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Abstract

The recent explosion of publicly available biology genewssges and chemical compoundieos an unprecedented opportunity
for data mining. To make data analysis feasible for such walstme and high-dimensional scientific data, we can appi hi
performance dimension reduction algorithms. Among thedkndimension reduction algorithms, we utilize the multidinsional
scaling (MDS) algorithm to configure the given high-dimemsil data into the target dimension. However, the MDS allgori
requires a quadratic order of memory as well as computinguress, and it is usually infeasible to deal with millionspafints

via normal MDS method even under a commodity distributednamry cluster system. Thus, the authors propose a method of
interpolation to utilizing the mapping of only a small subséthe given data. This approacktectively reduces computational
complexity. With minor trade® of approximation, interpolation method makes it possiblpriocess millions of data points with
modest amounts of computation and memory requirement.e3inge amount of data are dealt, we represent how to pazelleli
the proposed MDS interpolation algorithm, as well. For tha@ation of the interpolated MDS by STRESS criteria, itésessary

to compute symmetric all pairwise computation with only setbof required data per process, so we also propose a simiple b
efficient parallel mechanism for the symmetric all pairwise patation when only a subset of data is available to each psoce
Our experimental results illustrate that the quality oénpiolated mapping results are comparable to the mappintised original
algorithm only. In parallel performance aspect, thoserpukation methods are well parallelized with higfiigiency. With the
proposed MDS interpolation method, we construct a configaraf four-million out-of-sample data into the target dimension, and
the number obut-of-sample data can be increased further.
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1. Introduction computational capability with minimal overhead for the pur
pose of investigating large data, such as 100000 (100k) data
Due to the advancements in science and technology overthqzowever, parallelization of an MDS algorithm, whose com-
last several decades, every scientific and technical fieldjea- utational complexity and memory requirement is u{d?)
erated a huge amount of data as time has passed in the wor{ghereN is the number of points, is still limited by the memory
We are really in the era of data deluge. In reflecting on tha datrequirement for huge data, e.g. millions of points, altHoitg
deluge era, data-intensive scientific computing [1] hasrge®  tjlizes distributed memory environments, such as clssfer
inthe scientific computing fields and it has been attractiogem  5cquiring more memory and computational resources. In this
by many people. To analyze those incredible amount of dat"baper, we try to solve the memory-bound problem by applying
many data mining and machine learning algorithms have beegy, interpolation method based on pre-configured mappings of
developed. Among the many data mining and machine leamne sample data for the MDS algorithm, so that we can provide
ing algorithms that have been invented, we focus on dimenSioconfiguration of millions of points in the target space.
reduction algorithms, which reduce data dimensionalinr  Thjs paper is an extended version of the MDS interpolation
original high dimension to target dimension, in this paper. partin [8], and this paper illustrates much more detailgubex
Among the many dimension reduction algorithms whichjmental investigations and analyses of the proposed MDE-int
exist, such as principle component analysis (PCA), genergsolation. 1 This paper is organized as follows. First we will
tive topographic mapping (GTM) [2, 3], self-organizing map priefly discuss existing methods ofit-of-sample problem in
(SOM) [4], multidimensional scaling (MDS) [5, 6], we have yaripus dimension reduction algorithms and the concehef t
worked on MDS for this paper. Previously, we parallelize themytidimensional scaling (MDS) in Section 2 and Section 3,
MDS algorithm to utilize multicore clusters and to incretise repectively. Then, the proposed interpolation method awd h

*Corresponding author 1An earlier version of this paper was presented at the 19th Aateina-
Email addresses: sebae@umail.iu.edu (Seung-Hee Bae), tional Simposium on High Performance Distributed Commu{iHPDC 2010),
xqiu@indiana.edu (Judy Qiu),gcf@indiana.edu (Gedfrey Fox) and was published in its proceedings.

Preprint submitted to Future Generation Computer Systems May 11, 2012



to parallelize it are described in Section 4. Various experital |, is given for the MDS problem, and the dissimilarity matrix
analyses, which are related to the proposed MDS interpaolati (A) should agree with the following constraints: (1) symneetri
algorithm, are shown in Section 5, followed by our conclusio ity (6i; = ¢;), (2) nonnegativity §; > 0), and (3) zero diag-
and future work in Section 6. onal elements&; = 0). The objective of the MDS technique
is to construct a configuration of a given high-dimensioraiad
into low-dimensional Euclidean space, where each disthace
tween a pair of points in the configuration is approximated to
. . ... the corresponding dissimilarity value as much as possitite.
The out-of-sample method, which embeds new points with output of MDS algorithms could be represented as\ar L

respect to previously configured points, has been actively r ) . . .
L . . configuration matrixX, whose rows represent each data point
searched for recent years, and it aims at improving the capa-

bility of dimension reduction algorithms by reducing thereo % (i =1,...,N)in L-dimensional space. Itis quite straightfor-

putational and memory-wide requirement with the traftesb ward to compute the Eucpdean distance betwgeand x; in
. . . the configuration matrix, i.e. di;(X) = ||x — X;ll, and we are
slightly approximated mapping results. X . ) .
L2 T able to evaluate how well the given points are configuredén th
In a sensor network localization field, when there are only . : S S .
L-dimensional space by using the suggested objective furti

a subset of painwise distances between sensors and a SUbSEE)no 114 STRESS [14] or SSTRESS [15]. Definitions of
of anchor locations are available, people try to find out the L

. . . STRESS (1) and SSTRESS (2) are following:
locations of the remaining sensors. For instance, the semi-

definite programming relaxation approaches and its exténde

2. Related Work

approaches has been proposed to sglve this issue [9]_. [@0] an o(X) = Z wi; (i (X) — (5”_)2 (1)

[11] proposed out-of-sample extension for the classical mu i

tidimensional scaling (CMDS) [12], which is based on spec- ) ) 22

tral decomposition of a symmetric positive semidefinitenmat oi(X) = _ZN wij [(chj(X))” = (6i})7] ()
I<J<

(or the approximation of positive semidefinite matrix), dahe
empeddings in the cc_)nfigured space are repre_sented in terfdere 1< i < j < N andw; is a weight value, sa; > 0.

