
A WEB-SERVICES BASED CONFERENCE CONTROL FRAMEWORK
FOR HETEROGENOUS A/V COLLABORATION

Wenjun Wu, Hasan Bulut, Ahmet Uyar, Geoffrey C. Fox

Community Grid Computing Laboratory, Indiana University
wewu@indiana.edu, hbulut@indiana.edu, auyar@mailbox.syr.edu, gcf@indiana.edu

Indiana Univ Research Park, 501 North Morton Street, Suite 222, Bloomington, IN47404, USA

Abstract

Conference control has been studied for years but
most researches focus on homogenous A/V collaboration.
There is no conference control framework for integration
of multiple A/V systems such as H.323, SIP and
AccessGrid. In this paper, we propose a web-serviced
based scalable conference control framework for such
heterogeneous collaboration system. We also
implemented a prototype to verify and refine our
framework.

Keywords

Conference Control, Web Services, XGSP

1. Introduction

Collaboration and videoconferencing systems have
become a very important application in the Internet. There
are various solutions to such multimedia communication
applications, among which H.323 [1], SIP [2], and Access
Grid [3] are well-known. It will bring substantial benefits
to Internet users if we can build an integrated
collaboration environment, which combines these systems
into a single easy-to-use, intuitive environment. However,
at present they have features that sometimes can be
compared but often they make implicit architecture and
implementation assumptions that hamper interoperability
and functionality. Therefore it is very important to create a
more general framework to cover the wide range of
collaboration solutions and enable users from different
communities to collaborate. In this paper, we attempt to
define such a common, interoperable framework based on
Web services [4] technology for creating and controlling
multipoint video & audio collaborations.

The paper is organized in the following way: Section 2
introduces related work and our research issues. Section 3
describes the XGSP conference control framework.
Section 4 presents the implementation of XGSP prototype
system. And we give the conclusion and future work in
section 5.

2. Related Work and Problem Statement

Problems related to conference control have been
studied extensively over the years [5, 6, 7, 8, 9, 10].
However, most of the works discuss only homogenous
videoconferecing, including H.323, SIP and MMUSIC
[11]. ITU-T developed conference control protocols as a
part of the H.323 series of recommendations. It is reported
[12] that T.124 [13, 14] has the scalability issue because
of the inefficient database replication algorithm. And
H.323 Audio/Video collaboration takes the simple
protocol in H.243 [15] rather than T.124. The IETF's
Multi-Party Multimedia (MMUSIC) working group has
also proposed its own solution SCCP [5]. But in the year
2000, MMUSIC WG gave up and removed conference
control from the WG charter. Recently SIP research group
begun to develop their framework and produced a few
drafts [9, 10]. But SIP work is still in the beginning phase
and has not been widely accepted.

Our job is to define web serivces framework in which
H.323, SIP as well as MMUSIC could be integrated. We
divide an A/V collaboration system into three parts: A/V
application endpoints, session servers and multipoint
communication channels provider. Each collaboration
system has a different implementation for the application
endpoints, server components and different
communication protocols between them. For example, in
an H.323 based system, an A/V application endpoint
refers to a H.323 terminal that is capable of sending audio
and video. A session server refers to the Multipoint
Controller that can create multipoint session. A multipoint
communication channel provider is the Multipoint
Processor that can mix audio and video from endpoints. In
an Access Grid system, a client is based on the MBONE
audio/video tools such as RAT and VIC. Further there is a
venues server in Access Grid, which is responsible for
scheduling meetings. Multicast RTP channels are the
communication infrastructure for Access Grid.

To integrate all these heterogeneous systems into one
collaboration system, we need to reach the following goals:

(1) Different kinds of application endpoints can join /
leave in the same A/V collaboration session.

(2) Different multipoint A/V providers can be
connected together to build unified A/V multipoint
channels.

(3) A common user interface is present for all the users
over different A/V application endpoints.

The first goal requires a common signaling protocol,
which specifies the operation procedure between different
types of A/V endpoints and session servers. The
conference control framework and multipoint messaging
middleware are required for the second and third goal to
integrate various RTP multipoint communication servers.
Web-service seems to be the best candidate for this
conference control framework since it can run across
various platforms and is easy to be extended and
understood. Conference control consists of three parts:
user session management, application session
management as well as resource contention management,
also known as floor control. Since there are different kinds
of conference control protocols for different collaboration
technologies, we have to wrap them into web-services and
integrate these services in a more general framework.

