Low Latency Stream Processing: Twitter Heron with Infiniband and
Omni-Path

Supun Kamburugamuve! Karthik Ramasamy?, Martin Swany! and Geoffrey Fox!

1School of Informatics and Computing, Indiana University Bloomington

2Twitter Inc.

Submission Type: Research

Abstract

Worldwide data production is increasing both in volume
and velocity, and with this acceleration, data needs to be
processed in streaming settings as opposed to the tradi-
tional store and process model. Distributed streaming
frameworks are designed to process such data in real time
with reasonable time constraints. Twitter Heron is a pro-
duction ready large scale distributed stream processing
framework developed at Twitter. In order to scale stream-
ing applications to large numbers of nodes, the network
is of utmost importance. High performance computing
(HPC) clusters feature interconnects that can perform at
higher levels than traditional Ethernet. In this work the
authors present their findings on integrating Twitter Heron
distributed stream processing system with two high per-
formance interconnects; Infiniband and Intel Omni-Path.

1 Introduction

With ever increasing data production by users and ma-
chines alike, the amount of data that needs to be processed
has increased dramatically. This must be achieved both in
real time and as batches to satisfy different use cases. Ad-
ditionally, with the adoption of devices into Internet of
Things setups, the amount of real time data are exploding,
and must be processed with reasonable time constraints.
In real time distributed stream analytics, the large data
streams are partitioned and processed in distributed sets of
machines to keep up with the high volume data rates. By
definition of large-scale streaming data processing, net-
works are a crucial component in transmitting messages
between the processing units for achieving efficient data
processing.

High performance computing (HPC) clusters are de-
signed to perform large computations with advanced pro-
cessors, memory, 1O systems and high performance inter-
connects. For efficient parallel computations at very large
scale, the network between the nodes is vital in order to
scale the applications to thousands of nodes. These high

performance interconnects feature microsecond latencies
and large bandwidths. Thanks to recent advancements
in hardware, some of these high performance networks
have become cheaper to set up than their Ethernet coun-
terparts. With multi-core and many-core systems having
large numbers of CPUs in a single node, the demand for
high performance networking is increasing exponentially
as well.

There are many distributed streaming frameworks
available today for processing large amounts of streaming
data in real time. Such systems are largely designed and
optimized for commodity hardware and clouds. Apache
Storm [1] was one of the most popular early systems de-
veloped for processing streaming data. Twitter Heron [2]
is a next-generation version of Storm with an improved
architecture for large-scale data processing. It features a
hybrid design with some of the performance-critical parts
written in C++ and others written in Java. This architec-
ture allows the integration of high performance enhance-
ments naively rather than going through native wrappers
such as JNI. This work take advantage of these architec-
tural enhancements to integrate high performance inter-
connects naively to Heron to accelerate its communica-
tions.

Advanced hardware features are seldom used in the Big
Data computing frameworks, mostly because they are ac-
cessible only to low level programming languages and
most Big Data systems are written on Java platform. In-
finiband [3] is an open standard protocol for high perfor-
mance interconnects that is widely used in today’s high
performance clusters. Omni-Path [4] is a proprietary in-
terconnect developed by Intel and is available with the
latest Knights Landing architecture-based many-core pro-
Cessors.

In this work the authors explore how to leverage these
hardware features in the context of distributed streaming
framework Twitter Heron. In particular the authors show
how they leveraged the Infiniband and Intel Omni-Path
communications to improve the latency of the system.
The main contribution in this work is to showcase the im-
portance of using high performance interconnects for dis-

tributed stream processing. There are many differences
in hardware available for communications with different
bandwidths, latencies and processing models. Even Eth-
ernet has comparable hardware available to some of the
high performance interconnects; it is not our goal to show
that one particular technology is superior to others, as dif-
ferent environments may have alternate sets of these tech-
nologies and with these implementation Heron can take
advantage of such environments.

The remainder of the paper is organized as follows.
Section 2 presents the background information on Infini-
band and Omni-Path. Section 3 describes the Heron ar-
chitecture in detail and section 4 the implementation de-
tails. Next the experiments conducted are described in
sections 5 and results are presented and discussed in sec-
tion 6. Section 7 presents related work. The paper con-
cludes with a look at future work.

2 Background
2.1 Infiniband

Infiniband is one of the most widely used high perfor-
mance fabrics. It provides a variety of capabilities includ-
ing message channel semantics, remote memory access
and remote atomic memory operations, supporting both
connection-oriented and connectionless endpoints. Infini-
band is programmed using the Verbs API, which is avail-
able in all major platforms. The current hardware is capa-
ble of achieving up to 100Gbps speeds with microsecond
latencies. Infiniband does not require the OS Kernel in-
tervention to transfer packets from user space to the hard-
ware. Unlike in TCP, its protocol aspects are handled by
the hardware. These features mean less CPU time is re-
quired by the network compared to TCP for transferring
the same amount of data. Because the OS Kernel is by-
passed by the communications, the memory for transfer-
ring data has to be registered in the hardware.

2.2 Intel Omni-Path

Omni-Path is a high performance fabric developed by In-
tel. Omni-Path fabric is relatively new compared to Infini-
band and there are fundamental differences between the
two. Omni-Path does not offload the protocol handling to
network hardware and it doesn’t have the connection ori-
ented channels as in Infiniband. Unlike in Infiniband the
Omni-Path network chip can be built into the latest Intel
Knights Landing processors. Omni-Path supports tagged
messaging with a 96 bit tag in each message. A Tag can
carry any type of data and this information can be used at
the application to distinguish between different messages.
Omni-Path is designed and optimized for small high fre-
quency messaging.

2.3 Channel & Memory Semantics

High performance interconnects generally supports two
modes of operations called channel and remote memory
access. With channel semantics queues are used for mes-
sage communication. In memory semantics a process can
read from or write directly to the memory of a remote ma-
chine.

