
Visualization of Large High-Dimensional Data
via Interpolation Approach of Multidimensional Scaling

Seung-Hee Baea,∗, Judy Qiua,b, Geoffrey Foxa,b

aPervasive Technology Institute at Indiana University, 2719 E. 10th St., Bloomington, IN, 47408, United States
bSchool of Informatics and Computing at Indiana University, 901 E. 10th St., Bloomington, IN, 47408, United States

Abstract

The recent explosion of publicly available biology gene sequences and chemical compounds offers an unprecedented opportunity
for data mining. To make data analysis feasible for such vastvolume and high-dimensional scientific data, we can apply high
performance dimension reduction algorithms. Among the known dimension reduction algorithms, we utilize the multidimensional
scaling (MDS) algorithm to configure the given high-dimensional data into the target dimension. However, the MDS algorithm
requires a quadratic order of memory as well as computing resources, and it is usually infeasible to deal with millions ofpoints
via normal MDS method even under a commodity distributed-memory cluster system. Thus, the authors propose a method of
interpolation to utilizing the mapping of only a small subset of the given data. This approach effectively reduces computational
complexity. With minor trade-off of approximation, interpolation method makes it possible to process millions of data points with
modest amounts of computation and memory requirement. Since huge amount of data are dealt, we represent how to parallelize
the proposed MDS interpolation algorithm, as well. For the evaluation of the interpolated MDS by STRESS criteria, it is necessary
to compute symmetric all pairwise computation with only subset of required data per process, so we also propose a simple but
efficient parallel mechanism for the symmetric all pairwise computation when only a subset of data is available to each process.
Our experimental results illustrate that the quality of interpolated mapping results are comparable to the mapping results of original
algorithm only. In parallel performance aspect, those interpolation methods are well parallelized with high efficiency. With the
proposed MDS interpolation method, we construct a configuration of four-millionout-of-sample data into the target dimension, and
the number ofout-of-sample data can be increased further.

Keywords: Multidimensional Scaling, Interpolation, Dimension Reduction, Data Visualization

1. Introduction

Due to the advancements in science and technology over the
last several decades, every scientific and technical field has gen-
erated a huge amount of data as time has passed in the world.
We are really in the era of data deluge. In reflecting on the data
deluge era, data-intensive scientific computing [1] has emerged
in the scientific computing fields and it has been attracting more
by many people. To analyze those incredible amount of data,
many data mining and machine learning algorithms have been
developed. Among the many data mining and machine learn-
ing algorithms that have been invented, we focus on dimension
reduction algorithms, which reduce data dimensionality from
original high dimension to target dimension, in this paper.

Among the many dimension reduction algorithms which
exist, such as principle component analysis (PCA), genera-
tive topographic mapping (GTM) [2, 3], self-organizing map
(SOM) [4], multidimensional scaling (MDS) [5, 6], we have
worked on MDS for this paper. Previously, we parallelize the
MDS algorithm to utilize multicore clusters and to increasethe

∗Corresponding author
Email addresses: sebae@umail.iu.edu (Seung-Hee Bae),

xqiu@indiana.edu (Judy Qiu),gcf@indiana.edu (Geoffrey Fox)

computational capability with minimal overhead for the pur-
pose of investigating large data, such as 100000 (100k) data[7].
However, parallelization of an MDS algorithm, whose com-
putational complexity and memory requirement is uptoO(N2)
whereN is the number of points, is still limited by the memory
requirement for huge data, e.g. millions of points, although it
utilizes distributed memory environments, such as clusters, for
acquiring more memory and computational resources. In this
paper, we try to solve the memory-bound problem by applying
an interpolation method based on pre-configured mappings of
the sample data for the MDS algorithm, so that we can provide
configuration of millions of points in the target space.

This paper is an extended version of the MDS interpolation
part in [8], and this paper illustrates much more detailed exper-
imental investigations and analyses of the proposed MDS inter-
polation. 1 This paper is organized as follows. First we will
briefly discuss existing methods ofout-of-sample problem in
various dimension reduction algorithms and the concept of the
multidimensional scaling (MDS) in Section 2 and Section 3,
repectively. Then, the proposed interpolation method and how

1An earlier version of this paper was presented at the 19th ACMInterna-
tional Simposium on High Performance Distributed Computing (HPDC 2010),
and was published in its proceedings.

Preprint submitted to Future Generation Computer Systems May 11, 2012

to parallelize it are described in Section 4. Various experimental
analyses, which are related to the proposed MDS interpolation
algorithm, are shown in Section 5, followed by our conclusion
and future work in Section 6.

2. Related Work

The out-of-sample method, which embeds new points with
respect to previously configured points, has been actively re-
searched for recent years, and it aims at improving the capa-
bility of dimension reduction algorithms by reducing the com-
putational and memory-wide requirement with the trade-off of
slightly approximated mapping results.

In a sensor network localization field, when there are only
a subset of pairwise distances between sensors and a subset
of anchor locations are available, people try to find out the
locations of the remaining sensors. For instance, the semi-
definite programming relaxation approaches and its extended
approaches has been proposed to solve this issue [9]. [10] and
[11] proposed out-of-sample extension for the classical mul-
tidimensional scaling (CMDS) [12], which is based on spec-
tral decomposition of a symmetric positive semidefinite matrix
(or the approximation of positive semidefinite matrix), andthe
embeddings in the configured space are represented in terms
of eigenvalues and eigenvectors of it. [10] projected the new
point x onto the principal components, and [11] extends the
CMDS algorithm itself to the out-of-sample problem. In [11],
the authors described how to embed one point between the em-
beddings of the originaln objects through modification of the
original CMDS equations, which preserves the mappings of the
original n objects, with (n + 1) × (n + 1) matrix A2 instead of
n × n matrix∆2, and extends to embedding a number of points
simultaneously by using matrix operations. Recently, a multi-
level force-based MDS algorithm was proposed as well [13].

In contrast to applying the out-of-sample problem to CMDS,
I extend the out-of-sample problem to general MDS results with
the STRESS criteria of Eq. (1), which finds embeddings of ap-
proximating to the distance (or dissimilarity) rather thanthe in-
ner product as in CMDS, with an gradient descent optimization
method, called iterative majorizing. The proposed iterative ma-
jorizing interpolation approach for the MDS problem will be
explained in Section 4.

3. Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) [12, 5, 6] is a general term
that refers to techniques for constructing a map of generally
high-dimensional data into a target dimension (typically alow
dimension) with respect to the given pairwise proximity infor-
mation. Mostly, MDS is used to visualize given high dimen-
sional data or abstract data by generating a configuration ofthe
given data which utilizes Euclidean low-dimensional space, i.e.
two-dimension or three-dimension.