of eigenvalues and eigenvectors of it. [10] projected th& ne  as shown in the STRESS and SSTRESS functions, the MDS
point x onto the principal components, and [11] extends the,roplems could be considered to be non-linear optimization
CMDS algorithm itself to the out-of-sample problem. In [11] roplems, which minimizes the STRESS or the SSTRESS func-

the authors described how to embed one point between the effjon, in the process of configuring dndimensional mapping of
beddings of the originah objects through modification of the e high-dimensional data.

original CMDS equations, which preserves the mappingsef th
original n objects, with ( + 1) x (n + 1) matrix A, instead of

n x n matrix A,, and extends to embedding a number of points* Majorizing Interpolation MDS
simultaneously by using matrix operations. Recently, atimul

o 1t ey requra() merory 25 well z0(9) computa.
pPlyINg blep 'tion. Thus, though it is possible to run them with a small

| extend the out-of-sample problem to general MDS resuls wi ;- oie " \yithout any trouble, it is impossible to execute
the STRESS criteria of Eq. (1), which finds embeddings of ap- . . N

L . A . them with a large number of points due to memory limita
proximating to Fhe dlstance_ (ord|SS|m|_Iar|ty) ratherthhl_e " tion; therefore, this challenge could be considered asgbain
ner product as in CMDS, with an gradient descent optimimatio mer’nory-bounc,i problem as well as a computing-bound prob-
method, called iterative majorizing. The proposed itggatha-

Lo . : lem. For instance, Scaling by MAjorizing of COmplicated
jonzing |nt_erpolat.|on approach for the MDS problem will be Function (SMACOF) [16, 17], a well-known MDS application
explained in Section 4.

via Expectation-Maximization (EM) [18] approach, uses six
NxN matrices. IfN = 100, 000, then on&xN matrix of 8-byte
3. Multidimensional Scaling (MDS) double-precision numbers requires 80 GB of main memory, so
the algorithm needs to acquire at least 480 GB of memory to
Multidimensional scaling (MDS) [12, 5, 6] is a general term store these siXN x N matrices. It is possible to run a parallel
that refers to techniques for constructing a map of generallversion of SMACOF with MPI inCluster-11 in Table 1 with
high-dimensional data into a target dimension (typicallp@ N = 100 000. If the data size is increased only twice, however,
dimension) with respect to the given pairwise proximityoinf  then the SMACOF algorithm should have 1.92 TB of memory,
mation. Mostly, MDS is used to visualize given high dimen-which is bigger than the total memory Gfuster-11 in Table 1
sional data or abstract data by generating a configuratitmeof (1.536 TB), so it is impossible to run itfectively within the
given data which utilizes Euclidean low-dimensional spaee  cluster. Increasing memory size will not be a solution, even
two-dimension or three-dimension. though it could increase the runnable number of points. It wi
Generally, proximity information, which is representechas encounter the same problem as the data size increases.
Nx N dissimilarity matrix @ = [6;]), whereN is the number of To solve this obstacle, we develop a simple interpolatien ap
points (objects) and;; is the dissimilarity between poimtand  proach based on pre-mapped MDS result of the sample of the

One of the main limitation of most MDS applications is



given data. Our interpolation algorithm is similar to theear-
est neighbork-NN) classification [19], but we approximate a

new mapping position of the new point based on the positions Ta-1(Pia — Xa) (Pia — Za)

of k-NN, among pre-mapped subset data, instead of classifying ~Ox < di; @)
it. For the purpose of deciding a new mapping position in-rela (p - X'(p -2
tion to thek-NN positions, the iterative majorization method = a4, (8)

is applied as in the SMACOF [16, 17] algorithm. The de-
tails of mathematical majorization equations for the pgzb
out-of-sample MDS algorithm is shown below. The algorithm
proposed in this paper is called Majorizing InterpolatioD$1
(hereafteMI-MDS).

The proposed algorithm is implemented as follows. We are

wherez = (z,...,z)andd;, = ||p - 2|. The equality in Eq. (7)
occurs ifx andz are equal. If we apply Eg. (8) to the third term
of Eq. (4), then we obtain

given N data in a high-dimensional space, daydimension, K K s

and proximity information4 = [¢;;]) of those data as in Sec- - Zéixdix < - Z Z(p-x'(p -2 9
tion 3. AmongN data, the configuration of thesample points i=1 i=1 7

in L-dimensional spaces, ..., X, € R%, calledX, are already k&

constructed by an MDS algorithm; here we use the SMACOF = =X Z f(z— p)+Cp (10)
algorithm. Then, we selektnearest neighbors(, ..., p, € P) i=1 %

of the given new point, amorngpre-mapped points with respect ) _

to correspondingix, wherex represents the new point. | use a WhereC, is a constant. If Eq. (6) and Eq. (10) are applied to
linear search to find thienearest neighbors amomgsampled ~ Ed- (4), then it could be like following:

data, so that the complexity of finding thanearest neighbors is

O(n) per one interpolated point (hexrg. Finally, the new map- K K

ping of the given new point € R" is calculated based on the o(X) = C + Z dizx _ ZZ SixChx (11)
pre-mapped position of the selectedNN and the correspond- — )

ing proximity informationsix. The finding new mapping posi-

Kk

tion is considered as a minimization problem of STRESS (3) as <C+KkIx|? - 2x'q+ Z ||H||2
similar as normal MDS problem witlm points, wheren = k+1. i=1
However, only one poink is movable among points, so we K s
can simplify the STRESS equation (3) as follows (Eqg. (4)d an —2xt Z X(z-p)+ Cp (12)
we setw;j = 1, for Vi, j in order to simplify. i1 iz

=1(X, 2 (13)

2
o(X) = Z (dij(X) - 6ij) (3)  where bothC andC, are constants. In the Eq. (13)x. 2),
I<l=m a quadratic function ok, is a majorization function of the
STRESS. Through setting the derivativer¢f, z) equal to zero,
2
= C+ Z diy — ZZ JixClix (4)  we can obtain a minimum of it; that is
i=1 i=1
wherediy is the original dissimilarity value betweqn and x, ‘
dix is the Euclidean distance Inrdimension betweep, andx, _ o Oix .\
andC represents a constant part. The second term of Eq. (4) Vr(x.2) = 2kx - 29 2; diz(z R)=0 (14)
can be deployed as following: K oo
a+ i g (z- 1)
X = " (15)