In channel mode, two queue pairs for transmission and
receive operations are used. To transfer a message, a de-
scriptor is posted to the transfer queue, which includes the
address of the memory buffer to transfer. For receiving a
message, a descriptor needs to be submitted along with
a pre-allocated receive buffer. The user program queries
the completion queue associated with a transmission or a
receiving queue to determine the success or failure of a
work request. Once a message arrives, the hardware puts
the message into the posted receive buffer and the user
program can determine this event through the completion
queue. Note that this mode requires the receiving buffers
to be pre-posted before the transmission can happen suc-
cessfully.

The remote direct memory access mode is generally
called RDMA. With RDMA, two processes preparing to
communicate, register memory and share the details with
the other party. Read and write operations are used in-
stead of send and receive operations. These are one-sided
and do not need any software intervention from the other
side. If a process wishes to write to remote memory, it can
post a write operation with the local addresses of the data.
The completion of the write operation can be detected us-
ing the completion queue associated. The receiving side is
not notified about the write operation and has to use out-
of-band mechanisms to figure out the write. The same is
true for remote reads as well.

2.4 Openfabrics API

Openfabrics ! provides a library called libfabric that hides
the details of common high performance fabric APIs be-
hind a uniform API. Because of the advantage of such an
API, we chose to use libfabric as our programming library
for implementing the high performance communications
for Heron. Libfabric is a thin wrapper API and it sup-
ports different providers including Verbs, Aries intercon-
nect from Cray through GNI, Intel Omni-Path, and Sock-
ets. The libfabcirc API closely resembles the structure of
Verbs API. For example, for channel semantics, it pro-
vides send/receive operations with completion queues to
get notifications about the operations.

Uhttps://www.openfabrics.org/

2.5 TCP vs High performance Intercon-
nects

TCP is one of the most successful protocols in the brief
history of computers. It provides a simple yet power-
ful API for transferring data reliably across the Internet
using unreliable links and protocols underneath. One of
the biggest advantages of TCP is its wide adoption and
simplicity to use. Virtually every computer has access to
a TCP-capable adapter and the API is solid across dif-
ferent platforms. Even with these advantages, it has its
own drawbacks, especially when the performance require-
ments are high.

TCP provides a streaming API for messaging where the
fabric does not maintain message boundaries. The mes-
sages are written as a stream of bytes to the TCP and it is
up to the application to define mechanisms such as plac-
ing markers in between messages to mark the boundaries
of the messages. On the other hand, Infiniband and Omni-
Path both support message boundaries for message trans-
fers.

Most of the high performance interconnects have
drivers that make them available through the TCP pro-
tocol stack. The biggest advantage of IPoIB is that an
existing application written using the TCP stack can use
high performance interconnect without any modifications
to the code. It is worth noting that the native use of the
interconnect through its API always yields better perfor-
mance than using it through TCP/IP stack.

One of the biggest challenges to TCP comes from its
buffer management and data copying. A typical TCP ap-
plication allocates memory in user space and the TCP
stack needs to copy data between user space and Kernel
space. Also each TCP call involves a system call which
does a context switch of the application. The flow con-
trol mechanism of the TCP can be a bottleneck for some
latency sensitive applications as well. The high perfor-
mance fabrics do not have these issues because they typ-
ically do not include system calls and the hardware is ca-
pable of copying data directly to user space buffers.

The protocol handling part of the TCP is executed by
the host CPU, which allocates valuable resources for do-
ing tasks that can be handled by hardware. Infinband takes
this into consideration and offloads the protocol process-
ing aspects to hardware while Omni-Path still involves the
CPU for protocol processing.

3 Twitter Heron

Heron is a distributed stream processing framework de-
veloped at Twitter. It is open-sourced and available in
github 2 for others to use. Heron is the successor to

Zhttps://github.com/twitter/heron

Apache Storm with many enhancements to the underlying
engine architecture. It retains the same Storm API, allow-
ing applications written in Storm to be deployed with no
or minimal code changes.

3.1 Heron Data Model

A stream is an unbounded sequence of high level objects
named events or messages. The streaming computation in
Heron is referred to as a Topology. A topology is a graph
of nodes and edges. The nodes represent the processing
units executing the user defined code and the edges be-
tween the nodes indicate how the data (or stream) flows
between them. There are two types of nodes: spouts and
bolts. Spouts are the sources of streams. For example,
a Kafka spout can read from a Kafka queue and emit it
as a stream. Bolts consume messages from their input
stream(s), apply its processing logic and emit new mes-
sages in their outgoing streams.

Heron has the concept of a user defined graph and an
execution graph. The user defined graph defines how
the processing units are connected together in terms of
message distributions. On the other hand, the execution
graph is the layout of this graph in actual nodes with net-
work connections and computing resources allocated to
the topology to execute. Nodes in the user graph can have
multiple parallel instances (or tasks) running to scale the
computations. The user defined graph and the execution
graph are referred to as logical plan and physical plan re-
spectively.

3.2 Heron Architecture

The components of the Heron architecture are shown in
Fig. 1. Each Heron topology is a standalone long-running
job that never terminates due to the unbounded nature
of streams. Each topology is self contained and exe-
cutes in a distributed sandbox environment in isolation
without any interference from other topologies. A Heron
topology consists of multiple containers allocated by the
scheduler. These can be Linux containers, physical nodes
or sandboxes created by the scheduler. The first con-
tainer, referred to as the master, always runs the Topol-
ogy Master that manages the topology. Each of the sub-
sequent containers have the following processes: a set of
processes executing the spout/bolt tasks of the topology
called Heron instances, a process called a stream manager
that manages the data routing and the connections to the
outside containers, and a metrics manager to collect infor-
mation about the instances running in that container.
Each Heron instance executes a single task of the topol-
ogy. The instances are connected to the stream manager
running inside the container through TCP loop-back con-
nection. It is worth noting that Heron instances always

Topology

Master

>

(
(

ZooKeeper Cluster]

!

