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Abstract  

Accelerated loss of ice from Greenland and Antarctica has been observed in recent 

decades. The melting of polar ice sheets and mountain glaciers has a considerable influence on 

sea level rise in a changing climate. Ice thickness is a key factor in making predictions about the 

future of massive ice reservoirs. The ice thickness can be estimated by calculating the exact 

location of the ice surface and hidden bedrock beneath the ice in radar imagery. Identifying ice 

surface and bedrock locations is typically performed manually which is a very time consuming 

procedure. Here we propose an approach which automatically detects ice surface and bedrock 

boundaries using distance regularized level set evolution. In this approach the complex topology 

of ice and bedrock boundary layers can be detected simultaneously by evolving an initial curve 

in radar imagery. Using a distance regularized term, the regularity of the level set function is 

intrinsically maintained that solves the reinitialization issues arising from conventional level set 

approaches. The results are evaluated on a large dataset of airborne radar imagery collected 

during IceBridge mission over Antarctica and Greenland and show promising results in respect 

to hand-labeled ground truth.          
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1. Introduction 

In recent years global warming has caused serious damages to our environment. 

Accelerated loss of ice from Greenland and Antarctica has been observed in recent 

decades. The melting of polar ice sheets and mountain glaciers has a considerable 

influence on sea level rise and altering ocean currents, potentially leading to the 

flooding of the coastal regions and putting millions of people around the world at risk. 

Therefore precise calculation of ice thickness is very important for sea level rise and 

flood monitoring.  Moreover the shape of bedrock hidden beneath the thick ice sheets is 

a key factor in predicting the ice motion and the future locations of massive ice 

reservoirs and their contribution to sea level rise in changing climates. The hidden 

terrain beneath the thick ice has fascinated researchers for many years. Radar sensor 

is the only instrument that can penetrate through ice and give information about the 

hidden bedrock beneath layers of ice. The multichannel coherent Radar depth sounder 

was used during IceBridge mission [1] to provide important information about polar ice 

thickness and its changes during time. Ice thickness can be determined by 

distinguishing layers of different dielectric constants such as air, ice, and rock in radar 

echograms. Figure 1 shows a sample image produced by radar echogram.  The 

horizontal axis is along flight path and the vertical access represents depth. The dark 

line on the top of the image is the boundary between air and ice while the more irregular 

lower boundary represents the bedrock which is the boundary between ice and the 

terrain. The bedrock hidden beneath the thick ice sheets can take any shape from 

smooth to mountainous (figure 1). 
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Figure 1: Ice sheet and bedrock depicted in radar echogram gathered by the Multichannel Coherent 

Radar Depth Sounder 

 

 The large variability of bedrocks shape along with speckle noise inherits from the 

coherent nature of SAR images, make the identification and interpretation of bedrocks 

quite difficult. Usually human experts mark ice sheet layer and bedrock by hand for 

further processing. Manual layer identification is very time consuming and is not 

practical for regular, long-term ice-sheet monitoring. The development of automated 

techniques is thus fundamental for proper data management.  

This paper proposes a novel level set approach to automatically identify ice layer 

and bedrock in a large dataset of radar imagery. In this approach the image will be 

segmented by an initial curve into two parts: inside the curve (negative interior) and 

outside the curve (positive exterior). At the next step, each point on the curve will move 

at variable speeds depending on their distance from the center of the curve. Nearer 

points move faster while further points move at lower speeds. In the case of having a 

feature in the image, shrinking (expanding) curve will stop at the boundary of the shape. 

This process will continue until all boundaries are detected. In conventional level set 

formulation, the level set function typically develops irregularities during its evolution 

Bedrock 

Ice sheet 
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and needs re-initialization to periodically replace the degraded level-set function.  Here 

we used a variational level set function in which the regularity of level set function is 

maintained intrinsically. 

After this introduction, the related works will be discussed in section 2. The 

details of the proposed method will be discussed in section 3. Experimental results will 

be discussed in section 4. Finally conclusions are drawn in section 5. 

