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Abstract

The recent explosion of publicly available biology genewssges and chemical compoundieos an unprecedented opportunity
for data mining. To make data analysis feasible for such aw@ame and high-dimensional scientific data, we can apfgi h
performance dimension reduction algorithms. Among thedkndimension reduction algorithms, we utilize the multidinsional
scaling (MDS) algorithm to configure given high-dimensibdata into the target dimension. However, the MDS algoritlem
quires a quadratic order of memory as well as computing resgyand it is usually infeasible to deal with millions ofiqts

via normal MDS method even under a commaodity cluster systém distributed-memory. Thus, the authors propose a method
of interpolation to utilize the mapping of only a small subskthe given data. This approackectively reduces computational
complexity. With minor trade# in approximation, our interpolation method makes it pdgsib process millions of data points
with only modest amounts of computation and memory. Singelamount of data are involved, we show how to parallelize the
proposed MDS interpolation algorithm as well. For the estiin of the interpolated MDS by STRESS criteria, it is nseeg

to compute STRESS value. The STRESS value calculationvasadymmetric matrices generated by all pairwise commutati
but each process only accesses a subset of the data redtlines].we also propose a simple bffi@ent parallel mechanism for
symmetric pairwise computation when only a subset of dedgaddable to each process. Our experimental resultsiiditesthat the
quality of interpolated mapping results are comparablaéamapping results of full MDS algorithm only. With respexpirallel
performance, those interpolation methods are well padizdie and have highficiency. With the proposed MDS interpolation
method, we construct a configuration of four-millioat-of-sample data in the target dimension, and the numbeoufof-sample
data can be increased further.
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1. Introduction investigating large data sets, such as 100,000 data [7].-How

ever, parallelization of an MDS algorithm, whose computa-

Due to the advancements in science and technology overth'Onal complexity and memory requirement goes U(2)
last several decades, every scientific and technical fieldjea- whereN is the number of points, is still limited by the mem-

erated a huge amount of data such that we find ourselves in ﬂb‘?y requirement for huge amounts of data, e.g. millions of
era of data deluge. Data-intensive scientific computindifid Lo
emerged and has been attracting increasing numbers ofgpeop uch as clusters, for acquiring more memory and computattion

To a”?"yze the.|ncred|bl_e amount of data, many data mining aMresources. In this paper we try to solve the memory-bound
machine learning algorithms have been developed. Among thg

data mini d hine | i loorith ¢ roblem by applying an interpolation method based on pre-
many data mining and machine learning aigorithms, we focu onfigured mappings of the sample data for the MDS algorithm,
on dimension reduction algorithms, which reduce data dimen

. ) . : . . . . so that we can provide configurations for millions of points i
sionality from original high dimension to target dimensiam

. the target space.
this paper.

A th di . duci laorithms that exist This paper is an extension of the MDS interpolation sections
rr]nong . e_mlany |mensut)n rel uglngprég\on ms t‘_"‘ etX|s in our conference paper [8], and this paper illustrates much
such as principle component analysis ( ). generative-top more detailed experimental investigations and analysdleof

graphic mapping (GTM) [2, 3], self-organizing map (SOM),[4] . . . . .

. . ) proposed MDS interpolatiort. This paper is organized as fol-
andMnI;lgt!dlrrr]fnsmnal 3\7\?“”9 (MDSl) [5, 6]” \?_/e hﬁveMw[());keld lows: We begin with a brief discussion of the existing method
on In this paper. We previously paralielize the afor addressing theut-of-sample problem in various dimension

gorlthm to utlllze_ _multl_core_cl_usters and to increase thenco reduction algorithms and the concept of the multidimenraion
putational capability with minimal overhead for the purpas

oints, although it utilizes distributed memory enviromise
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xqiu@indiana.edu (Judy Qiu),gcf@indiana.edu (Gedfrey Fox) and was published in its proceedings.
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scaling (MDS) in Section 2 and Section 3, repectively. Thenyisualize given high dimensional data or abstract data by ge
the proposed interpolation method and how to paralleliaegt erating a configuration of the given data that utilizes Eiedin
described in Section 4. Various experimental analysesghwhi low-dimensional space, i.e. two or three dimension.
are related to the proposed MDS interpolation algorithm, ar  Generally, proximity information, which is representedhas
shown in Section 5, followed by our conclusion and futurekvor Nx N dissimilarity matrix & = [6i;]), whereN is the number of
in Section 6. points (objects) anél; is the dissimilarity between poinaindj,
is given for the MDS problem, and the dissimilarity matri (
should agree with the following constraints: (1) symmétyic
(6ij = 6;), (2) non-negativity ; > 0), and (3) zero diagonal
elements§; = 0). The output of the MDS algorithms could
be represented as &hx L configuration matrixX whose rows
represent each data poirt(i = 1,...,N) in L-dimensional
space. It is quite straightforward to compute the Euclidean
distance betweer; andx; in the configuration matrix, i.e.
: . dij(X) = IIx — xjll, and we are able to evaluate how well the
approximated mapping results. ; . . ) i )

In a sensor network localization field, when there are only; lven points are conf_lgu_red n thgdlmens,lonal space by us-

' ing the suggested objective functions of MDS: STRESS [14] or

a subset of pairwise dlgtances between sensors and a subg RESS [15]. Definitions of STRESS (1) and SSTRESS (2)
of anchor locations available, people try to find out the foca are following:

tions of the remaining sensors. For instance, the semiitiefin
programming relaxation approach and its extended appesach

2. Related Work

The out-of-sample method, which embeds new points with
respect to previously configured points, has been actively r
searched for recent years, and it aims at improving the déapab
ity of dimension reduction algorithms by reducing the regui
ments of computation and memory with the tradedslightly

have been proposed to solve this issue [9]. Bengio et. a]. [10 o(X) = Z Wi (dij(X) - (5”-)2 Q)
and Trosset et. al. [11] proposed out-of-sample extengion f i<j<N
the classical multidimensional Scaling (CMDS) [12], whish O_Z(X) — Z W”[(d”(X))z _ (6]])2]2 (2)
based on spectral decomposition of a symmetric positivé-sem SN

definite matrix (or the approximation of positive semi-dieéin
matrix), and the embeddings in the configured space are-repr
sented in terms of eigenvalues and eigenvectors of it. Begtgi
al. [10] proposed a method which projects the new priahto
the principal components, and Trosset et. al. [11] exterioed
CMDS algorithm itself to the out-of-sample problem. Trdsse
et. al. described, in their paper [11], how to embed one poin
between the embeddings of the originabjects through mod-
ification of the original CMDS equations, which preserves th 4. Majorizing Interpolation MDS
mappings of the original objects, by usingn(+ 1) x (n+ 1) ma-
trix Ay instead ofh x n matrix Ay, and the authors showed how
to configure a number of points simultaneously by using matri
operations. Recently, a multilevel force-based MDS atbani

where 1< i < j < N andw;; is a weight value, saj > 0.