Stream Manager

v

Stream Manager

t t : Metrics i 3 t Metrics
Manager Manager
Task Task Task Task Task Task
Container Container

Figure 1: High level architecture of Heron. Each outer box shows a resource container allocated by a resource
scheduler like Mesos or Slurm. The arrows show the communication links between different components.

connect to other instances through the stream manager
and they do not communicate with each other directly
even if they are on the same container.

The stream manager acts as a bridge between Heron in-
stances. It forwards the messages to the correct instances
by consulting the routing tables it maintains. A mes-
sage between two instances in different containers goes
through two stream managers. Containers can have many
Heron instances running in them and they all communi-
cate through the stream manager. Because of this design,
it is important to have highly efficient data transfers at the
stream manager to support the communication require-
ments of the instances.

Heron is designed from the ground up to be extensi-
ble, and most of the important parts of the core engine
are written in C++ rather than JVM, the default language
of choice for Big Data frameworks. The rationale for the
use of C++ is to leverage the advanced features offered by
the OS and hardware. Heron instances and schedulers are
written in Java while stream manager and topology master
are written in C++.

3.2.1 Acknowledgements

Heron uses an acknowledgement mechanism to provide
at least once message processing semantics that ensures
the message is always processed in the presence of pro-
cess/machine failures. It is possible that the message can
be processed more than once. In order to achieve at least
once, the stream manager tracks the messages flowing
through the system and if a failure occurs, it notifies the
spout. When a bolt emits a message, it anchors the new
message to the parent message and this information is sent
to originating stream manager (in the same container) as
a separate message. The new message is processed in the
next bolt thereby generating another set of new messages
and so on. One can view this as a tree of messages with the
root being the anchored message. When every new mes-

sage finishes its processing, a separate message is again
sent to the originating stream manager. Upon receiving
such control messages for every emit in the message tree,
the stream manager marks the message as fully processed.

3.2.2 Processing pipeline

Heron has a concept called max messages pending with
spouts. When a spout emits messages to a topology, this
number dictates the amount of in-flight messages that are
not fully processed yet. The spout is called to emit mes-
sages only when the current in-flight message count is less
than the max spout pending messages.

3.3 Heron Stream Manager

Stream manager is responsible for routing messages be-
tween instances inside a container and across containers.
It employs a single thread that use event-driven program-
ming using non-blocking socket API. A stream manager
receives messages from instances running in the same
container and other stream managers. These messages
are Google protocol buffer [5] serialized messages packed
into binary form and transmitted through the wire. If a
stream manager receives a message from a spout, it keeps
track of the details of the message until all the acknowl-
edgements are received from the message tree. Stream
manager features a in-memory store and forward archi-
tecture for messages and can batch multiple messages into
single message for efficient transfers. Because messages
are temporarily stored, there is a draining function that
drains the store at a user defined rate.

4 Implementation

Even though high performance interconnects are widely
used by HPC applications and frameworks, they are sel-
dom used in big data systems in a native fashion. Fur-

High performance interconnect

i ¥

Stream Manager I I Stream Manager

Loopback TCP t t : t
Connection

Task Task Task Task Task Task

Container Container
Figure 2: Heron high performance interconnects are be-
tween the stream managers

thermore, experiences in using these interconnects in big
data systems are lacking in the public domain. In this im-
plementation, Infiniband and Omni-Path interfaces with
Heron through its stream manager, as shown in Fig. 2. In-
finiband or Omni-Path message channels are created be-
tween each stream manager in the topology. These then
carry the data messages going between the stream man-
agers. The control messages that are sent between stream
manager and topology master still use the TCP connec-
tions. They are not frequent and do not affect the perfor-
mance of the data flow. The TCP loop-back connections
from the instances to the stream manager are not altered
in this implementation. Both Infiniband and Omni-Path
implementations use channel semantics for communica-
tion. A separate thread is used for polling the completion
queues associated with the channels. A credit based flow
control mechanism is used for each channel along with a
configurable buffer pool.

4.1 Bootstrapping

Infiniband and Omni-Path require information about
the communication parties to be sent out-of-band
through other mechanisms like TCP. Infiniband uses the
RDMA(Remote direct memory access) Connection man-
ager to transfer the required information and establish
the connections. RDMA connection manager provides a
socket-like API for connection management, which is ex-
posed to the user in a similar fashion through Libfabric
API. The connection manager also uses the IP over Infini-
band network adaptor to discover and transfer the boot-
strap information. Omni-Path has a built-in TCP server
for discovering the endpoints. Because Omni-Path does
not involve connection management, only the destination
address is needed for communications. This information
can be sent using an out-of-band TCP connection.

4.2 Buffer management

Each side of the communication uses buffer pools with
equal size buffers to communicate. Two such pools are
used for sending and receiving data for each channel.

For receiving operations, all the buffers are posted at the
beginning to the fabric. For transmitting messages, the
buffers are filled with messages and posted to the fabric
for transmission. After the transmit is complete the buffer
is added back to the pool. The message receive and trans-
mission completions are discovered using the completion
queues. Individual buffer sizes are kept relatively large to
accommodate the largest messages expected. If the buffer
size is not enough for a single message, the message is
divided in to pieces and put into multiple buffers. The
message itself carry the length of the overall message and
this information can be used to assemble the pieces if they
are divided.

The stream manager de-serializes the protocol buffer
message in order to determine the routing for the mes-
sage and handling the acknowledgements. The TCP im-
plementation first copies the incoming data into a buffer
and then use this buffer to build the protocol buffer struc-
tures. This implementation can directly use the buffer al-
located for receiving to build the protocol message.

