
Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 79

���������		���������	
����������������������������������

����� ����� ���� ������� ������� ���� �������� ���� �����

���
�������� ������������ ����� �� �������� ����� �� ����

��������������
�����������������������
����������������

���������������������������������������
�������������

��������	� �� ������������ ���� ��������	��� �����

������������������

�����������������������������������

������	��������������� ����������������
�����!����
�"�����

�������#��

�������� ���������� ���� ���
���$���������� ����������� ��

������ ���� �� ��������
�� ��
��
��� ����������� ����� ��

������������	� ������� ����� �������	� ��� ����������� ��

��������������������	���������������
�����������������������

������ �������� ��� ��� ��������������	����� ��� �
���

��������"�����������������������������#���������������

������ ��� ��� �����
���	������	��	� ������������� �
��

�������������������������	���	��������������������������

�������� �����
��
������������ �����	� �����������������

����
�������������
�����������	���������

��� ���� ������ ��� �!�
����������	�� �����	� ���� ������

��
�%����� ������� ��� ��� ����!����&�����'�������	�������

��������� ������� ���� �����
�%���� ���������� ���� �(�

������������)���
��� �������� ��� ���
��������� ���� ���
���

����
�����������	���������������������	���	�������������

���������&�����'�������	�������

Key words: distributed messaging, publish/subscribe, middleware, matching,
event based systems

Reviewed and accepted: 31 Mar. 2004

1. Introduction

The Internet is currently being used to support increasingly complex
interactions. The devices, with which applications and services need
to interact, span a wide spectrum that includes desktops, PDAs,
appliances, and other networked resources. Clients – which abstract
users, resources and proxies thereto – within these systems
communicate with each other through the exchange of events, which
are essentially messages with timestamps. These events encapsulate
information pertaining to transactions, data interchange, system
conditions and finally the

search, discovery and subsequent sharing of resources. Scaling,
availability and fault tolerance requirements entail that the messaging
infrastructure hosting these clients, and routing their interactions, be
based on a distributed network of cooperating nodes. As the scale of
the system increases, effective interactions between clients and
services, in these settings, is dictated

not just by the processing power of the nodes hosting a specific service
but also by the network cycles expended during these interactions.
Events have internal or external (system computed) destinations
associated with them. In the case of search, discovery and publish/
subscribe interactions, the system has to efficiently calculate
destinations from the corresponding events. This computing of
destinations is referred to as matching and is, in itself, a distributed
process, which operates on the distributed management of client
interests (advertisements and

subscriptions). Furthermore, the distributed nature of the underlying
messaging infrastructure mandates an efficient routing engine that
can compute and traverse efficient paths to reach target destinations.
We suggest that inefficient approaches to either the calculation of, or
routing to, destinations can result in unacceptable network

degradations and network flooding. Poor solutions to network
utilizations lead to buffer overflows, queuing delays, network clogging
and other related problems that add up considerably over a period of
time. Although multicasting and bandwidth reservation protocols such
as RSVP [1] and ST-II [2] can help in better utilizing the network, they
require support at the router level. There needs to be a conceited
effort to ensure the efficient utilization of networks and networked
communal resources.

More importantly, the underlying solution should incorporate
sophisticated matching engines needed to provide support for
increasingly complex and sophisticated qualifiers, for specifying
constraints, that events should satisfy prior to being considered for
delivery to applications.

In this paper we explore matching, routing and network utilization
issues in the context of our research system NaradaBrokering [3-12],
which provides support for centralized, distributed and peer-to-peer
(P2P) interactions [13]. NaradaBrokering has been tested in
synchronous and asynchronous applications, including as a media
server for audio-video conferencing. Depending on the type of
interactions routed and the corresponding matching engines
supported, the underlying messaging infrastructure/middleware could
be viewed either as a distributed light-weight relational or XML
database. We also discuss the implications, and include results,
pertaining to the different matching engines supported within the
NaradaBrokering system.

This paper is organized as follows. In Section 2 we discuss related
work in the area. In section 3 we identify the core issues relevant to
supporting efficient interactions within the system; sections 4, 5, 6
and 7 elaborate on these core issues of broker topology, organization
of client interests/constraints (profiles), routing of events and support
for multiple matching engines respectively. Finally in Section 8 we
outline conclusions and future work.