X = polf? + -+ + [Ix — pdf? (5)

k
2%
i=1

whereg' = (Z:ll Pit, - - -, Zikzl piL), Pij represents-th element
" of p, andk is the number of the nearest neighbors that we se-
KIXIZ + > IpI2 - 2x'q (6) 'ected o -

= The advantage of the iterative majorization algorithm &t th

it produces a series of mappings with non-increasing STRESS

whereq' = (3K, pis,.... 2K, piL) and pij representg-th ele-  values as proceeds, which results in local minima. It is good
ment ofp. In order to establish majorizing inequality, we apply enough to find local minima, since the proposed MI-MDS algo-
Cauchy-Schwarz inequality to—dix of the third term of Eq. (4). rithm simplifies the complicated non-linear optimizatialp-
Please, refer to chapter 8 in [6] for details of how to apply th lem as a small non-linear optimization problem, suclk asl
Cauchy-Schwarz inequality to—d;. Sincedix = ||p — X||, —dix points non-linear optimization problem, whéeex N. Finally,
could have following inequality based @auchy-Schwarzin-  if we substitutez with xI*-1 in Eq. (15), then we generate an
equality: iterative majorizing equation like the following:



Algorithm 1 Majorizing Interpolation MDS (MI-MDS) algo-

K dix (g [t-1] _ rithm
Xt = A+ 2 g, (X R) (16) 1: Find k-NN: find k nearest neighbors of, p € Pi =
’ k 1,...,k of the given new data based on original dissimi-
O }Z Jix (1 17) larity &ix. _ _ _ _
=P k L di, 2. Gather mapping results in target dimension ofkiéN.

3: Calculatep, the average of pre-mapped resultppé€ P.
whered;; = ||p — x[*"3|| andp is the average df-NN's map- 4: Generate initial mapping of, calledx®, eitherp or a ran-
ping results. Eg. (17) is an iterative equation used to embed dom variation fromp point.
newly added point into target-dimensional space, baseden p 5. Computer(S?), whereS® = p U {x%}.
mapped positions df-NN. The iteration stop condition is es-

. i — t]
sentially the same as that of the SMACOF algorithm, which is & wh|let = 0 or (Ar(S) > zandt < MAX_ITER) do
7. increasd by one.
1y _ oty ] 8. Computex!l by Eq. (17).
Ao (S __a(s[ ) (@) <¢, (18) o Computar(S)
whereS = P U {x} ande is the given threshold value. 10: end while

The time complexity of the proposed MI-MDS algorithm to
find the mapping of one interpolated point¥kK) on the basis 11 return XU
of Eq. (17), if we assume that the number of iterations of figdi
one interpolated mapping is very small. Since finding neares
neighbors take®(n) and mapping via MI-MDS requireS(k) of among interpolated points makes the MI-MDS algorithm to
for one interpolated point, the overall ime complexity todfi P€ Pleasingly-parallel. In other words, there must be mimm
mappings of overall out-of-sample points (N-n points) Vie t comm_unlcatlon overhead. .Also, Ioao_l-ba!ance can be adtieve
proposed MI-MDS algorithm i©(kn(N - n)) ~ O(n(N - n)), by using modular c_alculatlon to assign interpolated pofats
due to the fact thak is usually negligible compared toor N. each parallel unit, either between processes or betweeadby

The process of the overall out-of-sample MDS with a large®S the number of assigned points aréedient at most one.
dataset could be summarized by the following steps: (1) Sam-
pling; (2) Running MDS with sample data; and (3) Interpolat-4-2- Parallel Pairwise Computation Method with Subset of
ing the remain data points based on the mapping results of the ~Data
sample data.

Alg. 1 describes the summary of the proposed MI-MDS al- S [
gorithm for interpolation of a new data, say in relation to N
pre-mapping result of the sample data. Note that the alyuarit .
usespas an initial mapping of the new poirf! unless initial- N
ization with p makesdix = 0, since the mapping is based on -
thek-NN. pmakesd,x = 0, if and only if all thg mapping posi- P2 N
tions of thek-NNs are on the same position.pfmakesdix = 0 AN
(i = 1,...,K), then we generate a random variation from fhe A I

point with the average distance &f as an initial position of P3 .
[0] .
x19l,

4.1. Parallel MI-MDS Algorithm P4
Suppose that, amony points, the mapping results nlsam-

ple points in the target dimension, shydimension, are given U

so that we could use those pre-mapped results @dints via P5 AR

MI-MDS algorithm which is described above to embed the re-

maining points 1 = N — n). Though interpolation approach is

much faster than full running MDS algorithm, i.€(Mn + n?) P1 P2 P3 P4 P5

vs. O(N?), implementing parallel MI-MDS algorithm is essen-

tial, sinceM can be still huge, like millions. In addition, most Figure 1: Message passing pattern and parallel symmetinwipa computa-

of clusters are now in forms of multicore-clusters afteritive  tion for calculating STRESS value of whole mapping resullts.

vention of the multicore-chip, so we are using hybrid-model

parallelism, which combine processes and threads togather Although interpolation approach itself is @(Mn), if we

used in [20, 1]. want to evaluate the quality of the interpolated results by
In contrast to the original MDS algorithm in which the STRESS criteria of Eq. (1) of overall points, it require€(N?)

mapping of a point is influenced by the other points, inter-computation. Note that we implement our hybrid-parallel MI

polated points are totally independent one another, exsept MDS algorithm as each process has access to only a subset of

lectedk-NN in the MI-MDS algorithm, and the independency M interpolated points, without loss of generalily p points, as

