

Abstract— As the amount of metadata describing services and
their access frequencies increased in P2P/Grid Computing
Environments, there is an emerging need for Information
Services to make such metadata available. The metadata
describing services might include frequently changing
information, so it presents a dynamic behavior. We use
context as metadata to capture such frequently changing
dynamic information. Here, context information can be used
not only for discovering services, but also by services after
they have been discovered. In this paper, we are interested in
providing and managing context information parts of which is
likely to be changed very frequently. We describe our initial
efforts in building Fault Tolerant and High Performance
Information Systems (FTHPIS) to make both dynamic and
static context information available.

1. INTRODUCTION

The Computational Grid introduces large amount
of services managed by different organizations or
individuals to let users utilize distributed
computing resources, applications and data. Peer
to Peer computing also provides services where
researchers package their own resources as
services to offer others in their community. As
the services may come and go frequently over
time and these services have complex
characteristic (some of which may be
dynamically generated such as operational state
of services), metadata pieces describing these
services have very dynamic behavior. Such
metadata can also be describing the interaction
between two or set of services. So, services in
both environments are rich in their context and
they have not only static metadata but also
dynamic metadata describing themselves.

For the purposes of our research, context is a
piece of information describing the activities and
characteristics of a resource in particular a
service. Here, we use resource in general sense

of World Wide Web Consortium (W3C) as used
in Resource Description Framework (RDF).

Context encapsulates not only activities of a
service but also the characteristics of service
itself as an entity. We broadly classify context
information as static context metadata and
dynamic context metadata. Dynamic context
information is the session metadata generated by
one or more services as a result of their
interactions. Static context information is rather
static information describing the service
characteristics such as location of the service.
This type of metadata is independent of any
interaction.

We find context information very valuable for
discovering and managing services. Here, the
context metadata is not only used for discovering
services, but also used by services after they
have been discovered. However context
information is either not available to consumer
of services or it does not capture dynamic
behavior. Locating dynamic metadata of interest
is a fundamental problem in P2P/Grid
environments. An effective methodology to
facilitate metadata discovery is to provide and
manage metadata.

Another motivation for management of dynamic
metadata can be summarized as follows. Grids
are collection of services where services are put
together for particular functionality, such as
visualization, sensor, and collaboration grid.
Though, SOAP and WSDL technologies define
how to interact with individual services, there is
no available technology to lead users to interact
with collection of services.

Managing Dynamic Metadata as Context

Mehmet S. Aktas, Geoffrey Fox, and Marlon Pierce
Community Grids Lab, Indiana University
{maktas, gcf, mpierce }@cs.indiana.edu

The scalability of information systems forms
another key research issue that needs to be
investigated in our research. For instance,
storage of context metadata requires scalability
not only in performance but also in numbers. To
this end, we see a greater need for scalable
information systems to make dynamic and static
context metadata of services available in peer-to-
peer/grid environments. Such information
systems should also allow users to expose and
interact with collection of Grid services.

In this research, we are investigating how to link
peer-to-peer and centralized metadata
management strategies which will then provide
an effective solution to service discovery
problem in peer-to-peer/grid environments. We
research database models with messaging where
metadata is captured in messages. We also
research ways of providing both high
performance by melding caching with database
approaches and fault tolerance by replicating
databases.

The organization of this paper is as follows. First
we discuss relevant work. Then, we discuss
various application scenarios to present the scope
of this research. Next, we discuss our
architecture in building Information Systems
followed by conclusions.

2. RELEVANT WORK

Existing service discovery architectures can be
broadly categorized as centralized and
decentralized by the way they handle with
service information storage. In centralized
approach there is a central look-up mechanism
where all services are dependent on one node.
Example mainstream projects of centralized
discovery can be summarized as following; JINI
[3], Salutation and Salutation-lite [1], Service
Location Protocol [4]. In decentralized
discovery, there is no central database.