2. Related Work

Different systems address the problem of event delivery to relevant
clients in different ways. In Elvin [14] network traffic reduction is
accomplished through the use of quench expressions, which prevent
clients from sending notifications for which there are no consumers.
This, however, entails each producer to be aware of all the consumers
and their subscriptions. Ref [15] outlines a strategy to convert each
subscription in Elvin into a deterministic finite state automaton. This
conversion, and the matching solutions, nevertheless can lead to an
explosion in the number of states. In Sienna [16] optimization
strategies include assembling patterns of notifications

as close as possible to the publishers, while multicasting notifications
as close as possible to the subscribers. In Gryphon [17] each broker
maintains a list of all subscriptions within the system in a parallel
search tree (PST). The PST is annotated with a trit vector encoding
link routing information. These annotations are then used at matching
time by a server to determine which of its neighbors should receive
that event. Approaches for exploiting group based multicast for event
delivery is discussed in Ref [18]. The Event Service [19] approach
adopted by the OMG is one of establishing channels and subsequently
registering suppliers and consumers to the event channels. The
approach could entail clients (consumers) to be aware of a large
number of event channels. The Notification Service [20] addresses
limitations pertaining to the lack of event

filtering capability. However it attempts to preserve all the semantics
specified in Event Service while allowing for interoperability between
clients from the two services. TAO [21] is a real-time event service
that extends the CORBA event service and provides for rate-based

Efficient Matching of Events in Distributed Middleware Systems

Shrideep Pallickara and Geoffrey Fox
Community Grids Laboratory
Indiana University, IN. USA 47401
{spallick,gcf}@indiana.edu

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 80

event processing, and efficient filtering and correlation. Unlike Elvin
and the OMG Event Service, NaradaBrokering provides decoupled
interactions between the interacting clients. Furthermore, the
organization of subscriptions and calculation of destinations do not
result in explosive

search spaces. As opposed to the Gryphon approach where all nodes
store the complete set of subscriptions at every broker node, in
NaradaBrokering none of the nodes store all the subscriptions within
the system. Also not every broker in NaradaBrokering is involved in
the calculation of destinations. This greatly reduces the CPU cycles
expended in NaradaBrokering for computing and routing interactions
within the system. In some commercial JMS [22] implementations,
events that conform to a certain topic are routed to the interested
clients with refinement in subtopics being made at the receiving client.
This approach could thus expend networkcycles, routing events to
clients, where it would ultimately be discarded. JMS systems tend to
be single server or limited server solutions. NaradaBrokering is JMS
compliant and in Ref [8] we have demonstrated how we can
transparently replace single server JMS systems with a distributed
solution. In the case of servers that route static content to clients
such as Web pages, software downloads etc., some of these servers
have their content mirrored on servers at different geographic
locations. Clients then access one of these mirrored sites and retrieve
information. This can lead to problems pertaining to bandwidth
utilization and servicing of requests, if large concentrations of clients
access the wrong mirrored-site. In an approach sometimes referred
to as active-mirroring, websites powered by EdgeSuite [23] from
Akamai, redirect their users to specialized Akamized URLs. Based
on the IP address associated with the request the client is then directed
to the server farm that is closest to its network point of origin. As
network and server loads change clients could be redirected to other
servers. In an approach similar to that of Akamai, we are presently
incorporating a scheme where clients are directed to the nearest
(based on IP address, router hops and communication latencies)
available brokers by broker locators available within the system. The
JXTA [24] (from juxtaposition) project at Sun Microsystems is a
research effort to support large-scale P2P infrastructures. P2P
interactions are propagated by a simple forwarding by peers and
specialized routers known as rendezvous peers. These interactions
are attenuated by having TTL (time-to-live) indicators. Pastry [25, 26]
from Microsoft incorporates a self-stabilizing infrastructure, which
provides an efficient location and routing substrate for wide-area P2P
applications. Each node in Pastry has a 128-bit ID and Pastry routes
messages to nodes whose Node- Id is numerically closest to
destination key contained in the message. The JXTA approach results
in flooding the peer network, with the range being controlled by the
TTL indicators contained in the interactions. The NaradaBrokering
scheme selectively deploys links for disseminating interactions. In
Ref [7] we have demonstrated that we can route JXTA interactions
more efficiently than the JXTA core itself. Distributed Hash Tables
(DHTs) have been quite popular in several P2P systems. Here each
data object is associated with a key. A lookup service to locate this
object returns the IP-address of the node hosting this object. Similar
to a traditional hashtable data structure, other operations supported
in the DHT include put and get. In P2P overlay networks the nodes
are organized based on the content that they possess. Here DHTs
are used to locate, distribute, retrieve and manage data in these
settings. This scheme provides bounded lookup times. However, P2P
overlay networks do not facilitate keyword based searching, the
lookups are instead based on identifiers computed by hashing
functions such as SHA-1 and are derived from the content
encapsulated within the communal resource. Finally, none of the
systems that we have described above manage the range of
interactions supported within NaradaBrokering. As far as we know
we are the only system incorporating Integer, “/” separated Strings,
Tag Value, Regular Expressions, XPath and SQL matching engines.