3. XGSP Framework for Conference Control

Figure 1 shows the architecture of XGSP framework.
The A/V media channel service provides multipoint A/V
RTP channels for various A/V application endpoints. This
service can be implemented on top of distributed
messaging middleware, Narada [16] to create a unified,
robust and scalable multipoint communication platform
over hetergenous networking environment. Various
collaboration systems including AccessGrid, H.323 and
SIP are regarded as Web-services components in XGSP
framework. They provide Web-services interface of their
conference control protocols to the XGSP collaboration
manager servers so that their RTP channels can be
connected with the XGSP A/V media channel service
under the control of the manager servers.

Figure 1 XGSP Conference Control Framework

Under such a framework, all kinds of A/V application
endpoints can communicate with each other whether they
are directly connected to XGSP A/V media channel
service or to different collaboration systems. Different
collaboration systems are regarded as XGSP communities
having multiple collaboration rooms. A collaboration
room is the abstraction of multipoint A/V RTP channels.

In centralized conferencing, A/V endpoints have to enter
the collaboration room to attend the videoconferencing. It
is noted that the concept of “room” is widely used in
current collaboration systems. Based on these rooms from
different communities, XGSP can create a collaboration
session for all the endpoints. The XGSP session occurring
in a community room is referred to XGSP sub-session.
Users have the opportunity to enter either the XGSP
session or the XGSP sub-sessions in local communities.

To support such a collaboration model, we have to
define a XGSP conference control framework, which
should be generic, easy to extend, reliable and scalable.
XGSP conference control includes three components: user
session management, application session management and
floor control. User session management supports user
sign-in, user create/terminate/join/leave/invite-into XGSP
sessions. XGSP application session management provides
the service to A/V application endpoints and communities,
controlling multipoint A/V RTP channels. Floor control
manages the access to shared collaboration resources.
Although there are various floor control policies for
different collaboration applications, XGSP should offer
basic floor control mechanisms to support all these
policies.

XGSP is a two-level control framework which includes
top conference control servers and servers from other
communities. Therefore the three components can be
designed in a hierachy and distributed model to improve
the scalability, which means that the top XGSP servers
manages the whole XGSP session and the local servers
only control XGSP subsessions. SOAP [17] RPC
commands can be used for the communication between
the top XGSP servers and the local servers. It is noted that
the servers from different communities may have different
capabilities of handling sessions. For example, in
AccessGrid communities, there is almost no much control
for session membership and floors. So the services of the
community should be described in WSDL which may help
to generate the interface between the top XGSP servers
and the local servers.

3.1 XGSP User Session Management

In a XGSP session, users have different roles and
access rights to the collaboration resources. Each user
should have an ACL (access control list) to describe his
rights in the session. We can define multiple ACL
templates according to the role of the user. Since the
definition of the role and ACL groups usually depends
upon the style and policy of the collaboration, XGSP
provides some basic operations and simple definition of
user roles to support different collaboration policies.
XGSP provides the API for defining new user role for the
specified collaboration scenario. When a user signs in
XGSP system, the XGSP user session servers will create
the ACL list for the user according the role template and
its user profile.

XGSP users can be divided into three categories:
administrator, chairman, normal users and anonymous
users. In addition, normal users can be divided into: top
normal user, local chairman, and local normal user.
Anonymous users who are just audiences in the XGSP
session, usually don’t show up in the member list of a user
session and have a very limited right of accessing the
conference. For example an audience can’t speak or send
video to the meeting. The administrator user is a very
special user which can be regarded as a super user in the
conference. A chairman user usually has the power of
controlling floor tokens.

The session membership containing a list of the
participants is shared by all the participants and the user
session server in this collaboration session. Whenever
there is some change in the membership, for example a
new member joins in the session, the membership has to
be updated and distributed to all the participants. So we
need a scalable mechanism to maintain the consistency of
membership information shared among the participants.
Since XGSP framework has a two-tier tree structure, the
session servers in XGSP sub-sessions can play as an
intermediate node to implement the distributed
membership maintenance. XGSP top session server
collects the membership report from the XGSP sub-
session servers and the top normal users. And the sub-
session servers collect the local membership reports from
the local users. And the XGSP top session server
announces the change of the membership to all the users
and sub-session servers.

In such a two-tier structure, a user has the options to
enter the system through either the top session server or
the sub-session servers. Top users should sign in through
the top session server, while local users should do it
through the sub-session servers. This distributed
algorithm requires that a XGSP sub-session server should
provide the services of reporting local membership and
showing the global membership to its local users. It is
noted that if some community server has no capability of
managing the membership, we may also need to deploy a
XGSP sub-session server for this community.