Generally, proximity information, which is represented asan
N×N dissimilarity matrix (∆ = [δi j]), whereN is the number of
points (objects) andδi j is the dissimilarity between pointi and

j, is given for the MDS problem, and the dissimilarity matrix
(∆) should agree with the following constraints: (1) symmetric-
ity (δi j = δ ji), (2) nonnegativity (δi j ≥ 0), and (3) zero diag-
onal elements (δii = 0). The objective of the MDS technique
is to construct a configuration of a given high-dimensional data
into low-dimensional Euclidean space, where each distancebe-
tween a pair of points in the configuration is approximated to
the corresponding dissimilarity value as much as possible.The
output of MDS algorithms could be represented as anN × L
configuration matrixX, whose rows represent each data point
xi (i = 1, . . . ,N) in L-dimensional space. It is quite straightfor-
ward to compute the Euclidean distance betweenxi and x j in
the configuration matrixX, i.e. di j(X) = ‖xi − x j‖, and we are
able to evaluate how well the given points are configured in the
L-dimensional space by using the suggested objective functions
of MDS, called STRESS [14] or SSTRESS [15]. Definitions of
STRESS (1) and SSTRESS (2) are following:

σ(X) =
∑

i< j≤N

wi j(di j(X) − δi j)
2 (1)

σ2(X) =
∑

i< j≤N

wi j[(di j(X))2 − (δi j)2]2 (2)

where 1≤ i < j ≤ N andwi j is a weight value, sowi j ≥ 0.
As shown in the STRESS and SSTRESS functions, the MDS

problems could be considered to be non-linear optimization
problems, which minimizes the STRESS or the SSTRESS func-
tion in the process of configuring anL-dimensional mapping of
the high-dimensional data.

4. Majorizing Interpolation MDS

One of the main limitation of most MDS applications is
that they requireO(N2) memory as well asO(N2) computa-
tion. Thus, though it is possible to run them with a small
data size without any trouble, it is impossible to execute
them with a large number of points due to memory limita-
tion; therefore, this challenge could be considered as being a
memory-bound problem as well as a computing-bound prob-
lem. For instance, Scaling by MAjorizing of COmplicated
Function (SMACOF) [16, 17], a well-known MDS application
via Expectation-Maximization (EM) [18] approach, uses six
N×N matrices. IfN = 100, 000, then oneN×N matrix of 8-byte
double-precision numbers requires 80 GB of main memory, so
the algorithm needs to acquire at least 480 GB of memory to
store these sixN × N matrices. It is possible to run a parallel
version of SMACOF with MPI inCluster-II in Table 1 with
N = 100, 000. If the data size is increased only twice, however,
then the SMACOF algorithm should have 1.92 TB of memory,
which is bigger than the total memory ofCluster-II in Table 1
(1.536 TB), so it is impossible to run it effectively within the
cluster. Increasing memory size will not be a solution, even
though it could increase the runnable number of points. It will
encounter the same problem as the data size increases.

To solve this obstacle, we develop a simple interpolation ap-
proach based on pre-mapped MDS result of the sample of the

2

given data. Our interpolation algorithm is similar to thek near-
est neighbor (k-NN) classification [19], but we approximate a
new mapping position of the new point based on the positions
of k-NN, among pre-mapped subset data, instead of classifying
it. For the purpose of deciding a new mapping position in rela-
tion to thek-NN positions, the iterative majorization method
is applied as in the SMACOF [16, 17] algorithm. The de-
tails of mathematical majorization equations for the proposed
out-of-sample MDS algorithm is shown below. The algorithm
proposed in this paper is called Majorizing Interpolation MDS
(hereafterMI-MDS).

The proposed algorithm is implemented as follows. We are
given N data in a high-dimensional space, sayD-dimension,
and proximity information (∆ = [δi j]) of those data as in Sec-
tion 3. AmongN data, the configuration of then sample points
in L-dimensional space,x1, . . . , xn ∈ R

L, calledX, are already
constructed by an MDS algorithm; here we use the SMACOF
algorithm. Then, we selectk nearest neighbors (p1, . . . , pk ∈ P)
of the given new point, amongn pre-mapped points with respect
to correspondingδix, wherex represents the new point. I use a
linear search to find thek-nearest neighbors amongn-sampled
data, so that the complexity of finding thek-nearest neighbors is
O(n) per one interpolated point (herex). Finally, the new map-
ping of the given new pointx ∈ R

L is calculated based on the
pre-mapped position of the selectedk-NN and the correspond-
ing proximity informationδix. The finding new mapping posi-
tion is considered as a minimization problem of STRESS (3) as
similar as normal MDS problem withm points, wherem = k+1.
However, only one pointx is movable amongm points, so we
can simplify the STRESS equation (3) as follows (Eq. (4)), and
we setwi j = 1, for∀i, j in order to simplify.

σ(X) =
∑

i< j≤m

(di j(X) − δi j)2 (3)

= C +

k∑

i=1

d2
ix − 2

k∑

i=1

δixdix (4)

whereδix is the original dissimilarity value betweenpi and x,
dix is the Euclidean distance inL-dimension betweenpi andx,
andC represents a constant part. The second term of Eq. (4)
can be deployed as following:

k∑

i=1

d2
ix = ‖x − p1‖

2 + · · · + ‖x − pk‖
2 (5)

= k‖x‖2 +
k∑

i=1

‖pi‖
2 − 2xt q (6)

whereqt = (
∑k

i=1 pi1, . . . ,
∑k

i=1 piL) and pi j representsj-th ele-
ment ofpi. In order to establish majorizing inequality, we apply
Cauchy-Schwarz inequality to−dix of the third term of Eq. (4).
Please, refer to chapter 8 in [6] for details of how to apply the
Cauchy-Schwarz inequality to−dix. Sincedix = ‖pi − x‖, −dix

could have following inequality based onCauchy-Schwarz in-
equality:

−dix ≤

∑L
a=1(pia − xa)(pia − za)

diz
(7)

=
(pi − x)t(pi − z)

diz
(8)

wherezt = (zi, . . . , zL) anddiz = ‖pi− z‖. The equality in Eq. (7)
occurs ifx andz are equal. If we apply Eq. (8) to the third term
of Eq. (4), then we obtain

−

k∑

i=1

δixdix ≤ −

k∑

i=1

δix

diz
(pi − x)t(pi − z) (9)

= −xt
k∑

i=1

δix

diz
(z − pi) + Cρ (10)

whereCρ is a constant. If Eq. (6) and Eq. (10) are applied to
Eq. (4), then it could be like following:

σ(X) = C +
k∑

i=1

d2
ix − 2

k∑

i=1

δixdix (11)

≤ C + k‖x‖2 − 2xt q +
k∑

i=1

‖pi‖
2

− 2xt
k∑

i=1

δix

diz
(z − pi) + Cρ (12)

= τ(x, z) (13)

where bothC andCρ are constants. In the Eq. (13),τ(x, z),
a quadratic function ofx, is a majorization function of the
STRESS. Through setting the derivative ofτ(x, z) equal to zero,
we can obtain a minimum of it; that is

∇τ(x, z) = 2kx − 2q − 2
k∑

i=1

δix

diz
(z − pi) = 0 (14)

x =
q +
∑k

i=1
δix
diz

(z − pi)

k
(15)

whereqt = (
∑k

i=1 pi1, . . . ,
∑k

i=1 piL), pi j representsj-th element
of pi, andk is the number of the nearest neighbors that we se-
lected.