4




well as the information of all pre-mappé@dpoints. Itis natu- Algorithm 2 Parallel Pairwise Computation
ral way of using a distributed-memory system, such as aluste 1: input: Y = a subset of data;
systems, to access only a subset of huge data which spread tg input: p = the number of process;
over the clusters, so that each process needs to communicate rank < the rank of process;
each other for the purpose of accessing all the necessaryadat  4: sendTo < (rank — 1) mod p
compute STRESS. 5: recvFrom < (rank + 1) mod p
In this section, we illustrate how to calculate symmetricpa 6: k < 0;
wise computationféiciently in parallel with the case that only 7. Compute upper triangle in the diagonal blocks in Fig. 1;
a subset of data is available for each process. In fact, gens: MAX_ITER < [(p— 1)/2]
eral MDS algorithms utilize pairwise dissimilarity infoation, .
but suppose we are give original vectors inD-dimension, % whilek < MAX‘ITERdO
Yi....,¥n € Y andy; € RP, instead of a given dissimilarity 100 kek+ 1

matrix, as PubChem finger print data that we used for our ex+t itk = 1 then
periments. Thus, in order to calculate the distance in waigi ' MPI_SENDRECV(Y, sendTo, Y, recvFrom);
D-dimensionsij = |ly; - y;ll in Eq. (1), it is necessary to com- 135 else )
municate messages between each process to get the requirje“d Ys & Y, ]
original vector, say; andy;. Here, we used the proposed pair- ' engpi?-SENDRECV(YS’ sendTo, Yr, recvFrom);

wise computation method to measure the STRESS criteria ot®

MDS problem in Eq. (1), but the proposed parallel pairwise17: Do Computation();

computation method will be usedheiently for general parallel  18: end while

pairwise computation whose computing components are indé-

pendent, such as generating a distance (or dissimilariagixn

of all data, under the condition that each process can accessing the above rolling-computing scheme, with minimal mes

only a subset of the required data. sage passing overhead. The summary of the above paraliel pai
Fig. 1 describes the proposed scheme when the number gfise computation is shown in Alg. 2.

processes) is 5, odd numbers. The proposed scheme is an

iterative two-step approach, (1) rolling and (2) computiaigd

the iteration number i§(1 + --- + p—1)/p] = [(p - 1)/2].

Note that iteration ZERO is calculating the upper triangptat To measure the quality and parallel performance of the pro-

of the corresponding diagonal block, which does not reguireposed MDS interpolatiorI-MDS) approach discussed in this

message passing. After iteration ZERO is done, each procepaper, we have used 166-dimensional chemical datasebebtai

pi sends the originally assigned data block to the previous prarom the PubChem project databsehich is an NIH-funded

cesspi-1 and receives a data block from the next proggssin - repository for over 60 million chemical molecules and po®s

cyclic way. For instance, procepg sends its own block to pro-  their chemical structures and biological activities, foe pur-

cesspp-1, and receives a block from procegs This rolling  pose of chemical information mining and exploration. Irsthi

message passing can be done using one single MPI primitiysaper we have used observations which consist of randomly se

per process¥PI_SENDRECV (), which is dficient. After send- |ected up to 4 million chemical subsets for our testing. The

ing and receiving messages, each process performs cyrrengomputing cluster systems we have used in our experiments ar

available pairwise computing block with respect to recedvi summarized in Table 1.

data and originally assigned block. In Fig. 1, black solid ar |n the following, we will mainly show: i) exploration of the

rows represent each message passings at iteration 1, algora optimal number of nearest neighbors; ii) the quality of the-p

blocks with process ID are the calculated blocks by the corposed MI-MDS interpolation approach in performing MDS al-

responding named process at iteration 1. From iteration 2 tgorithms, with respect to various sample sizes — 12500 k}.2.5

iteration[(p — 1)/2], the above two-steps are done repeatedly25000 (25k), and 50000 (50k) randomly selected from 100000

and the only dference is nothing but sending a received datg100k) dataset as a basis — as well as the mapping results of

block instead of the originally assigned data block. Thesgre |arge-scale data, i.e. up to 4 million points; and iii) petal

blocks and dotted blue arrows show iteration 2 which is tBe la performance measurements of our parallelized interpolat-

iteration for the case gb = 5. gorithms on our clustering systems as listed in Table 1; and
Also, for the case that the number of processes is even, thgally, iv) our results on processing up to 4 million MDS maps

above two-step scheme works in higfi@ency. The only dif-  based on the trained result from 100k dataset.

ference between the odd number case and the even number case

is that two processes are assigned to one block at the last &:1. Exploration of optimal number of nearest neighbors

eration of even number case, but not in an odd number case. Gegnerally, the quality ok-NN (k-nearest neighbor) classifi-

Though two processes are assigned to a single block, itys agaion (or regression) is related to the number of neighties

to achieve load balance by dividing two sections of the block

and assigning them to each process. Therefore, both odd num-

ber process and even number process cases are paralledited w 2pubChem, http: //pubchem.ncbi.nlm.nih.gov/
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Table 1: Compute cluster systems used for the performaralgsis

Features Cluster-I Cluster-11

# Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

#CPU /#Coresper node 4/16 4/ 24

Total Cores 128 768

Memory per node 16 GB 48 GB

Networ k Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edition Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit (Service Pack 2) - 64 bit

ized STRESS value is equal to ONE when all the mapping is
0.16+ at the same position, in that the normalized STRESS value de-
notes the relative portion of the squared distance erresrat
the given data set without regard to various scale$;afue to
data diference. The equation of normalized STRESS is shown
in Eq. (19) below.

0.14-

0.12-
1
152k i< O
Al“;::: Fig. 2 shows an interesting result that the optimal number
of nearest neighbors is ‘two’ rather than larger values.oAls
the normalized STRESS value is statically increasekliasn-
creased, whek = 5 and larger, and the normalized STRESS
0.064 value of MI-MDS results with 20-NN is almost double of that
with 2-NN.
| | ‘ Before we analyze the optimal number of nearest neighbors
™ ° 0 s 20 for the proposed MI-MDS method with the given Pubchem
e number of nearest neighbors (k) . .
dataset, | would like to mention how the proposed MI-MDS