3.2 XGSP A/V Application Session
Management

XGSP application session management has two tasks:
control the XGSP session over all the media servers and
help application endpoints to join and leave the session.
The A/V endpoints of top XGSP users should directly
attach to the XGSP A/V Channel Service (called top A/V
application session). And the endpoints of the local XGSP
users should connect with the local media servers (called
local A/V application session). XGSP defines the methods
of create/activate/terminate to manage XGSP A/V
application sessions. XGSP system will create a XGSP
A/V session when a user schedules a XGSP session and
defines the profile of the A/V session. The profile

specifies the audio/video codec and the list of “rooms”
from the communities involved in the session.

 When the XGSP session is activated, the XGSP
session server will link all the “rooms” in the session
together by connecting multipoint A/V channels from
different communities to the XGSP A/V Media Channel
Service. For H.323 and SIP communities, they connect
with the XGSP A/V channel Service by dialing in the
H.323 and SIP gateway. Since a MBONE community like
AG, has no signaling procedure, the XGSP servers will
launch an AG agent that joins in the multicast A/V groups
and forwards the packets between the top XGSP session
and the AG multicast groups.

There are two steps in the join procedure of A/V
endpoints, including negotiation of capabilities and
establishment of UDP channels. When an application
endpoint joins the XGSP application session, it has to
make codec negotiation with the media server to ensure
that it can support the audio/video codec used in the
session. Since different A/V application endpoints have
their own signaling procedures for joining and leaving
session, we have to define a XGSP signaling protocol for
H.225[18], H.245[19] (H.323 signaling protocols) and
SIP as well as AccessGrid. The H.323 and SIP gateway
transform these protocols into XGSP signaling protocol so
that H.323 and SIP endpoints could communicate with the
XGSP application session server. AccessGrid tools like
VIC and RAT can join in the multicast XGSP subsession
without using XGSP signaling procedure. But if they are
running in a unicast environment, they have to reply upon
XGSP signaling protocols to connect with the XGSP
application session server. For those local users, their
endpoints can directly connect with the local session
servers.

3.3 XGSP Floor Control

Conference applications often have shared resources
such as the right to talk, access to a limited-bandwidth
video channel, a pointer or input focus in a shared
application, access to shared lesson or game rooms. Floor
control enables applications or users to gain safe and
mutually exclusive or non-exclusive access to the shared
object or resource. Floor control should support different
floor control policies such as moderator-controlled or
first-come-first-served. All these floor control policies can
be implemented on the floor control primitives, including:
request floor, release floor, grant floor, cancel floor,
remove floor request. These primitives are exchanged
between the conference participants, the conference server
and the chairman moderator.

XGSP framework mainly focuses on dealing with audio
and video floor control. Note that in the XGSP session,
we have the XGSP top session and XGSP sub-sessions
who may have some different floor control policies. For
example, AccessGrid multicast session only supports free
seminar policy which requires no floor control and some

simple H.323 MCU only shows the video of current
speaker. So XGSP offers a more general solution to this
issue, which doesn’t control the video and audio stream
from senders, but the streams to the receivers in all the
endpoints.

In the following, we mainly discuss on how to
implement chair guided floor control policy. In the XGSP
top session and XGSP sub-sessions, there may be
chairmen for floor control. A local chairman controls the
floor in the local XGSP session and requests floors from
the chairman in the top session. A local chairman can be
either a real human user or a running agent which provides
the web-services of floor control to the top session
chairman.

Figure 2 XGSP floor control

(1) Video control Policy
We define “TVSSS” as the streams that can be received

by the endpoints in the XGSP top video session. TVSSS
includes uplink streams from the XGSP sub-sessions and
streams from the endpoints in the XGSP top video session.
Not all the streams from the video sub-sessions can be
received by XGSP video servers because the number of
uplink streams is limited by the capacity of local video
servers and the RTP channels with the XGSP video
servers. In order to choose the uplink video streams in
TVSSS, the chairman or administrator in the XGSP top
video session can send XGSP floor control commands to
the server of the local community. The local chairman can
also send requests to the top session chairman to add some
streams into TVSSS. If the local servers only support
voice-activated video switch, the top session servers have
no way to choose the uplink video streams.

XGSP doesn’t support the function of disabling the
video sender because a lot of video endpoints don’t
provide such a service. So we rely on the XGSP video
servers to block the transmission of some video streams in
the XGSP video session. The XGSP servers will only
allow some streams from TVSSS for all the downlink
video streams. It is noted that the XGSP top session
servers can’t control the transmission of local video
streams in the local community. For example, in

AccessGrid multicast session, users are free to watch any
streams in this local session.