4.3 Flow control at communication level

Neither Infiniband nor Omni-Path implement flow control
between the communication parties, and it is up to the ap-
plication developer to implement the much higher level
functions. With reliable connections, Infiniband provides
an error retry functionality for messages. In some situa-
tions this can be used as an in-build flow control mecha-
nism. But for this application, we found that once the er-
ror retry started to happen, the stream of messages slowed
down significantly before we could detect the situation at
the software level to handle it appropriately.

This implementation uses a credit-based approach for
flow control. The credit available for sender to commu-
nicate is equal to the number of buffers posted into the
fabric by the receiver. Credit information is passed to the
other side as part of data transmissions, or by using sep-
arate messages in case there are no data transmissions to
send it. Each data message carries the current credit of
the communication party as a 4-byte integer value. The
credit messages do not take into account the credit avail-
able to avoid deadlocks, otherwise there may be situations
where there is no credit available to send credit messages.
Credit is sent when half of the credit is consumed rather
than waiting for full credit to be used to reduce waiting
time by the sending side.

4.4 Infiniband

The current implementation uses connection-oriented
endpoints with channel semantics to transfer the mes-
sages. The messages are transferred reliably by the fabric

and the message ordering is guaranteed. The completions
are also in order of the work request submissions.

4.5 Intel Omni-Path

Intel Omni-Path does not support connection-oriented
message transfers employed in the Infiniband implemen-
tation. The application uses reliable datagram message
transfer with tag-based messaging. Communication chan-
nels between stream managers are overlaid on a single re-
ceive queue and a single send queue. Messages coming
from different stream managers are distinguished based
on the tag information they carry. The tag used in the im-
plementation is a 64-bit integer which carries the source
stream manager ID and the destination stream manager
ID. Even though all the stream managers connecting to
a single stream manager are sharing a single queue, they
carry their own flow control by assigning a fixed amount
of buffers to each channel. Unlike in Inifiniband, the work
request completions are not in any order of their submis-
sion to the work queue. Because of this, the application
keeps track of the submitted buffers and their completion
order explicitly.

4.6 1IP Over Fabric

IP over Fabric or IP over Infiniband(IPoIB) is a mecha-
nism to allow regular TCP application to access the un-
derlying high performance interconnects through the TCP
API. For using IPoIB heron stream manager TCP sockets
are bound to the IPoIB network interface explicitly with-
out changing the existing TCP processing logic.

S Experiments

An Intel Haswell HPC cluster called Juliet was used for
the Infiniband experiments. The CPUs are Intel Xeon
E5-2670 running at 2.30GHz. Each node has 24 cores
(2 sockets x 12 cores each) with 128GB of main mem-
ory, 56Gbps Infiniband interconnect and 1Gbps dedicated
Ethernet connection to other nodes. Intel Knights Land-
ing(KNL) cluster was used for Omni-Path tests. Each
node in KNL cluster has 72 cores (Intel Xeon Phi CPU
7250F, 1.40GHz) and is connected to a 100Gbps Omni-
Path fabric and 1Gbps Ethernet connection. There are
many variations of Ethernet, Infiniband and Omni-Path
performing at different message rates and latencies. We
conducted the experiments in the best available resources
to us, even though tests like 10Gbps Ethernet would be
very interesting to see as well.

We conducted several micro-benchmarks to measure
the latency and throughput of the system. In these exper-
iments the primary focus was given to communications

Spouts

CJ [
) Jd

Bolts

Figure 3: Topology A: Shallow topology with a spout and
bolt connected in a shuffle grouping. The spout and bolt
run multiple parallel instances as shown in the figure.

and no computation was conducted in the bolts. The tasks
in each experiment were configured with 4GB of memory.
A single Heron stream manager was run in each node.

5.1 Experiment Topologies

To measure the behavior of the system, two topologies
shown in Fig. 3 and Fig. 4 is used. Topology A in Fig. 4
is a deep topology with multiple bolts arranged in a chain.
The parallelism of the topology determines the number of
parallel task for bolts and spout in the topology. Each ad-
jacent component pair is connected by a shuffle grouping.
Topology B in Fig. 3 is a two-component topology with a
spout and a bolt. Spouts and bolts are arranged in a shuf-
fle grouping so that the spouts load balance the messages
among the bolts.

Spout Bolts

SR

Figure 4: Topology B: Deep topology with a spout and
multiple bolts arranged in a chain. The parallelism of the
topology defines how many instances of bolts and spout
in each stage.

In both topologies the spouts generated messages at the
highest sustainable speed with acknowledgements. The
acknowledgements acted as a flow control mechanism for
the topology. The latency is measured as the time it takes
for a Tuple to go through the topology and its correspond-
ing acknowledgement to reach the spout. Since Tuples
generate more Tuples when they go through the topology,
it takes multiple acknowledgements to complete a Tuple.
In topology A, it needs control Tuples equal to the number
of Bolts in the chain to complete a single tuple. For exam-
ple if the length of the topology is 8, it takes 7 control Tu-
ples to complete the original Tuple. Tests with large mes-
sages run with maximum of 10 in flight messages through
the topology and tests with small messages run with 100

Spout De-serialize Filter

O-0-0-0-
O-0-0-0O—
O-0O-0O-0O—

Redis @

Figure 5: Yahoo Streaming benchmark with 7 stages. The
join bolts and sink bolts communicate with a Redis server.

Project Join

Redis

in flight messages. Also the store and forward draining
rate is set to 1ms; which is the lowest value allowed.

5.2 Yahoo streaming benchmark

For evaluating the behavior with a more practical stream-
ing application, we used a benchmark developed at Ya-
hoo!* to test streaming frameworks. We modified the
original streaming benchmark to support Heron and added
additional features to support our case. The modified
benchmark is available open source in Github #. It fo-
cuses on an advertisement application where ad events
are processed using a streaming topology as shown in
Fig. 5. We changed the original benchmark to use a self-
message-generating spout instead of reading messages
through Kakfa [6]. This was done to remove any bottle-
necks and variations imposed by Kafka.

