

GTLAB: Grid Tag Libraries Supporting Workflows within Science Gateways

Mehmet A. Nacar1, 2, Marlon E. Pierce1, Geoffrey C. Fox1, 2
1Community Grids Lab, Indiana University

501 N. Morton St. Suite 224 Bloomington, IN 47404 USA
2The Department of Computer Science, Indiana University

 Lindley Hall Bloomington, IN 47404 USA

{mnacar, marpierc, gcf}@indiana.edu

Abstract

Portlet-based Grid portals have become a crucial part of
the cyberinfrastructure by providing component-based
problem solving environments for scientists. Although portals
aim to provide user-friendly environments with easy-to-use
interfaces, the development of portals and their portlet
components is time consuming. We aim to provide reusable
components for rapid portlet development. Our approach,
Grid Tag Libraries and Beans (GTLAB), encapsulates
common Grid operations with reusable XML tags. GTLAB
also provides a way for creating composite tasks that models
the requirements of computational science portals. In previous
work, we have introduced Grid tags libraries for the Globus
toolkit. In this study, we extend GTLAB to support widely used
Condor DAGMan and Taverna workflows for the Grid
community. These extended tags demonstrate that large
workflows can be integrated within Grid portlets without
burdening of developers.

1. Introduction
Science gateways have gained importance by providing

scientific communities with web-based access to computing
and data intensive applications. Examples of large virtual
organizations providing data storage, computing power,
legacy applications and Grid services include TeraGrid [1]
and the Open Science Grid (OSG) [2]. There are a variety of
application portals available to solve numerous problems
ranging from atmospheric discoveries in LEAD [3] to virtual
observatories described in NVO [4]. Our Virtual Laboratory
for Material Sciences (VLab) project [5] is an example of a
science gateway for computing the properties of planetary
materials under extreme conditions and provides the specific
motivating cases for our work.

The VLab portal [6] is based on Java-centric web
technologies. The VLab portal facilitates data transfers,
simulation processing, and scientific visualization. The VLab
portal paper describes our work to develop portlet tag libraries
that encapsulate common workflows we have encountered in
portlet development. Our work is intended to extend the Open
Grid Computing Environments (OGCE) Grid portlets and to

simplify the process of scientific application portlet
development for Grids.

We will first summarize our work and motivate our
research in the perspective of VLab portal and Big Red portal
[7] experiences.

1.1. Lessons Learned from Initial VLab Portal
The VLab science gateway is based around the JSR 168

portlet model, and the initial set of VLab portlets are
described in detail in [5]. We began by developing Grid
portlets using the OGCE [8] software. In this model, each
portlet application was responsible for an individual task. For
example, one portlet retrieves Grid credentials from a
MyProxy repository, another one is for GridFTP file operation,
and a third portlet is used to execute Quantum Espresso [9]
package, which is major high performance computing
application for VLab material science research. This approach
is useful for general user portals but needs to be modified for
application-specific portals like VLab. We need to collect
multiple capabilities within a single science application-
specific portlet and handle complicated Quantum Espresso job
executions and file transfers in a sequence. We must define
dependencies between atomic job tasks. Consequently, we
have determined that we can represent job dependencies using
Directed Acyclic Graphs (DAG) [10].

In order to implement these graphs, we chose the Java CoG
abstraction [11] interfaces for DAG executions in Grid. These
provide a convenient programming interface that can be easily
integrated into portlets. However, we identified the need to
provide a higher-level development environment that
encapsulates common tasks needed to assemble a DAG in a
portlet. We have described our tag libraries, called Grid Tags
Libraries and Beans (GTLAB), in [12]. Our approach is to
design XML-based tag libraries for expressing DAGs and to
embed them in the web pages. For that reason, we have found
the Java Server Faces (JSF) application framework to be
appropriate for extension. JSF is a component-based web
framework that can be extended to add new components, such
as our Grid tags. As described in this paper, we extend our
earlier approach to provide Grid tags for Condor DAGMan

[13]. We also integrate Taverna [14] workflow execution into
GTLAB framework.