3. Efficient Matching and Routing: Breaking the problem down

The smallest unit of the underlying messaging middleware should be
able to intelligently process and route events, while working with
multiple underlying communication protocols. We refer to this unit as
a broker, where we avoid the use of the term servers to distinguish it

clearly from the application servers that would be among the sources/
sinks to messages generated within the system. Efficient matching
and routing of events that builds on solutions to the multiple and
sometimes interrelated issues that comprise it. In this section we
proceed to outline the four core issues that comprise the problem
with subsequent sections discussing each issue in greater detail. First,
efficient organization of brokers is important as it forms an important
part of the matching and routing solution discussed below. Another
competing requirement is the ability of the broker network to adapt to
failures that might take place within the system. Inefficient broker
organizations can lead to topologies that are susceptible to network
partitions upon node failures.

Second, the problem of matching events comprises the related
problems of organizing onstraints and efficiently matching events
against these constraints to compute destinations. This organization
scheme should of course exploit the underlying structure of the broker
network.

Third, there is the routing of events to their destinations. This should
be done without the need to resort to flooding the broker network,
while being able to adapt to the ever changing conditions that exist
within a distributed system. Routing decisions, and the routes that
need to be taken, are based on the perceived state of the network. A
routing solution should be able to factor in network conditions such
as failed/clogged/slow links and nodes while making decisions on
routes to be taken to reach destinations.

Finally, the specified constraints could be arbitrarily complex, and
depending on the application, content and type of the events (and the
interactions they encapsulate) that are supported there needs to be
multiple matching engines residing within the system.

4. Topology

To address the issues [11] of scaling, load balancing and failure
resiliency, NaradaBrokering is implemented on a network of
cooperating brokers. In NaradaBrokering we impose a hierarchical
structure on the broker network, where a broker is part of a cluster
that is part of a super-cluster, which in turn is part of a super-super-
cluster and so on. Figure 1 depicts a sub-system comprising of a
super-super-cluster SSC-A with 3 super-clusters SC-1, SC-2 and SC-
3 each of which have clusters that in turn are comprised of broker
nodes. Clusters comprise strongly connected

brokers with multiple links to brokers in other clusters, ensuring
alternate communication routes during failures. This organization
scheme results in “small world networks” [27,28] where the average
communication pathlengths between brokers increase logarithmically
with geometric increases in network size, as opposed to exponential
increases in uncontrolled settings.

Figure 1: An example of a NaradaBrokering broker network sub-section
managing gridlet realms

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 81

This distributed cluster architecture allows NaradaBrokering to support
large heterogeneous client configurations that scale to arbitrary size.
Within every unit (cluster, super-cluster and so on), there is at least
one unit-controller, which provides a gateway to nodes in other units.
For example in Figure 1, cluster controller node 20 provides a gateway
to nodes in cluster m. Creation of broker network maps (BNMs) and
the detection of network partitions are easily achieved in this topology.

4.1 The Broker Network Map (BNM)

A broker needs to be aware of the broker network layout to optimize
routing to destinations. However, given the potential size of the broker
network, it is impractical for every broker to be aware of the complete
broker network inter-connection scheme. What is required is an
abstract view of the broker network, while still being able to ensure
the calculation of optimal paths for communication within the system.
This information is encapsulated within the BNM. The information
encapsulated within the BNM provides information regarding the inter-
connections between the brokers in the cluster that it is a part of, the
interconnections between the clusters within the super-cluster that it
belongs to and so on. The BNM maintained at each broker node is
different, while still providing a consistent view of the system
interconnections.

