
Scalable, Fault-tolerant Management in a Service
Oriented Architecture

Harshawardhan Gadgil Geoffrey Fox Shrideep Pallickara
Community Grids Lab, Indiana University

Suite 224, 501 N. Morton St. Bloomington IN 47404
+1 (812) 856-0756

hgadgil@indiana.edu
+1 (812) 856-7977
gcf@indiana.edu

+1 (812) 856-1311
spallick@indiana.edu

ABSTRACT
The service-oriented architecture has come a long way in
solving the problem of reusability of existing software
resources. Grid applications today are composed of a large
number of loosely coupled services. While this has opened up
new avenues for building large, complex applications, it has
made the management of the application components a non-
trivial task. Management is further complicated when services
exist on different platforms, are written in different languages,
present in varying administrative domains restricted by
firewalls and are susceptible to failure. This paper investigates
problems that emerge when there is a need to uniformly
manage a set of distributed services. We present a scalable,
fault-tolerant management framework. Our empirical
evaluation shows that the architecture adds an acceptable
number of additional resources making the approach feasible.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems – Design Studies, Performance Attributes

General Terms
Design, Performance

Keywords
Scalable, Fault-tolerance, Service Oriented Architecture,
Web Services

1. INTRODUCTION
This Service Oriented Architecture (SOA) [3] delivers
unprecedented flexibility and cost savings by promoting
reuse of software components. This has opened new avenues
for building large complex distributed applications by loosely
coupling interacting software services.

A distributed application benefits from properly managed
(configured, deployed and monitored) services. However the
various technologies used to deploy, configure, secure,
monitor and control distributed services have evolved
independently. This complicates application implementation
by requiring the use of different proprietary technologies for
managing different types of resources. Management is further
complicated due to presence of firewalls and network address
translation devices that restrict access to resources. As size of
application increases in terms of hardware and software
components and geographical scale, it is certain that some
parts of application will fail. Using a central management

system to manage large number of widely distributed
resources poses problems related to scalability and
vulnerability to a single point of failure of the management
framework itself.

These factors motivate the need for a distributed management
infrastructure. We envisage a generic management
framework that is capable of managing any type of resource.
By implementing interoperable management protocols we
can effectively integrate existing management systems.
Finally the management framework must be scale to manage
a large number of distributed resources and also be tolerant to
failures within the management framework itself.

Consider a digital entity that can be controlled by zero or
modest state that can be exchanged using very few messages.
Digital entities can bootstrap and control components such as
services with much higher state. We consider the
combination of the digital entity and the component as a
manageable resource. An example of such a manageable
resource is a broker in messaging system [4]. We assume that
this digital entity (implicitly or explicitly) has appropriate
Web Service interfaces for management purposes.

We limit the scope of management to appropriately
configuring and deploying resources / services while
maintaining a valid run-time configuration according to some
user-defined criteria.

2. ARCHITECTURE
Our approach uses intrinsically robust and scalable
management services and relies only on the existence of a
reliable, scalable database to store system state comprising of
user defined configuration and policies. Resources are
wrapped with a Service Adapter to provide the necessary
Web Service interface for management purposes.

A hierarchical system comprised of statically configured
bootstrap services is used to scale the framework to wide area
deployments. These services periodically spawn a health
check routine that ensures that the management framework
components (Ref. Figure 1) are always up and running. To
provide transport independent communication we leverage a
publish/subscribe based distributed messaging system such
as NaradaBrokering [9]. Further, NaradaBrokering can also
be used to enable secure delivery of messages [10].

Finally, management of resources is done by active stateless
agents called managers. A resource specific management
component is employed to deal with resource specific
management operations. We have implemented manager –

Copyright is held by the author/owner(s).
HPDC’07, June 25–29, 2007, Monterey, California, USA.
ACM 978-1-59593-673-8/07/0006.

resource interactions using WS-Management. To maintain
consistency, the registry is used to generate a monotonically
increasing unique instance id for every new instance of
registered service. Every message exchange is tagged using a
message id that comprises of the sender’s instance id and a
sequence number. This allows the recipient to detect and
ignore duplicate, invalid or obsolete messages.

Figure 1 Framework Components

Finally, we compute the percentage of additional
infrastructure required to manage N resources. Empirical
analysis [5] shows that as the number of manageable
resources increases, fault-tolerant management of resources
can be achieved by adding about 1% additional resources
which correspond to management framework components.
This makes the proposed framework feasible.