Figure 2: Quality comparison between interpolated reduli00k with respect S(-)Ives t-he mapping ambiguity problem wier 2’-3 for t-hre(-a
to the nu.mber of nearest neighbok3 \{ith 50k sample and 50k out-of-sample d|men5|on§1I target Sp""?e- When the targgt dlmenspn is 3D
result. space, logically, the optimal position of the interpolapaints
can be in a circle ik = 2, and the optimal position of the inter-
polated points can be at two symmetric positions with respec
instance, if we choose a larger number for Kaghen the al-  tg the face contains all three nearest neighbors, in the afase
gorithm shows a hlgher bias but lower variance. On the OthER = 3. The derivative MI-MDS equation in Eq (17), however,
hands, thé-NN algorithm shows a lower bias but a higher vari- constrains the interpolation space corresponding to thme-nu
ance based on a smaller number of neighbors. For the cé&se ofper of nearest neighbors, by setting the initial positiorthas
NN classification, the optimal number of nearest neighbkirs (' average of the mappings of nearest neighbors. In the case of
can be determined by thé-fold cross validation method [21]  k = 2, the interpolation space is constructed as a lipevkich
or leave-one-out cross validation method, and usually & value  jncludes the mapping positions of the two nearest neighbors
that minimizes the cross validation error is picked. when the initial mapping of the interpolation is the centér o
Although we cannot use the N-fold cross validation methochearest neighborgp). Similarly, the possible mapping posi-
to decide the optiméak value of the proposed MI-MDS algo- tion of the interpolated point is constrained within the &¢€)
rithm, we can compare the mapping results with respeét to when it contains the three nearest neighbors whers.
value based on STRESS value. In order to explore the optimal Fig. 3-(a) and (b) illustrate the constrained interpolatio
number of nearest neighbors, we experimented with the Mispace in case df = 2 and 3, correspondingly. In Fig. %
MDS algorithm with diferentk values, i.e. 2< k < 20 with  represents the initial mapping position of the interpalateint
100k pubchem data. which is the same agandv; (i = 1,2 or 3) is the vector repre-
Fig. 2 shows the comparison of mapping quality betweersentation ofk.— p;, wherexc is the current mapping position of
the MI-MDS results of 100k data with 50k sample data size inthe interpolated point ang; is the mapping position in target
terms of diferentk values. The y-axis of the plotis tmermal-  dimension of nearest neighbors. Note tRat(= p) is on the
ized STRESS value which is divided by};_; 6,21 The normal- linel whenk = 2 and on the fac& whenk = 3. If v; andv;

6

o(X) = (dij(X) - 6ij)? (19)

STRESS
=)
=
o
1

0.08 -




(8 k=2 (b)k=3

Figure 3: The illustration of the constrained interpolatgpace whek = 2 ork = 3 by initialization at the center of the mappings of the nsaneighbors.

are on the same lineav; + BV, is also on the same lineSim- ~ mapping, and the degree of bias of those mappings increases a
ilarly, if v1, vo, andvs are on the same Faée av; + SVvo + yv3 k increases.

is also on the same faée Thus, the final mapping position of  In order to understand more about why biased mappings
the interpolated point witk = 2 or 3 is constrained in the line are generated by larger nearest neighbors cases with the tes
| or faceF, as shown in Fig. 3. This results in removing the dataset, we have investigated the given original distaisté-d
ambiguity of the optimal mapping position of the small nstre bution of the 50k sampled data set and the trained mapping dis
neighbor cases, for exame= 2, 3 when the target dimension tance distribution of the sampled data. Also, we have aealyz

is 3. the training mapping distance betwdeNNs with respect td.

We can think of two MI-MDS specific properties as possibleFig. 5 is the histogram of the original distance distribotand
reasons for the results of the experiment of the optimal mrmb the trained mapping distance distribution of 50k sampled da
of nearest neighbors which is shownin Fig. 2. A distinctdieat used in Fig. 2 and Fig. 4. As shown in Fig. 5, most of the orig-
of MI-MDS algorithm compared to othdeNN approaches is inal distances are in between 5 and 7, but the trained mapping
that the increase of the number of nearest neighbors results distances reside in a more broad interval. Table 2 demdastra
generating more a complicated problem space to find the maghe distribution of the maximum mapping distance between se
ping position of the newly interpolated point. Note that ke  lectedk-NNs with respect to the number of nearest neighbors.
terpolation approach allows only the interpolated poinbéo The maximum original distance is I®8 and the maximum
moved and the selected nearest neighbors are fixed in thet targnapping distance of the 50k sampled data i96Q.
dimension. This algorithmic propertyfects more severe con-  As shown in Fig. 16-(a), the mapping of Pubchem data forms
straints to find optimal mapping position with respectto@(. a spherical shape. Thus, the maximum mapping distance of
Also, note that finding the optimal interpolated positioredo the 50k sampled data could be similar to the diameter of the
not guarantee that it makes better mapping in terms of ftdl da spherical mapping. The distance 3.0 is close to the halfdifisa
mapping, but it means that MI-MDS algorithm works as theof the sphere and the distance 6.0 is close to the radius of the
algorithm designed. sphere. Therefore, in Table 2, the column &f3.0” represents

Another specific property of MI-MDS is that the purpose the cases that nearest neighbors are closely mapped togethe
of the MI-MDS algorithm is to find appropriate embeddingsand the columns of* 6.0” and others illustrate the cases that
for the new points based on the given mappings of the sampleome nearest neighbors are far from other nearest neighbors
data. Thus, it could be better to be sensitive to the mappingNote that the entries of* 6.0” column include that of % 7.0"
of closely-located nearest neighbors of the new point tioan tand > 8.0” as well.
be biased to the distribution of the mappings of whole sample The analysis of mapping distance betwdeNNs with the
points. Fig. 4 illustrates the mappindgi@irence with respectto tested Pubchem dataset shows interesting results. liyithe
the number of nearest neighbors used for MI-MDS algorithmexpected thak = 5 ork = 10 could be small enough numbers
with 50k sample and 50k out-of-sample data. The 50k samplef the nearest neighbors, which would make nearest neighbor
data is selected randomly from the given 100k data set, so lie positioned near each other in the training mapping result
is reasonable that the sampled 50k data and out-of-samkle 5@ontrary to our expectation, as shown in Table 2, even in the
show similar distributions. As shown in Fig. 4-(a), the inte case ofk = 2, nearest neighbors are not near each other for
polated points are distributed similar to the sampled datgea  some interpolated data. The cases of two nearest neighbors p
expected. Also, Fig. 4-(a) are much more similar to the config sitioned more than a 6.0 distance occurred more than 408time
ration of the full MDS running with 100k data, which is shown As we increas& to be equal to 3, the occurrence of the cases of
later in this paper, than other results in Fig. 4. On the otheat least two nearest neighbors distanced more than 6.Gsese
hand, Fig. 4-(b) through Fig. 4-(f) are shown in centerbéhs more than twice of what it was whén= 2. On the other hand,
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(e). k=15

Figure 4: The mapping results of MI-MDS of 100k Pubchem dath &0k sample data and 50k out-of-sample data with respebetnumber of nearest neighbors
(K). The sample points are shown in red and the interpolateatare shown in blue.