Figure 2: An example broker network

Changes to the broker network fabric are propagated only to those
brokers that have their broker network view altered. BNMs at each
node need to be updated in response to the receipt of information
pertaining to the creation of connections between brokers/units.
Dissemination constraints are imposed on the propagation of
connection information outside a given unit. For example information
regarding connections between brokers within a cluster should not
be propagated outside the cluster. Connection information is also
modified as it is being propagated through certain sections of the
broker network. Thus, in Figure 2 the connection between SC-2 and
SC-1 in SSC-A, is disseminated as one between node 5 and SC-2.
When this information is received at 4, it is sent over as a connection
between the cluster c and SC-2. When

the connection between cluster c and SC-2 is sent over the cluster
gateway to cluster b, the information is not updated. Conforming to
the dissemination constraints, the super cluster connection (SC-1,SC-
2) information is disseminated only within the super-super-cluster
SSC-A and is not sent over the super-super-cluster gateway available
within the cluster a in SC-1 and cluster g in SC-3.

Figure 3 depicts the BNM at node 6. We augment the BNM hosted at
individual brokers to reflect the cost associated with traversal over
connections, for example intra-cluster communications are faster than
inter-cluster communications. This cost can be dynamically updated
to reflect changes in link behavior with the passage of time. The BNM

can now be used not only to compute valid paths but also for computing
shortest paths.

Figure 3: The Broker Network Map at node 6

5. Organization and Propagation of Profiles

Profiles signify an interest in events conforming to a certain template.
Profiles also include a constraint that events need to satisfy, before
being considered for routing to a client. This is generally referred to
as a subscription. Constraint complexity can vary from character-string
based topic matching to a sophisticated SQL or XPath query. Individual
profiles can also include information pertaining to the device type –
CPU capability, and security related information that would sometimes
be needed for the matching process. Every profile has a unique ID
associated

with it which plays an important role in the management – addition,
removal and organization – of profiles. Profile organizations and
propagations are inter-related issues, which need to exploit the
topology, and the organization of units and controllers within the
system. The organization of profiles needs to be such that it reduces
the number of matching steps that need to be performed. Propagations
need to be sophisticated enough to ensure that profiles are propagated
only to relevant nodes within the system. Every profile has an
associated destination, which is updated depending on its propagation
within the system. A profile is propagated to unit controllers, and the
destination associated with the profile during its storage at the unit
controller is that of the sub-unit controller that propagated it. The
hierarchical propagation of profiles – resulting in a broker maintaining
profiles of all attached clients, cluster controllers maintaining profiles
of all brokers within that cluster and so on – ensures that when an
event is routed to a unit, there is at least one final destination within
that unit. The scheme also ensures that a matching event is routed

to every valid destination without exception. Thus, in Figure 1, super-
super-cluster controller nodes 1 and 10 keep track of all profiles
propagated by all the nodes (1 through 21) in super-super-cluster
SSC-A, while cluster controller node 19 of cluster n would keep track
of profiles propagated by nodes 19,20, 21 in cluster n. Since a unit
controller operates and communicates only with sub-unit destinations,
all profiles are stored at the controllers as if they originated at specific
sub-units. Thus, for a profile propagated by a service connected to
node 21, the

advertisement is stored at the cluster controller node 20 to reflect
that it came from node 21, while the super-cluster controller node 16
registers it as having coming from cluster n, with the super-super-
cluster controller nodes 1, 10 registering it as having originated in
super-cluster SC-3.

Another factor that is equally important is the removal of profiles from
propagation trees. This is done sometimes based on a explicit removal
propagation initiated by a client and also depending on the loss of
connection to a certain client. In either case the issue is an important

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 82

one to ensure that network and CPU cycles are not expended while
trying to reach destinations that are not truly interested in the event in
the first place. Finally, in this scheme, for system wide dissemination
every event needs to arrive at, at least one super-super-cluster
controller, within every super-super-cluster. The advantage of this
scheme is that no node maintains the complete

list of client profiles in the system. This could result in a super-super-
cluster being overloaded during high volume interactions. This problem
can be alleviated considerably by having multiple super-super-cluster
controllers within any given super-super-cluster.

6. Routing Events to Destinations

Event routing is the process of disseminating events to relevant clients.
This includes matching the content, computing the destinations and
routing the content along to its relevant destinations by determining
the next broker node that the event must be relayed to. As an event
flows through the system, via unit controllers, the associated event
distribution trace is modified to snapshot the event’s dissemination
within the broker network. These routing traces indicate – and can be
used to verify – an event’s dissemination within various parts of the
broker network. Routing decisions are made on the basis of this trace
information and the computed destinations.

Figure 4: Event destinations and traces

The matching process at a unit-controller computes sub-unit
destinations, which are valid only within that unit. Figure 4 shows the
destinations associated with an event in a system comprising of super-
super-clusters. From the stored BNMs at each node, individual unit-
controllers compute the best routes to reach units contained in the
destinations. When an event arrives at a unit-controller, prior to being
sent over the link to another unit, the sub-unit destinations associated
with the event is invalidated. Thus, broker destinations computed by
a cluster controller are valid only within that cluster and are cleared
prior to routing the event to another cluster.