As shown in the STRESS and SSTRESS functions, the
MDS problem could be considered as a non-linear optimiza-
tion problem, which minimizes either the STRESSX)) or
the SSTRESSH?(X)) function in the process of configuring an
{-dimensional mapping of the high-dimensional data.

One of the main limitations of most MDS applications is
that they requireD(N?) memory as well a®)(N?) computa-
tion. Thus, though it is possible to run them with a small

data set without any trouble, it is impossible to executenthe
was proposed as well [13].

) with a large number of points due to memory limitations;
In contrast to applying the out-of-sample problem to CMDTQ’“[herefore, this challenge could be considered to be a memory

| extend the out-of-sample problem to general MDS resultis wi bound problem as well as a computing-bound problem. For

the STRESS criteria of Eq. (1), which finds embeddings with. . L . .
respect to the distance (or dissimilarity) rather than ®ith instance, Scaling by MAjorizing of COmplicated Function

ner product as in CMDS, with an gradient descent optimimatio (SMACGF) [16, 17], a well-known MDS application based on

method, called iterative majorizing. The proposed iteeatha- itera_tivg mfajorization method which is similar to Expetctat
jorizing interpolation approach for the MDS problem will be Maximization (EM) [18] approach, uses siox N matrices. If

: : : N =100 000, then on&l x N matrix of 8-byte double-precision
explained in Section 4. . . .
numbers requires 80 GB of main memory, so the algorithm
needs to acquire at least 480 GB of memory to store these six
3. Multidimensional Scaling (MDS) N x N matrices. Itis possible to run a parallel version of SMA-
COF with MPIl inCluster-1l in Table 1 withN = 100 000. If
“Multidimensional scaling” (MDS) [12, 5, 6] is a term that the data size is increased only twice, however, then the SMA-
refers to techniques for constructing a map of generallf-hig COF algorithm should have 1.92 TB of memory, which is big-
dimensional data into a target dimension (typically a low di ger than the total memory @luster-11 in Table 1 (1.536 TB),
mension) with respect to the given pairwise proximity irfor so it is impossible to run itfectively within the cluster. Even
mation, while each distance between a pair of points in théhough it could increase the runnable number of pointsemsr
generated mapping is approximated to the corresponding disng memory size will encounter the same problem as the data
similarity value as much as possible. Mostly, MDS is used tcsize increases.
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To solve this obstacle, we develop a simple interpolation ap||p — x||, —dix could have the following inequality based on the
proach based on the pre-mapped MDS result of the sample @auchy-Schwarzinequality:
the given data. Our interpolation algorithm is similar t@ th
k nearest neighbok{NN) classification [19], but we approx-

imate a new mapping position of the new point based on the  _g4. = < Z;ﬂ(pia — %a)(Pia — Za) (7)
positions ofk-NN, among pre-mapped subset data, instead of diz

classifying it. For the purpose of deciding a new mapping-pos _ (p- X'(p -2 8
tion in relation to thek-NN positions, the iterative majorization - di, ®)

method is applied as in the SMACOF [16, 17] algorithm. The o
details of mathematical majorization equations for theppsed ~ Wherez = (z,....z) andd;; = [|p - 2|. The equality in Eq. (7)
out-of-sample MDS algorithm are shown below. The algorithmoccurs ifx andzare equal. If we apply Eq. (8) to the third term
proposed in this paper is called Majorizing Interpolatiob®1  ©f Ed. (4), then we obtain
(hereafteMI-MDS).

The proposed algorithm is implemented as follows. We
are givenN data points in a high-dimensional space, &ay - Zéixdix < - Z _(g -x)Y(p - 2) 9)
dimension, and proximity informatio(= [6;;]) on those data i
as in Section 3. Among thi data points, the configuration of
the n sample points irL.-dimensional space, ..., X, € R", —X Z -p)+Cp (10)
called X, are already constructed by an MDS algorithm; here i=1 d'Z
we use the SMACOF algorithm. Then, we sel&chearest
neighbors p,, ..., p. € P) of the given new point among the
n pre-mapped points with respect to correspondipgwhere
X represents the new point. We use a linear search to find the
k-nearest neighbors amomgsampled data, so that the com- k k
plexity of finding thek-nearest neighbors &(n) per one inter- o(X)=C+ Z d2 - ZZ Sixix (11)
polated point (here). Finally, the new mapping of the given i=1 i
new pointx € R’ is calculated based on the pre-mapped po-

A

whereC, is a constant. If Eq. (6) and Eq. (10) are applied to
Eqg. (4), then it could be expressed as:

sition of the selected-NN and the corresponding proximity < C+KIx|> - 2x'q+ Z IpI?
informationsix. Finding new mapping position is an optimiza- =1

tion problem which minimize STRESS (3) value witipoints, Six

wherem = k+ 1. However, only one point is movable among - 2x Z _(Z_ ) +Co (12)

m points, so we can simplify the STRESS equation (3) as fol-

lows (Eq. (4)), and we set;j = 1, for Vi, j in order to simplify. =1(x, 2 (13)
where bothC and C, are constants. In Eq. (13%(x, 2),
o(X) = Z (dij(X) - 6i)) (3) @ quadratic function ok, is a majorization function of the
i<j=m STRESS. By setting the derivative ofx, 2) equal to zero, we
K K can obtain a minimum; that is
= C+Zdizx—225ixdix (4)
i=1 i=1
wheres;, is the original dissimilarity value betwegn andx, Vr(X, 2) = 2kx — 2q - ZZ Z(Z_ p) = (14)
dix is the Euclidean distance Inrdimension betweep, andx, s
andC represents a constant part. The second term of Eq. (4) q+ Z. 1 d',ﬁ(z— P)
can be deployed as following: X= K (19)
whered' = (3K, pis, ... XK, pi), pij represents thé-th ele-
2 2. 2 ment of, andk is the number of the nearest neighbors that we
20 = Ix= il i pd ) selected
K The advantage of the iterative majorization algorithm &t th
= KIXP+ Z IpI? - 2x'q (6) it produces a series of mappings with non-increasing STRESS

values as proceeds, which results in local minima. It is good
enough to find local minima, since the proposed MI-MDS algo-
whereq! = (Z:ll Pis- -, Zikzl piL) and p;; represents thg-th rithm simplifies the complicated non-linear optimizaticoip-
element ofp. In order to establish majorizing inequality, we lem to a small one, such as a non-linear optimization proloiem
apply theCauchy-Schwarz inequality to—d; of the third term  k+ 1 points, wheré < N. Finally, if we substitutez with x[t-1]
of Eq. (4). Please, refer to chapter 8 in [6] for details of howin Eq. (15), then we generate an iterative majorizing eguati
to apply theCauchy-Schwarz inequality to—dix. Sincedix = like the following:



Algorithm 1 Majorizing Interpolation MDS (MI-MDS) algo-

rithm
m_ 9t Y %(X[t_l] -p) 1: Find k-NN: find k nearest neighbors of, p € Pi =
X = k (16) .,k of the given new data based on original dissimi-
1 & larity &ix.
X =p+= Z —X(x[t 4 (17) 2. Gather mapping results in target dimension ofkHé¢N.
K =1 i 3: Calculatep, the average of pre-mapped resultppé€ P.
_ 4: Generate initial mapping of, calledx!®, eitherpor a ran-
whered;, = ||p — x[*"3|| andp is the average df-NN's map- dom variation fromp point.

ping results. Eqg. (17) is an iterative equation used to embeds; computer(S?), whereS? = P U {x1}.

a newly added point into target-dimensional space, based on _ 1

pre-mapped positions &ENN. The iteration stop condition is & Whilet=0or (Ao (8Y) > £ andt < MAX ITER) do
essentially the same as that of the SMACOF algorithm, which 7 Increasé by one.

is 8:  Computex!l by Eq. (17).
9: Computer(31).
AO’(gt]) — O_(S[t—l]) _O_(S[t]) <e, (18) 10: end while

. .
whereS = P U {x} ande is the given threshold value. 11: return X,

The time complexity of the proposed MI-MDS algorithm
to find the mapping of one interpolated point@%k) on the - . . .
basis of Eq. (17), if we assume that the number of iterations. In contrast to the original MDS algorithm in which the map-

required for finding one interpolated mapping is very small. ping of a point is influenced by the other points, interpalate
Since finding nearest neighbors tak@€) and mapping via points are totally independent of one another — except tsglec

X . : X _ k-NN in the MI-MDS algorithm, and the independence among
M MDS reqwregO(k) for one mterpolated point, the over interpolated points makes the MI-MDS algorithm pleasingly
all time complexity to find mappings of overall out-of-sampl

points (N — n points) via the proposed MI-MDS algorithm is parallel. In other words, MI-MDS requires minimal communi-
O(kn(N - n)) ~ O((N — n)) due to the fact thak is usually cation overhead. Also, load-balance can be achieved bgusin

negiglecompaed or . e oo o s
The process of the overall out-of-sample MDS with a large P e

dataset could be summarized by the following steps: (1) Sam_umber of assigned pointsftrs by at most one.
pling; (2) Running MDS with sample data; and (3) Interpaigti

the remaining data points based on the mapping results of thé
sample data.

Alg. 1 describes the summary of the proposed MI-MDS al-
gorithm for interpolation of new data, say in relation to the el el telelieelellelels Rl
pre-mapped results of the sample data. Note that the algorit ‘
usesp as an initial mapping of the new poimt” unless ini- Pl AN
tialization with p makesdix = 0, since the mapping is based .
onk-NN. p makesdix = 0, if and only if all the mapping posi- .
tions of thek-NNs have the same position. ffmakesd;, = 0 P2
(i = 1,...,K), then we generate a random variation from fhe . ;
point with the average distance &f as an initial position of ol ‘

4.2, Parallel Pairwise Computation Method with Subset of
Data

X0, P3

4.1. Paralle MI-MDSAlgorithm RN
Suppose that amonfyl points the mapping results of P4

sample points are given in the target dimension, saylLthe D

dimension, so that we could use those pre-mapped results of P5 .

n points via MI-MDS algorithm WhICh is described above to .

embed the remaining point8/( = N — n). Though the inter-

polation approach is much faster than running the MDS algo- P1 P2 P3 P4 P5

rithm, i.e. O(Mn + n?) vs. O(N?), implementing parallel MI-

MDS algorithm is essential, sindd can be still huge — in the Figure 1: Message passing pattern and parallel symmetiiaipa computa-

millions. Additionally, most clusters are now multicordléav- tion for calculating STRESS values of whole mapping results

ing the invention of the multicore-chip, so we use hybrideralo

parallelism, which combines processes and threads, adrseen Although the interpolation approach itself is @(Mn), if

various recent papers [20, 1]. we want to evaluate the quality of the interpolated reswts b




STRESS criteria of Eq. (1) wittN points overall, then it re- Algorithm 2 Parallel Pairwise Computation
quiresO(N?) computation. Note that we implement our hybrid- ~1: input: Y = a subset of data;
parallel MI-MDS algorithm as each process has access toeonly 2: input: p = the number of process;
subset oM interpolated points, without loss of generalily p 3: rank < the rank of process;
points, as well as the information of all pre-mappegoints. 4: sendTo < (rank— 1) mod p
Accessing only a subset of a huge data set spread over cluss: recvFrom < (rank + 1) mod p
ters is a natural way of using a distributed-memory systegy, e  6: k = 0;
a cluster system, so that each process must communicate with: Compute upper triangle in the diagonal blocks in Fig. 1;
each other for the purpose of accessing all the necessaryadat  8: MAX_ITER < [(p— 1)/2]
compute STRESS.
In this section we illustrate how to calculate symmetria-pai

9: whilek < MAX_ITERdo

wise computation ficiently in parallel for the case in which !“: k+1;

only a subset of data is available for each process. In fact,ll: it k = 1then

general MDS algorithms utilize pairwise dissimilarity amfna- 2 MPI_SENDRECV(Y, sendTo, Y, recvFrom);
tion. But suppose we are giveW original vectors in theD- ¥ else _

dimension,y,,...,yy € Y andy, € RP, instead of a given 14 Ys & Y, _
dissimilarity matrix like the PubChem fingerprint data tiat 12 enl‘(;lPi?_SENDRECV(YS, sendTo, Y;, recvFrom);

used for our experiments. In order to calculate the distamce

the originalD-dimensionsij = |ly; - y;ll in Eq. (1), itis neces- 17: Do Computation();

sary to communicate messages between each process to get the end while

required original vectors, say andy;. Here we used the pro-

posed pairwise computation method to measure the STRESS

criteria of the MDS problem in Eq. (1), but the proposed par-€ven number case, but not in an odd number case. Though two

allel pairwise computation method will be usefliciently for ~ processes are assigned to a single block, it is easy to @&hiev

general parallel pairwise computation whose computing-comload balance by dividing two sections of the block and assgn

ponents are independent, such as generating a distande.(or dhem to each process. Therefore, cases of both odd number and

similarity) matrix of all data under the condition that egmio- ~ €ven number processes are parallelized well using the above

cess can access only a subset of the required data. rolling-computing scheme with minimal message passing-ove
Fig. 1 describes the proposed scheme when the number Bgad. The summary of the above parallel pairwise computatio

processes) is 5, which is an example of the odd number is shown in Alg. 2.

cases. The proposed scheme is an iterative two-step afproac

(1) rolling and (2) computing, and the number of iteratiofis i 5 Analysis of Experimental Results