2. Related works 

Several semi-automated and automated methods have been introduced in the 

literature for layer finding and ice thickness in radar images [2-13]. Freeman et al. [2] 

find near surface ice layers in images form the shallow subsurface radar on NASA’s 

Mars reconnaissance Orbiter (SHARAD). First the layers were transformed to horizontal 

layers and then several filtering and thresholding techniques were applied to enhance 

the image and discard unclear layers. Finally the layers were transformed back to  

image space. Our algorithm is quite distinct from this method in a sense that it does not 

need any intermediate thresholding which might be different from one image to another. 

Ferro & Bruzzone [3] proposed an algorithm to extract the deepest scattering area 

visible in radargrams of SHARAD mission acquired on the north polar Layered Deposits 

of Mars. Their algorithm is based on the statistical properties of subsurface targets and 

finding a suitable fitting model. This method is unable to find exact layers of ice sheet 

and only find an approximate location of different sub-regions merely based on the 

statistical analysis of the signal.  
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Several works in the literature use graphical models to detect land mine [4] or ice 

layers [5] [6] in radar echograms. Frigui et al [4] proposed a system for land mine 

detection using ground-penetrating radar. Their proposed system includes a hidden 

Markov model based detector, a corrective training component, and an incremental 

update of the background model. Crandall et al [5] used probabilistic graphical models 

for detecting ice layer boundary in echogram images. Their model incorporates several 

types of evidence and constraints including that layer boundaries should lie along areas 

of high image contrast and that layer boundaries should be continuous and not 

intersect. The extension of this work was presented in [6] where they used Markov-

Chain Monte Carlo to sample from the joint distribution over all possible layers 

conditioned on an image. Gibbs sampling instead of dynamic programming based 

solver was used for performing inference. The problem with using graphical models is 

that it needs a lot of training samples (around half of the actual dataset) which are 

ground-truth images labeled manually by human. Given the fact that manual ice layer 

detection is a very time consuming and expensive task, the last three methods are not 

practical for large dataset.  

 In another work, Gifford et al [7] compared the performance of two methods, 

edge based and active contour, for automating the task of estimating polar ice and 

bedrock layers from airborne radar data acquired over Greenland and Antarctica. They 

showed that edge-based approach offers faster processing but suffers from lack of 

continuity and smoothness aspects that active contour provides.  In active contour 

approach, the contour’s shape is adaptively modified and evaluated to minimize cost or 

energy in the image [14, 15]. The main disadvantage of the active contour model is the 
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incapability of maintaining the topology of evolving curve. This difficulty does not arise in 

the level set model as it embeds the evolving curve into a higher dimensional surface. 

Mitchell et al [12] used level set technique for estimating bedrock and surface layers. 

However for each single image the user needs to re-initialize the curve manually and as 

a result the method is quite slow and was applied only to a small dataset. In this paper, 

the regularity of level set is intrinsically maintained using a distance regularization term. 

Therefore it does not need any manual re-initialization and was automatically applied on 

a large dataset.  

3. Methodology 

Here we propose to use level sets technique to precisely detect ice layer and 

bedrock boundary. The level set method (LSM) is essentially a successor to the active 

counter method. Active contour method (ACM), also known as Snake Model, was first 

introduced by Kass et al [15]. The ACM is designed to detect interfaces and boundaries  

by a set of parametrized curves (contours) that march successively toward the desired 

object until the desired interfaces are captured. We present the parametrized curves as 

 ( , ) ( ( , ), ( , )) , [0,1], )[0,C s t x s t y s t s t∈= ∈ ∞   (1) 

where s is the parameter of the curve length and t is the temporal variable. The idea is 

that the curve ( , )C s t  approaches to the desired object as time increases until it captures 

the desired interface. The motion of the curves is due to the influence of a vector field 

created based on properties of the desired feature in image, so that it can eventually 

lead the curve to the boundaries of the desired object. 
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Generally speaking, the curve ( , )C s t  moves and eventually captures the 

interface of the desired object according to the following differential equation  

C FN
t

∂
=

∂
  (2) 

where F  is the velocity function for the moving curve C and N determines the direction 

of the motion. Here N is the normal vector to the curve C . 