Before an event is sent over a link to another unit, unit-controllers
analyze the trace information to ensure that the event is not routed to
a unit, where the event has already been routed. At every node the
best hops to reach the destinations are computed. Nodes and links
that have not been failure suspected are the only entities that can be
part of the shortest path. Thus, at every node the best decision is
taken based on the current state of the network fabric.

6.2 Communication overheads

We now present some results from NaradaBrokering’s transport
framework. The results give an idea of the overheads involved in
communications. NaradaBrokering supports multiple transport
protocols such as TCP, UDP, Multicast, SSL, HTTP and HTTPS. The
results we report here are for TCP based communications. The graph
in Figure 5 depicts the mean transit delays, and the accompanying
standard deviations, for NaradaBrokering messages traversing
through 2 hops with a single broker in the path from the sender of the
message to the receiver. For each test case the message payload
was varied. The transit delay plotted is the average of the 50 messages
that were published for each payload. The sender/receiver pair along
with every broker involved in the test cases were hosted on different
physical machines (Pentium-3, 1 GHz, 256 MB RAM). The machines

reside on a 100 Mbps LAN. The run-time environment for all the
processes is JRE-1.3 build Blackdown-1.3.1, Red Hat Linux 7.3.

Figure 5: Mean delay and standard deviation for varying payload sizes

7. The Matching Engine

In this section we discuss the matching process and the assortment
of matching engines residing in NaradaBrokering. The matching
engine is responsible for computing destinations associated with an
event based on the profiles available at a node. Depending on the
type of applications, standards, events and subscriptions that need
to be supported there would be multiple matching engines residing
within every processing broker node.

For several reasons we limit the number of sub-units within a unit to
32. By assigning each sub-unit a unique position in a 32-bit vector, in
a system comprising of super-super-clusters, any node (out of a
possible 32x32x32x32=1,048,576 nodes) can be uniquely represented
by 128-bits (4 integers). For example, in Figure 1, node 19 may be
associated with the integer 00…001..00 while node 20 might be
associated with 00…010..00. If both nodes should receive an event,
then the destination list is the sum (bitwise OR) of these two nodes
00…011…00. This provides a rather compact representation for
distribution traces and computed destinations associated with various
interactions. The implications of the representation, and the upper-
bound on sub-units, are even more powerful in the context of
computing destinations efficiently. Individual profiles have destinations
associated with them. A unit-controller maintains profiles with sub-
unit destinations. The number of profiles that are maintained at a
controller progressively increases depending on whether the controller
in question is a broker, cluster-controller, super-cluster

controller and so on. A unit-controller computes sub-unit destinations,
and the destinations that are associated with the stored profiles are
also sub-unit destinations. Once a profile is successfully matched to
an event, the destination associated with the profile is added to the

computed destination. When other profiles are being matched against
the event, a check is made to see if the destination associated with
the profile is already in the list of computed destinations (a bit-wise
AND operation yields a non-zero value if it is). If it is, the matching
process is suspended for this profile, since it would yield a destination
that already exists in the computed destinations. If the destination
contained in the profile is a different one, the profile is matched with
the event. If there is a match the associated destination is added (a
bitwise OR operation) to the computed destination list. This scheme
substantially reduces the number of matching operations that need
to be performed.

A similar strategy is employed by brokers matching events to attached
clients. Of course in this case there is no limit on the number of clients
that can be attached to a broker and the number of matching
operations that need to be performed is not reduced as substantially
as in the controller cases.

7.1 The Assortment of matching engines

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 83

We now proceed to discuss individual matching engines that reside
within NaradaBrokering.

7.1.1 String based matching

This matching is based upon the generalized String topic-based
publish/subscribe paradigm. Events issued provide information
regarding the topic that they were issued to. Client profiles include a
subscription to a topic. If the topic contained in the event is the same
as the topic contained in the profile, the event is said to match the
profile. This is a powerful model and several sophisticated applications
can be built using this generalized publish/subscribe model.

Some systems incorporate an approach to topic matching where a
subscription to a topic, say Sports, translates into subscriptions to all
sub-topics, say Sports/NBA, Sports/Soccer/UEFA. This approach is
not supported in NaradaBrokering due to constraints imposed by the
message-based security scheme [29].