Table 2:

Analysis of Maximum Mapping Distance betwédeNNs with respect to the number of nearest neighbkys (

| #-NNs || <30 >6.0 >7.0 >80 | % of (<3.0) | % of (>6.0) |
2 45890 409 164 53 91.780 0.818
3 41772 916 387 139 83.544 1.832
5 34503 1945 867 334 69.006 3.890
10 22004 4230 2005 826 44.008 8.460
20 10304 8134 4124 1797 20.608 16.268
3.0e+08 - . Mapping_Distance
Original_Distance
2.5e+08 -
2.0e+08 -
[}
(8]
c
(]
E 1.5e+08-
3
o
1.0e+08 -
- JJJ]I I]J

I I
0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10105111151212513

Distance

Figure 5: Histogram of the original distance and the preirapdistance in the target dimension of 50k sampled dat®@k.1The maximum original distance of
the 50k sampled data is 1®8 and the maximum mapping distance of the 50k sampled s1a2960.

the number of the cases of all of the selected nearest naighbowith the Pubchem dataset.

closely mapped is decreased in Table 2. The percentage of theln short, as we explored the optimal number of nearest neigh-
cases of all of the selected neareset neighbors closelyedappbors with Pubchem data sét= 2 is the optimal case as shown

is also shown in Table 2. Between the casels6f2 andk = 3,  in Fig. 2 with the Pubchem dataset, and the larger nearagtnei
the diference of the alk-NNs closely mapped cases is aboutbor cases show biased mapping results, as shown in Fig. 4.
8.2% of a 50k out-of-sample points. For the case&kof 20,  Therefore, we use 2-NN for the forthcoming MI-MDS exper-
the occurrence of closely mapped cases is dropped down froimental analyses with Pubchem datasets in this section.

91.8% to 206%.

From the above investigation of the mapping distance d|s5 2. Comparison between MDS and MI-MDS

tribution between selected nearest neighbors, it is fohat| t 5.2.1. Fixed Full Data Case

even with a small number of nearest neighbors, the neighbors Fig. 6 shows the comparison of quality between MI-MDS re-
can be mapped relatively far from each other, and the numbesults of 100k data and the MDS (SMACOF) only results with
of those cases is increasedkais increased. The long distance the same 100k Pubchem dataset. The MI-MDS result of 100k
mappings between nearest neighbors could result in gémgrat dataset is experimented based offiedtent same data sizes, i.e.
center-biased mappings by interpolation. We can think isf th 12.5k, 25k, and 50k. The y-axis of the plot is the normalized
as a reason for why the 2-NN case shows better results tha&8TRESS value which is shown in Eq. (19). The normalized
other cases, which use the larger number of nearest neighbo6STRESS dierence between the MDS only results and interpo-
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Figure 6: Quality comparison between the interpolatedlte$u 00k with re- Figure 7: Running time comparison between the Out-of-Sanggproach

spect to the dferent sample sizes (INTP) and the 100k MDS result (MDS) which combines the full MDS running time with sample data gre&lMI-MDS
running time with out-of-sample data whéh= 100k, with respect to the dif-
ferent sample sizes and the full MDS result of the 100k data.

lated results with 50k is only aroundd®38. Even with a small

portion of sample data (12.5k data is only8lof 100k), the following: O(n = (N = n)) = O(N = n — n?), which has maxi-

proposed MI-MDS algorithm produces good enough mappingnum whem = N/2. The above experiment cae= 100k and

in the target dimension using a much smaller amount of timg, — 50k is the maximum case, so that the case of 50k sample

than when we ran MDS with a full 100k of data. data of MI-MDS took longer than the case of the 12.5k sample
In Fig. 7, we compare the commulated running time of thedata.

out-of-sample approach, which combines the full MDS run-

ning time of sample data and MI-MDS running time of the

out-of-sample data with respect tdigrent sample size, to the

running time of the full MDS run with the 100k data. As

shown in Fig. 7, the overall running time of the out-of-saenpl

approach is much smaller than the full MDS approach. To 15

be more specific, the out-of-sample approach for 100k diatase

20-

takes around 2%, 9.3, and 33 times faster than the full MDS g
approach with respect toftkerent sample sizes, 12.5k, 25k, and 7:’;
50k, correspondingly. £ 101
Fig. 8 shows the MI-MDS interpolation running time only E A'.gf’l’;‘::‘
]
w

with respect to the sample data using 16 nodes of the CluUster-
in Table 1. The MI-MDS algorithm takes arounc8, 1435,

and 1898 seconds with dierent sample sizes, i.e. 12.5k, 25k,
and 50k, to find new mappings of 87500, 75000, and 50000
points based on the pre-mapping results of the correspgndin
sample data. In Fig. 8, we can find the interesting featurdttha ‘ ‘
takes much less time to find new mappings of 87,500 points 12.5K Sampltzjskize 50K
(8.55 seconds) than to find new mappings of 50,000 points

(18.98 seconds). The reason is the computational time com- . ) o )
plexity of MI-MDS is O(Mir) wheren is the sample size and. /941 & Eaesed tme of prele WPMDS i (e of 0t wtn
M = N —n. Thus, the running time of MI-MDS is proportional the computational time complexity of MI-MDS &Mn) wherenis the sample
to the number of new mapping points if the sample sigdy  size andV = N -n.

the same, as in the larger data set case shown below in this pa-

per. However, the above case is the opposite case. The fall da

size (\) is fixed, so that both the sample data siapgnd the 5.2.2. Fixed Sample Data Size

out-of-sample data sizé/) are variable and correlated. We can  Above we discussed the MI-MDS quality of the fixed total
illustrateO(Mn) as a simple quadratic equation of variablas  number (100k) with respect to thefidirent sample data sizes,

10

al
1




Table 3: Large-scale MI-MDS running time (seconds) withki88mple data

1 Million | 2Million | 4 Million
731.1567| 1449.1683| 2895.3414 25000-
compared to the MDS running results with total number of data 200009
(100k). Now, the opposite direction of the test, which tests
the scalability of the proposed interpolation algoritheper- £ 15000-
formed as follows: we fix the sample data size to 100k, and
the interpolated data size is increased from one million)(1M
to two million (2M) and four million (4M). Then, the STRESS T
value is measured for each running result of total dataliv.
+ 100k, 2M + 100k, and 4M+ 100k. The measured STRESS 5000
value is shown in Fig. 9. There is some quality lost between e
the full MDS running results with 100k data and the 1M inter-

o
polated results based on that 100k mapping; they have about a o " - ootean

0.007 diterence in the normalized STRESS criteria. However, Total size

there is not much dierence between the normalized STRESS

values of the 1M, 2M, and 4M interpolated results, althought Figure 10: Running time of the Out-of-Sample approach wiizmbines the
sample size is quite a small portion of the total data andtite o full MDS running time with sample data/ = 100k) and the MI-MDS running
of-sample data size increases as quadruple the numbers. Frgme With diferent out-of-sample data sizes, i.e. 1M, 2M, and 4M.