The benchmark employs a multiple stage topology with
different processing units. The data is generated as a
JSON object and sent through the processing units, which
do de-serialization, filter, projection and join operations
on each tuple. At the joining stage, it uses a Redis [7]
database to query data about the tuples. Additionally, the
last bolt saves information to the Redis database. At the
filter step about 66% of the tuples are dropped. We use an
acking topology and measured the latency as the time it
takes for a tuple to go through the topology and its ack to
return back to the spout. For our tests we used 16 nodes
with 8 parallelism at each step, totaling 56 tasks. Each
spout was sending 100,000 messages per second, which
gave 800,000 messages per second in total. Note that
this topology accesses the Redis database system for 33%
messages it receives.

3https://yahooeng.tumblr.com/post/135321837876/benchmarking-
streaming-computation-engines-at
“https://github.com/iotcloud/streaming-benchmarks. git

6 Results & Discussion

Fig. 6 and Fig. 7 show the latency of the Topology A for
large message sizes. Fig. 6 shows the latency with mes-
sage sizes and Fig. 7 shows the latency with varying par-
allel instances. Infiniband performed the best while Ether-
net showed the highest latency. It is interesting to see that
Ethernet latency increases linearly while the other two
were more on a curve. We should note that the Infiniband
implementation only improved the connections between
the stream managers while keeping the loop back connec-
tions, which are on TCP stack between the instances and
stream managers.

Fig. 8 and Fig 9 show the latency for of the Topology
A for small messages with varying sizes and parallelism.
For small messages, we see both IPoIB and Ethernet per-
forming at a similar level while Infiniband was performing
much better. When increasing the parallelism, the latency
increased as expected and Infiniband showed a smaller in-
crease than [PoIB and Ethernet.

Fig. 10, Fig. 11, Fig. 12 and Fig 13 shows the results for
Topology B with different message sizes and different par-
allel spout instances. The results are similar to the Topol-
ogy A with much small latencies because of the shallow
topology. For most practical applications, the minimum
latencies will be within the results observed in these two
topologies as these represent the minimum possible topol-
ogy and a deep topology.

Fig. 14,15,16,17 shows the latency results of Omni-
Path implementation in the KNL cluster for large and
small messages. IPoFabric is the IP driver for Omni-Path.
The KNL machine has much less powerful CPU’s and
hence the latency was higher compared to Infiniband in
the tests.

Fig 18 shows the latency of the Topology A with 100
and 10 infligt messages with 128K message size. It is
clear from the graphs that Ethernet implementation cannot
function properly with 100 in-flight state and Infiniband
works as expected.

Fig. 19 shows the latency distribution seen by the Ya-
hoo stream benchmark with Infiniband fabric. For all
three networking modes, we have seen high spikes at the
99th percentile. This was primarily due to Java garbage
collections at the tasks which is unavoidable in JVM-
based streaming applications. The store and forward func-
tionality of the stream manager contributes to the distribu-
tion of latencies as a single message can be delayed up to
Ims randomly at stream manager.

The results showed good overall results for Infiniband
and Omni-Path compared to the TCP and [PoIB commu-
nication modes. The throughput of the system is bounded
by the CPU usage of stream managers. For TCP connec-
tions, the CPU is used for message processing as well as
the network protocol. Infiniband, on the other hand, uses

TP —o—IPolBE —e—IB

1.2E+2

1.0E+2

8.0E+1

6.0E+1

Latency (ms)

4 DE+1

2.0E+1

0.0E+0

o 100000 200000

Message Size in Bytes

300000 400000 500000

Figure 6: Latency of the Topology A with 1 spout and 7
bolt instances arranged in a chain with parallelism of 2.
The experiment is conducted with 8 nodes. The message

size varies from 16K to 512K bytes.

| TCP —o—IPolB —e—IB

3.5E+1

3.0E+1

o

2.5E+1

2.0E+1

Latency (ms)

15E+1

1.0E+1
16 116 216 316 416

Message Size in bytes

Figure 8: Latency of the Topology A with 1 spout and 7
bolt instances arranged in a chain with parallelism of 2.
The experiment is conducted with 8 nodes. The message

size varies from 16 to 512 bytes.

TCP —o—IPolB —e—IB
1.0E+2
9.0E+1
8.0E+1
o 7OE+1
E 60E+1
T 5.0E+1
=
3 40E+1
= 3.0E+1
2.0E+1
1.0E+1
0.0E+0
0 100000 200000 300000 400000 500000
Message Size in Bytes

Figure 10: Latency of the Topology B with 32 parallel bolt
instances and 16 parallel spout instances. The experiment
is conducted with 8 nodes. The message size varies from

16K to 512K bytes.

SE+01

BE+01

TCP MWIPolB IIB‘

7E+01

— BE+I1

£

= 5E+01

z

S 4AE+01

-

2 3e+m I
2E+01

1E+01

0E+DOD

I

2 4 8

Spout Parallelism

Figure 7: Latency of the Topology A with 1 spout and 7
bolt instances arranged in a chain with parallelism varying
from 2 to 4. The experiment is conducted with 8 nodes.
The message size is 128K bytes.

SE+DL

4E+01
4E+01

< 3E401

T

$ 2e+01

g

3 26+
1E+01
SE+00

0E+D0

TCP WIPolB mIB

— 3E+01 I

. Ii
2 4

Parallelism

Il
8

Figure 9: Latency of the Topology A with 1 spout and 7
bolt instances arranged in a chain with parallelism varying
from 2 to 4. The experiment is conducted with 8 nodes.
The message size is 128 bytes.

6E+01

SEH01

TCP MWIPolB IIB‘

Latency (ms)
Rom M
& & &
= =3 =

1E+01 I

0E+DOD

e ea

8 16 32
Spout Parallelism

Figure 11: Latency of the Topology B with 32 parallel
bolt instances and 8 to 32 parallel spout instances. The
experiment is conducted with 8 nodes. The message size

is 128K bytes.