7.1.2 String based matched coupled with SQL-like queries on
properties

Events (or messages) may also include properties, which are used to
further describe the content contained in the event’s payload. Clients
can thus also incorporate a second level of refinement for the events
they are interested in.

This two layer refinement scheme has the advantage that the first
constraint, which is identical to the string-based topic matching
scenario that we outlined earlier, substantially reduces the number of
events on which the second refinement needs to be applied. This is
important since the second level of refinement is far more complex
and CPUintensive than the first one.

The JMS specification incorporates this strategy, with the refinement
syntax being based on a subset of the SQL92 conditional expression
syntax. If the value of a refinement is an empty string, it indicates that
there no refinement is specified and the case reduces to the topic
based publish/subscribe outlined above.

7.1.3 Topics that are based on tag=value pairs

This matching engine incorporated into NaradaBrokering, is based
on the equality-based generalized matching algorithm presented in
[30]. Topics in this case comprise of equality constraints imposed on
a set of successive attributes as a sequence of “,” separated <tag,
value> pairs. The constraint in this case is the specification of a value
that a particular attribute (tag) can take. Also allowed is the weakest
constraint, denoted *, which encompasses all values. In this case
subscribing to a topic Make=Ford,Model=*,Color=Red matches events
with topic Make=Ford,Model=Taurus,Color=Red and
Make=Ford,Model=Mustang,Color=Red. Based on the number of
<tag,values> specified and the tags with specified * constraints, the
complexity of the matching process increases.

7.1.4 Integer based matching

The Integer based topic matching is used in NaradaBrokering primarily
by the audio/video conferencing framework to enable real time
communications [10].

7.1.5 XML based matching with XPath queries

NaradaBrokering also incorporates support for XPath based
specification of constraints on XML events. XPath [31] is a query
language that searches for, locates, and identifies parts of an XML
document. In this case there is no hint such as “topic” contained in
the XML event and the query needs to be matched with the entire
XML event.

7.1.6 Regular expressions based matching

More recently, NaradaBrokering incorporates support for regular
expressions based matching. Regular expressions are a powerful
mechanism for incorporating complex constraints on text based
content. Regular expressions of the form [Tt]he [Qq]uick [Bb]rown
[Ff]ox [Jj]umps can be satisfied by a topic of the form “The quick brown
fox jumps …”.

7.2 Profiling the Matching Engines

We now provide some results pertaining to the matching engines that
were outlined in the earlier section. These results (Figures 6 through
11) are for stand-alone processes, where we computed the matching
times as a function of the number of subscriptions maintained. In each
case, an event is matched to retrieve every matching subscription.
For every matching engine, the number of subscriptions is varied from
10,000 to 100,000. The results were measured on a machine
(1GHz,256MB RAM) running the process in a Java-1.4 Sun VM with
a high-resolution timer for computing delays.

Figure 6: Plots for Integer matching

Figure 7: Plots for String based matching

The richer the constraints, the greater the CPU-cost associated with
the matching process. As can be seen the average delays for matching
increases progressively (Integer to String to Tag-Value to SQL to XPath
in that order) as the complexity of the matching increases. For String
based matching, as depicted in Figure 7, the average delay for
matching subscriptions generally increases as the size of the topic
String increases. The increase in delays for matching as the topic
String size doubled from 16 to 32 was in the range of 1 microsecond.
Figure 8 depicts the costs associated with <tag,value> based
matching. As can be seen the costs associated with this style of
matching is higher than the String based style. We also noted that
the costs did not vary as the number of <tag,value> pairs associated
with individual subscriptions increased from 5 to 25. The results in
Figures 6-8 demonstrate that it is feasible to have real time interactions
that are based on the corresponding constraints.

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 84

Figure 8: Plots for <tag,value> based matching

Figure 9: Plots for SQL and XPath based matching

Figure 9 contrasts the costs involved in matching JMS events to stored
SQL-92 based selectors on the properties contained within the JMS
message and XML events to stored XPath conforming constraints.
Of course these costs can vary significantly depending on the type of
the query. For our experiments we used XPath and SQL queries,

which we felt were comparable. The cost of a single matching
operation involving an XML event and an accompanying XPath query
is around 3 milliseconds.