[(A+---+p-21)/p] =T(p-1)/2]. Note that iteration ZERO

is calculating the upper triangular part of the correspogdii- To measure the quality and parallel performance of the pro-

agonal block, which does not require message passing. Aftétosed MDS interpolatiorMI-MDS) approach discussed in this

iteration ZERO is done, each procegssends the originally paper, we have a used 166-dimensional chemical dataset ob-

assigned data block to the previous procpss and receives tained from the PubChem project datalFasehich is an NIH-

a data block from the next proceps.: in a cyclic way. For funded repository for over 60 million chemical moleculesian

instance, procespg, sends its own block to procegs_; and provides their chemical structures and biological adésifor

receives a block from procegs. This rolling message pass- the purpose of chemical information mining and exploration

ing can be done using one single MPI primitive per processthis paper we have used observations which consist of ratlydom

MPI_SENDRECV (), which is eficient. After sending and re- selected up to 4 million chemical subsets for our testinge Th

ceiving messages, each process performs computatiortsefor tcomputing cluster systems we have used in our experimeats ar

currently assigned pairwise computing block with respecet ~ Summarized in Table 1.

ceiving data and originally assigned block. In Fig. 1 blackds In the following, we will mainly show: i) exploration of the

arrows represent each message passings at iteration 1r-and @ptimal number of nearest neighbors; ii) the quality of the-p

ange blocks with process IDs are the calculated blocks by theosed MI-MDS interpolation approach in performing MDS al-

corresponding named process at iteration 1. From iter@ion gorithms with respect to various sample sizes — 12500 (}2.5k

to iteration[(p — 1)/2], the above two-steps are done repeat_25000 (25k), and 50000 (50k) randomly selected from 100000

edly and the only dference is the sending of a received data(100k) dataset as a basis — as well as the mapping results of

block instead of the originally assigned data block. Thesgre large-scale data, i.e. up to 4 million points; and iii) peeigber-

blocks and dotted blue arrows show iteration 2, which isaise | formance measurements of our parallelized interpolatigo-a

iteration for the case b = 5. rithms on our clustering systems as listed in Table 1; andlfina
Also, in case the number of processes is even, the above twét) our results from processing up to 4 million MDS maps based

step scheme works in highfieiency. The only dierence be- 0on the trained result from 100k dataset.

tween the odd number case and the even number case is that

two processes are assigned to one block at the last itemaftion  2PubChem,http://pubchem.ncbi.nlm.nih.gov/
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Table 1: Compute cluster systems used for the performaralgsis

Features Cluster-I Cluster-11

# Nodes 8 32

CPU AMD Opteron 8356 2.3GHz Intel Xeon E7450 2.4 GHz

#CPU /#Coresper node 4/16 4/ 24

Total Cores 128 768

Memory per node 16 GB 48 GB

Networ k Giga bit Ethernet 20 Gbps Infiniband

Operating System Windows Server 2008 HPC Edition Windows Server 2008 HPC Edition
(Service Pack 2) - 64 bit (Service Pack 2) - 64 bit

the MI-MDS results of 100k data with 50k sample data size

0.16+ in terms of diferentk values. The y-axis of the plot is thher-
malized STRESS value which is divided by}, 6,2] The nor-
malized STRESS value is equal to one when all the mapping is
at the same position, in that the normalized STRESS value de-
notes the relative portion of the squared distance erresraft

the given data set without regard to various scale$;afue to
data diference. The equation of normalized STRESS is shown

0.14-

0.12-

[9)]
[%2] H .
wo o in Eqg. (19) below:
5 Algorithm 1
® INTP 2
o(X) = —(dij(X) - 5”) . (29)
0.08- i;N 2i<j 5i2j
Fig. 2 shows an interesting result that the optimal number
0.064 of nearest neighbors is two rather than larger values. The no

malized STRESS value statically increasek a&sincreased for
‘ ‘ ‘ k > 5 and the normalized STRESS value of MI-MDS results
° 0 o 2 with 20-NN is almost double of that with 2-NN.
The number of nearest neighbors (k) . i
Before we analyze the optimal number of nearest neighbors

Figure 2: Quality comparison between interpolated reduli00k with respect for the proposed -MI-MDS m-ethOd with the given Pubchem
to the nu.mber of nearest neighbok$ With 50k sample and 50k out-of-sample dataset, | WOUId. like to .me.ntlon how the proposed MI-MDS
result. solves the mapping ambiguity problem wHea 2, 3 for a three
dimensional target space. When the target dimension is 3D
space, logically, the optimal position of the interpolapeiints
can be in a circle ik = 2, and the optimal position of the inter-

Generally, the quality ok-nearest neighbok{NN) classifi-  polated points can be at two symmetric positions with resjpec
cation (or regression) is related to the number of neighld&ws  the face containing all three nearest neighbors, as in theaf
instance, if we choose a larger numberkpthen the algorithm k = 3. The derivative MI-MDS equation in Eq. (17), however,
shows a higher bias but lower variance. On the other hand, theonstrains the interpolation space corresponding to theben
k-NN algorithm shows a lower bias but a higher variance basedf nearest neighbors by setting the initial position as trer-a
on a smaller number of neighbors. For the case ofkidN  age of the mappings of nearest neighbors. In the cake=d?,
classification, the optimal number of nearest neighbljrsgn  the interpolation space is constructed as a linewhich in-
be determined by th&l-fold cross validation method [21] or  cludes the mapping positions of the two nearest neighboesiwh
leave-one-out cross validation method, and usually & value  the initial mapping of the interpolation is the center of mesh
that minimizes the cross validation error is picked. neighbors ). Similarly, the possible mapping position of the

Although we cannot use the N-fold cross validation methodnterpolated point is constrained within the Fa¢® (vhen it
to decide the optimak value of the proposed MI-MDS algo- contains the three nearest neighbors ed3.
rithm, we can compare the mapping results with respe&t to  Fig. 3-(a) and -(b) illustrate the constrained interpaolati
value based on STRESS value. In order to explore the optimalpace in case df = 2 and 3, respectively. In Fig. Xg rep-
number of nearest neighbors, we experimented with the Mlfresents the initial mapping position of the interpolateéhpo
MDS algorithm with diferentk values, i.e. 2< k < 20 with  which is the same ap andv; (i = 1,2 or 3) is the vector rep-
100k pubchem data points. resentation ok — pi, wherex. is the current mapping position

Fig. 2 shows the comparison of mapping quality betweerof the interpolated point ang is the mapping position in the
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(8 k=2 (b)k=3

Figure 3: The illustration of the constrained interpolatgpace whek = 2 ork = 3 by initialization at the center of the mappings of the nsaneighbors.