The advantage of the iterative majorization algorithm is that
it produces a series of mappings with non-increasing STRESS
values as proceeds, which results in local minima. It is good
enough to find local minima, since the proposed MI-MDS algo-
rithm simplifies the complicated non-linear optimization prob-
lem as a small non-linear optimization problem, such ask + 1
points non-linear optimization problem, wherek ≪ N. Finally,
if we substitutez with x[t−1] in Eq. (15), then we generate an
iterative majorizing equation like the following:

3

x[t] =
q +
∑k

i=1
δix
diz

(x[t−1] − pi)

k
(16)

x[t] = p+
1
k

k∑

i=1

δix

diz
(x[t−1] − pi) (17)

wherediz = ‖pi − x[t−1]‖ and p is the average ofk-NN’s map-
ping results. Eq. (17) is an iterative equation used to embed
newly added point into target-dimensional space, based on pre-
mapped positions ofk-NN. The iteration stop condition is es-
sentially the same as that of the SMACOF algorithm, which is

∆σ(S[t]) = σ(S[t−1]) − σ(S[t]) < ε, (18)

whereS = P ∪ {x} andε is the given threshold value.
The time complexity of the proposed MI-MDS algorithm to

find the mapping of one interpolated point isO(k) on the basis
of Eq. (17), if we assume that the number of iterations of finding
one interpolated mapping is very small. Since finding nearest
neighbors takesO(n) and mapping via MI-MDS requiresO(k)
for one interpolated point, the overall time complexity to find
mappings of overall out-of-sample points (N-n points) via the
proposed MI-MDS algorithm isO(kn(N − n)) ≈ O(n(N − n)),
due to the fact thatk is usually negligible compared ton or N.

The process of the overall out-of-sample MDS with a large
dataset could be summarized by the following steps: (1) Sam-
pling; (2) Running MDS with sample data; and (3) Interpolat-
ing the remain data points based on the mapping results of the
sample data.

Alg. 1 describes the summary of the proposed MI-MDS al-
gorithm for interpolation of a new data, sayx, in relation to
pre-mapping result of the sample data. Note that the algorithm
usesp as an initial mapping of the new pointx[0] unless initial-
ization with p makesdix = 0, since the mapping is based on
thek-NN. p makesdix = 0, if and only if all the mapping posi-
tions of thek-NNs are on the same position. Ifp makesdix = 0
(i = 1, . . . , k), then we generate a random variation from thep
point with the average distance ofδix as an initial position of
x[0] .

4.1. Parallel MI-MDS Algorithm
Suppose that, amongN points, the mapping results ofn sam-

ple points in the target dimension, sayL-dimension, are given
so that we could use those pre-mapped results ofn points via
MI-MDS algorithm which is described above to embed the re-
maining points (M = N − n). Though interpolation approach is
much faster than full running MDS algorithm, i.e.O(Mn + n2)
vs. O(N2), implementing parallel MI-MDS algorithm is essen-
tial, sinceM can be still huge, like millions. In addition, most
of clusters are now in forms of multicore-clusters after thein-
vention of the multicore-chip, so we are using hybrid-model
parallelism, which combine processes and threads togetheras
used in [20, 1].

In contrast to the original MDS algorithm in which the
mapping of a point is influenced by the other points, inter-
polated points are totally independent one another, exceptse-
lectedk-NN in the MI-MDS algorithm, and the independency

Algorithm 1 Majorizing Interpolation MDS (MI-MDS) algo-
rithm

1: Find k-NN: find k nearest neighbors ofx, pi ∈ P i =
1, . . . , k of the given new data based on original dissimi-
larity δix.

2: Gather mapping results in target dimension of thek-NN.
3: Calculatep, the average of pre-mapped results ofpi ∈ P.
4: Generate initial mapping ofx, calledx[0] , eitherp or a ran-

dom variation fromp point.
5: Computeσ(S[0]), whereS[0] = P ∪ {x[0]}.

6: while t = 0 or (∆σ(S[t]) > ε andt ≤MAX ITER) do
7: increaset by one.
8: Computex[t] by Eq. (17).
9: Computeσ(S[t]).

10: end while

11: return x[t] ;

of among interpolated points makes the MI-MDS algorithm to
be pleasingly-parallel. In other words, there must be minimum
communication overhead. Also, load-balance can be achieved
by using modular calculation to assign interpolated pointsto
each parallel unit, either between processes or between threads,
as the number of assigned points are different at most one.

4.2. Parallel Pairwise Computation Method with Subset of
Data

p1

p5

p4

p3

p2

p5p4p3p2p1

p1

p2

p3

p4

p5p1

p2

p3

p4

p5

Figure 1: Message passing pattern and parallel symmetric pairwise computa-
tion for calculating STRESS value of whole mapping results.

Although interpolation approach itself is inO(Mn), if we
want to evaluate the quality of the interpolated results by
STRESS criteria of Eq. (1) of overallN points, it requiresO(N2)
computation. Note that we implement our hybrid-parallel MI-
MDS algorithm as each process has access to only a subset of
M interpolated points, without loss of generalityM/p points, as

4

well as the information of all pre-mappedn points. It is natu-
ral way of using a distributed-memory system, such as cluster
systems, to access only a subset of huge data which spread to
over the clusters, so that each process needs to communicate
each other for the purpose of accessing all the necessary data to
compute STRESS.

In this section, we illustrate how to calculate symmetric pair-
wise computation efficiently in parallel with the case that only
a subset of data is available for each process. In fact, gen-
eral MDS algorithms utilize pairwise dissimilarity information,
but suppose we are givenN original vectors inD-dimension,
yi, . . . , yN ∈ Y and yi ∈ R

D, instead of a given dissimilarity
matrix, as PubChem finger print data that we used for our ex-
periments. Thus, in order to calculate the distance in original
D-dimensionδi j = ‖yi − y j‖ in Eq. (1), it is necessary to com-
municate messages between each process to get the required
original vector, sayyi andy j. Here, we used the proposed pair-
wise computation method to measure the STRESS criteria of
MDS problem in Eq. (1), but the proposed parallel pairwise
computation method will be used efficiently for general parallel
pairwise computation whose computing components are inde-
pendent, such as generating a distance (or dissimilarity) matrix
of all data, under the condition that each process can access
only a subset of the required data.

Fig. 1 describes the proposed scheme when the number of
processes (p) is 5, odd numbers. The proposed scheme is an
iterative two-step approach, (1) rolling and (2) computing, and
the iteration number is⌈(1 + · · · + p − 1)/p⌉ = ⌈(p − 1)/2⌉.
Note that iteration ZERO is calculating the upper triangular part
of the corresponding diagonal block, which does not requires
message passing. After iteration ZERO is done, each process
pi sends the originally assigned data block to the previous pro-
cesspi−1 and receives a data block from the next processpi+1 in
cyclic way. For instance, processp0 sends its own block to pro-
cesspp−1, and receives a block from processp1. This rolling
message passing can be done using one single MPI primitive
per process,MPI_SENDRECV(), which is efficient. After send-
ing and receiving messages, each process performs currently
available pairwise computing block with respect to receiving
data and originally assigned block. In Fig. 1, black solid ar-
rows represent each message passings at iteration 1, and orange
blocks with process ID are the calculated blocks by the cor-
responding named process at iteration 1. From iteration 2 to
iteration⌈(p − 1)/2⌉, the above two-steps are done repeatedly
and the only difference is nothing but sending a received data
block instead of the originally assigned data block. The green
blocks and dotted blue arrows show iteration 2 which is the last
iteration for the case ofp = 5.

