is spend
to install the software and packages requested by the user. For
this reason in our design, defined in Section IV-A, we consider
to manage base images that can be used to save time during
the image creation process. Thus, in Figure 7, we collect the
results of performing the previous tests taking advantage of
the base images stored in the image repository and introduce
caching policies.

According to our results depicted in Figure 7 using a base
image as part of the creation process reduces time needed
to complete this step dramatically. The reason is twofold: (a)
there is no need to create the base image every time, and
(b) we do not need to use the virtualization layer since the
base image already have the desired OS and only need to be
upgraded with the software requested by the user. Thus, our
tool can directly retrieve and uncompress the base image to
customize it with the users’ requirements. Once the image has
been customized, it is compressed and uploaded again to the
image repository.



7

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

1	   2	   4	   8	  

Ti
m
e	  
(s
)	  

Number	  of	  Concurrent	  Requests	  

(4)	  Upload	  it	  to	  the	  Repository	  

(3)	  Compress	  Image	  

(2)	  Generate	  Image	  

(1)	  Retrieve/Uncompress	  base	  image	  from	  Repository	  

(a) Generate CentOS Images from a base image

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

1	   2	   4	   8	  

Ti
m
e	  
(s
)	  

Number	  of	  Concurrent	  Requests	  

(4)	  Upload	  it	  to	  the	  Repository	  

(3)	  Compress	  Image	  

(2)	  Generate	  Image	  

(1)	  Retrieve/Uncompress	  base	  image	  from	  Repository	  

(b) Generate Ubuntu Images from a base image

Fig. 7. Average walltime needed to process all image generation requests
with time associated to the different phases of the process.

Our results show that the image repository we designed does
not cause a bottleneck as the time to upload the images to the
repository is negligible (see Figure 6 and 7).

Image Registration: Next we analyze the behavior of the
image registration processes. For that, we registered the same
CentOS image in different infrastructures namely OpenStack
(version Cactus configured with KVM hypervisor), Eucalyptus
(v2.03 configured with XEN hypervisor) and HPC (Moab
v6.0.3 with Torque v2.5.5). For Eucalyptus and OpenStack
we utilized concurrent registrations. In contrast, our service
to register images in the HPC infrastructure, only processes
a single request at a time because it modifies critical parts of
our HPC infrastructure and at this time must be performed in
an atomic section.

The results of registering images are shown in Figure 8 (a)
for OpenStack and Figure 8 (b) for Eucalyptus. The figures
use a stacked bar chart to depict the time spent in each phases
of this process including (1) customization of the image, (2)
retrieval of the image after customization, and (3) the upload
of the image to the cloud framework into its own repository. It
is to be noted that (1) is executed in the server side while (2)
is executed in the client side. The reason for this is based on
our authorization framework, as we need to use the user’s
credentials to upload and register the image to the cloud
infrastructure. Therefore, times associated with (2) represent

the time to send the image form the server to the client.
We observe that the time needed to customize the image

(1) increases with the number of concurrent requests. Part of
this activity includes uncompressing the images in the server
side to prepare them for being uploaded and registered with
the IaaS framework. In our experiment we are concurrently
processing all requests in the same machine. In practice this
has so far been how our software is used, but as explained
earlier we could increase the number of available servers to
process these requests in order to avoid resource starvation
and avoid scalability issues.

One of our observations is that the time to register an
image in OpenStack is higher than in Eucalyptus. This is
based on two factors. First, in OpenStack we need to include
certain software to allow OpenStack to contextualize the VM
during the instantiation time (included in (1)). Second, the
process to upload the image to the OpenStack cloud takes
longer than in Eucalyptus (2)). As part of this process, both
frameworks compress and split the image in smaller tgz
files that are uploaded to the IaaS server. The difference is
that OpenStack uncompresses the image in the server side
as part of this process, while Eucalyptus seems to maintain
the compressed version. Additionally, we have noticed that
occasionally OpenStack fails to upload some images when
we perform several concurrent requests. Consequently, images
get stuck as part of the untarring process and hence never
complete the uncompression. While analyzing this problem
further, we suspect that it may relate to a scalability issue of the
messaging queue system within our OpenStack deployment.
Another observation we made is that our logfiles generated by
our deployed OpenStack infrastructure are not very helpful to
debug this problem.

In Figure 9 we show our results of registering the image
with our HPC environment utilizing Moab, and XCAT. Here
we distinguish the following phases (see Section IV-C) : (1)
retrieve the image from the repository, (2) uncompress the
image, (3) retrieve kernels and update the xcat tables, and (4)
package the image. To have minimal impact on our deployed
HPC services we decided to only run one such process at a
time. We observe that the overall process only takes about two
minutes as no additional software is needed to be installed and
everything is executed on the server. The most time consuming
parts are uncompressing the image (2) and execute the xCAT
packimage command (4). This command creates a tar/cpio
image that will be used to netboot bare-metal machines when
users request it. The final step of this process is the registration
of the image with Moab and recycling the Moab scheduler.
After the recycle step, the image becomes available to the
users.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the FutureGrid user
controlled image management framework as a revolutionary
way to handle images for different infrastructures spanning
virtualized and non-virtualized resources. It allows users to
register images, created by our software, for Nimbus, Euca-
lyptus, OpenStack, as well as bare-metal instantiations. With
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Fig. 8. Average wallclock time needed to register all images in the
infrastructure with time associated to the different phases of the process.
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Fig. 9. Average walltime needed to register an image in the HPC infrastruc-
ture with time associated to the different phases of the process.

our framework users are able to easily create and manage
customized environments within FG. This is achieved by
abstracts abstracting the underlining details of each underlying
infrastructure. Hence users can with simple tools replicate
software stack requirements on the supported IaaS and bare-
metal systems.

In our evaluation we have identified the most time consum-
ing parts of our software. Our results shows linear increases in
response to concurrent requests. The image generation tool is
able to create images from scratch in only six minutes. When
modifying a base image it allows us to generate images in
less than two minutes in many of our use cases. Additionally,
we can scale the performance by adding more nodes that are
used to generate the images. The image registration tool is

able to register images in any infrastructure in less than three
minutes. Indirectly we have also seen that our image repository
shows excellent behavior in our usecases and introduces only
negligible overhead to the overall processes.

We are currently working towards supporting Amazon EC2
and Nimbus. Our plan also includes the integration of a
messaging queue system and portal interface to allow queuing
of concurrent image generation in case of resource starvation.
This will also introduce a more robust fault tolerant behavior
for user access. On-demand resource allocation for supporting
peak access is part of this strategy. Our tools are currently
used by a selected number of users on FG.
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