Figure 10: Regular expressions based matching

Figure 11: Matching XPath profiles

Figure 10 depicts the costs involved in matching an event to regular
expression based constraints. The subscriptions stored were in the
following format: [Tt]he [Qq]uick [Bb]rown [Ff]ox [Jj]umps while the
topic was of the form “The quick brown fox jumps upon the lazy dog”.
The matching costs varied from 130 milliseconds for 10000
subscriptions to 1178 milliseconds for 100000 subscriptions. Next,
we proceeded to study the effects of the destination optimization
strategies, which we discussed in section 7,in the context of XPath
profiles. We first perform the matching (un-optimized) on a set of XPath
profiles. The Xpath profiles in this case are then evenly distributed
over 32 different destinations. Figure 11 contrasts the matching times
in the profile matching with/without optimizations for varying number
of profiles. With optimizations the matching times varied between 120-
170 milliseconds. The results demonstrate that in the scenario outlined
earlier, the optimizations improve the performance of matching profiles
substantially. In general, in most practical situations it is our conjecture
that the performance would be similarly enhanced. Figure 12 outlines
the XML type for the stored events, and the type of XPath query used
in our experiments. Though the results depicted here are for XPath
profiles we expect optimizations to have a similar effect on SQL based
profiles too.

Figure 12: The XML event and XPath query type

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 85

Figure 13: Matching an XPath query to stored XML events

7.3 Implications of query based matching engines

The Query-based engines are suitable for discovery based services.
While providing support for profiles with SQLlike query based
refinements and XPath query based profiles, the system can be viewed
as a lightweight, distributed relational and XML database respectively.
This is the case, since as far as the end-user is concerned, the
matched event might as well have been stored in a database (relational
or XML, as the case might be) and the results returned (matching
events) would not have been different. Clients in the system can
advertise their services in an XML schema or a schema that can be
queried by an SQL query. These advertisements would be stored in
the same way that the profiles are stored within the system. Events
propagated by interested clients would essentially be either XPath or
SQL-like queries. These events would then be matched against the
stored advertisements with the matching ones being routed back to
the initiating client. The query events can specify the realms within
which the query’s propagation might take place, thus allowing
individual entities to control how localized their services can be.

Figure 13 depicts the matching times for a query against a set of
stored XML events/advertisements. For matching XML
advertisements, the performance would vary if it is constrained by
the number of matched advertisements or stored XML events that
need to be included in the query response. The stored XML events
and the issued Xpath query are of the type depicted in Figure 12. For
most discovery related operations, similar to those initiated in P2P
systems, these numbers indicate adequate performance.

8. Conclusions and Future work

The matching problem is a sufficiently difficult and important problem,
which needs to be addressed within the messaging infrastructure that
supports the applications, and accompanying interactions, between
entities. The problem will continue to evolve as entities continue to
interact in increasingly complex ways. In this paper we discussed
issues, and strategies, to support efficient matching of events. Based
on the kind of applications that the system is trying to support,
optimized engines that employ optimistic delivery techniques (based
on routing behavior of past events) could also be deployed.

P2P search mechanisms employ strategies different from those
discussed above. Combining P2P search mechanisms initiated by
peers on the edge of the network with the schemes outlined in earlier
sections, provides interesting approaches to resource management
that would be of considerable interest. Managing interactions between
Web/Grid services generated dynamically when complex tasks are
initiated is another area of research. Finally, incorporating some of
the security related information (SAML [32] style authorizations) into
the profiles themselves would allow us to be even more selective of
the events being routed to entities.

References

1. Zhang, L. et al.(1994). ReSource ReserVation Protocol (RSVP) –
Functional Specification”, Internet Draft.

2. Topolcic, C (1990). Experimental Internet Stream Protocol: Version
2 (ST-II)”, Internet RFC 1190.

3. The NaradaBrokering System http://www.naradabrokering.org

4. Fox, Geoffrey, Pallickara, Shrideep (2003). NaradaBrokering: An
Event Based Infrastructure for Building Scaleable Durable Peer-to-
Peer Grids. Chapter 22 of “Grid Computing: Making the Global
Infrastructure a Reality”. Published by John Wiley, West Sussex,
England. ISBN 0-470-85319-0.

5. Pallickara, Shrideep, Fox, Geoffrey (2003). NaradaBrokering: A
Middleware Framework and Architecture for Enabling Durable Peer-
to-Peer Grids. Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware.

6. Pallickara, Shrideep, Fox, Geoffrey (2004). On the Matching Of
Events in Distributed Brokering Systems. (To appear) Proceedings of
IEEE ITCC Conference on Information Technology. April.