Also, for the case that the number of processes is even, the
above two-step scheme works in high efficiency. The only dif-
ference between the odd number case and the even number case
is that two processes are assigned to one block at the last it-
eration of even number case, but not in an odd number case.
Though two processes are assigned to a single block, it is easy
to achieve load balance by dividing two sections of the block
and assigning them to each process. Therefore, both odd num-
ber process and even number process cases are parallelized well

Algorithm 2 Parallel Pairwise Computation
1: input: Y = a subset of data;
2: input: p = the number of process;
3: rank ⇐ the rank of process;
4: sendTo⇐ (rank − 1) mod p
5: recvFrom⇐ (rank + 1) mod p
6: k ⇐ 0;
7: Compute upper triangle in the diagonal blocks in Fig. 1;
8: MAX IT ER⇐ ⌈(p − 1)/2⌉

9: while k < MAX IT ER do
10: k ⇐ k + 1;
11: if k = 1 then
12: MPI_SENDRECV(Y, sendTo,Yr, recvFrom);
13: else
14: Y s ⇐ Yr;
15: MPI_SENDRECV(Ys, sendTo,Yr, recvFrom);
16: end if

17: Do Computation();
18: end while

using the above rolling-computing scheme, with minimal mes-
sage passing overhead. The summary of the above parallel pair-
wise computation is shown in Alg. 2.

5. Analysis of Experimental Results

To measure the quality and parallel performance of the pro-
posed MDS interpolation (MI-MDS) approach discussed in this
paper, we have used 166-dimensional chemical dataset obtained
from the PubChem project database2, which is an NIH-funded
repository for over 60 million chemical molecules and provides
their chemical structures and biological activities, for the pur-
pose of chemical information mining and exploration. In this
paper we have used observations which consist of randomly se-
lected up to 4 million chemical subsets for our testing. The
computing cluster systems we have used in our experiments are
summarized in Table 1.

In the following, we will mainly show: i) exploration of the
optimal number of nearest neighbors; ii) the quality of the pro-
posed MI-MDS interpolation approach in performing MDS al-
gorithms, with respect to various sample sizes – 12500 (12.5k),
25000 (25k), and 50000 (50k) randomly selected from 100000
(100k) dataset as a basis – as well as the mapping results of
large-scale data, i.e. up to 4 million points; and iii) parallel
performance measurements of our parallelized interpolation al-
gorithms on our clustering systems as listed in Table 1; and
finally, iv) our results on processing up to 4 million MDS maps
based on the trained result from 100k dataset.

5.1. Exploration of optimal number of nearest neighbors

Generally, the quality ofk-NN (k-nearest neighbor) classifi-
cation (or regression) is related to the number of neighbors. For

2PubChem,http://pubchem.ncbi.nlm.nih.gov/

5

Table 1: Compute cluster systems used for the performance analysis

Features Cluster-I Cluster-II

Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

CPU / # Cores per node 4 / 16 4/ 24

Total Cores 128 768

Memory per node 16 GB 48 GB

Network Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit

Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit

The number of nearest neighbors (k)

S
T

R
E

S
S

0.06

0.08

0.10

0.12

0.14

0.16

5 10 15 20

Algorithm

INTP

Figure 2: Quality comparison between interpolated result of 100k with respect
to the number of nearest neighbors (k) with 50k sample and 50k out-of-sample
result.

instance, if we choose a larger number for thek, then the al-
gorithm shows a higher bias but lower variance. On the other
hands, thek-NN algorithm shows a lower bias but a higher vari-
ance based on a smaller number of neighbors. For the case ofk-
NN classification, the optimal number of nearest neighbors (k)
can be determined by theN-fold cross validation method [21]
or leave-one-out cross validation method, and usually ak value
that minimizes the cross validation error is picked.

Although we cannot use the N-fold cross validation method
to decide the optimalk value of the proposed MI-MDS algo-
rithm, we can compare the mapping results with respect tok
value based on STRESS value. In order to explore the optimal
number of nearest neighbors, we experimented with the MI-
MDS algorithm with differentk values, i.e. 2≤ k ≤ 20 with
100k pubchem data.

Fig. 2 shows the comparison of mapping quality between
the MI-MDS results of 100k data with 50k sample data size in
terms of differentk values. The y-axis of the plot is thenormal-
ized STRESS value which is divided by

∑
i< j δ

2
i j. The normal-

ized STRESS value is equal to ONE when all the mapping is
at the same position, in that the normalized STRESS value de-
notes the relative portion of the squared distance error rates of
the given data set without regard to various scales ofδi j due to
data difference. The equation of normalized STRESS is shown
in Eq. (19) below.

σ(X) =
∑

i< j≤N

1∑
i< j δ

2
i j

(di j(X) − δi j)
2 (19)

Fig. 2 shows an interesting result that the optimal number
of nearest neighbors is ‘two’ rather than larger values. Also,
the normalized STRESS value is statically increased ask is in-
creased, whenk = 5 and larger, and the normalized STRESS
value of MI-MDS results with 20-NN is almost double of that
with 2-NN.

Before we analyze the optimal number of nearest neighbors
for the proposed MI-MDS method with the given Pubchem
dataset, I would like to mention how the proposed MI-MDS
solves the mapping ambiguity problem whenk = 2, 3 for three
dimensional target space. When the target dimension is 3D
space, logically, the optimal position of the interpolatedpoints
can be in a circle ifk = 2, and the optimal position of the inter-
polated points can be at two symmetric positions with respect
to the face contains all three nearest neighbors, in the caseof
k = 3. The derivative MI-MDS equation in Eq. (17), however,
constrains the interpolation space corresponding to the num-
ber of nearest neighbors, by setting the initial position asthe
average of the mappings of nearest neighbors. In the case of
k = 2, the interpolation space is constructed as a line (l) which
includes the mapping positions of the two nearest neighbors,
when the initial mapping of the interpolation is the center of
nearest neighbors (p). Similarly, the possible mapping posi-
tion of the interpolated point is constrained within the Face (F)
when it contains the three nearest neighbors whenk = 3.

Fig. 3-(a) and (b) illustrate the constrained interpolation
space in case ofk = 2 and 3, correspondingly. In Fig. 3,x0

represents the initial mapping position of the interpolated point
which is the same asp andvi (i = 1, 2 or 3) is the vector repre-
sentation ofxc− pi, wherexc is the current mapping position of
the interpolated point andpi is the mapping position in target
dimension of nearest neighbors. Note thatx0 (= p) is on the
line l whenk = 2 and on the faceF whenk = 3. If v1 andv2

6

O

v1

v2

l

p1

p2

x0

(a) k= 2

O

v1

v2

F

p1

p2

xo

p3

v3

(b) k = 3

Figure 3: The illustration of the constrained interpolation space whenk = 2 or k = 3 by initialization at the center of the mappings of the nearest neighbors.

are on the same linel, αv1 + βv2 is also on the same linel. Sim-
ilarly, if v1, v2, andv3 are on the same FaceF, αv1 + βv2 + γv3

is also on the same faceF. Thus, the final mapping position of
the interpolated point withk = 2 or 3 is constrained in the line
l or faceF, as shown in Fig. 3. This results in removing the
ambiguity of the optimal mapping position of the small nearest
neighbor cases, for examplek = 2, 3 when the target dimension
is 3.