target dimension of nearest neighbors. Note #ag= p) is on  is shown later in this paper, than other results in Fig. 4. I@n t
the linel whenk = 2 and on the facé whenk = 3. If v; andv, other hand, Fig. 4-(b) through Fig. 4-(f) are shown in center
are on the same lineav; + BV, is also on the same lineSim-  biased mapping, and the degree of bias of those mappings in-
ilarly, if vq, vo, andvs are on the same fade, av; + Bv2 + yv3  creases akincreases.
is also on the same fade Thus, the final mapping position of  In order to understand more about why biased mappings
the interpolated point with = 2 or 3 is constrained in the line are generated by larger nearest neighbors cases with the tes
| or faceF, as shown in Fig. 3. This results in removing the dataset, we have investigated the given original distaistg-d
ambiguity of the optimal mapping position of the small nstre bution of the 50k sampled data set and the trained mapping dis
neighbor cases, for examte= 2, 3 when the target dimension tance distribution of the sampled data. Also, we have aealyz
is 3. the training mapping distance betweleiNNs with respect to
We can think of two MI-MDS specific properties as possiblek. Fig. 5 is the histogram of the original distance distribati
reasons for the results of the experiment of the optimal numand the trained mapping distance distribution of 50k sadhple
ber of nearest neighbors, which is shown in Fig. 2. A distinctdata used in Fig. 2 and Fig. 4. As shown in Fig. 5, most of
feature of the MI-MDS algorithm compared to otheNN ap-  the original distances are between 5 and 7, but the traingd ma
proaches is that the increase of the number of nearest rafghb ping distances reside in a broader interval. Table 2 demeest
results in generating a more complicated problem spacedo finthe distribution of the maximum mapping distance between se
the mapping position of the newly interpolated point. Notztt lectedk-NNs with respect to the number of nearest neighbors.
the interpolation approach allows only the interpolatemhpm  The maximum original distance is I®8 and the maximum
be moved and the selected nearest neighbors are fixed in theapping distance of the 50k sampled data i96Q.
target dimension. This algorithmic propertffects more se- As shown in Fig. 18-(a), the mapping of Pubchem data forms
vere constraints to find optimal mapping position with respe a spherical shape. Thus, the maximum mapping distance of
to Eq. (4). Also, note that finding the optimal interpolated p the 50k sampled data could be similar to the diameter of the
sition does not guarantee that it makes better mappingtimster spherical mapping. The distance 3.0 is close to half of madiu
of full data mapping, but it means that the MI-MDS algorithm of the sphere and the distance 6.0 is close to the radius of the
works as the algorithm designed. sphere. Therefore, in Table 2 the column ef3.0” represents
Another specific property of MI-MDS is that the purpose the cases that nearest neighbors are closely mapped togethe
of the MI-MDS algorithm is to find appropriate embeddingsand the columns of* 6.0 and others illustrate the cases that
for the new points based on the given mappings of the samplgome nearest neighbors are far from other nearest neighbors
data. Thus, it could be better to be sensitive to the mappingi§ote that the entries of** 6.0” column include that of & 7.0
of closely-located nearest neighbors of the new point tisan tand *> 8.0" as well.
be biased to the distribution of the mappings of whole sample The analysis of mapping distances betw&exNs with the
points. Fig. 4 illustrates the mappingfidirence with respect tested Pubchem dataset shows interesting results. Iyitied
to the number of nearest neighbors used for the MI-MDS alexpected thak = 5 ork = 10 could be small enough numbers
gorithm with 50k sample and 50k out-of-sample data. The 50lof the nearest neighbors, which would position nearesthaeig
sample data are selected randomly from the given 100k diata séors near each other in the target dimension. Contrary to our
S0 it is reasonable that the sampled 50k data and out-of{sampexpectation, as shown in Table 2, even in the cask sf 2,
50k show similar distributions. As shown in Fig. 4-(a), the i nearest neighbors are not near each other for some intezdola
terpolated points are distributed similarly to the sammlath  data. The cases of two nearest neighbors positioned mate tha
as we expected. Also, Fig. 4-(a) is much more similar to thea 6.0 distance occurred more than 400 times. As we increase
configuration of the full MDS running with 100k data, which k to be equal to 3, the occurrence of the cases of at least two

7



(e). k=15

Figure 4: The mapping results of MI-MDS of 100k Pubchem dath &0k sample data and 50k out-of-sample data with respebetnumber of nearest neighbors
(K). The sample points are shown in red and the interpolateatare shown in blue.



Table 2: Analysis of Maximum Mapping Distance betwédeNNs with respect to the number of nearest neighbkys (
| #-NNs || <30 >6.0 >7.0 >80 | % of (<3.0) | % of (>6.0) |
2 45890 409 164 53 91.780 0.818
3 41772 916 387 139 83.544 1.832
5 34503 1945 867 334 69.006 3.890
10 22004 4230 2005 826 44.008 8.460
20 10304 8134 4124 1797 20.608 16.268
3.0e+08 - . Mapping_Distance
Original_Distance
2.5e+08 -
2.0e+08 -
()
(8]
c
g
5 1.5e+08 —
3
O
1.0e+08 -
- JJJ]I I]J

I I
0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10105111151212513

Distance

Figure 5: Histogram of the original distance and the preirapdistance in the target dimension of 50k sampled dat®@k.1The maximum original distance of
the 50k sampled data is 1®8 and the maximum mapping distance of the 50k sampled s1a2960.

nearest neighbors distanced more than 6.0 increases naare thother cases that use the larger number of nearest neighltbrs w
twice what it was wherk = 2. On the other hand, the num- the Pubchem dataset.

ber of the cases of all of the selected nearest neighborsiglos | short, as we explored the optimal number of nearest neigh-
mapped decreases in Table 2. The percentage of the casesijrs with the Pubchem data skt= 2 is the optimal case as

all selected neareset neighbors closely mapped is alsonshowhown in Fig. 2, and the larger nearest neighbor cases show
in Table 2. Between the caseslof 2 andk = 3, the diference  pjased mapping results, as shown in Fig. 4. Therefore, we use

of the allk-NNs closely mapped cases is about% of a 50k 2_NN for the forthcoming MI-MDS experimental analyses with
out-of-sample points. For the casekof 20, the occurrence of  pypchem datasets in this section.

0,
closely mapped cases drops from& to 206%. In addition, we would like to test the proposed inter-

From the above investigation of the mapping distance disPolation method with totally dierent dataset, which is a
tribution between selected nearest neighbors, it is fohat| t Metagenomics sequence dataset with 30000 points (hereafte
even with a small number of nearest neighbors, the neighbofdC30000 dataset). We generated the dissimilarity matrix
can be mapped relatively far from each other, and the numbdased on a local sequence alignment algorithm called Smith-
of those cases is increasedkds increased. The long-distance Waterman (SW) [22].
mappings between nearest neighbors could result in gémgrat  In Fig. 6, we explore the optimal number of nearest neighbors
center-biased mappings by interpolation. We can think isf th with MC30000 dataset. We describe the mapping quality of MI-
as a reason for why the 2-NN case shows better results thaviDS result with diterent sample sizes, i.e. 10000, 15000, and