TP —o—IP0IBE ——IB

8.0E+0

7.0E+0
6.0E+0

=

E S.0E+0 grd—f——fe——
T 4.0E+0

=

£ so0e0 .
g

2.06+0

1.0E+0

0.0E+0
16 116 216 316

Message Size in bytes

416

Figure 12: Latency of the Topology B with 32 parallel bolt
instances and 16 parallel spout instances. The experiment
is conducted with 8 nodes. The message size varies from

16 to 512 bytes.
TCP ——IPoFa bric—-—Umni—Patt*
3.5E+2
3.0E+2
— 25E+2
@
E o2
&
S 15E+2
®
=~ 10E+2
5.0E+1
0.0E+0
0 100000 200000 300000 400000 500000
Message Size in Bytes

Figure 14: Latency of the Topology A with 1 spout and
7 bolt instances arranged in a chain with parallelism of 2.
The experiment is conducted with 4 nodes. The message

size varies from 16K to 512K bytes.

TCP —o—IPoFabric —-—Omni—Patq

Latency (ms)
w
&

}

1
a
&

116 216 316
Message Size in bytes

416

Figure 16: Latency of the Topology A with 1 spout and
7 bolt instances arranged in a chain with parallelism of 2.
The experiment is conducted with 4 nodes. The message

size varies from 16 to 512 bytes.

TCP WIPolB mIB
1E+01

— BEHD0
B
E
& 6E+00
g I
2
3 AE+H00 I

- ‘

OE+00

8 16
Parallelism

{I

Figure 13: Latency of the Topology B with 32 parallel
bolt instances and 8 to 32 parallel spout instances. The
experiment is conducted with 8 nodes. The message size

is 128 bytes.

3E+02

TCP M IPoFabric ®m Omni-Path

2E+02

I
- E
OE+00
2 4

SpoutParallelism

]
m
&
]

Latency (ms)
&
%]

h

Figure 15: Latency of the Topology A with 1 spout and 7
bolt instances arranged in a chain with parallelism varying
from 2 to 4. The experiment is conducted with 4 nodes.

The message size is 128K bytes.

180
160 TCP M IPoFabric ™ Omni-Path
140

— 120

E

= 100

g

g 30 I

3 6o
a0 I

0
2 4
Parallelism

Figure 17: Latency of the Topology A with 1 spout and 7
bolt instances arranged in a chain with parallelism varying
from 2 to 4. The experiment is conducted with 4 nodes.

The message size is 128 bytes.

2000
—IB —TCP

— 1500
[}
E
& 1000
[
g

500

o
0 20 40 60 80 100
Percentage Completion
(a) 100 Inflight messages

1sa | —B |—Tcp |
w
E
T 1oo
1=
=
a
2
5 so f_,//

o =
0 0 40 60 . 80 100
Percentage Completion

(b) 10 Inflight messages

Figure 18: Percent of messages completed within a given
latency for the Topology A with in-flight messages at 100
and 10 with 128K messages and parallelism 4.

—TCP ‘

w
o

latency (ms)
T
w o & o 8

o
=

20 40 60 20 100

Percentage Completion

Figure 19: Percent of messages completed within a given
latency for the Yahoo! streaming benchmark with In-
finiband network. The experiment was conducted with
8 nodes and each stage of topology have 8 parallel tasks.

the CPU only for message processing at the stream man-
ager, yielding better performance.

The results showed much higher difference between
TCP and Infiniband for large message sizes. For small
messages the bandwidth utilization is much lower than
large messages. This is primarily due to the fact that CPU
is needed to process every message. For larger messages,
because of the low number of messages transferred per
second, the CPU usage is low for that aspect. For smaller
messages, because of the large number of messages per
second, the CPU usage is much higher. Because of this,

for small messages, the stream managers saturate the CPU
without saturating the communication channel. For prac-
tical applications that require large throughput, Heron can
bundle small messages into a large message in-order to
avoid some of the processing overheads and transfer over-
heads. This makes it essentially a large message for the
stream manager and large message results can be observed
with elevated latencies for individual messages.

The KNL system used for testing Omni-Path has a large
number of processes with low frequencies. In order to
fully utilize such a system, multiple threads need to be
used. For our implementation we did not explore such
features specific to KNL and tried to first optimize for
the Omni-Path interconnect. The results show that Omni-
Path performed considerably better than the other two op-
tions. In this work the authors did not try to pick between
Omni-Path or Infiniband as a better interconnect as they
are tested in two completely different systems under vary-
ing circumstances. The objective of the work is to show
the potential benefits of using interconnects to accelerate
stream processing.

7 Related Work

In large part, HPC and Big Data systems have evolved
independently over the years. Despite this, there are com-
mon requirements that raise similar issues in both worlds.
Some of these issues are solved in HPC and some in Big
Data frameworks. As such, there have been efforts to con-
verge both HPC and Big Data technologies to create bet-
ter systems that can work in different environments effi-
ciently. SPIDAL [8] and HiBD are two such efforts to en-
hance the Big Data frameworks with ideas and tools from
HPC. This work is part of an ongoing effort by the au-
thors to improve stream engine performance using HPC
techniques. Previously we showed [9] how to leverage
shared memory and collective communication algorithms
to increase the performance of Apache Storm. Also the
authors have looked at various available network proto-
cols for Big Data applications [10].

There are many distributed stream engines available
today including Apache Spark Streaming [11], Apache
Flink [12], Apache Apex [13] and Google Cloud Data
flow [14]. All these systems follow the data flow model
with comparable features to each other. Stream bench [15]
is a benchmark developed to evaluate the performance of
these systems in detail. These systems are primarily op-
timized for commodity hardware and clouds. There has
been much research done around Apache Storm and Twit-
ter Heron to improve its capabilities. [16] described ar-
chitectural and design improvements to Heron that im-
proved its performance much further. [17, 18] looks at
schdueling streaming tasks in Storm to optimize for dif-

10

ferent environments.