We can think of two MI-MDS specific properties as possible
reasons for the results of the experiment of the optimal number
of nearest neighbors which is shown in Fig. 2. A distinct feature
of MI-MDS algorithm compared to otherk-NN approaches is
that the increase of the number of nearest neighbors resultsin
generating more a complicated problem space to find the map-
ping position of the newly interpolated point. Note that thein-
terpolation approach allows only the interpolated point tobe
moved and the selected nearest neighbors are fixed in the target
dimension. This algorithmic property effects more severe con-
straints to find optimal mapping position with respect to Eq.(4).
Also, note that finding the optimal interpolated position does
not guarantee that it makes better mapping in terms of full data
mapping, but it means that MI-MDS algorithm works as the
algorithm designed.

Another specific property of MI-MDS is that the purpose
of the MI-MDS algorithm is to find appropriate embeddings
for the new points based on the given mappings of the sample
data. Thus, it could be better to be sensitive to the mappings
of closely-located nearest neighbors of the new point than to
be biased to the distribution of the mappings of whole sample
points. Fig. 4 illustrates the mapping difference with respect to
the number of nearest neighbors used for MI-MDS algorithm
with 50k sample and 50k out-of-sample data. The 50k sample
data is selected randomly from the given 100k data set, so it
is reasonable that the sampled 50k data and out-of-sample 50k
show similar distributions. As shown in Fig. 4-(a), the inter-
polated points are distributed similar to the sampled data as we
expected. Also, Fig. 4-(a) are much more similar to the configu-
ration of the full MDS running with 100k data, which is shown
later in this paper, than other results in Fig. 4. On the other
hand, Fig. 4-(b) through Fig. 4-(f) are shown in center-biased

mapping, and the degree of bias of those mappings increases as
k increases.

In order to understand more about why biased mappings
are generated by larger nearest neighbors cases with the test
dataset, we have investigated the given original distance distri-
bution of the 50k sampled data set and the trained mapping dis-
tance distribution of the sampled data. Also, we have analyzed
the training mapping distance betweenk-NNs with respect tok.
Fig. 5 is the histogram of the original distance distribution and
the trained mapping distance distribution of 50k sampled data
used in Fig. 2 and Fig. 4. As shown in Fig. 5, most of the orig-
inal distances are in between 5 and 7, but the trained mapping
distances reside in a more broad interval. Table 2 demonstrates
the distribution of the maximum mapping distance between se-
lectedk-NNs with respect to the number of nearest neighbors.
The maximum original distance is 10.198 and the maximum
mapping distance of the 50k sampled data is 12.960.

As shown in Fig. 16-(a), the mapping of Pubchem data forms
a spherical shape. Thus, the maximum mapping distance of
the 50k sampled data could be similar to the diameter of the
spherical mapping. The distance 3.0 is close to the half of radius
of the sphere and the distance 6.0 is close to the radius of the
sphere. Therefore, in Table 2, the column of “< 3.0” represents
the cases that nearest neighbors are closely mapped together,
and the columns of “> 6.0” and others illustrate the cases that
some nearest neighbors are far from other nearest neighbors.
Note that the entries of “> 6.0” column include that of “> 7.0”
and “> 8.0” as well.

The analysis of mapping distance betweenk-NNs with the
tested Pubchem dataset shows interesting results. Initially, we
expected thatk = 5 or k = 10 could be small enough numbers
of the nearest neighbors, which would make nearest neighbors
be positioned near each other in the training mapping results.
Contrary to our expectation, as shown in Table 2, even in the
case ofk = 2, nearest neighbors are not near each other for
some interpolated data. The cases of two nearest neighbors po-
sitioned more than a 6.0 distance occurred more than 400 times.
As we increasek to be equal to 3, the occurrence of the cases of
at least two nearest neighbors distanced more than 6.0 increases
more than twice of what it was whenk = 2. On the other hand,

7

(a) k= 2 (b) k= 3

(c) k = 5 (d) k = 10

(e) k= 15 (f) k = 20

Figure 4: The mapping results of MI-MDS of 100k Pubchem data with 50k sample data and 50k out-of-sample data with respect to the number of nearest neighbors
(k). The sample points are shown in red and the interpolated points are shown in blue.

8

Table 2: Analysis of Maximum Mapping Distance betweenk-NNs with respect to the number of nearest neighbors (k).

#k-NNs < 3.0 > 6.0 > 7.0 > 8.0 % of (< 3.0) % of (> 6.0)

2 45890 409 164 53 91.780 0.818

3 41772 916 387 139 83.544 1.832

5 34503 1945 867 334 69.006 3.890

10 22004 4230 2005 826 44.008 8.460

20 10304 8134 4124 1797 20.608 16.268

Distance

O
cc

ur
re

nc
e

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

3.0e+08

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.511 11.512 12.5 13

 Mapping_Distance

Original_Distance

Figure 5: Histogram of the original distance and the pre-mapping distance in the target dimension of 50k sampled data of 100k. The maximum original distance of
the 50k sampled data is 10.198 and the maximum mapping distance of the 50k sampled data is 12.960.

the number of the cases of all of the selected nearest neighbors
closely mapped is decreased in Table 2. The percentage of the
cases of all of the selected neareset neighbors closely mapped
is also shown in Table 2. Between the cases ofk = 2 andk = 3,
the difference of the allk-NNs closely mapped cases is about
8.2% of a 50k out-of-sample points. For the case ofk = 20,
the occurrence of closely mapped cases is dropped down from
91.8% to 20.6%.

From the above investigation of the mapping distance dis-
tribution between selected nearest neighbors, it is found that,
even with a small number of nearest neighbors, the neighbors
can be mapped relatively far from each other, and the number
of those cases is increased ask is increased. The long distance
mappings between nearest neighbors could result in generating
center-biased mappings by interpolation. We can think of this
as a reason for why the 2-NN case shows better results than
other cases, which use the larger number of nearest neighbors,

with the Pubchem dataset.
In short, as we explored the optimal number of nearest neigh-

bors with Pubchem data set,k = 2 is the optimal case as shown
in Fig. 2 with the Pubchem dataset, and the larger nearest neigh-
bor cases show biased mapping results, as shown in Fig. 4.
Therefore, we use 2-NN for the forthcoming MI-MDS exper-
imental analyses with Pubchem datasets in this section.