Using the VLab portal as a case study, we have derived
requirements for tag libraries that support more
comprehensive workflows. In order to support loops, parallel
processing of the jobs and conditional branches, GTLAB
needs to integrate sophisticated workflow engines.

Workflow extensions to GTLAB increase the usability of
Grid tags in wide area of scientific applications. Most of the
science gateways are managing execution steps intensively.
Such a case is the VLab portal that facilitates simulation
parameters and refines them within first round of iterations. In
the next stage, application is started and results are shown in
visualization environments. Similarly more complex science
gateways can utilize GTLAB framework for their application
systems.

The rest of the paper is organized as follows. In the next
section we present GTLAB framework. Section 3 motivates
and describes DAG extensions followed by Section 4
describing workflow extensions. Section 5 discusses a
Taverna use case. Section 6 summarizes related work, and we
conclude with Section 7.
2. GTLAB

Grid Tag Libraries and Beans (GTLAB) provide a set of
JSF tag libraries for Grid portal development. This library
encapsulates atomic Grid operations as well as multi-staged
operations. We explain GTLAB component model and its job
management capabilities in detail as follows.

Although OGCE portlets are functionally similar to
GTLAB, OGCE is based on standard portlet web applications

and their APIs. Application developers have to customize the
portlets to comply with specific needs of the gateway. Another
aspect of OGCE is that the capabilities are separated.
Developers need to assemble several portlets to get workflow
capabilities. All these efforts require substantial effort of
programming. The developers need to reuse and modify some
of the codes, view pages, configuration and deployment
descriptors. However, in some cases the customization is even
more complex such as sharing the session memory depends on
the Tomcat servlet container. Inter portlet communication is
another tricky point in case of trivial portlet applications. On
the other hand, GTLAB enables all capabilities within a web
application that requires minor customization on the view
pages. All other APIs, libraries, and deployment descriptors
will be the same.

GTLAB provides several important features for
application developers. First, it provides modular components
(tags and beans) to construct science gateway portlet pages.
Second, it represents Grid service clients using abstract XML
tags. Therefore, portal developers do not need to understand
underlying details of Grid services. Finally, it provides a
component model for developing Grid portlets out of reusable
parts.

Grid users typically must submit jobs to batch queues
where the jobs may wait for days or longer before running,
and even interactive jobs possibly take a several minutes to
finish. Thus we must provide a call-back system that let jobs
run while allowing the portal to return control to the user.
Thus the GTLAB tags need to track the jobs’ lifecycle and
monitor their status, displaying this information back to the
user.

<o:submit id=”DAG” action=”submit” />

<o:multitask id=”multi” taskname=”myDAG” persistent=”true” >

 <o:myproxy id=”proxy” hostname=”gf1.ucs.indiana.edu” port=”7512”

 lifetime=”2” username=”anonym” password=”#{resource.password}” />

 <o:filetransfer id=”jobA” from="gridftp://gf1.ucs.indiana.edu/home/anonym/input_file"

 to="gridftp://cobalt.ncsa.teragrid.org/tmp/input" />

 <o:jobsubmit id=”jobB” hostname=”cobalt.ncsa.teragrid.org”

 provider=”GT4” executable=”/tmp/run”

 stdin=”input” stdout=”result” stderr=”error” />

 <o:dependency id=”depend” task=”jobB” dependsOn=”jobA” />

</o:multitask>

</o:submit>

Figure 1 GTLAB example for creating Grid portlets. These are embedded in JSF pages that generate HTML for portlets. The example shows how a
portlet developer can create a simple DAG that fetches a user proxy, transfers an input file, and submits a job. Inter-tag dependencies can be expressed.
User supplied parameters are managed by a Resource Bean (“resource” in the listing).

The users can manage, stop, or cancel running jobs, after
they submit them. The job archiving is also tied to job
handlers. For example, users can keep good samples, remove
old jobs or failed jobs, and otherwise organize their repository.
The job’s metadata features (submit time, status, finish time,
output location and input parameters) are stored and can also
be listed.