Infiniband has been integrated into Spark [19] where
the focus is on the Spark batch processing aspects rather
than the streaming aspects. Spark is not considered a
native stream processing engine and only implements
streaming as an extension to its batch engine, making its
latency inadequate for low latency applications. Recently
Infiniband has been integrated into Hadoop [20], along
with HDFS [21] as well. Hadoop, HDFS and Spark all use
Java runtime for their implementations, hence the RDMA
was integrated using JNI wrappers to C/C++ codes that
invoke the underlying RDMA implementations.

High performance interconnects have been widely used
by the HPC community, and most MPI(Message passing
Interface) implementations have support for a large num-
ber of interconnects that are available today. Some early
work that describes in detail about RDMA for MPI can
be found in [22]. There has even been some work to
build Hadoop-like systems using the existing MPI capa-
bilities [23]. Photon [24] is a higher level RDMA library
that can be used as a replacement to libfabric.

8 Conclusions

Unlike other Big Data systems which are purely JVM-
based, Heron has a hybrid architecture where it uses both
low level and high level languages appropriately. This
architecture allows the addition of high performance en-
hancement such as different fabrics natively rather than
going through additional layers of JNI as done in high per-
formance Spark and Hadoop. At the very early stages of
the high performance interconnect integration to Heron,
we have seen good performance gains both in latency and
throughput. The architecture and the implementations can
be improved further to reduce the latency and increase the
throughput of the system.

Even though the authors use Twitter Heron in this pa-
per, the work is equally applicable to other distributed
stream processing engines such as Apache Flink [12],
Apache Spark [25] and Apache Apex [13]. Since these
systems are JVM-based, instead of implementing commu-
nications natively, it would need to go through JNI.

9 Future Work

Past research has shown that the remote memory access
operations of Infiniband are more efficient than using
channel semantics for transferring large messages. A hy-
brid approach can be adopted to transfer messages using
both channel semantics and memory semantics. It is evi-
dent that the CPU is a bottleneck at the stream managers
to achieve better performance. The protocol buffer pro-
cessing is a dominant CPU consumer at the stream man-

11

agers. A more streamed binary protocol that does not
require protocol buffer processing at the stream manager
can avoid these overheads. Instances to stream manager
communication can be improved with a shared memory
approach to avoid the TCP stack. With such approach
the Infiniband can be improved to directly use the shared
memory for the buffers without relying on data copying.

Because of the single-process single-threaded approach
used by Heron processes, many core systems such as
Knights Landing cannot get optimum performance out
of Heron. Having a hybrid architecture where multiple
threads are used for both communication and computation
utilizing the hardware threads of the many core systems
can increase the performance of Heron in such environ-
ments.

Since we are using a fabric abstraction to program In-
finiband and Omni-Path with Libfabric, the same code can
be used with other potential high performance intercon-
nects, though it has to be evaluated in such environments
to identify possible changes. Heron architecture can be
further improved to gain the maximum performance of
the interconnects by introducing other advanced capabili-
ties like shared memory communications between stream
managers and instances.

A Throughput of the system

In this section we present the throughput results observed
with Topology B. Even though we include throughput re-
sults in this section, it is not a primary focus on our inves-
tigation as throughput is a function of available bandwidth
and CPU. With much higher bandwidth Ethernet and In-
finiband these results will be different.

We present the message rates observed with Topol-
ogy B. The experiment was conducted with 32 parallel
bolt instances and varying numbers of spout instances.
Fig. A.20 shows the results of running this experiment
with 16 spouts and varying message size from 16K to
512K bytes. The graph shows that Infiniband had the best
throughput, while IPoIB achieved second-best and Ether-
net came in last. Fig. A.21 shows the throughput for 128K
messages with varying number of spouts. When the num-
ber of parallel spouts increases, the IPoIB and Ethernet
maxed out at 16 parallel spouts, while Infiniband kept on
increasing. Fig. A.23 and Fig A.22 shows throughput re-
sults for small messages. Fig A.24 shows throughput of
the system for large message size with Omni-Path. Again
the throughput is much less compared to Infiniband pri-
marily due to slower CPUs.

TCP —o—IPolB —e—IB
1.0E+6
@
"
S
W
¥
= LOES
©
=
]
-1
@
T 10e+a
o
0
@
&
a
w 10E+3
= o 100000 200000 300000 400000 500000
Message Size in Bytes

Figure A.20: Throughput of the Topology B with 16 par-
allel spout instances and 32 bolt instances arranged in a
shuffle grouping running in 16 nodes. The message size
varies from 16K to 512K bytes.

1E+05

TCP HiPolE mIB

Figure A.21: Throughput of the Topology B with 8,16 and
32 parallel spout instances and 32 bolts instances arranged
in a shuffle grouping running in 16 nodes. The message
size is 128K bytes.

|
\

e ——

15E+6 ‘

1E+05

BE+04

Messages per Second

Spout Paralllsm

TCP —o—IPolB —e—IB |

3.5E+6

3.0E+6

rSecond

]

SE+6

o
m
T
@

agespe

Mess:

1.0E+6

100 200 300 500

Message size in Bytes

Figure A.22: Throughput of the Topology B with 16 par-
allel spout instances and 32 bolt instances arranged in a
shuffle grouping running in 16 nodes. The message size
varies from 16 to 512 bytes.