The ACM is an efficient tool in image and video segmentation, but it suffers from certain 

serious issues. As mentioned before, the main disadvantage of the ACM is that it is 

incapable to maintain the topology of the evolving curve; therefore, it can introduce 

misleading complexities in the process. To overcome the disadvantages that the snakes 

model presents, the level set method (LSM) was proposed by Osher and Sethian [16]. 

Rather than following the interface itself as in ACM, the level set method takes the 

original curve and builds it into a surface. In other words, the LSM takes the problem to 

one degree higher in spatial dimension and considers the curve ( , )C s t  as the zero-level 

of a surface ( , , )z x y tϕ= at any given time t. The function ϕ  is called the level set 

function (LSF). 

 

Figure 1: Level Set Method 
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suppose the curve ( , )C s t  is the interface of an open region 2
tΩ ⊂  . We embed 

the curve ( , )C s t   in the surface ( , , )z x y tϕ= in a way that the curve ( , )C s t  will be the 

zero level set while LSF,ϕ , takes negative values inside C  and positive values outside 

of it. That is  

 ( ),  0  for   , tx t xϕ = ∈∂Ω   (3) 

and 

 
( )
( )

, 0    

,  0    
t

t

x t for x

x t for x

ϕ

ϕ

< ∈

> ∉

Ω ,

Ω .
  (4) 

In this setting, the LSF, ϕ ,  is the solution of the following dynamical system 

 ( [0, ], )x t
t
ϕ

ϕ
∈

∂ ∂
= Ω×−

∂ ∂
∞

F   (5) 

with a typical initial condition. Conventionally in image segmentation approaches the 

LSF functional F  is defined as the sum of the edge force and the area force: 

 edge area= +E EF   (6) 

where 

 ( ) ( )edge g dxϕ λ δ ϕ ϕ
Ω

= ∇∫E   (7) 

 ( ) ( )area gH dxϕ α ϕ
Ω

= −∫E   (8) 

with ,α λ  a real constant and 0λ > . The functions δ  and H  are the Dirac and 

Heaviside functions respectively. The function g is the edge indicator on Ω , area of the 

image, which is defined by 
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 2
1

1
g

G Iσ

=
+ ∇ ∗

  (9) 

where I  is the image intensity and Gσ  is a Gaussian Kernel with a standard deviation 

σ . 

The edge term, edgeE  computes the line integral along the zero level contour of ϕ ; 

that is, 
1

0
( ( )) | '( ) |g C s C s ds∫ , where the curve ( ) :[0,1]C C s= →Ω  is the zero-level contour 

and s  is the curve length.  This term will be minimized when C  is positioned on the 

boundary of the desired object. The area term, areaE , is basically calculated as a 

weighted area of the region inside the zero level contour. It accelerates the motion of 

the zero-level contours toward the desired object. 

Therefore, to minimize the energy functional F , it is necessary to solve the 

following PDE system: 

 

0

( )div ( ) [0, )
| |

( ,0) (

( )

)

,x t
t

g g

x x

ϕλδ ϕ α δ

ϕ

ϕ ϕ
ϕ

ϕ

 ∇
+ ∈Ω× ∞ ∇ 

=

∂
=

∂   (10) 

For this system we consider the Neumann boundary condition on Ω , which 

signifies that there is no external force outside the image area. To carry out a numerical 

process to solve this PDE system, the spatial derivatives are discretized using the 

upwind scheme. The use of the central difference scheme will result in instability in the 

numerical procedure. The numerical procedure also involves the assumption that

| | 1ϕ∇ = . We initialize the procedure with a function that satisfies this property, but the 

numerical scheme will not pass on this property; consequently at each step an extra 



Page 10 of 27 
 

care, known as re-initialization, must be taken to avoid the error accumulation. The 

reinitialization procedure involves solving the following PDE system for ψ  in each step 

 ( )(1 | |)sign
t
ψ ϕ ψ∂

= − ∇
∂

  (11) 

 

This severely slows down the computation. To overcome this difficulty we use the 

distance regularization method proposed in  [17] [18]. In DSLR method, the LSF 

functional F   is defined as  

 edge area p= + +E E EF   (12) 

where pE  represents the distance regularization term  defined by 

 ( )
Ω

| |p p dxϕ ϕ= ∇∫E   (13) 

with a potential function p  and a constant 0µ > . As suggested in [18] , we use a 

double-well function for the potential function p  defined by 

 
2

2

(1 cos( )2
( )