Decentralized discovery architectures can be
categorized further by the manner of in which
decentralization is realized such as hierarchical,
structured peer-to-peer and unstructured peer-to-
peer (ad-hoc). In hierarchical discovery
architectures, service information is stored in
distributed databases where databases are
organized based on a hierarchy. In structured
P2P discovery architectures, nodes in the
systems are equally enabled and controlled and
service information is disseminated to all nodes.
CAN [10] and Chord [11] are two well known
examples of structured P2P networks. In
unstructured P2P service discovery architecture,
there is complete lack of control on the
capabilities of the network nodes. Example
projects of this architecture are Konark [7] and
DeapSpace [6]. A good discussion on P2P search
models can be found in [9].

The centralized storage scales better in
performance for limited storage capability
compared to decentralized approach, whereas
decentralized approach can scale up to high
amount of metadata where centralized approach
fails. Pure decentralized storage models such as
P2P service discovery architectures have focused
on the concept of distributed hash tables (DHT).
This approach assumes the possession of an
identifier such as hash table that identifies the
service that need to be discovered. Each node
forwards the incoming query to a neighbor based
on the calculations made on DHT. This method
may provide better performance as the database
operation messages are routed fast, however, it
still does not provide the same performance to
handle dynamic context metadata as centralized
database does.

In our design, we are building information
systems that scale both in performance and in
numbers that the storage can handle. So we link
both centralized and peer-to-peer storage
strategies to provide a single storage for context
metadata.

We can also investigate service discovery
projects by the methodology they use for service
descriptions and service matchmaking process.
In existing service discovery projects, service
description can be keyword-based (UDDI [14],
Corba Naming [6]), unique identifiers-based
(Blootooth [5]), interface-based (JINI [3]), XML
based (UPnP [2]), attribute-based matching
(Salutation and Salutation-lite [1], Service
Location Protocol [4]) or ontology based
(myGrid Service Discovery [15]).

 In our design, we associate a life-time and
context metadata with each service description in
the database. We adopt attribute name/value
pairs to describe context metadata in databases.

Another way of classifying service discovery
architectures could be based on the formation of
the network. In traditional wired networks,
network formation is systematic since each node
joining the system assigned an identity by
another device in the system. These traditional
service discovery protocols focused on LAN
services provided by devices such as Printer, Fax
Machines. As devices join or leave to the
network infrequently, the network presents a
uniform structure. Example wired network
discovery architectures could be JINI [3],
Service Location Protocol [5] and UPnP [2]. In
unstructured P2P (ad-hoc networks), there is no
controlling entity and there is no constraint on
the resource dissemination in the network.
Research in Peer-to-Peer service discovery is
fairly new. Examples projects could be Konark
[8] and DeapSpace [7].

Our design encapsulates both wired and wireless
(peer to peer) network services; we provide an
application level communication infrastructure
which assumes an IP level connectivity between
the entities of the system.

3. APPLICATION CASE SCENARIOS

In order to present the scope of this research we
outline following application case scenarios. The
first case scenario illustrates a large scale grid
computing environment where grid data services
facilitate query capabilities over large data sets.
The second scenario illustrates a Peer to Peer
environment where a videoconferencing takes
place.

In the first scenario, a PC user running a
geographical application which process GPS and
Seismic data to do various simulations. Both
data sources are available online through
Geographical Information System (GIS) enabled
data services. These data services might provide
different data and data formats with varying
spatial coverage. There is no programmatic way
of working with the remote services, for
example, choosing the services providing GIS
data based on the user’s criteria, and then
assembling data from these data services to
create maps in a mapping service supporting the
data types. Instead, the user typically downloads
the capability files of these data/mapping
services to find out if they are satisfying his/her
needs. This scenario is example of the general
problem of managing information about services.
The user must be able to query information
services that provide a metadata catalog for GIS
data service capabilities, which enables the user
to connect to the desired service.