9



ity is calculated based on SW local alignment algorithm Itesu
0.065-7 A dissimilarity between two dierent sequences is measured
SEIEESHES based on the corresponding two subsequences of the original
e two different sequences, which are locally-aligned by the SW
local alignment algorithm, so it is possible to have zergidis
larity between two dterent sequences when the locally-aligned
two subsequences are identical. Practically, there ate quige
amounts of non-diagonal zero dissimilarities exist in tiveg
original dissimilarity matrix of the MC30000 dataset. Henc
zero dissimilarity cannot guarantee that the correspanplair
of points (or sequences) should be the same position in e or
inal space and in the target space. For instance, although po
a has zero dissimilarities with the other two pointsgnd c),
the given dissimilarity between poitt and ¢ could be larger
than zero.
0.040 Since the dissimilarity measure of pubchem data is reliable
20 40 60 80 100 and consistent, a small number of nearest neighbors would be
The number of nearest neighbors (k) enough to find a mapping for an interpolated point in pubchem
dataset. However, when the dissimilarity measurementds un
Figure 6: Quality comparison between interpolated resuB000 with re-  reliable, such as MC30000 dataset case as mentioned in the
spect to th_e number of nearest neighbddswith various sample and out-of- above paragraph, a large number of nearest neighbors ceuld b
sample points result. . . L L
required to compliment the unreliability of each dissimitha
value, as shown in Fig. 6.

0.060 - -~ 15k_sample

-®- 20k_sample

0.055-

STRESS
o
]
o
1

0.045-

20000 sample points, and af@irent number of nearest neigh- .
bors ) in Fig. 6. As we expected, the more number of sample5'2' Comparison between MDS and MI-MDS
points result in the better quality of mappings by the pregos

MI-MDS.
. . 0.10-
The experimental result of the optimal nhumber of nearest e
neighbors with MC30000 dataset is totally opposite with the - MDS

above experiments with Pubchem data set. In contrast t@Fig. 0,084 A INTP
the mapping quality with a smaller number of nearest neighbo t\:\:\ T
is worse than with a larger number of nearest neighbors irg-ig i 1
with all tested sample sizes. In detail, the proposed MI-MDS 0.06-

algorithm shows the best mapping quality of MC30000 dataset @
with 10000 sample points when the number of nearest neigh- E
bors is 57. As seen in Fig. 6, the mapping quality of MI-MDS 2
with 10000 samples in MC30000 is similar to each other, when

kis in between 40 and around 80. In Fig. 6, the mapping qual-

ity of MI-MDS with 15000 and 20000 samples in MC30000 0027
dataset converges whéris larger than 60.
We could deduce that the contrast resultk®N experi- 0.00-
ments between pubchem and MC30000 dataset are due to the | | | | |
different property of input data and how to measure dissimilar- o 40+034ample 2?224 o o

ity. For the pubchem dataset case, a dissimilarity between t

points is actually a Euclidean dIStance_ b_etwee_n two 166)'_b|t Figure 7: Quality comparison between the interpolatedlre$i 00k with re-

nary feature vectors. Thus, a zero dissimilarity occurshil & spect to the dferent sample sizes (INTP) and the 100k MDS result (MDS)

only if the corresponding two points (a.k.a. two chemicaheo

pounds) are represented by an identical binary featurerect

and zero dissimilarity between two points means actualy th 52.1. Fixed Full Data Case

the two points are essentially the same in the original space  Fig. 7 shows the comparison of quality between MI-MDS

reality, there are only a few cases of zero dissimilarityd@®in  results for the 100k data and the MDS (SMACOF)-only results

two different chemical compounds occur among 100000 pubyith the same 100k Pubchem dataset. The MI-MDS result for

chem dataset. Also, if two fierent points (say poirft andc)  the 100k dataset in Fig. 7 is based offetient sample data

are significantly close to a poina), then those pointiandc)  sizes, i.e. 12.5k, 25k, and 50k. The y-axis of the plot is the

are close to each other. normalized STRESS value, which is shown in Eq. (19). The
On the other hand, for the MC30000 dataset case, dissimilarormalized STRESS flerence between the MDS-only results

10



and interpolated results with 50k is only aroun@@8. Even  We can illustrated(Mn) as a simple quadratic equation of vari-

with a small portion of sample data (12.5k is onl{8of 100k),  ablen as following: O(n * (N — n)) = O(N * n — n?), which

the proposed MI-MDS algorithm produces good enough maphas a maximum when = N/2. The above experiment case

ping in the target dimension using a much smaller amount oN = 100k andn = 50k is the maximum case, so that the case

time than when we ran MDS with the full 100k data. of 50k sample data of MI-MDS took longer than the case of the
In Fig. 8, we compare the accumulated running time of thel2.5k sample data.

out-of-sampleapproach, which combines the full MDS running

time of sample data and MI-MDS running time of the out-of-

sample data with respect tofiirent sample size, to the run- 20-

ning time of the full MDS run with the 100k data. As shown

in Fig. 8, the overall running time of the out-of-sample ap-

proach is much smaller than the full MDS approach. To be

more specific, the out-of-sample approach for the 100k datas

is around 281, 9.3, and 33 times faster than the full MDS ap- 2
proach with respect to flerent sample sizes, 12.5k, 25k, and %
50k, respectively. £ 10-
§ Algorithm
& ® INTP
w
25000 - 57
20000 -
od
12‘.5k Z‘SK 5(‘Jk
15000 - Sample size

Figure 9: Elapsed time of parallel MI-MDS running time of kO@ata with
respect to the sample size using 16 nodes of the Clusteffibie 1. Note that

the computational time complexity of MI-MDS @(Mn) wheren is the sample
size andM = N —n.
5000 - . MDS
B e
, ==

10000 -

Elapsed time (sec)

In addition to experiment on pubchem dataset, we also in-
vestigated the MI-MDS result with MC30000 dataset. Fig. 10
| | | | depicts the mapping quality comparison between the full MDS
128k Sample size 1ok result of the MC30000 and the MI-MDS results of MC30000
dataset with dferent sample sizes. The mapping quality of the
Figure 8: Running time comparison between the Out-of-Saenagproach, proposed MI-MDS method with fferent s_ample size !n Flg. 10
which combines the full MDS running time with sample data dreivi-mps 1S the result of the bedt-NN case of Fig. 6. As similar as
running time with out-of-sample data whéh= 100k with respect to the dif-  in Fig. 7, the mapping quality of the MC30000 dataset by the
ferent sample sizes and the full MDS result of the 100k data. MI-MDS is getting better as the sample size increases. The
difference of the normalized STRESS value between a full

Fig. 9 shows the MI-MDS interpolation running time only \,ng yegyit and the MI-MDS result with 20000 sample for the
with respect to the sample data using 16 nodes of the Cluster-\y~30000 dataset is only around)0468.