( 1)
) / 4

1/ 2
1s s

p s
s s

π π
−

≤−
≥


= 


  (14) 

We have 

 d v( )ip Dµ ϕ
ϕ

∂
−

∂
∇=

E
  (15) 

where the diffusion coefficient  ( )D D ϕ=  is given by 

 ' (| | .
|

( ))
|

D p ϕϕ
ϕ
∇

=
∇
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We note that p  has two minimum points at 0s =  and 1s = . It is also twice 

differentiable with the following properties 

 
0

'( ) '( ) '( )| | 1  for 0 , and lim lim 1.
s s

p s p s p ss
s s s→ →∞

< > = =   (16) 

Given the above properties, one can easily see that 

 ' (| |)| | .
| |

p ϕµ µ
ϕ
∇

≤
∇

  (17) 

Therefore the diffusion coefficient in (17) will be bounded. Now the new energy 

functional F  can be minimized by solving the following gradient flow: 

 

0

d( )div ( ) ) [0, )
| |

(

iv

,0

(

) )

( ,

(

)g g

x

D

x

x t
t

ϕλδ ϕ α δ ϕ µ ϕ
ϕ

ϕ

ϕ

ϕ

 ∇
+ + ∇ ∈Ω× ∞ ∇

=

∂


=

∂    (18) 

Thanks to the distance regularization term, the central difference scheme can be used to 

discretize spatial derivatives, which leads to a stable numerical procedure without need of re-

initialization [18].  

It also must be noted that, in practice, the functions δ  and H  are approximated by the 

smooth functions εδ  and Hε  defined by   (see [19] and [20])  

 ( )
1 1 cos ,

2
0 ;

x x
x

x
ε

π ε
ε εδ

ε

   + ≤   =    
 >

  (19) 

and 
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 ( )

1 11 sin ,
2

1 | | ,
0 | | ;

x x x
H x

x
x

ε

π ε
ε π ε

ε
ε

   + + ≤   
   = 

>
 < −

  (20) 

for 0ε > . ε is often considered to be 3/2. 

 

As the boundary condition, we consider the Neumann boundary conditions. For the initial 

condition, we will consider a simple step function defined by 

 0 0
0

0 0

,
;/

c x
c x

ϕ
− ∈Ω

=  ∈Ω Ω
  (21) 

where 0 0c >  is a constant, and 0Ω  is a region inside the image region Ω . 

4. Experimental results 

We tested our ice layer identification approach on publicly available radar images 

from 2009 NASA Operation Ice Bridge program. The images were collected with the 

airborne Multichannel Coherent Radar Depth Sounder system described in [1]. The 

images have a resolution of 900 pixels in horizontal direction, which covers around 

30km on ground, and 700 pixels in vertical direction, which corresponds to 0 to 4km of 

ice thickness. For these images there are some ground truth labels that we compared 

our ice layer identification approach with them. The ground-truth images have been 

produced by human annotators and some of them are quite noisy and inaccurate and 

contain only one layer. We chose the images that have both ice and bedrock layers and 

tested our method on total of 323 images. Since our method is fully automatic we do not 
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need any training dataset and our method is not affected by inaccurate ground-truth. 

Moreover annotating data by human is quite time consuming and because our method 

does not need any training and is independent of ground-truthing, it is quite fast.  We 

used the same iteration number of 800 for all of the images. 

Figure 3-6 show the results of our approach with respect to the ground-truth. 

Figure 3a shows the initial curve. This initial curve was drawn automatically; hence 

there is no need for the user input in any step of the procedure. The entire process is 

completely automatic. Figure 3b-3e shows the results after iteration 200, 400, 600, and 

800respectively. As it can be seen in Figure 3b, after 200 iterations the ice layer is 

approximately detected but the bedrock is still not detected. After 400 iterations, part of 

the bedrock is detected, but after 800 iterations both the ice (top layer) and bedrock 

layers are detected perfectly. Figure 3f shows the ground-truth which is the result of 

labeling the layers by human. Comparing Figure 3e, the result of the proposed 

approach, with Figure 3f, the ground-truth, we notice that our result is very close to the 

ground-truth and is even more accurate in some part. The automated approach 

proposed in this paper, in addition to being fast and cost effective, increases accuracy in 

regard to the manual approach. The reason is that in manual procedure experts 

become tired and careless due to the tediousness of the task.  
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                  (a)                                                         (b) 