Application developers compose their DAG scenario by
simply using Grid tags and beans within GTLAB framework.
An example DAG is illustrated in Figure 1. In this case, DAG
attributes are filled by the developers. Some of the attribute
values are application dependant and so they are static such as
Globus Toolkit provider (version) can be set for entire portal.
On the other hand, some parameters (such as passphrases) are
set by the end users by submitting web forms. These user-
supplied parameters are managed by backing JavaBean class,
ResourceBean, which we provide. Grid beans are essential to
fire off the actions of Grid operations. Grid beans collect
property values of operations as binding to Grid tag attributes.

3. DAG Support in GTLAB
GTLAB is designed to utilize several DAG frameworks in

Grid computing including Globus toolkit (by using Java CoG
interface “taskgraph”) and Condor DAGMan (by using the
Birdbath [15] Web services interface). DAGs are built by
application programmers and are embedded into JSF portal
pages. Grid tags help to compose DAGs with dynamic
parameters entered by end users within portlet pages. Grid
tags are also responsible for executing workflow by initiating
‘submit’ tags. In Figure 1 the first job moves the input file
from a remote host to the execution host. The second job runs
a script on the execution host depending on completion of the
first job. In other words, the script cannot run unless the input
file is ready on the execution host. Finally, Grid tags allow
users to keep track of the execution of the DAG by facilitating
handler tags. The listing in Figure 1 is part of a larger, JSF-
based portlet that would also include HTML input forms for
collecting information from the users.

CoG Taskgraph: GTLAB implements a layer on Java CoG
abstractions that is encapsulated by XML tags. For instance,
the taskgraph interface is used by <o:multitask> tag. These
XML Grid tags are supported by Grid beans. Grid tags are
injectors for Grid beans (using Inversion of Control design
pattern [16]). They initialize beans and manage their lifecycles.
In Figure 2, we show the XML schema that summarizes
GTLAB libraries. As illustrated in the figure, <o:multitask>
can define attributes for taskgraph including id, taskname,
handler and persistent. multitask also can contain dependent
task objects are represented as sub tags including
<o:myproxy>, <o:fileoperation>, <o:jobsubmit>,
<o:filetransfer> and <o:dependency>.

Application developers compose their DAG scenario by
using Grid tags and beans together within GTLAB framework.
In this case, DAG attributes are filled by the developers. Some
of the attribute values are application dependent and so they
are static. For example, the Globus toolkit provider attribute

can be set as GT4 for entire portal. On the other hand, some
parameters are provided by the end user through input forms.
These attributes must bind HTML input text by using
expression language semantics within JSF.

 Condor DAGMan: Condor is an environment for scheduling
and executing applications on distributed networks of
computers. DAGMan is a tool for describing complex
application workflows to be executed on Condor in terms of
directed acyclic graphs. In this case, GTLAB allows the user
to prepare or transfer descriptions of Condor jobs or workflow
scripts described with the DAGMan. End users can return
later and monitor the progress of the jobs.

Condor manages job submissions to Globus-based Grids
through Condor-G [17]. GTLAB provides a web application
environment which can turn out to be a portlet for Condor
DAGMan by introducing two additional JSF Grid tags:
<o:condorDagman/> and <o:condorSubmit/>, which we
describe below.

<o:condorSubmit/> is for single job submission to Condor-
G resources. <o:condorDagman/> is used to describe
composite DAGMan jobs and their dependencies along with a
scripting file. Similar to our <o:multitask> tag, these tags
provide access to Condor services in terms of using Condor
beans. Our Condor beans have capabilities to prepare Condor
jobs, submit jobs to Condor resources and manage the
lifecycle of submitted jobs.

Condor has no equivalent Java client libraries that correspond
to the Java CoG for the Globus toolkit. However, Condor
provides Web services interface called Birdbath. This
provides an XML abstraction of the programming interfaces
that can be bound to different languages such as (in our case)
Java. Our Condor beans are built on top of Birdbath Web
services clients. The Birdbath layer allows us to program
Condor capabilities within Java Beans, instead of using
command-line interface.