5.2. Comparison between MDS and MI-MDS

5.2.1. Fixed Full Data Case
Fig. 6 shows the comparison of quality between MI-MDS re-

sults of 100k data and the MDS (SMACOF) only results with
the same 100k Pubchem dataset. The MI-MDS result of 100k
dataset is experimented based on different same data sizes, i.e.
12.5k, 25k, and 50k. The y-axis of the plot is the normalized
STRESS value which is shown in Eq. (19). The normalized
STRESS difference between the MDS only results and interpo-

9

Sample size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

2e+04 4e+04 6e+04 8e+04 1e+05

Algorithm

MDS

INTP

Figure 6: Quality comparison between the interpolated result of 100k with re-
spect to the different sample sizes (INTP) and the 100k MDS result (MDS)

lated results with 50k is only around 0.0038. Even with a small
portion of sample data (12.5k data is only 1/8 of 100k), the
proposed MI-MDS algorithm produces good enough mapping
in the target dimension using a much smaller amount of time
than when we ran MDS with a full 100k of data.

In Fig. 7, we compare the commulated running time of the
out-of-sample approach, which combines the full MDS run-
ning time of sample data and MI-MDS running time of the
out-of-sample data with respect to different sample size, to the
running time of the full MDS run with the 100k data. As
shown in Fig. 7, the overall running time of the out-of-sample
approach is much smaller than the full MDS approach. To
be more specific, the out-of-sample approach for 100k dataset
takes around 25.1, 9.3, and 3.3 times faster than the full MDS
approach with respect to different sample sizes, 12.5k, 25k, and
50k, correspondingly.

Fig. 8 shows the MI-MDS interpolation running time only
with respect to the sample data using 16 nodes of the Cluster-II
in Table 1. The MI-MDS algorithm takes around 8.55, 14.35,
and 18.98 seconds with different sample sizes, i.e. 12.5k, 25k,
and 50k, to find new mappings of 87500, 75000, and 50000
points based on the pre-mapping results of the corresponding
sample data. In Fig. 8, we can find the interesting feature that it
takes much less time to find new mappings of 87,500 points
(8.55 seconds) than to find new mappings of 50,000 points
(18.98 seconds). The reason is the computational time com-
plexity of MI-MDS is O(Mn) wheren is the sample size and
M = N − n. Thus, the running time of MI-MDS is proportional
to the number of new mapping points if the sample size (n) is
the same, as in the larger data set case shown below in this pa-
per. However, the above case is the opposite case. The full data
size (N) is fixed, so that both the sample data size (n) and the
out-of-sample data size (M) are variable and correlated. We can
illustrateO(Mn) as a simple quadratic equation of variablen as

Sample size

E
la

ps
ed

 ti
m

e
(s

ec
)

0

5000

10000

15000

20000

25000

12.5k 25k 50k 100k

MDS

INTP

Figure 7: Running time comparison between the Out-of-Sample approach
which combines the full MDS running time with sample data andthe MI-MDS
running time with out-of-sample data whenN = 100k, with respect to the dif-
ferent sample sizes and the full MDS result of the 100k data.

following: O(n ∗ (N − n)) = O(N ∗ n − n2), which has maxi-
mum whenn = N/2. The above experiment caseN = 100k and
n = 50k is the maximum case, so that the case of 50k sample
data of MI-MDS took longer than the case of the 12.5k sample
data.

Sample size

E
la

ps
ed

 ti
m

e
(s

ec
)

0

5

10

15

20

12.5k 25k 50k

Algorithm

INTP

Figure 8: Elapsed time of parallel MI-MDS running time of 100k data with
respect to the sample size using 16 nodes of the Cluster-II inTable 1. Note that
the computational time complexity of MI-MDS isO(Mn) wheren is the sample
size andM = N − n.

5.2.2. Fixed Sample Data Size
Above we discussed the MI-MDS quality of the fixed total

number (100k) with respect to the different sample data sizes,

10

Table 3: Large-scale MI-MDS running time (seconds) with 100k sample data

1 Million 2 Million 4 Million

731.1567 1449.1683 2895.3414

compared to the MDS running results with total number of data
(100k). Now, the opposite direction of the test, which tests
the scalability of the proposed interpolation algorithm, is per-
formed as follows: we fix the sample data size to 100k, and
the interpolated data size is increased from one million (1M)
to two million (2M) and four million (4M). Then, the STRESS
value is measured for each running result of total data, i.e.1M
+ 100k, 2M+ 100k, and 4M+ 100k. The measured STRESS
value is shown in Fig. 9. There is some quality lost between
the full MDS running results with 100k data and the 1M inter-
polated results based on that 100k mapping; they have about a
0.007 difference in the normalized STRESS criteria. However,
there is not much difference between the normalized STRESS
values of the 1M, 2M, and 4M interpolated results, although the
sample size is quite a small portion of the total data and the out-
of-sample data size increases as quadruple the numbers. From
the above results, we could consider that the proposed MI-MDS
algorithm works well and is scalable if we are given a good
enough pre-configured result which represents well the struc-
ture of the given data. Note that it is not possible to run the
SMACOF algorithm with only 200k data points due to memory
bounds, within the systems in Table 1.

Total size

S
T

R
E

S
S

0.00

0.02

0.04

0.06

0.08

0.10

1e+06 2e+06 3e+06 4e+06

Figure 9: The STRESS value change of the interpolation larger data, such as
1M, 2M, and 4M data points, with 100k sample data. The initialSTRESS value
of MDS result of 100k data is 0.0719.

We also measure the runtime of the MI-MDS algorithm with
a large-scale data set up to 4 million points. Fig. 10 shows
the running time of the out-of-sample approach in a commu-
lated bar graph, which represents the full MDS running time of
sample data (M = 100k) in the red bar and the MI-MDS inter-
polation time of out-of-sample data (n = 1M, 2M, and 4M) in

Total size

E
la

ps
ed

 ti
m

e
(s

ec
)

0

5000

10000

15000

20000

25000

100k 100k+1M 100k+2M 100k+4M

MDS

INTP

Figure 10: Running time of the Out-of-Sample approach whichcombines the
full MDS running time with sample data (M = 100k) and the MI-MDS running
time with different out-of-sample data sizes, i.e. 1M, 2M, and 4M.

the blue bar on top of the red bar. As we expected, the run-
ning time of MI-MDS is much faster than the full MDS run-
ning time in Fig. 10. Although the MI-MDS interpolation run-
ning time in Table 3 is much smaller than the full MDS running
time (27006 seconds), the MI-MDS deals with a much larger
amount of points, i.e. 10, 20, and 40 times larger number of
points. Note that we cannot run the parallel SMACOF algo-
rithm [7] with even 200,000 points on our current sytsems in Ta-
ble 1. Even though we assume that we are able to run the par-
allel SMACOF algorithm with millions of points onCluster-II
in Table 1, the parallel SMACOF will take 100, 400, and 1600
times longer with 1M, 2M, and 4M data than the running time
of parallel SMACOF with 100k data, due to theO(N2) compu-
tational complexity. As opposed to the approximated full MDS
running time, the proposed MI-MDS interpolation takes much
less time to deal with millions of points than parallel SMACOF
algorithm. In numeric, MI-MDS interpolation is faster thanap-
proximated full parallel MDS running time in 3693.5, 7454.2,
and 14923.8 times with 1M, 2M, and 4M data, correspondingly.