The second scenario describes a Peer to Peer
application. A user has a laptop running a
Videoconferencing application which is also a
web service. The service consists of different
collaboration systems such as conferencing
(H.323, SIP, and AccessGrid), streaming, and
instant messaging services. The user wants to
start a real-time interaction environment which
will allow him/her to make a distant seminar
about his/her research. If such real-time
interaction can take place, then the user can start

a scientific collaboration through multiple
collaboration tools such as audio, video, chat,
whiteboard and PowerPoint as well. With peer to
peer services moving around and their volatile
behavior, providing such real-time interaction
forms a challenging problem. To this end, there
is a need for Information System to make the
information about temporarily exist services
available.

4. ARCHITECTURE

In this section, we discuss possible strategies that
we investigate to build a fault tolerant and high
performance information system (FTHPIS).

4.1. REQUIREMENTS

We outline the requirements of our domain and
architecture as follows.

Availability and Fault Tolerance: The system
should not have central point of failure. Each
database needs to be replicated in order to
provide context information available for users
all the time. When making this information
available, the system should take into account
component failures such as node failures.

High Performance: The system should be
enabled to provide low response times. An
obvious solution for this is caching (query,
response) pairs.

Consistency: As the accuracy of context
information is very important, the system should
be enabled to provide data coherency in all
replicas.

Scalability: The scale of the system should be
around 100-1000 users per session. We place no
limits on the total number of sessions or on the
number of sessions that a node can be a part of.

4.2. OVERVIEW OF THE ARCHITECTURE

FTHPIS can be considered as a node cloud
gathered to make information about services
available for users.

Each participant node has the capability to
announce its local services and discover remote
target services by sending out announcement /
discovery messages to others. A target service is
the service that wants to be discoverable through
the Information System.

There are two main entities in our system such as
information services and data-systems. Each
participant node of the FTHPIS implements an
information service. An information service is
the endpoint that provides uniform interface to
the two types of context metadata such as static
and dynamic context metadata. There are also
data-systems (databases) present in this system.
A data-system is the entity that facilitates context
discovery among large number of contexts. We
will use the term data-system with database
interchangeably for the rest of this paper.

An important design issue is how to make
information about services available to others in
the network. In our design, Information Services
are interacting with each other using P2P
communications. There are various options to
provide communication between nodes of the
system such as structured, unstructured P2P
discovery models and classic middleware
approaches where the discovery happens within
the distributed server/broker network.

In our solution we link peer-to-peer and
centralized metadata storage strategies to provide
storage where there is both good performance
and scalability. To this end, we use a classic
middleware approach to facilitate discovery
using XPath or SQL queries on the distributed
databases within the distributed server/broker
network. So, we use a publish\subscribe based

SOAP Handler Environment (SHE) (a software-
based brokering system) to provide
communication between nodes.

In our prototype implementation we are using
NaradaBrokering project (http://www.narada-
brokering.org) as a particular implementation of
SHE. This methodology allows us to provide an
application level communication infrastructure
which is independent from low level transport
protocols. In this scenario, messages
(advertisement / discovery) are broadcast to all
databases through brokering system. Each
message includes a unique identifier identifying
the peer initiated the request. On receiving the
message, only databases that have the requested
information reply with a respond message
directly to the initiator of the query.

In order to facilitate information discovery, we
provide and maintain context in databases. We
separate context as static and dynamic context
information. Static context information describes
both functional and non-functional
characteristics of services, whereas dynamic
context information describes activities or
sessions that a service is involved. The
architecture places no constraints on the types of
storages; it could be based on flat files, relational
or XML databases.

In our prototype implementation of our design,
we choose to implement the Universal
Description, Discovery, and Integration (UDDI),
since UDDI is a Web Service Interoperability
(WS-I) standard. UDDI provides a standardized
method for publishing and discovering
information about Web Services. In UDDI,
services can be discovered by name, by location,
by business or by tModels (service types). UDDI
has some limitations in describing service
descriptions in an expressive way. Also, UDDI
discovery relies on a keyword-based retrieval
approach where the service discovery is based on
keyword-matches between the service query and

service descriptions. To this end, we extend
UDDI Specifications in order to associate
context metadata and lifetime with service
descriptions where context metadata of a service
consists of set of service attributes where each
attribute has (name, value) pairs. Similar
methodology has also been used in various
projects as in [12], [13].