XGSP allows video endpoints to choose the video
streams from TVSSS, which is very useful for those
unicast-only endpoints in the XGSP top session. Because
they can not receive and render multiple video streams.
Local endpoints can only make choice from downlink
streams and local video streams. But the local video
servers may not support their choices on local video
streams. In the case, the users on these endpoints can still
choose the downlink video streams. It is the local
chairman that makes the final decision on which video
should be included in the downlink. The video selection
service is not useful to the endpoints in the Access Grid
session since they can receive and render multiple video
streams.

In some video control policies, the chairman can force
other users to watch a specified video. When such a policy
is applied, the choices of other users will be disabled. For
all the downlink video streams, the top chairman will
specify a video from TVSSS.

(2) Audio control Policy
XGSP audio servers mix the audios and forward the

mixed stream to audio endpoints. We don’t have the same
problem as video since there is only one mixed audio
stream for all the downlink audio in the XGSP sessions.
Just like video, XGSP audio floor control has to co-
ordinate with the floor control mechanism working in
local communities. A local user can get the audio floor
only after he gets floor grant from the local chairman and
the XGSP top session chairman. A local chairman collects
audio floor requests from local users and forwards audio
floor grants from XGSP top session chairman. Since there
is neither audio floor control nor audio mixing in Access
Grid sessions, the XGSP audio server can enforce the
audio floor control by filtering out the extra AG audio
streams from the mixed stream.

In summary, the floor control in XGSP session works in
two levels. In the XGSP top session, the policy whether it
is the style of free seminar or guided meeting, can be
applied to all the endpoints. But in the XGSP sub-sessions,
only the local policy can be applied. XGSP servers can
control the uplink and downlink video and audio streams
to partly apply the policy to local communities.

4. Implementation of the Prototype based on
the XGSP framework

We have developed a prototype system called Global-
MMCS (Global Multimeda Collaboration System) to
verify and refine our XGSP conference control framework.
In this prototype, three different kinds of endpoints and
communities are integrated. We have OpenH323 MCU
[20], HearMe [21], and AccessGrid as communities. The
figure shows the prototype of XGSP framework.

iMa c iMa c

 Figure 3 XGSP Prototype Systems

For H.323 clients, we have the H.323 Gateway and
H.323 gatekeeper, which interact with H.323 terminals
and retrieve the information for XGSP protocol. For SIP
clients, we implemented the SIP Gateway, SIP Proxy and
SIP registrar, which supports SIP-to-XGSP transformation
and SIP registration. The XGSP A/V server provides the
services of bridging multicast and unicast, video-switching,
video-Mixing and audio-Mixing to H.323, SIP as well as
AG endpoints. The XGSP application session server
builds XGSP connections for various A/V application
endpoints, activates XGSP application sessions in the
XGSP media server, and controls the A/V channels
between the XGSP A/V server and other technology
communities.

OpenH323 MCU and AccessGrid only provide simple
application session services to their users. So their user
sessions are managed by XGSP user session server.
HearMe community has more sophisticated user and
application session management. So our works focus on
implementing HearMe web service by using its Voice
conferencing SDK API. The HearMe ASCP interface can
be used to support the API of user and application session
management. Since HearMe can support Moderated
conference, we run a HearMe client as a local chairman to
implement the floor control service. All these HearMe
services are described in WSDL format and integrated
into a HearMe wrapper, through which XGSP session
servers and invoked.

The XGSP web server implements XGSP user session
management and floor control. The function of user
session server and floor control is implemented in the
form of servlet in the web server and dedicated session
server threads run for communicating with the XGSP
application session server and the local session servers of
HearMe and OpenH323 MCU. The XGSP web server
also provides the user portal and system administrator
portal. Users need the web portal to participant in the
audio video collaboration. The system administrator can
use the portal to manage the system, for example
configure the components of the system, and upload some
new services and so on.

 Fig 4 an example of XGSP conference control procedure

Figure 4 shows an example of the fictional conference
in which a HearMe client joins and gets audio floor to
speak. There are two users in the conference: User A is a
top normal user and User B is a HearMe local user. At the
beginning, User A creates a XGSP session named
“ourtestroom” which includes HearMe community. When
the XGSP web server gets the XGSP command from User
A, it sends SOAP commands to HearMe session server to
create a XGSP sub-session and activate the session. After
the session is ready, User A and User B join the XGSP
top session and the XGSP HearMe sub-session separately.
The A/V endpoint of User A directly connects with the
XGSP A/V server, while the audio endpoint of User B
connects with the HearMe audio MCU. Suppose initially
the conference moderator allows user A to get the audio
floor after it sends a request to the XGSP server. And then
User B contacts the HearMe servers to become the
speaker. The Hearme server notifies the XGSP moderator
about the request by sending a SOAP command
RequestAudioFloor to it. The XGSP moderator removes
the floor from User A and grants it to User B.