   
                  (c)                                                         (d) 

   
                  (e)                                                         (f) 

 
Figure 3: contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to bedrock 

and ice layer after 200,400,600,800, correspondingly, (f) ground-truth image   
 

Figure 4 shows another example; here the bedrock is rougher with more 

fluctuation. The same initial curve at previous example was utilized in Figure 4a. After 

400 iterations (Figure 4c), the approximate shape of bedrock and ice layers is detected.  

After 600 iterations (Figure 4d) the solution is converged and exact shape of both layers 

are detected.  Here we continued the iteration to 800 to have the same conditions for all 
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images. As it can be seen in Figure 4e the perfect shapes of bedrock and ice layers are 

maintained and extra iterations will not make the situation worse. Comparing our results 

(Figure 4e) with the ground-truth (Figure 4f), we find our results are more smooth and 

accurate than ground-truth. 

 

   
                  (a)                                                         (b) 

   
                  (c)                                                         (d) 

   
                  (e)                                                         (f) 

 
Figure 4: contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to bedrock 

and ice layer after 200,400,600,800, correspondingly, (f) ground-truth image 
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Figure 5 demonstrates another example for ice and bedrock layers identification. 

Here the bedrock is smoother but the image contains more noise especially in the 

middle layer between ice and bedrock. Here again with the same initial curve and the 

same number of iterations we got very accurate results comparing to the ground-truth. 

   
                  (a)                                                         (b) 

   
                  (c)                                                         (d) 

   
                  (e)                                                         (f) 

Figure 5: contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to bedrock 
and ice layer after 200,400,500,800, correspondingly, (f) ground-truth image 
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Figure 6 is yet another example with more complicated shape of bedrock and 

with high level of noise in the entire image. Here it takes the entire 800 iterations for the 

level set solution to converge but it shows a very satisfactory results comparing to the 

ground-truth. 

   
                  (a)                                                         (b) 

   
                  (c)                                                         (d) 

   
                  (e)                                                         (f) 

 
Figure 6: contour evolution throughout processing. a) Initial curve, (b)-(e) contour adaptation to bedrock 

and ice layer after 200,400,600,800, correspondingly, (f) ground-truth image 
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Figure 7 shows some of the representative results for the ice and bedrock layer 

identification for various shapes of bedrock from a very smooth bedrock to a rough and 

very oscillating bedrock with different levels of noise. In all of the examples, the results 

with the automatic level-set approach (the left column) is as accurate as ground-truth 

(the right column).  However in the last two rows (f1 and g1) due to high level of 

fluctuations in the bedrock, still after 800 iterations it could not detect all parts of the 

bedrock. However the results are very close to ground-truth and more iteration will 

create more accurate results. In this study we used the constant iterations of 800 for all 

of the images in the dataset. 

 

   
                  (a1)                                                         (a2) 

   
                  (b1)                                                         (b2) 
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                  (c1)                                                         (c2) 

   
                  (d1)                                                         (d2) 

 

   
                  (e1)                                                         (e2) 
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                  (f1)                                                         (f2) 

 

   
                  (g1)                                                         (g2) 
 

Figure7: Bedrock and ice layer detection by proposed method, left column: the result of the proposed 
level set approach, Right column: ground-truth 

5. Evaluation 

To evaluate the performance of our proposed method first we need to set up 

some benchmarks. For any particular piece of data that we are evaluating there are four 

states. Whether it is correctly belonging to a class or not belonging to a class. This 

information is normally displayed in a confusion matrix (table 1).  
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Actual Class 
(Observation) 

 

Predicted Class 
(Expectation) 

 

TP 
(True Positive) 
Correct result 

FP 
(False Positive) 

Unexpected 
result 

FN 
(False Negative) 