in Table 1. The MI-MDS algorithm takes around8, 1435,

and 1898 seconds with dierent sample sizes, i.e. 12.5k, 25k,

and 50k, to find new mappings of 87500, 75000, and 50000-2.2. Fixed Sample Data Size

points based on the pre-mapping results of the correspgndin Above we discussed the MI-MDS quality of the fixed total
sample data. In Fig. 9 we find the interesting feature thakies  number (100k) with respect to thefidirent sample data sizes,
much less time to find new mappings of 87,500 points (8.5£ompared to the MDS running results with total number of data
seconds) than to find new mappings of 50,000 points (18.98L00k). The opposite direction of the test, which tests ta-s
seconds). The reason for this is that the computational timability of the proposed interpolation algorithm, is perfed as
complexity of the MI-MDS isO(Mn) wheren is the sample follows: we fix the sample data size to 100k, and the interpo-
size andV = N — n. Thus, the running time of MI-MDS is pro- lated data size is increased from one million (1M) to two ol
portional to the number of new mapping points if the sample(2M) and four million (4M). Then, the STRESS value is mea-
size f) is the same, as in the larger data set case shown belosured for each running result of total data, i.e. £MI00k, 2M+

in this paper. However, the above case is the opposite cage. T100k, and 4M+ 100k. The measured STRESS value is shown
full data size N) is fixed, so that both the sample data sige ( in Fig. 11. There is some quality lost between the full MDS
and the out-of-sample data si2d) are variable and correlated. running results with 100k data and the 1M interpolated tesul
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Figure 10: Quality comparison between the interpolatedili®esof 30000 Figure 11: The STRESS value change of the interpolatioretadgta, such as
Metagenomics sequence dataset with respect to therelit sample sizes 1M, 2M, and 4M data points, with 100k sample data. The inB&8RESS value
(INTP) and the full MDS result (MDS) of MDS result of 100k data is.0719.

Table 3: Large-scale MI-MDS running time (seconds) withki88mple data

1 Million | 2 Million | 4 Million
731.1567| 1449.1683| 2895.3414 25000 -
20000 -
based on that 100k mapping; they have about0®D diter-
ence in the normalized STRESS criteria. However, theretis no
much diference between the normalized STRESS values ofthe  £™*
1M, 2M, and 4M interpolated results, although the sample siz
is quite a small portion of the total data and the out-of-s@amp 10000~
data size increases up to four times larger size. From theeabo
results we could consider that the proposed MI-MDS algorith so00d
works well and is scalable if we are given a good enough pre- B e
configured result that represents the structure of the glaga
o

well. Note that it is not possible to run the SMACOF algorithm
with only 200k data points due to memory bounds within the 100k 100k#;thgl e 100ks2M 100k+4M
systems in Table 1.

We also measure the runtime Of.the MI-MDS algomhm with Figure 12: Running time of the Out-of-Sample approach, tviciembines the
a large-scale data set up to 4 million points. Fig. 12 showsyji mps running time with sample data( = 100) and the MI-MDS running
the running time of the out-of-sample approach in an accumusme with different out-of-sample data sizes, i.e. 1M, 2M, and 4M.
lated bar graph, which represents the full MDS running tifhe o
sample dataNl = 100k) in the red bar and the MI-MDS in-
terpolation time of out-of-sample data € 1M, 2M, and 4M)  take 100, 400, and 1600 times longer with 1M, 2M, and 4M
in the blue bar on top of the red bar. As we expected, the rundata than the running time of the parallel SMACOF with 100k
ning time of MI-MDS is much faster than the full MDS running data, due to thé(N?) computational complexity. As opposed
time in Fig. 12. Although the MI-MDS interpolation running to the approximated full MDS running time, the proposed MI-
time in Table 3 is much smaller than the full MDS running time MDS interpolation takes much less time to deal with milliofis
(27006 seconds), the MI-MDS deals with a much larger amounioints than the parallel SMACOF algorithm. In numeric tefrms
of points, i.e. 10, 20, and 40 times larger. Although we canMI-MDS interpolation is around 3693.5, 7454.2, and 14923.8
not run the parallel SMACOF algorithm [7] with even 200,000 times faster than approximated full parallel MDS runninmgeti
points on our current sytsems in Table 1, if we assume that wwith 1M, 2M, and 4M data, respectively.
are able to run the parallel SMACOF algorithm with milliofso  If we extract the MI-MDS running time only with respect
points onCluster-11 in Table 1, then the parallel SMACOF will to the out-of-sample data size from Fig. 12, the running time
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should be proportional to the number of out-of-sample data
since the sample data size is fixed. Table 3 shows the exact
running time of the MI-MDS interpolation method with respec 251 Type

to the number of the out-of-sample data simp based on the &~ INTP_madel

same sample datdA = 100k). The running time is almost ex- : SITT::::::
actly proportional to the out-of-sample data simg, (vhich is 209 — STR_Ovhd

as it should be.

[

=
wn
1

5.3. Parallel Performance Analysis of MI-MDS

MPI overhead time (sec)
5
1

In the above section we discussed the quality of the con-
structed configuration of the MI-MDS approach based on the
STRESS value of the interpolated configuration, and the run- i
ning time benefits of the proposed MI-MDS interpolation ap- 05 '\
proach. Here, we would like to investigate the MPI communi-

cation overhead and parallel performance of the proposed pa

allel MI-MDS implementation in Section 4.1 in terms dfie

ciency Wlt.h respect to the running results within Clustert Figure 13: Parallel overhead modeled from MPI communicatioterms of

Cluster-Il in Table 1. sample data sizer) using Cluster-1 in Table 1 and message passing overhead
First of all, we prefer to investigate the parallel overhead model.

especially the MPI communication overhead, which could be

significant for the parallel MI-MDS in Section 4.1. Parallel

MI-MDS consists of two dferent computations, the interpo-

lation part and the STRESS calculation part. The interjparat

part is pleasingly parallel and its computational comgieis

| | | | | | I |
15000 20000 25000 30000 35000 40000 45000 50000
Sample size

Type
-®- INTP_model

1.0- -A- INTP_Ovhd
O(M), whereM = N —n, if the sample sizais considered as a - STR_model
constant. The interpolation part uses only two MPI pringsy ~ STR_Ovhd

MPI_GATHER andMPI_BROADCAST, at the end of interpolation

to gather all the interpolated mapping results and sprettheu
combined interpolated mapping results to all the procefsses
further computation. Thus, the communicated message amoun
through MPI primitives i=D(M), so it is not dependent on the
number of processes but the number of whole out-of-sample
points.

For the STRESS calculation, which was applied to the pro-
posed symmetric pairwise computation in Section 4.2, each
process use4PI_SENDRECV k times to send an assigned block ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
or rolled block whose size iM/p, wherek = [(p — 1)/2] for 1000 20000 25“%‘;;3,‘):&;65000 10000 4500050000
communicating required data amBI_REDUCE twice for calcu-

i C(d i —=5::)2 .82 i
latng‘KJ.(d” 3ij) andZKJ 6ii' Thus’ the MPI communicated Figure 14: Parallel overhead modeled from MPI communicatioterms of
data size i€)(M/p x p) = O(M) without regard to the number gample data sizer) using Cluster-11 in Table 1 and message passing overhead
of processes. model.