If we extract the MI-MDS running time only with respect
to the out-of-sample data size from Fig. 10, the running time
should be proportional to the number of out-of-sample data
since the sample data size is fixed. Table 3 shows the exact
running time of the MI-MDS interpolation method with respect
to the number of the out-of-sample data size (n), based on the
same sample data (M = 100k). The running time is almost ex-
actly proportional to the out-of-sample data size (n), as it should
be.

5.3. Parallel Performance Analysis of MI-MDS

In the above section, we discussed the quality of the con-
structed configuration of the MI-MDS approach based on the
STRESS value of the interpolated configuration, and the run-

11

ning time benefits of the proposed MI-MDS interpolation ap-
proach. Here, we would like to investigate the MPI communi-
cation overhead and parallel performance of the proposed par-
allel MI-MDS implementation in Section 4.1 in terms of effi-
ciency with respect to the running results within Cluster-Iand
Cluster-II in Table 1.

First of all, we prefer to investigate the parallel overhead, es-
pecially the MPI communication overhead, which could be ma-
jor parallel overhead for the parallel MI-MDS in Section 4.1.
Parallel MI-MDS consists of two different computations, the
interpolation part and the STRESS calculation part. The inter-
polation part is pleasingly parallel and its computationalcom-
plexity is O(M), whereM = N − n, if the sample sizen is
considered as a constant. The interpolation part uses only two
MPI primitives,MPI_GATHER andMPI_BROADCAST, at the end
of interpolation to gather all the interpolated mapping results
and spread out the combined interpolated mapping results toall
the processes for further computation. Thus, the communicated
message amount through MPI primitives isO(M), so it is not
dependent on the number of processes but the number of whole
out-of-sample points.

For the STRESS calculation part, that were applied to the
proposed symmetric pairwise computation in Section 4.2, each
process usesMPI_SENDRECV k times to send an assigned block
or rolled block, whose size isM/p, wherek = ⌈(p − 1)/2⌉ for
communicating required data andMPI_REDUCE twice for calcu-
lating

∑
i< j(di j−δi j)2 and

∑
i< j δ

2
i j. Thus, the MPI communicated

data size isO(M/p × p) = O(M) without regard to the number
of processes.

The MPI overhead during the interpolation part and the
STRESS calculating part at Cluster-I and Cluster-II in Table 1
are shown in Fig. 11 and Fig. 12, correspondingly. Note that the
x-axis of both figures is the sample size (n) but notM = N − n.
In the figures, the model is generated asO(M) starting with the
smallest sample size, here 12.5k. Both Fig. 11 and Fig. 12 show
that the actual overhead measurement follows the MPI commu-
nication overhead model.

Fig. 13 and Fig. 14 illustrate the efficiency of the interpola-
tion part and the STRESS calculation part of the parallel MI-
MDS running results with different sample size - 12.5k, 25k,
and 50k - with respect to the number of parallel units using
Cluster-I and Cluster-II, correspondingly. Equations forthe ef-
ficiency is follows:

f =
pT (p) − T (1)

T (1)
(20)

ε =
1

1+ f
(21)

wherep is the number of parallel units,T (p) is the running time
with p parallel units, andT (1) is the sequential running time. In
practice, Eq. (20) can be replaced with following:

f =
αT (p1) − T (p2)

T (p2)
(22)

whereα = p1/p2 and p2 is the smallest number of used cores

Sample size

M
P

I o
ve

rh
ea

d
tim

e
(s

ec
)

0.5

1.0

1.5

2.0

2.5

15000 20000 25000 30000 35000 40000 45000 50000

Type

INTP_model

INTP_Ovhd

STR_model

STR_Ovhd

Figure 11: Parallel overhead modeled as due to MPI communication in terms of
sample data size (m) using Cluster-I in Table 1 and message passing overhead
model.

Sample size

M
P

I o
ve

rh
ea

d
tim

e
(s

ec
)

0.4

0.6

0.8

1.0

15000 20000 25000 30000 35000 40000 45000 50000

Type

INTP_model

INTP_Ovhd

STR_model

STR_Ovhd

Figure 12: Parallel overhead modeled as due to MPI communication in terms of
sample data size (m) using Cluster-II in Table 1 and message passing overhead
model.

for the experiment, soalpha ≥ 1. We use Eq. (22) for the
overhead calculation.

In Fig. 13, 16 to 128 cores are used to measure parallel per-
formance with 8 processes, and 32 to 384 cores are used to
evaluate the parallel performance of the proposed parallelMI-
MDS with 16 processes in Fig. 14. Processes communicate
via MPI primitives and each process is also parallelized at the
thread level. Both Fig. 13 and Fig. 14 show very good efficiency
with an appropriate degree of parallelism. Since both the inter-
polation part and the STRESS calcualtion part are pleasingly
parallel within a process, the major overhead portion is theMPI

12

Number of cores

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

24 24.5 25 25.5 26 26.5 27

Type

INTP_12.5k

INTP_25k

INTP_50k

STR_12.5k

STR_25k

STR_50k

Figure 13: Efficiency of the interpolation part (INTP) and the STRESS evalu-
ation part (STR) runtimes in the parallel MI-MDS application with respect to
different sample data sizes using Cluster-I in Table 1. The totaldata size is
100k.

Number of cores

E
ffi

ci
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

25 25.5 26 26.5 27 27.5 28 28.5

Type

INTP_12.5k

INTP_25k

INTP_50k

STR_12.5k

STR_25k

STR_50k

Figure 14: Efficiency of the interpolation part (INTP) and the STRESS evalu-
ation part (STR) runtimes in the parallel MI-MDS application with respect to
different sample data sizes using Cluster-II in Table 1. The total data size is
100k.

message communicating overhead unless load balance is not
achieved in the thread-level parallelization within each process.

In the previous paragraphs, the MPI communicating over-
head is investigated and the MPI communicating overhead
showsO(M) relation. Thus, the MPI overhead is constant if
we examine it with the same number of processes and the same
out-of-sample data sizes. Since the parallel computation time
decreases as more cores are used, but the overhead time remains
constant, this property lowers the efficiency as the number of
cores is increased, as we expected. Note that the number of

processes which lowers the efficiency dramatically is different
between the Cluster-I and Cluster-II. The reason is that theMPI
overhead time of Cluster-I is bigger than that of Cluster-IIdue
to different network environments, i.e. Giga bit ethernet and
20Gbps Infiniband. The difference is easily found by compar-
ing Fig. 11 and Fig. 12.

5.4. Large-Scale Data Visualization via MI-MDS

Fig. 15 shows the proposed MI-MDS results of a 100k Pub-
Chem dataset with respect to the different sample sizes, such
as (a) 12.5k and (b) 50k. Sampled data and interpolated points
are colored in red and blue, correspondingly. With our paral-
lel interpolation algorithms for MDS, we have also processed a
large volume of PubChem data by using our Cluster-II, and the
results are shown in Fig. 16. We performed parallel MI-MDS to
process datasets of hundreds of thousand and up to 4 million by
using the 100k PubChem data set as a training set. In Fig. 16,
we show the MI-MDS result of 2 million dataset based on 100k
training set, compared to the mapping of 100k training set data.
The interpolated points are colored in blue, while the training
points are in red. As one can see, our interpolation algorithms
have produced a map closed to the training dataset.