Global-MMCS prototype system has been tested by
developers and a small group of users across US and
China. It gets positive feedbacks from the users who can
use unicast and low bandwidth networks to attend
AccessGrid conferences. Since the prototype includes a
single XGSP A/V Server, it can only support limited scale
of collaborations. For example it can support 5
conferences with 50 participants in each of them. Now we
are working on the new prototype in which XGSP A/V
servers will be distributed upon Narada broker
infrastructure to improve the scalability and robustness of
our system.

5. Conclusion

In this paper, we have described a web-service based
framework XGSP for conference control. Under the
XGSP framework, not only various audio/video endpoints
but also communities can be integrated into a single A/V
collaboration environment. This framework implements
user and A/V application session management and floor
control function in a scalable structure over heterogeneous
collaboration systems. The XGSP framework is not
designed for replacing the frameworks of H.323, SIP as
well as AccessGrid, but for bridging them based on web-
services technology.

Because XGSP signaling procedure is built on XML
encoding and SOAP communication, its performance may
be a little slower than those protocols based on text or
binary encoding schema. But the cost caused by the SOAP
engine and XML parsing will only increase the delay of
session creation, user joining and so on. It will not affect
the QoS of audio and video communication.

We also built a prototype system based on the XGSP
framework. Such an integrated collaboration environment
greatly benefits those users that want to enter Access Grid
world via H.323 and SIP clients, and creates channels for
interconnecting different collaboration communities.

6. References

[1] International Telecommunication Union, Packet-base
multimedia communications systems, Recommendation
H.323, Sep, 1999
[2] Session Initiation Protocol (SIP), RFC 2543,
http://www.ietf.org/rfc/rfc2543.txt.
[3] Access Grid, http://www.accessgrid.org.
[4] Steve Graham, Simeon Simeonov, etc, Building Web
Services with Java (Sams publishing, ISBN0-672-32181-5,
2002).
[5] Bormann, C., Kutscher, D., Ott, J., and Trossen, D.
Simple conference control protocol service specification.
Internet Draft, Internet Engineering Task Force, Mar.
2001, Work in progress.
[6] Dommel, H.-P., and Garcia-Luna-Aceves, J.Floor
control for activity coordination in networked, multimedia
applications, Proc. of 2nd Asian-Pacific Conference on
Communications (APCC) .Osaka, Japan, June 1995.
[7] Handley, M., Wakefield, I., and Crowcroft, J. CCCP:
conference control channel protocol-a scalable base for
building conference control applications, ACM Computer
Communication Review 25, 4 , Oct, 1995, 275-287.
[8] Kausar, N., and Crowcroft, J. An architecture of
conference control functions, Proc. of Photonics East,
Boston, Massachusetts, Sept 1999.
[9] Koskelainen P., Schulzrinne H. and Wu X., A SIP-
based Conference Control Framework, NOSSDAV’02,
May 12-14, 2002, Miami Beach, Florida, USA.
[10] Wu, X., Koskelainen P., Schulzrinne H., Chen C. Use
SIP and SOAP for conference floor control.

Internet Draft, Internet Engineering Task Force, Feb. 2002,
Work in progress.
[11] Handley, M., Crowcroft, J., Bormann, C., and Ott, J.
Very large conferences on the internet: the internet
multimedia conferencing architecture, Computer Networks
31, 1999.
[12] Trossen, D. Scalable Group Communications in
Tightly Coupled Environments, PhD thesis, University of
Technology, Aachen, Germany, Sept 2000.
[13] International Telecommunication Union, Data
protocols for multimedia conferencing. Recommendation
T.120, July 1996.
[14] International Telecommunication Union, Generic
conference control, Recommendation T.124, Feb. 1998.
[15] International Telecommunication Union, Terminal
for low bit-rate multimedia communication,
Recommendation H.243, Feb, 1998.
[16] Fox G. C. and Pallickara S, The Narada Event
Brokering System: Overview and Extensions, Proc. of the
2002 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA'02) , Las Vegas, June, 2002.
[17] Simple Object Access Protocol (SOAP) 1.1,
http://www.w3.org/TR/SOAP/.
[18] International Telecommunication Union, Calling
Signaling Protocols and Media Stream Packetization for
Packet-based Multimedia Communication Systems”,
Recommendation H.225.0, Feb, 2000
[19] International Telecommunication Union, Control
Protocols for Multimedia Communication”,
Recommendation H.245 Feb, 2000
[20] OpenH323 Project, http://www.openh323.org.
[21] HearMe Audio conference system,
http://www.hearme.com.