the above results, we could consider that the proposed MEMD

algorithm works well and is scalable if we are given a goody,q e har on top of the red bar. As we expected, the run-
enough pre-configured result which represents well thecstru ning time of MI-MDS is much faster than the full MDS run-

ture of the give_n data_. Note that it is not_possible to run thening time in Fig. 10. Although the MI-MDS interpolation run-
SMACOF glgonthm with °”'¥ 200k data points due to memoryning time in Table 3 is much smaller than the full MDS running
bounds, within the systems in Table 1. time (27006 seconds), the MI-MDS deals with a much larger
amount of points, i.e. 10, 20, and 40 times larger number of
points. Note that we cannot run the parallel SMACOF algo-
rithm [7] with even 200,000 points on our current sytsemsan T
ble 1. Even though we assume that we are able to run the par-
0.08 _ . L. allel SMACOF algorithm with millions of points o@luster-11
= in Table 1, the parallel SMACOF will take 100, 400, and 1600
times longer with 1M, 2M, and 4M data than the running time
0.06- of parallel SMACOF with 100k data, due to tG¥N?) compu-
tational complexity. As opposed to the approximated full 1D
running time, the proposed MI-MDS interpolation takes much
0.04- less time to deal with millions of points than parallel SMAEO
algorithm. In numeric, MI-MDS interpolation is faster thap-
proximated full parallel MDS running time in 3693.5, 7454.2
0927 and 14923.8 times with 1M, 2M, and 4M data, correspondingly.
If we extract the MI-MDS running time only with respect
to the out-of-sample data size from Fig. 10, the running time
should be proportional to the number of out-of-sample data
since the sample data size is fixed. Table 3 shows the exact
running time of the MI-MDS interpolation method with respec

Figure 9: The STRESS value change of the interpolation tadgéa, such as to the number of the OUt-Of-Sample data SIZ)a based on the

1M, 2M, and 4M data points, with 100k sample data. The inBBRESS value ~ S&me sampk_a data( = 100k). The running time is 3_-|m05t ex-
of MDS result of 100k data is.0719. actly proportional to the out-of-sample data sig &s it should

be.
We also measure the runtime of the MI-MDS algorithm with
a Iarge—s_cale_ data set up to 4 million points. F|_g. 10 show%.& Parallel Performance Analysis of MI-MDS
the running time of the out-of-sample approach in a commu-
lated bar graph, which represents the full MDS running timhe 0 In the above section, we discussed the quality of the con-
sample dataNl = 100k) in the red bar and the MI-MDS inter- structed configuration of the MI-MDS approach based on the
polation time of out-of-sample data & 1M, 2M, and 4M) in  STRESS value of the interpolated configuration, and the run-
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ning time benefits of the proposed MI-MDS interpolation ap-
proach. Here, we would like to investigate the MPI communi-
cation overhead and parallel performance of the proposed pa 251 Type

allel MI-MDS implementation in Section 4.1 in terms dfie ~®- INTP_model

. . . e -A- INTP_Ovhd
ciency with respect to the running results within Clustentl - STR_m:deI
Cluster-11 in Table 1. 207 —+ STR_Ovhd

First of all, we prefer to investigate the parallel overhe=sd
pecially the MPI communication overhead, which could be ma-
jor parallel overhead for the parallel MI-MDS in Section 4.1
Parallel MI-MDS consists of two flerent computations, the
interpolation part and the STRESS calculation part. Therint
polation part is pleasingly parallel and its computaticcah-
plexity is O(M), whereM = N — n, if the sample sizen is
considered as a constant. The interpolation part uses woly t
MPI primitives,MPI_GATHER andMPI_BROADCAST, at the end 05- '\
of interpolation to gather all the interpolated mappinguiess
and spread out the combined interpolated mapping resuats to 15000 20000 25000 30000 35000 40000 45000 50000
the processes for further computation. Thus, the commteadca Sample size
message amount through MPI primitives6M), so it is not
dependent on the number of processes but the number of whofigure 11: Parallel overhead modeled as due to MPI commiimice terms of
out-of-sample points. sarzplle data sizem) using Cluster-I in Table 1 and message passing overhead

For the STRESS calculation part, that were applied to thén0 <
proposed symmetric pairwise computation in Section 4.&hea
process usePI_SENDRECV k times to send an assigned block
or rolled block, whose size i81/p, wherek = [(p — 1)/2] for
communicating required data amBI_REDUCE twice for calcu-

[

=
wn
1

MPI overhead time (sec)
5
1

Type
-@- INTP_model

lating Y. ;(chj—dij)? andy;.; 6. Thus, the MPI communicated 10- -4 INTP_Ovhd
data size i©)(M/p x p) = O(M) without regard to the number -# STR_model
—~ STR_Ovhd

of processes.

The MPI overhead during the interpolation part and the
STRESS calculating part at Cluster-1 and Cluster-I1 in €abl
are shown in Fig. 11 and Fig. 12, correspondingly. Note tiat t
x-axis of both figures is the sample sizg but notM = N — n.

In the figures, the model is generatedX#/) starting with the
smallest sample size, here 12.5k. Both Fig. 11 and Fig. 1& sho
that the actual overhead measurement follows the MPI commu-
nication overhead model.