6. Conclusion and Future Work

In this paper, we have proposed interpolation algorithms for
extending the MDS dimension reduction approaches to very
large datasets, i.e up to the millions. The proposed interpola-
tion approach consists of two-phases: (1) the full MDS run-
ning with sampled data (n); and (2) the interpolation of out-
of-sample data (N − n) based on mapped position of sampled
data. The proposed interpolation algorithm reduces the com-
putational complexity of the MDS algorithm fromO(N2) to
O(n × (N − n)). The iterative majorization method is used as
an optimization method for finding mapping positions of the
interpolated point. We have also proposed in this paper the us-
age of parallelized interpolation algorithms for MDS whichcan
utilize multicore/multiprocess technologies. In particular, we
utilized a simple but highly efficient mechanism for computing
the symmetric all-pairwise distances to provide improved per-
formance.

Before starting a comparative experimental analysis between
MI-MDS and the full MDS algorithm, we explored the optimal
number ofk-NN. 2-NN is the best case for the Pubchem data
which we used as a test dataset in this paper. We have shown
that our interpolation approach gives results of good quality
with high parallel performance. In a quality comparison, the ex-
perimental results shows that the interpolation approach output
is comparable to the normal MDS output, while it takes much
less running time and requires much less memory amounts than
the normal MDS methods. The proposed interpolation algo-
rithm is easy to parallelize since each interpolated pointsis in-
dependent to the other out-of-sample points, so many pointscan
be interpolated concurrently without communication. The par-
allel performance is analyzed in Section 5.3, and it shows very
high efficiency as we expected.

13

(a) MDS 12.5k (b) MDS 50k

Figure 15: Interpolated MDS results of total 100k PubChem dataset trained by (a) 12.5k and (b) 50k sampled data. Sampled data are colored in red and interpolated
points are in blue.

(a) MDS 100k (trained set) (b) MDS 2M+ 100k

Figure 16: Interpolated MDS results. Based on 100k samples (a), additional 2M PubChem dataset is interpolated (b). Sampled data are colored in red and
interpolated points are in blue.

Consequently, the interpolation approach enables us to con-
figure 4 millions Pubchem data points in this paper with an ac-
ceptable normalized STRESS value, compared to the normal-
ized STRESS value of 100k sampled data in less than ONE
hour, and the size can be extended further with a moderate run-
ning time. If we use parallel MDS only, we cannot even run
with only 200,000 points on the Cluster-II system in Table 1 due
to the infeasible amount of the memory requirement. Even if it
were possible to run parallel MDS with 4 million data points on
the Cluster-II system, it would take around 15,000 times longer
than the interpolation approach as mentioned in Section 5.2.

Future research could be the application of these ideas to dif-
ferent areas including metagenomics and other DNA sequence
visualization. Also, we are working on how to reduce the qual-
ity gap between the normal MDS methods and the MDS inter-
polating method.

References

[1] G. Fox, S. Bae, J. Ekanayake, X. Qiu, H. Yuan, Parallel data mining from
multicore to cloudy grids, in: Proceedings of HPC 2008 High Perfor-
mance Computing and Grids workshop, Cetraro, Italy, 2008.

14

[2] C. Bishop, M. Svensén, C. Williams, GTM: A principled alternative to the
self-organizing map, Advances in neural information processing systems
(1997) 354–360.

[3] C. Bishop, M. Svensén, C. Williams, GTM: The generativetopographic
mapping, Neural computation 10 (1) (1998) 215–234.

[4] T. Kohonen, The self-organizing map, Neurocomputing 21(1-3) (1998)
1–6.

[5] J. B. Kruskal, M. Wish, Multidimensional Scaling, Sage Publications Inc.,
Beverly Hills, CA, U.S.A., 1978.

[6] I. Borg, P. J. Groenen, Modern Multidimensional Scaling: Theory and
Applications, Springer, New York, NY, U.S.A., 2005.

[7] J. Y. Choi, S.-H. Bae, X. Qiu, G. Fox, High performance dimension re-
duction and visualization for large high-dimensional dataanalysis, in:
Proceedings of the 10th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGRID) 2010, 2010, pp. 331–340.

[8] S.-H. Bae, J. Y. Choi, X. Qiu, G. Fox, Dimension reductionand visual-
ization of large high-dimensional data via interpolation,in: Proceedings
of the 19th ACM International Symposium on High PerformanceDis-
tributed Computing (HPDC) 2010, Chicago, Illinois, 2010, pp. 203–214.

[9] Z. Wang, S. Zheng, Y. Ye, S. Boyd, Further relaxations of
the semidefinite programming approach to sensor network local-
ization, SIAM Journal on Optimization 19 (2) (2008) 655–673.
doi:http://dx.doi.org/10.1137/060669395.

[10] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N.L. Roux,
M. Ouimet, Out-of-sample extensions for lle, isomap, mds, eigenmaps,
and spectral clustering, in: Advances in Neural Information Processing
Systems, MIT Press, 2004, pp. 177–184.

[11] M. W. Trosset, C. E. Priebe, The out-of-sample problem for classical mul-
tidimensional scaling, Computational Statistics and DataAnalysis 52 (10)

(2008) 4635–4642. doi:http://dx.doi.org/10.1016/j.csda.2008.02.031.
[12] W. S. Torgerson, Multidimensional scaling: I. theory and method, Psy-

chometrika 17 (4) (1952) 401–419.
[13] S. Ingram, T. Munzner, M. Olano, Glimmer: Multilevel mds on the gpu,

IEEE Transactions on Visualization and Computer Graphics 15 (2) (2009)
249–261.

[14] J. B. Kruskal, Multidimensional scaling by optimizinggoodness of fit to
a nonmetric hypothesis, Psychometrika 29 (1) (1964) 1–27.

[15] Y. Takane, F. W. Young, J. de Leeuw, Nonmetric individual differences
multidimensional scaling: an alternating least squares method with opti-
mal scaling features, Psychometrika 42 (1) (1977) 7–67.

[16] J. de Leeuw, Applications of convex analysis to multidimensional scaling,
Recent Developments in Statistics (1977) 133–145.

[17] J. de Leeuw, Convergence of the majorization method formultidimen-
sional scaling, Journal of Classification 5 (2) (1988) 163–180.

[18] A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete
data via the em algorithm, Journal of the Royal Statistical Society. Series
B (1977) 1–38.

[19] T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE
Transaction on Information Theory 13 (1) (1967) 21–27.

[20] J. Qiu, S. Beason, S. Bae, S. Ekanayake, G. Fox, Performance of win-
dows multicore systems on threading and mpi, in: 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, IEEE,
2010, pp. 814–819.

[21] R. Kohavi, A study of cross-validation and bootstrap for accuracy estima-
tion and model selection, in: International joint Conference on artificial
intelligence, Vol. 14, Morgan Kaufmann, 1995, pp. 1137–1145.

15