4. Going Beyond DAGs in GTLAB
We consider in this section strategies for supporting more

complicated workflows than can be represented by DAGs.
Our goal in GTLAB is not to reproduce extensive pre-existing
work in this field but to instead take advantage of it.

DAGs are very useful in case of simple workflows such as
submitting a few tasks in a group. We have added new
features to GTLAB such as the ability to build sub-graphs to
allow partially ordered tasks. Partially ordered tasks can group
the sequence of the tasks based on their dependency. But in
case of enhanced workflows, DAGs are not sufficient. For
example, if a user needs to try and run the simulation many
times with a DAG, the DAG has to maintain loops. If an
application portlet needs to provide dynamic flow control
based on constraints, the DAG has to support conditional
branches. Those features do not exist within DAGs. Thus, a
scientific community has to facilitate these capabilities; they
need to use workflows that cannot be expressed as simple as
DAGs. Directed graphs naturally do not handle this type of

data structures. Our solution for supporting these more
complicated workflows is described in this section.

Figure 2 XML schema of multitask represents a DAG. It shows the

relationship of Grid tags by defining dependency tag in GTLAB.

Workflows are sophisticated flow control mechanisms of
group of tasks. The foundations of Grid workflows are
described in a special issue of Concurrency and Computation
[18]. The tasks could be parallel, sequential, or concurrent.
Workflows can handle loops, branches and conditional
branches. Workflows can be overviewed in three main parts: 1)
Composer, 2) Enactor, and 3) Monitor.

Composer: The composer is an essential part of the
workflow representations. Workflows represent services as
nodes and constraints as edges to the nodes. In this case, the
top node is the starting point and intermediate nodes denote
tasks and local filters. Edges denote dependencies. This
structure could be a graph where nodes correspond to tasks
and edges corresponds to relations. Also direction of the edges
can limit the flow similar to flow charts.

Enactor: An enactor is a workflow engine that process
nodes in the order determined by the composed graph. End
users provide values for workflow inputs. Workflow
processing results in with workflow outputs. An enactor can
pipe inputs to one action that is output of the previous one. An
enactor also maintains constraints, branches, loops and
parallelism.

Monitoring: Monitoring follows up the processing steps. It
also manages lifecycle of the workflow. End users are able to
interrupt the workflow to pause or cancel the execution of the
workflow at each step.

Our strategy for supporting workflows is as follows:
GTLAB framework binds an enactor engine to a ‘submit’
button within a web form on the portal page. Once the button
is clicked by an end user, the enactor engine takes control of
workflow along with the composition document. These
workflow documents are already checked for validity.
Workflow frameworks define their composition rules as
explained in great detail in the next section. Finally, the
engine starts running at the backend to process action steps.

GTLAB monitoring features are listed as status updating,
cancelling, pausing, and resuming the jobs. GTLAB assigns
unique handlers for all submitted workflows within the user
session. These handlers are associated with ‘handler’ tags. The
handler tag utilizes the capabilities of monitoring bean by
using attributes and sub-tags.

5. Taverna Use Case
Taverna is workflow tool for composing and executing

Web Services. Its main target is bioinformatics applications,
but it can in fact be applied to general workflow composition
problems. Taverna includes a graphical user interface
workbench that is used to formulate workflows. The Taverna
workbench solves issues of complexity of the workflows by
providing user friendly interface. The workbench facilitates
diagrammatic and explorer representation of workflows. It
allows users to compose their own workflows or to load
previously designed workflows, such as may be obtained from
a community repository with expert contributors. The
workbench also lists the available resources (e.g. web services)
where the workflows can run. After the resources and enactor
engine types are selected by a user, he or she can start the
workflow and can monitor progression. The user can interrupt
the workflow for cancelling a step or stopping the workflow.