Fig. 13 and Fig. 14 illustrate thefficiency of the interpola-
tion part and the STRESS calculation part of the parallel MI- | | | | | | | |
MDS running results with dierent sample size - 12.5k, 25k, e 2502258?5 Ziz?fooo e
and 50k - with respect to the number of parallel units using
Cluster-1 and Cluster-Il, correspondingly. Equationstfor ef-

o
©
1

e

MPI overhead time (sec)
e
1

I
~
1

Figure 12: Parallel overhead modeled as due to MPI commtimrican terms of

ficiency is follows: sample data sizer) using Cluster-1l in Table 1 and message passing overhead
model.
(PP -TA) (20)
T(1) for the experiment, salpha > 1. We use Eq. (22) for the
o 1 21) overhead calculation.
1+ f In Fig. 13, 16 to 128 cores are used to measure parallel per-

) i ) o formance with 8 processes, and 32 to 384 cores are used to
wherepis the number of parallel unit3,(p) is the running time o /5juate the parallel performance of the proposed paidllel
with pparallel units, and (1) is the seguential r_unning time. In MDs with 16 processes in Fig. 14. Processes communicate
practice, Eq. (20) can be replaced with following: via MPI primitives and each process is also parallelizedhat t
oT(py) = T(po) thread level. Both Fig. 13 and Fig. 14 show very gofitt&ncy
_— (22)  with an appropriate degree of parallelism. Since both ttesin

T(p2) polation part and the STRESS calcualtion part are pleasingl

wherea = p1/p2 and p; is the smallest number of used cores parallel within a process, the major overhead portion isviPé
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Figure 13: Hiciency of the interpolation part (INTP) and the STRESS evalu

ation part (STR) runtimes in the parallel MI-MDS applicatiwith respect to
different sample data sizes using Cluster-l in Table 1. The datt size is
100k.
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Figure 14: Hiciency of the interpolation part (INTP) and the STRESS evalu

ation part (STR) runtimes in the parallel MI-MDS applicatiwith respect to
different sample data sizes using Cluster-Il in Table 1. The tate size is
100k.

processes which lowers théieiency dramatically is dierent
between the Cluster-1 and Cluster-II. The reason is thavthe
overhead time of Cluster-1 is bigger than that of Clustedté

to different network environments, i.e. Giga bit ethernet and
20Gbps Infiniband. The fference is easily found by compar-
ing Fig. 11 and Fig. 12.

5.4. Large-Scale Data Visualization via MI-MDS

Fig. 15 shows the proposed MI-MDS results of a 100k Pub-
Chem dataset with respect to thefdient sample sizes, such
as (a) 12.5k and (b) 50k. Sampled data and interpolatedgoint
are colored in red and blue, correspondingly. With our paral
lel interpolation algorithms for MDS, we have also procelsse
large volume of PubChem data by using our Cluster-Il, and the
results are shown in Fig. 16. We performed parallel MI-MDS to
process datasets of hundreds of thousand and up to 4 miifion b
using the 100k PubChem data set as a training set. In Fig. 16,
we show the MI-MDS result of 2 million dataset based on 100k
training set, compared to the mapping of 100k training stt.da
The interpolated points are colored in blue, while the iran
points are in red. As one can see, our interpolation algoisth
have produced a map closed to the training dataset.

6. Conclusion and Future Work

In this paper, we have proposed interpolation algorithms fo
extending the MDS dimension reduction approaches to very
large datasets, i.e up to the millions. The proposed intarpo
tion approach consists of two-phases: (1) the full MDS run-
ning with sampled datanf; and (2) the interpolation of out-
of-sample dataN — n) based on mapped position of sampled
data. The proposed interpolation algorithm reduces the-com
putational complexity of the MDS algorithm fro@(N?) to
O(n x (N = n)). The iterative majorization method is used as
an optimization method for finding mapping positions of the
interpolated point. We have also proposed in this papershe u
age of parallelized interpolation algorithms for MDS whzdn
utilize multicorgmultiprocess technologies. In particular, we
utilized a simple but highlyf@cient mechanism for computing
the symmetric all-pairwise distances to provide improved p
formance.

Before starting a comparative experimental analysis betwe
MI-MDS and the full MDS algorithm, we explored the optimal
number ofk-NN. 2-NN is the best case for the Pubchem data
which we used as a test dataset in this paper. We have shown
that our interpolation approach gives results of good tyali

message communicating overhead unless load balance is nwith high parallel performance. In a quality comparisom, é-

achieved in the thread-level parallelization within eaoboess.

perimental results shows that the interpolation approadpi

In the previous paragraphs, the MPI communicating overis comparable to the normal MDS output, while it takes much
head is investigated and the MPI communicating overheatkss running time and requires much less memory amounts than
showsO(M) relation. Thus, the MPI overhead is constant if the normal MDS methods. The proposed interpolation algo-
we examine it with the same number of processes and the samiéhm is easy to parallelize since each interpolated pagmiis-

out-of-sample data sizes. Since the parallel computatie

t

dependentto the other out-of-sample points, so many poéamts

decreases as more cores are used, but the overhead timasemdie interpolated concurrently without communication. The p
constant, this property lowers théfieiency as the number of allel performance is analyzed in Section 5.3, and it showg ve
cores is increased, as we expected. Note that the number bigh dficiency as we expected.
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() MDS 12.5k (b) MDS 50k

Figure 15: Interpolated MDS results of total 100k PubChemasgi trained by (a) 12.5k and (b) 50k sampled data. Sampledade colored in red and interpolated
points are in blue.

(a) MDS 100k (trained set) (b) MDS 2M + 100k

Figure 16: Interpolated MDS results. Based on 100k samglgsatiditional 2M PubChem dataset is interpolated (b). $eongata are colored in red and
interpolated points are in blue.

Consequently, the interpolation approach enables us to con Future research could be the application of these ideaé-to di
figure 4 millions Pubchem data points in this paper with an acferent areas including metagenomics and other DNA sequence
ceptable normalized STRESS value, compared to the normalisualization. Also, we are working on how to reduce the qual
ized STRESS value of 100k sampled data in less than ONEiy gap between the normal MDS methods and the MDS inter-
hour, and the size can be extended further with a moderate rupolating method.
ning time. If we use parallel MDS only, we cannot even run
with only 200,000 points on the Cluster-1l system in Tableug d
to the infeasible amount of the memory requirement. Even if i References
were possible to run parallel MDS with 4 million data points o
the Cluster-Il system, it would take around 15,000 timegéon  [1] G.Fox, S. Bae, J. Ekanayake, X. Qiu, H. Yuan, Parallehdaining from

. . - . . multicore to cloudy grids, in: Proceedings of HPC 2008 Higrfér-
than the interpolation approach as mentioned in Section 5.2 mance Computing and Grids workshop, Cetraro, Italy, 2008,
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