7. Fox, Geoffrey, Pallickara, Shrideep, Xi, Rao (2002). A Scaleable
Event Infrastructure for Peer to Peer Grids. Proceedings of ACM Java
Grande ISCOPE Conference 2002. Seattle, Washington..

8. Fox, Geoffrey, Pallickara, Shrideep (2002). JMS Compliance in the
NaradaBrokering System. Proceedings of the International
Conference on Internet Computing (IC-02). June 2002. 391-402.

9. Pallickara, Shrideep, Fox, Geoffrey. A Scheme for Reliable Delivery
of Events in Distributed Middleware Systems. (To appear) Proceedings
of the IEEE International Conference on Autonomic Computing. New
York, NY.

10. Bulut et al (2002). Integration of NaradaBrokering and Audio/Video
Conferencing as a Web Service. Proceedings of the IASTED
International Conference on Communications, Internet, and
Information Technology.

11. Fox, Geoffrey, Pallickara, Shrideep (2001). An Approach to High
Performance Distributed Web Brokering. ACM Ubiquity 2:38.

12. Fox, Geoffrey, Pallickara, Shrideep . An Event Service to Support
Grid Computational Environments. Journal of Concurrency and
Computation: Practice & Experience. 14(13-15) 1097-1129.

13. Oram, Andy 92001). Peer-to-Peer: Harnessing the Benefits of a
Disruptive Technology. Edited by Andy. O’Rielly Press, CA.

14. Segall, Bill, Arnold, David. (1997). Elvin has left the building: A
publish/subscribe noti.cation service with quenching. In: Proceedings
AUUG97, pages 243–255, Canberra, Australia, September 1997.

15. Segall, Bill, Arnold, David, Boot, Julian, Henderson, Michael,
Phelps, Ted.(2000) Content based routing with elvin4. In: Proceedings
AUUG2K, Canberra, Australia, June 2000.

16. Carzaniga, Antonio,. Rosenblum, David S, Wolf, Alexander L.
(2000) Achieving scalability and expressiveness in an internetscale
event notification service. In Proceedings of the 19th ACM Symposium
on Principles of Distributed Computing, 219–227, Portland OR, USA.

17. Banavar, G et al (1999). An Efficient Multicast Protocol for Content-
Based Publish-Subscribe Systems. In Proceedings of the IEEE
International Conference on Distributed Computing Systems, Austin,
Texas.

18. Opyrchal, Lukasz et. al (2000). Exploiting IP Multicast in Content-
Based Publish-Subscribe Systems. Middleware: 185-207

19. The Object Management Group (OMG). OMG’s CORBA Event
Service. Available from http://www.omg.org/

20. The Object Management Group (OMG). OMG’s CORBA
Notification Service. Available from http://www.omg.org/

21. Harrison, T.H, Levine, D.L, Schmidt, D.C (1997). The design and

Journal of Digital Information Management �� Volume 2 Number 2 � June 2004 86

performance of a real-time CORBA object event service. Proceedings
of the OOPSLA’97. Atlanta, GA.

22. Happner, Mark Burridge, , Rich, Sharma, Rahul (2000). Java
Message Service Specification. Sun Microsystems. http://
java.sun.com/products/jms

23. Akamai Corporation. EdgeSuite: Content Delivery Services .
Technical report, URL: http://www.akamai.com/

24. Sun Microsystems. The JXTA Project and Peer-to-Peer Technology
http://www.jxta.org

25. Rowstron, Antony, Druschel, Peter (2001). Pastry: Scalable,
decentralized object location and routing for large-scale peer-to-peer
systems. Proceedings of Middleware.

26. Squirrel (2002) A decentralized peer-to-peer web cache. ACM
PODC.

27. Watts, D.J, Strogatz, S.H (1998). Collective Dynamics of Small-
World Networks. Nature. 393:440.

28. Albert, R, Jeong, H, Barabasi, A (1999). Diameter of the World
Wide Web, Nature 401:130.

29. Pallickara, Shrideep et al (1999). A Security Framework for
Distributed Brokering Systems. (Under Review).30. Marcos Aguilera
et al. Matching events in a content-based subscription system. In
Proceedings of the 18th ACM Symposium on Principles of Distributed
Computing.

30. XML Path Language (XPath). Version 1.0. W3C Recommendation.
Available from http://www.w3.org/TR/xpath

31. Hallam-Baker, P, Maler,E. Assertions and Protocol for the OASIS
Security Assertion Markup Language. P. and E. Maler, eds. Available
from http://www.oasis-open.org/committees/security/docs/ cs-sstc-
core-01.pdf.