The Taverna workbench relies on XML-based Simple
conceptual unified flow language (Scufl) [19]. Scufl consists
of a network of processors and links. In addition to basic
entities, Scufl also can have input and output nodes and
constraints for processors. The Scufl language primarily is
designed for users who are familiar with web forms and
scripting languages to use web resources. Scufl is practical
and is designed with extensibility features.

Workflow portlet: Generally a workflow portlet should
contain these three major parts: 1) Defining workflow
components and their relationships. 2) Executing the
workflow: in case of Scufl, we use the Freefluo enactor engine.
3) Monitoring execution flow and applying capabilities like
resume, checkpoint, cancel, remove, etc. Typically the first
and third steps are tied to a strong graphical user interface
such as the Taverna workbench.

Building a workflow composition environment with the
graphical user interface features require many visual designs

to accomplish with a success. The Taverna workbench is
already available for composing workflows. Building a
workflow composer out of Taverna is out of GTLAB’s scope.
But we can alternatively provide a text field to compose
workflows in XML (e.g., Scufl) on the portlet page. However
there are two drawbacks of this approach: 1) it is hard to catch
syntax errors when composing a workflow, and 2) the Scufl
document should be validated against Scufl schema. This
process is offline and requires additional efforts. Scufl
composition is out of scope for our current GTLAB work.
However, it is common for Scufl-defined workflows to be
resused and shared between developers, since many scientists
are interested in the same basic workflow.

The workflow portlet application utilizes extended GTLAB
features to submit Scufl workflows. This portlet loads a Scufl
workflow file, collects input values from end users, submits
the workflow on Taverna, and monitors the results inside the
GTLAB session framework.

Figure 3 illustrates the handling of Taverna tags within
GTLAB. In this case, Taverna tags are embedded into JSF
portlet page integrated with a Web form. End users only see
the Web form with a few text fields and submit button. They
never see the Grid tags and JSF tags that build the portlet page.
This is common for all web applications. When the end user
submits a web form through the portlet page, JSF intercepts
this request and calls the associated action methods of Grid
beans. Next, Grid beans load the appropriate Scufl document
and input parameters to Taverna bean. Finally, the bean
method starts execution of the workflow on Taverna enactor.

GTLAB assigns job handlers to each submitted workflow
within the user session so that keeping track of the progression.
In case of Taverna, the handlers synchronize with Taverna
monitoring services to follow the workflow states.

Taverna Security: Taverna generally works in non-secure
environments with Web services that can be used
anonymously. The Taverna workbench uses local filters and
scripts. The main concern of bioinformatics community is to
process massive data by using complicated workflows.
However, security is a critical issue in Grid services that rely
on secure connections.

Supporting Grid services within Taverna is an interesting
approach. Taverna can utilize some services with local clients
such as MyProxy. Although other Grid services already have
Web services interfaces in GT4. These services can be
scavenged to Taverna. Therefore, we are able to manage Grid
services workflows through Taverna.

6. Related Work
In this section we overview three client applications for

workflow frameworks. These are Karajan [20], My Grid
Portal Interface (MPI) portlets [21], and Condor portlets [22].

 Each of these client packages can support workflow
mechanisms through either stand-alone applications or web
applications. These clients are related to our work because

they are supporting similar workflow systems that we support.
In other words, GTLAB also supports the same workflow
systems as client application in tag library level. GTLAB
provides tags and bean modules to workflow services. Thus,
application developers can program these workflows in an
abstract fashion.

JSF XML

Grid tags Scufl document

load scufl
document

JSF Action Taverna bean

Taverna
enactor

execute

execute

submit

load input
parametersextract grid tags

provide input
parametersHTTP

(1)

(3)

(2) (4)

(4)

(5)

Figure 3 A user interacts with a workflow portlet to utilize Taverna enactor.
User provides parameters by submitting a web form that start the chain of

events in order.