Service matchmaking process is a retrieval
process that finds results by matching a service
request with service descriptions. This research
has been definitely investigated as in [13], [15],
[16] and so not covered in our design. We view
distributed system aspects of our architecture as
higher priority.

In order to meet the requirements that we
outlined earlier, we design following services
available for the nodes of FTHPIS. These
services are Search, Discovery, Expediter,
Storage, Sequencer and Load Balancer Services.

Search Service: This service is implemented by
all information services. It provides interfaces for
various search capabilities. In our prototype
implementation, we extend UDDI Inquiry
Service Interface to provide search interface to
our extended version of UDDI. This way, we are
able to pose metadata oriented queries on the
databases. Service metadata might also have
associated metadata catalog (auxiliary metadata
file) for data services. To this end, we also
provide Xpath query abilities where users can
pose queries on the metadata catalog to find the
data services of interests. In providing such
search capability, we investigate 2-phase
discovery schemes as following. In this scheme,
a node first discovers the dataset that can provide
the information that it is looking for and then
proceed to issue a refined search (Xpath query on
the metadata catalog) to locate precisely the data
that it is looking for.

Storage Service: This service is only
implemented by data-systems. It implements a
storage and access interface to a data-system. In
our prototype implementation, we extend UDDI
Publishing Service interface to provide access to
our version of UDDI database. The Storage
service supports replication of databases to
provide low response times and high availability.
In our problem, static context in databases are
likely to be modified infrequently, whereas
dynamic context is likely to be modified
frequently. Also, the access rate for read request
can be very high. As the service requestors might
choose services based on frequently changed
metadata, all database replicas have to provide
fresh and consistent metadata about services. So,
the replication service should be able to handle
high loads of modifications to provide
information consistency.

Discovery Service: This service is implemented
by all information services and data-systems. It
provides P2P communication among the nodes
and discovery of entities and data-systems in the
information system network.

Expediter Service: This service is implemented
by all nodes in order to improve response times
and avoid performance loss caused by repetitive
queries. An Expediter service provides a
generalized caching mechanism. Each cache
entity consists of (request, response) message
pairs. A cache is considered empty at boot-strap
of a node and it gets filled with (request,
response) message pairs as the database is
queried by the users. We also investigate various
cache entity replacement policies such as Least
Recently Used (LRU) to improve response times.

Sequencer Service: This service is needed by
datasets supporting multiple clients updating a
single dataset. The idea is simple, which is to
label each message in the system. This ensures
that an order is imposed on actions/events that
take place in a session. Furthermore, this

sequencer will also play a role in ensuring that
the replicated datasets are consistent with each
other, while ensuring that ACID properties are
satisfied.

Load Balancer of storage: Databases have
limited storage and memory capabilities. So,
service metadata should be evenly spread out
into the distributed databases in the system. This
service is used to decide how to implement
distributed storage of a single dataset. Here a
given dataset may itself be spread over multiple
locations. A bit torrent example of such a
scenario is where fragments of a file may reside
at multiple locations.

5. CONCLUSIONS

We have discussed various issues related
building an information system which would
provide distributed context metadata
management. We gave a brief classification of
relevant work. We explained application case
scenarios on how such system will be useful.
Starting from these scenarios, we discussed the
requirements of the system. Then, we presented a
general overview of our design on implementing
information systems. In this research, the
expected contributions can be summarized as
following. We will identify a novel process for
building P2P/Grid Fault Tolerant and High
Performance Information Systems and the
requirements to provide dynamic and
decentralized context management in P2P/Grid
Environment. We will identify the requirement
of replicating highly dynamic context
information databases. We will build a collection
of services which will then form an Information
System for P2P/Grid Environment. In current
prototype of the FTHPIS, we completed
implementation of databases. We have also
implemented search and publication service
interfaces to the databases.