The MPI overhead during the interpolation and the STRESS
calculating at Cluster-l1 and Cluster-1l in Table 1 are shown
in Fig. 13 and Fig. 14, respectively. Note that the x-axisathb

o
©
1

e

MPI overhead time (sec)
5
1

o
~
1

figures is the sample size)(but notM = N — n. In the figures f_ PT(P)-TA) (20)
the model is generated é§M) starting with the smallest sam- T(1)

ple size — here 12.5k. Both Fig. 13 and Fig. 14 show that the o= 1 21)
actual overhead measurement follows the MPI communication 1+ f

overhead model.

Fig. 15 and Fig. 16 illustrate thefiency of the interpola-
tion and the STRESS calculation of the parallel MI-MDS run-
ning results with dierent sample sizes — 12.5k, 25k, and 50k —
with respect to the number of parallel units using Clustand aT(p) — T(p2)

Cluster-II, respectively. Equations foffieiency follow: f= T T (22)

13

wherepis the number of parallel unit$,(p) is the running time
with p parallel units, and (1) is the sequential running time. In
practice, Eq. (20) can be replaced with the following:



wherea = p1/p2 and p; is the smallest number of used cores with an appropriate degree of parallelism. Since both therin
for the experiment, salpha > 1. We use Eq. (22) for the polation part and the STRESS calcualtion part are pleasing|

overhead calculation.
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Figure 15: Hficiency of the interpolation part (INTP) and the STRESS evalu
ation part (STR) runtimes in the parallel MI-MDS applicatiwith respect to
different sample data sizes using Cluster-l in Table 1. The tatt size is

100k.
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Figure 16: Hiciency of the interpolation part (INTP) and the STRESS evalu
ation part (STR) runtimes in the parallel MI-MDS applicatiwith respect to
different sample data sizes using Cluster-Il in Table 1. The tate size is

100k.
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parallel within a process, the major overhead portion isvipé
message communication overhead unless load balance is not
achieved in the thread-level parallelization within eaobcess.

In the previous paragraphs, the MPI communicating over-
head is investigated and the MPI communication overhead
showsO(M) relation. Thus, the MPI overhead is constant if
we examine it with the same number of processes and the same
out-of-sample data sizes. Since the parallel computatine t
decreases as more cores are used, but the overhead time re-
mains constant, this property lowers th&a@ency as the num-
ber of cores is increased, as we expected. Note that the mumbe
of processes that lowers théieiency dramatically is dierent
from Cluster-I to Cluster-II. The reason for this is that ¥el
overhead time of Cluster-I is bigger than that of Clusteditlée
to different network environments, i.e. Giga bit ethernet and
20Gbps Infiniband. The fference is easily found by compar-
ing Fig. 13 and Fig. 14.

5.4. Large-Scale Data Visualization via MI-MDS

Fig. 17 shows the proposed MI-MDS results of a 100k Pub-
Chem dataset with respect to thé&dient sample sizes, such as
(a) 12.5k and (b) 50k. Sampled data and interpolated poiats a
colored in red and blue, respectively. We have also prodesse
a large volume of PubChem data with our parallel interpotati
algorithms for MDS by using our Cluster-11, and the resules a
shown in Fig. 18. We performed parallel MI-MDS to process
datasets from hundreds of thousand up to 4 million by usiag th
100k PubChem data set as a training set. In Fig. 18 we show
the MI-MDS result of a 2 million point dataset based on a 100k
point training set, compared to the mapping of 100k training
set data. The interpolated points are colored in blue, whie
training points are in red. As one can see, our interpolation
algorithms have produced a map closest to the training efatas

6. Conclusion and Future Work

In this paper we have proposed interpolation algorithms for
extending the MDS dimension reduction approaches to very
large datasets into the millions. The proposed interpmtati
approach consists of two-phases: (1) the full MDS running
with sampled datan); and (2) the interpolation of out-of-
sample dataN — n) based on the mapped position of sampled
data. The proposed interpolation algorithm reduces the-com
putational complexity of the MDS algorithm fro@(N?) to
O(nx (N - n)). The iterative majorization method is used as an
optimization method for finding mapping positions of theemt
polated point. We have also proposed in this paper the udage o
parallelized interpolation algorithms for MDS, which cati+u

In Fig. 15, 16 to 128 cores are used to measure parallel pelize multicor¢multiprocessor technologies. In particular, we
formance with 8 processes, and 32 to 384 cores are used tdilized a simple but highlyficient mechanism for computing

evaluate the parallel performance of the proposed paidilel

the symmetric all-pairwise distances to provide improved p

MDS with 16 processes in Fig. 16. Processes communicati®rmance.

via MPI primitives and each process is also parallelizedhat t
thread level. Both Fig. 15 and Fig. 16 show very gofitteency

Before starting a comparative experimental analysis batwe
MI-MDS and the full MDS algorithm, we explored the optimal



() MDS 12.5k (b) MDS 50k

Figure 17: Interpolated MDS results of the total 100k Pub@hiataset trained by (a) 12.5k and (b) 50k sampled data. ®dnugita are colored in red and
interpolated points are in blue.

(a) MDS 100k (trained set) (b) MDS 2M + 100k

Figure 18: Interpolated MDS results. Based on 100k samglgsatiditional 2M PubChem dataset is interpolated (b). $eongata are colored in red and
interpolated points are in blue.

number ofk-NN. 2-NN is the best case for the Pubchem dataperformance is analyzed in Section 5.3, and it shows vety hig
which we used as a test dataset in this paper. We have showefficiency as we expected.
that our interpolation approach gives results of good tyali

o 5 : Consequently, the interpolation approach enables us to con
with high parallel performance. In a quality comparisonéle q Y P P

. ) . figure 4 million Pubchem data points in this paper with an ac-
_perlmental results show that the interpolation _approgapuiu ceptable normalized STRESS value, compared to the normal-
IS compar_able. to the norma_l _MDS output, while taking mUChized STRESS value of 100k sampled data in less than one hour,
less running time and requiring much less memory than the 4 yhe size can be extended further with a moderate running
normal MDS methods. The proposed interpolation algorithmyn,e it e use parallel MDS only, we cannot even run with
is easy to parallelize since each interpolated point ispede 200,000 points on the Cluster-Il system (as shown in Table 1)

P'G”t of the other out-of-sample points, SO many points can b8ue to the infeasible amount of the memory required. Even if i
interpolated concurrently without communication. Thegtiat |, .o possible to run parallel MDS with 4 million data points o

15



the Cluster-1l system, it would take around 15,000 timegjn
than the interpolation approach as mentioned in Section 5.2

Future research could be the application of these idea$-to di

(20]

ferent areas including metagenomics and other DNA sequence
visualization. Also, we are working on how to reduce the gual
ity gap between the normal MDS methods and the MDS inter[11]
polating method.
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