The Karajan workflow framework provides access to Grid
services by using an XML-based definition language. Karajan
can be utilized in various platforms. Karajan has its own
parallel and structural language that is adopted for Grid
services needs. Users can define jobs and their lifecycle
management using the Karajan language. Karajan scripts are
run by a Karajan engine, which may be embedded in a
Karajan service. Karajan service is a workflow engine that can
be accessible by several ways such as polling, call-backs, and
persistent data retrieving.

Taverna is a workflow tool for the composition and
execution of Web Services. Its main target is bioinformatics
applications, but it can in fact be applied to general workflow
composition problems. Taverna typically runs within the
Taverna workbench that is a desktop application for
application scientists. It has many graphical interfaces to
compose, launch, and monitor workflows. At the same time it
is not portable as web application.

One attempt to create web application with Taverna is to
create MyGrid Portal interface (MPI) portlets. In this case, the
major concern of scientists is not how to compose a workflow
each time; rather they want to use well-prepared community-
supplied workflows for their own applications. To this end,
MPI is only responsible for executing (rather than composing)
workflows. MPI has a portlet web application to execute and
enact Scufl workflows. MPI loads selected workflow and
dynamic input parameters from the user and execute it. MPI

registers input parameters and results through My Grid
Information Repository (MIR). It also allows the users to
navigate on the execution flow and display results in different
formats like image, xml or text.

Condor DAGMan is a DAG supported workflow
mechanism. The OGCE Condor Job Submission Portlet
enables users to submit batch jobs to remote resources via
Condor using the BirdBath project's SOAP and WSDL
enabled Collector and Scheduler daemons. Condor portlets
allow a user to specify job parameters, submit the job, view
job status information, download output files, and delete old
jobs. These portlets allow end users to connect to any
Birdbath-enabled Condor flock.

7. Conclusions
In this paper, we have evaluated our initial VLab portal

development work, which constructed workflows for Material
Sciences that are based on DAGs. We provided support
Globus toolkit by using Java CoG. Extending this initial work,
we have added support for Condor DAGMan by using
Birdbath services, as described in this paper. We have also
evaluated how to extend our architecture to support more
complicated workflows and have implemented support for
Taverna workflows. This allows us to deploy and manage
more comprehensive workflows using Web services. We have
designed additional Grid tags for Condor DAGMan and
Taverna workflow. In conclusion, we showed that our
GTLAB framework is extensible and applicable to different
types of workflow frameworks.

In future work, we will investigate how to extend GTLAB
with well known workflow frameworks in the Grid
community such as BPEL.

8. Acknowledgment
This work is supported by the National Science

Foundation’s Information Technology Research (NSF grant
ITR-0428774, 0427264, 0426867 VLab) and Middleware
Initiative (NSF Grant 0330613) programs.

9. References
[1] (2007) TeraGrid website. [Online]. Available:

http://www.teragrid.org/

[2] (2007) Open Science Grid. [Online]. Available:
http://www.opensciencegrid.org/

[3] K. K. Droegemeier, V. Chandrasekar, R. Clark, D. Gannon, S. Graves,
E. Joseph, M. Ramamurthy, R. Wilhelmson, K. Brewster, B.
Domenico, “Linked environments for atmospheric discovery (LEAD):
A cyberinfrastructure for mesoscale meteorology research and
education”, 20th Conf. on Interactive Information Processing Systems
for Meteorology, Oceanography, and Hydrology, 2004.

[4] D. Ewa, et al., “Grid-Based Galaxy Morphology Analysis for the
National Virtual Observatory”, in Proceedings of the 2003 ACM/IEEE
conference on Supercomputing. 2003, IEEE Computer Society.

[5] M. A. Nacar, M.S. Aktas, M. Pierce, Z. Lu and G. Erlebacher, D.
Kigelman, E. F. Bollig, C. De Silva, B. Sowell, and D. A. Yuen,
“VLab: Collaborative Grid Services and Portals to Support

Computational Material Science”, Concurrency and Computation:
Practice and Experience, 2007(Special issue on Grid portals).