Missing result 

TN 
(True Negative) 
Correct absence 

of result 
 

Table 1: Confusion Matrix 
 

In the confusion matrix, TP is true positive or correct result, FP is false positive or 

unexpected result, FN is false negative or missing results, and TN is true negative or 

correct absence of results. From the confusion matrix recall (R) and precision (P) are 

calculated as follow: 

 

 𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
  

(1)  

 

 𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  

(2)  

 
Precision measures the exactness of a classifier while recall measures the 

completeness or sensitivity of a classifier. Precision and recall can be combined to 

produce a single metric known as F-measure, which is the weighted harmonic mean of 

precision and recall. The F-measure defined as:  

 

 𝐹𝐹 =  
1

𝛼𝛼 1
𝑝𝑝 + (1 − 𝛼𝛼) 1

𝑅𝑅
=  

(𝛽𝛽2 + 1)𝑇𝑇𝑅𝑅
𝛽𝛽2𝑇𝑇 + 𝑅𝑅

  
(3)  
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captures the precision and recall tradeoff. The F-measure is valued between 0 

and 1, where larger values are more desirable. In this paper we used balanced F-

measure, i.e. with 𝛽𝛽 = 1 . 

The assumption is that human labeled images (ground-truth) contain perfect 

results and then the performance of our method was evaluated with respect to ground-

truth. We calculated the precision, recall and F-measure for 323 images. Figure 7 

shows precision, recall and F-measure for all of the images. Table 2 shows the average 

F-measure, precision, and recall. The average F-measure is 75%. According to the 

Berkeley segmentation dataset and benchmark [21], the maximum F-measure that 

humans can reach for segmentation and contour detection of natural images is around 

79%. Our approach shows a high accuracy in respect to human labeled images. Among 

the images around 50 images reached the F-measure of 100%. In our dataset around 

70% of the images have invisible or fain baderock layers.  For the images that bedrock 

is not completely visible in the image (Figure 9) our approach is not able to detect the 

invisible part accurately. For these images it is better to stop the iteration early 

otherwise its error will be accumulated. However to avoid human interference we kept 

the iteration of 800 for all of the images and reached 75% accuracy. Our algorithm is 

very fast, taking an average of 30 second to process each image on a 2.7 GHz 

machine. Moreover it does not need any training phase with human labeled images 

which speed up the entire process significantly. Usually it takes up to 45 minutes per file 

to manually label the image [7].    
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Figure 8: F-measure, precision and recall for all 323 images 
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 Precision Recall F-measure 

Our approach 74% 77% 75% 

Table 2: Average Precision, Recall and F-measure of our approach for the entire dataset 

 

 
(a) 

      
                                 (b)                                                                     (c) 
Figure 9: our approach is not able to detect the invsible parts of bedrock, a) original image, b) the 

icelayer and bedrock detected by our approach, c) ground-truth 

Invisible bedrock 
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6. Conclusion 

We presented an automatic approach to estimate bedrock and ice layers in 

multichannel coherent radar imagery. In this approach the complex topology of ice and 

bedrock boundary layers were detected by evolving an initial curve in radar imagery. 

The results were evaluated on a large dataset of airborne radar imagery collected 

during IceBridge mission over Antarctica and Greenland and show promising results in 

respect to hand-labeled ground truth. We reached the high accuracy of 75% for the 

entire dataset using a fully automatic technique. Some images present faint or invisible 

bedrock layers and are nearly impossible to automatically detect them with 100% 

accuracy. For those images it is better to first separate them from the images that have 

visible bedrock layer. Then for each dataset we will have different parameters for level 

set algorithm. In future we are planning to extend this work by improving the quality of 

the image in fain and invisible areas in bedrock prior to applying level set algorithm.  

7. References 

1. Allen, C., et al., Antarctic ice depthsounding radar instrumentation for the 
NASA DC-8. Aerospace and Electronic Systems Magazine, IEEE, 2012. 
27(3): p. 4-20. 

2. Freeman, G.J., A.C. Bovik, and J.W. Holt. Automated detection of near 
surface Martian ice layers in orbital radar data. in Image Analysis & 
Interpretation (SSIAI), 2010 IEEE Southwest Symposium on. 2010. IEEE. 