Acknowledgment

This work was partially supported by NSF CIF21 DIBBS
1443054 and NSF RaPyDLI 1415459. We thank Intel for
their support of the Juliet system, and extend our grati-

12

AE+0G

3E406 TCP miPolE miIB
2
£ 3E+06
2
o
¥ JE+06
o
y
S 2E+06
&
3 1E+06
=
SE+05

0E+00

Parallellsm o[spouts

Figure A.23: Throughput of the Topology B with 8, 16
and 32 parallel spout instances and 32 bolt instances ar-

ranged in a shuffle grouping running in 16 nodes. The
message size is 128 bytes.
TCP —o—IPolB —s— Omni-Path

)
:

25000
g
T
[
3
o
€N 3500
a
o
“
a
¥
a
g 250

1] 100000 200000 300000 400000 500000
Message Size in Bytes

Figure A.24: Number of messages per second with Omni
path and large number of messages.

tude to the FutureSystems team for their support with the
infrastructure. We would like to thank Twitter Heron team
for their support of this work and doing a wonderful job
at developing Heron.

References

[1] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham et al., “Storm@ twitter,” in Proceedings
of the 2014 ACM SIGMOD international conference
on Management of data. ACM, 2014, pp. 147-156.

[2] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli,
C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy,
and S. Taneja, “Twitter heron: Stream processing at
scale,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data.

ACM, 2015, pp. 239-250.

[3] L. T. Association et al., InfiniBand Architecture Spec-
ification: Release 1.0. InfiniBand Trade Associa-

tion, 2000.

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

M. S. Birrittella, M. Debbage, R. Huggahalli,
J. Kunz, T. Lovett, T. Rimmer, K. D. Under-
wood, and R. C. Zak, “Intel® Omni-path Archi-
tecture: Enabling Scalable, High Performance Fab-
rics,” in High-Performance Interconnects (HOTI),
2015 IEEE 23rd Annual Symposium on. IEEE,
2015, pp. 1-9.

K. Varda, “Protocol buffers: Googles data inter-
change format,” Google Open Source Blog, Avail-
able at least as early as Jul, 2008.

J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A dis-
tributed messaging system for log processing,” in
Proceedings of the NetDB, 2011, pp. 1-7.

J. L. Carlson, Redis in Action.
tions Co., 2013.

Manning Publica-

G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kam-
burugamuve, “Big data, simulations and hpc con-
vergence,” in Workshop on Big Data Benchmarks.
Springer, 2015, pp. 3—-17.

S. Kamburugamuve, S. Ekanayake, M. Pathirage,
and G. Fox, “Towards High Performance Process-
ing of Streaming Data in Large Data Centers,”
in HPBDC 2016 IEEE International Workshop on
High-Performance Big Data Computing in conjunc-
tion with The 30th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2016),
Chicago, Illinois USA, 2016.

B. Tierney, E. Kissel, M. Swany, and E. Pouyoul,
“Efficient data transfer protocols for big data,” in
E-Science (e-Science), 2012 IEEE 8th International
Conference on. 1EEE, 2012, pp. 1-9.

M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica,
“Discretized streams: an efficient and fault-tolerant
model for stream processing on large clusters,” in
Presented as part of the, 2012.

P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos,
V. Markl, and K. Tzoumas, “Apache flink: Stream
and batch processing in a single engine,” Data Engi-
neering, p. 28, 2015.

“Apache Apex: Enterprise-grade unified stream
and batch processing engine.” [Online]. Available:
https://apex.apache.org/

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. J. Ferndndez-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt et al., “The dataflow
model: a practical approach to balancing correct-
ness, latency, and cost in massive-scale, unbounded,
out-of-order data processing,” Proceedings of the

13

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

VLDB Endowment, vol. 8, no. 12, pp. 1792-1803,
2015.

R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench:
Towards benchmarking modern distributed stream
computing frameworks,” in Utility and Cloud Com-
puting (UCC), 2014 IEEE/ACM 7th International
Conference on. 1EEE, 2014, pp. 69-78.

M. Fu, A. Agrawal, A. Floratou, G. Bill, A. Jor-
gensen, M. Li, N. Lu, K. Ramasamy, S. Rao,
and C. Wang, “Twitter heron: Towards extensible
streaming engines,” 2017 IEEE International Con-
ference on Data Engineering, Apr 2017. [Online].
Available: http://icde2017.sdsc.edu/industry-track

L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive
online scheduling in Storm,” in Proceedings of the
7th ACM international conference on Distributed
event-based systems. ACM, 2013, pp. 207-218.

V. Cardellini, V. Grassi, F. Lo Presti, and
M. Nardelli, “Distributed qos-aware scheduling in
storm,” in Proceedings of the 9th ACM Interna-
tional Conference on Distributed Event-Based Sys-
tems. ACM, 2015, pp. 344-347.

X. Lu, M. W. U. Rahman, N. Islam, D. Shankar,
and D. K. Panda, “Accelerating spark with rdma for
big data processing: Early experiences,” in High-
performance interconnects (HOTI), 2014 IEEE 22nd
annual symposium on. 1EEE, 2014, pp. 9-16.

X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose,
H. Subramoni, H. Wang, and D. K. Panda, “High-
performance design of hadoop rpc with rdma over
infiniband,” in 2013 42nd International Conference
on Farallel Processing. 1EEE, 2013, pp. 641-650.

N. S. Islam, M. Rahman, J. Jose, R. Rajachan-
drasekar, H. Wang, H. Subramoni, C. Murthy, and
D. K. Panda, “High performance rdma-based design
of hdfs over infiniband,” in Proceedings of the In-
ternational Conference on High Performance Com-
puting, Networking, Storage and Analysis. 1EEE
Computer Society Press, 2012, p. 35.

J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K.
Panda, “High performance RDMA-based MPI im-
plementation over InfiniBand,” in Proceedings of the

17th annual international conference on Supercom-
puting. ACM, 2003, pp. 295-304.

X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu,
“Datampi: extending mpi to hadoop-like big data
computing,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. 1EEE,
2014, pp. 829-838.

[24] E. Kissel and M. Swany, “Photon: Remote memory
access middleware for high-performance runtime
systems,” in Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International.
IEEE, 2016, pp. 1736-1743.

[25] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

14

M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing,” in Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation.
USENIX Association, 2012, pp. 2-2.