[6] E.F. Bollig, P. A. Jensen, M. D. Lyness, M. A. Nacar, P. R. da Silveira,
G. Erlebacher, M. Pierce, D. A. Yuen, “VLAB: Web Services, Portlets,
and Workflows for Enabling Cyber-infrastructure in Computational
Mineral Physics”, Physics of The Earth and Planetary Interiors. In
Press, Accepted Manuscript. 2007.

[7] M. A. Nacar, J. Y. Choi, M. E. Pierce, and G. C. Fox. “Building a Grid
Portal for Teragrid’s Big Red”, in Proceedings of TeraGrid 2007, 2007.
Madison, WI.

[8] J. Alameda, M. Christie, G. Fox, J. Futrelle, G. Gannon, M. Hategan, G.
von Laszewski, M. A. Nacar, M. Pierce, E. Roberts, C. Severance, M.
Thomas, G. Kandaswamy, “Open Grid Computing Environments
collaboration: portlets and services for science gateways”, Concurrency
and Computation: Practice and Experience, 2007. 19(6):921-942.

[9] S. Scandolo, P. Giannozzi, C. Cavazzoni, S. de Gironcoli, A.
Pasquarello, S. Baroni, “First-principles codes for computational
crystallography in the Quantum-ESPRESSO package”, Zeitschrift für
Kristallographie, 2005. vol:220: p. 574-579.

[10] F. Harary, Graph Theory. 1994, Reading, MA: Addison-Wesley.

[11] K. Amin, M Hategan, G. von Laszewski, N. J. Zaluzec, “Abstracting
the Grid”, Proceedings of the 12th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, 2004.

[12] M. A. Nacar, M. Pierce, G. Erlebacher, G. Fox, “Designing Grid Tag
Libraries and Grid Beans”, in Second International Workshop on Grid
Computing Environments GCE06 at SC06, 2006, Tampa, FL.

[13] D. Thain, T. Tannenbaum, and M. Livny, Condor and the Grid, Grid
Computing: Making The Global Infrastructure a Reality, A. Hey. F.
Berman, G. Fox, (eds), 2003, John Wiley.

[14] T. Oinn, et al., “Taverna: a tool for the composition and enactment of
bioinformatics workflows”, Bioinformatics, 2004. 20(17): p. 3045-
3054.

[15] C. Chapman, C. Goonatilake, W. Emmerich, M. Farrellee, T.
Tannenbaum, M. Livny, M.Calleja, M. Dove, “Condor Birdbath: Web
Service interfaces to condor”, in Proc. UK e-Science All Hands
Meeting, 2005, Nottingham UK.

[16] R. Johnson, Expert One-On-One J2EE Design and Development. Wrox.
2003, Indianapolis, IN, USA: Wiley Publishing, Inc.

[17] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, “Condor-G: A
Computation Management Agent for Multi-Institutional Grids”,
Cluster Computing, 2002. 5(3): p. 237-246.

[18] G. C. Fox, D. Gannon, “Special Issue: Workflow in Grid Systems”,
Concurrency and Computation: Practice and Experience, 2006. 18(10):
p. 1009-1019.

[19] T. Oinn, et al., “Delivering web service coordination capability to
users”, in Proceedings of the 13th international World Wide Web
conference on Alternate track papers and posters, 2004, ACM Press:
New York, NY, USA.

[20] G. von Laszewski, M.Hategan, D. Kodeboyina, “Work Coordination
for Grid Computing”, 2007, Available:
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-work-
coordination.pdf

[21] S. R. Egglestone, M.N. Alpdemir, C. Greenhalgh , A. Mukherjee, I.
Roberts, “A portal interface to myGrid workflow technology”, 2005,
UK e-Science All Hands Meeting.

[22] D. Gannon, L. Fang, G. Kandaswamy, D. Kodeboyina, S. Krishnan, B.
Plale, A. Slominski, “Building grid applications and portals: an
approach based on components, Web services and workflow tools”,
2004, in Proceedings of 10th International Euro-Par Conference
(Lecture Notes in Comput. Sci. Vol.3149