3. RELATED WORK
The Web Services Resource Framework (WSRF) is a suite of
specifications that align the OSGI conceptual model to be in
agreement with existing Web standards. The WSRF adopted
Web Services Distributed Management (WSDM) for
managing state in distributed system. By contrast, we define
any service that needs configuration, lifecycle and runtime
management as a resource and wrap it with a service
interface to expose management capabilities. Management is
provided by a complementary specification, WS-
Management [1] which is a SOAP-based protocol for
managing systems (including Web Services). SNMP (Simple
Network Management Protocol) [2] is an application layer
protocol that facilitates exchange of management information
between network devices. Lack of security features however
reduces SNMP to a monitoring facility only. There are a
variety of distributed monitoring frameworks such as Ganglia
[7], Network Weather Service [11] and MonALISA [8]
whose primary purpose is to provide monitoring of global
Grid systems and aggregation of metrics. Some systems
such as MonALISA also provide the capability of
configuring and managing services via RMI. In the Java
community, the JMX [6] technology provides tools for
building distributed, Web-based management system for
managing and monitoring Java applications, devices and
service driven networks.

4. CONCLUSION AND FUTURE WORK
We have presented the need and our approach to uniformly
manage a set of distributed services. Use of WS-Management
helps us to make the management interactions interoperable.
The system is tolerant to faults within the management
framework while resource failure is handled by
implementing user-defined policies. When applied to
resources with modest external state, the approach is feasible
since it adds about 1% additional resources to provide fault-
tolerant management to a large set of distributed resources.

In the future we would like to apply the framework to
broader areas that would help carry out more detailed
performance benchmarks tests. We believe that application of
management framework to such systems can bring up many
interesting research issues, specifically challenging
scalability of the system.

5. REFERENCES
[1] Arora, A., Cohen, J., Davis, J., Dutch, M. and et.al.

Web Services for Management, June 2005.
[2] Case, J., Fedor, M., Schoffstall, M. and Davin, J. A

Simple Network Management Protocol (SNMP), 1990.
[3] Channabasavaiah, K., Holley, K. and Edward Tuggle,

J. Migrating to a Service Oriented Architecture, Dec
2003.

[4] Gadgil, H., Fox, G., Pallickara, S. and Pierce, M.,
Managing Grid Messaging Middleware. in Challenges
of Large Applications in Distributed Environments
(CLADE), (Paris, France, 2006), 83 - 91.

[5] Gadgil, H., Fox, G., Pallickara, S. and Pierce, M.
Scalable, Fault-tolerant Management in a Service
Oriented Architecture, 2007, CGL Technical Report,
http://grids.ucs.indiana.edu/ptliupages/publications.

[6] Kreger, H. Java Management Extensions for
application management. IBM Systems Journal, 40 (1).

[7] Massie, M., Chun, B. and Culler, D. The Ganglia
Distributed Monitoring System: Design,
Implementation and Experience. Parallel Computing,
30 (7).

[8] Newman, H.B., Legrand, I.C., Glavez, P., Voicu, P.
and Cirstoiu, C., MonALISA: A Distributed
Monitoring Services Architecture. in CHEP 2003, (La
Jola, CA, March 2003).

[9] Pallickara, S. and Fox, G., NaradaBrokering: A
Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. in ACM/IFIP/USENIX
International Middleware Conference, (2003).

[10] Pallickara, S., Pierce, M., Gadgil, H., Fox, G., Yan, Y.
and Huang, Y., A Framwork for Secure End-to-End
Delivery of Messages in Publish / Subscribe Systems.
in 7th IEEE/ACM International Conference on Grid
Computing (Grid 2006), (Barcelona, Spain, 2006).

[11] Wolski, R., Forecasting Network Performance to
Support Dynamic Scheduling using the Network
Weather Service. in High Performance Distributed
Computing (HPDC), (1997), 316 - 325.

Author: Marlon Pierce
Community Grids Lab, Indiana University
+1(812) 856-1212
mpierce@cs.indiana.edu

http://grids.ucs.indiana.edu/ptliupages/publications

	1. INTRODUCTION
	2. ARCHITECTURE
	3. RELATED WORK
	4. CONCLUSION AND FUTURE WORK
	REFERENCES