3. Ferro, A. and L. Bruzzone. A novel approach to the automatic detection of 
subsurface features in planetary radar sounder signals. in Geoscience and 
Remote Sensing Symposium (IGARSS), 2011 IEEE International. 2011. 
IEEE. 

4. Frigui, H., K. Ho, and P. Gader, Real-time landmine detection with ground-
penetrating radar using discriminative and adaptive hidden Markov models. 
EURASIP Journal on Advances in Signal Processing, 1900. 2005(12): p. 
1867-1885. 



Page 26 of 27 
 

5. Crandall, D.J., G.C. Fox, and J.D. Paden, Layer-finding in Radar Echograms 
using Probabilistic Graphical Models. 

6. Lee, S.-R., et al. Estimating bedrock and surface layer boundaries and 
confidence intervals in ice sheet radar imagery using MCMC. in Image 
Processing (ICIP), 2014 IEEE International Conference on. 2014. IEEE. 

7. Gifford, C.M., et al., Automated polar ice thickness estimation from radar 
imagery. Image Processing, IEEE Transactions on, 2010. 19(9): p. 2456-
2469. 

8. Ilisei, A.-M., A. Ferro, and L. Bruzzone. A technique for the automatic 
estimation of ice thickness and bedrock properties from radar sounder data 
acquired at Antarctica. in Geoscience and Remote Sensing Symposium 
(IGARSS), 2012 IEEE International. 2012. IEEE. 

9. Karlsson, N.B., et al., Tracing the depth of the Holocene ice in North 
Greenland from radio-echo sounding data. Annals of Glaciology, 2013. 
54(64): p. 44-50. 

10. Fahnestock, M., et al., Internal layer tracing and age‐depth‐accumulation 
relationships for the northern Greenland ice sheet. Journal of Geophysical 
Research: Atmospheres (1984–2012), 2001. 106(D24): p. 33789-33797. 

11. Sime, L.C., R.C. Hindmarsh, and H. Corr, Instruments and methods 
automated processing to derive dip angles of englacial radar reflectors in 
ice sheets. Journal of Glaciology, 2011. 57(202): p. 260-266. 

12. Mitchell, J.E., et al. A semi-automatic approach for estimating bedrock and 
surface layers from multichannel coherent radar depth sounder imagery. in 
SPIE Remote Sensing. 2013. International Society for Optics and Photonics. 

13. Mitchell, J.E., et al. A semi-automatic approach for estimating near surface 
internal layers from snow radar imagery. in IGARSS. 2013. 

14. Chan, T.F. and L. Vese, Active contours without edges. Image processing, 
IEEE transactions on, 2001. 10(2): p. 266-277. 

15. Kass, M., A. Witkin, and D. Terzopoulos, Snakes: Active contour models. 
International journal of computer vision, 1988. 1(4): p. 321-331. 

16. Osher, S. and J.A. Sethian, Fronts propagating with curvature-dependent 
speed: algorithms based on Hamilton-Jacobi formulations. Journal of 
computational physics, 1988. 79(1): p. 12-49. 

17. Li, C., et al. Level set evolution without re-initialization: a new variational 
formulation. in Computer Vision and Pattern Recognition, 2005. CVPR 
2005. IEEE Computer Society Conference on. 2005. IEEE. 

18. Li, C., et al., Distance regularized level set evolution and its application to 
image segmentation. Image Processing, IEEE Transactions on, 2010. 19(12): 
p. 3243-3254. 



Page 27 of 27 
 

19. Osher, S. and R. Fedkiw, Level set methods and dynamic implicit surfaces. 
Vol. 153. 2006: Springer Science & Business Media. 

20. Zhao, H.-K., et al., A variational level set approach to multiphase motion. 
Journal of computational physics, 1996. 127(1): p. 179-195. 

21. Martin, D., et al. A database of human segmented natural images and its 
application to evaluating segmentation algorithms and measuring 
ecological statistics. in Computer Vision, 2001. ICCV 2001. Proceedings. 
Eighth IEEE International Conference on. 2001. IEEE. 

 


	Abstract
	1. Introduction
	2. Related works
	3. Methodology
	4. Experimental results
	5. Evaluation
	6. Conclusion
	7. References