REFERENCES

[1] The Salutation Consortium Inc 1999.
Salutation architecture specification (part 1),
version 2.1 edition. World Wide Web,
http://www.salutation.org

[2] Rekesh John, UPnP, Jini and Salutation – A
look at some popular coordination
framework for future network devices,
Technical Report, California Software Labs.
1999.

[3] Ken Arnold, Ann Wollrath, Byran
O’Sullivan, Robert Scheifler, and Jim
Waldo, The JINI Specification, Addison-
Wesley, Reading, MA, 1999

[4] E. Guttman, C. Perkins, and J. Veizades.,
Service Location Protocol, RFC 2165.

[5] Blootooth SIG. Specification.
http://bluetooth.com

[6] Object Management Group, “Catalog of
Corba/IIOP specifications”,
http://www.omg.org/technology/documents/c
orbaservices_spec_catalog.htm

[7] R. Hermann, D. Husemann, M. Moser, M.
Nidd, C. Rohner, A. Schade, DEAPspace--
Transient ad hoc networking of pervasive
devices, Computer Networks Volume 35 pp
411-428, 2001

[8] S. Helal, N. Desai, V. Verma and C. Lee,
Konark--A Service Discovery and Delivery
Protocol for Ad-hoc Networks, Proceedings
of the Third IEEE Conference on Wireless
Communication Networks (WCNC), New
Orleans, March 2003.

[9] Fletcher, George , Sheth, Hardik and Börner,
Katy. (2004). Unstructured Peer-to-Peer
Networks: Topological Properties and Search
Performance. Third International Joint
Conference on Autonomous Agents and
MUlti-Agent Systems. W6: Agents and Peer-
to-Peer Computing, Moro, Gianluca,
Bergmanschi, Sonia and Aberer, Karl, Eds.,
New York, July 19-23, pp. 2-13.

[10] Ratnasamy, Sylvia et al., A Scalable
Content-Addressable Network. Proc. ACM
SIGCOMM, pp 161-172, August 2001

[11] Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, Hari Balakrishnan,
Chord: A Scalable Peer-to-Peer Lookup
Protocol for Internet Applications.
IEEE/ACM Trans. on Networking, 11 (1):
17-32, February 2003

[12] UDDIe: An Extended Registry for Web
Services
Ali ShaikhAli, Omer Rana, Rashid Al-Ali
and David W. Walker. Proceedings of the
Service Oriented Computing: Models,
Architectures and Applications, SAINT-2003
IEEE Computer Society Press. Oralndo
Florida, USA, January 2003

[13] Personalized Grid Service Discovery.
Miles, S., Papay, J., Dialani, V., Luck, M.,
Decker, K., Payne, T., and Moreau, L.
Nineteenth Annual UK Performance
Engineering Workshop (UKPEW'03),
University of Warwick, Conventry, England,
2003.

[14] Bellwood, T., Clement, L., and von
Riegen, C. (eds) (2003), UDDI Version
3.0.1: UDDI Spec Technical Committee
Specification. Available from
http://uddi.org/pubs/uddi-v3.0.1-
20031014.htm.

[15] D. Chakraborty, F. Perich, S. Avancha,
and A. Joshi, DReggie: A Smart Service
Discovery Technique for E-Commerce
Applications, In Workshop in conjunction
with 20th Symposium on Reliable
Distributed Systems, October 2001.

[16] Paolucci, M., Kawamura, T., Payne, T. R.
and Sycara, K., Importing the Semantic Web
in UDDI. (2002). In Proceedings of Web
Services, E-Business and Semantic Web
Workshop, CAiSE 2002. , pages pp. 225-
236, Toronto, Canada.

