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ABSTRACT 

Nowadays there is great research potential in analyzing the vast 

amount of data collected from social media and social network 

applications. In order to explore the correlations among this data 

and social activities, modeling techniques such as data mining and 

machine learning have been applied in combination with ad hoc 

query and complicated post-query analysis. Use of high-level 

platforms such as Pig, Hive, and Spark SQL to support this type 

of sophisticated analysis has become popular. However, the 

question remains: which of the available software building blocks 

can serve users best according to their data needs? This question 

motivated us to research the execution flow and performance 

characteristics of these platforms, focusing on our special interests 

of social media data, to provide a detailed comparison of high-

level language frameworks for ad hoc queries and applications. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Search process  

General Terms 

Experimentation, Performance, Languages 

Keywords 
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1. INTRODUCTION 
Social media data and its applications have gained the attention of 

commercial, academic and research communities. Many 

interesting research applications [1-6] that deal with daily 

activities, events, and knowledge in human society have been 

yielded. The data collected by these metrics of social media is 

vast, far exceeding constraints found in the low-level storage, 

databases, and runtimes traditionally used to store and access 

historical data. In practice, social media service providers such as 

Twitter, Facebook and Instagram have accommodated users with 

their customized solutions. However, for those research scientists 

and application developers who subscribe to public social streams 

and build their research systems and prototypes, it is challenging 

to select appropriate software building blocks that can scalably 

store, serve, and customize data schema for such immense data.  

Gao et al. [7-10] working with the Truthy [11] project 

demonstrates the usefulness of Apache software stacks with 

IndexedHBase [12]. This in turn led to Truthy’s current 

deployment on a large-scale and large-storage private cluster, 

MOE. Though IndexedHBase and its Java API have met the 

fundamental requirements for accessing and processing data 

analysis, there are still unfulfilled areas where further research is 

viable, especially when integrating the existing analysis pipelines 

with Apache high-level language platforms such as Pig [13], Hive 

[14] and Spark SQL [15]. Other challenges include ad hoc queries 

and direct computation on top of storage and databases. 

The scope of our research is outlined here in fine-grained low-

level perspective such as I/O(s) consumption benchmark,  

comparison of system-level building blocks [16], and performance 

optimization corresponding to different types of data processing. 

Our goal is to understand the requisite background knowledge, 

review the existing research, and performance benchmarks. Based 

on these results we can identify the computation and performance 

characteristics for queries and applications run on these high-level 

platforms. Using these categories, we will further investigate the 

differences between social media data and general data analysis to 

identify the potential customizations for social data analysis using 

high-level platforms.  

This paper focuses on understanding the requirements and 

boundaries of data systems that support various applications 

integrated with ad hoc queries and data analysis, especially for 

social media data. We benchmark query systems including Pig, 

Hive, IndexedHBase and Spark SQL. In particular, our previous 

work has investigated the possibility of using User Defined 

Functions (UDF) to support complicated iterative algorithms with 

fine-grained data aggregation and communication patterns [17]. 

We deploy an end-to-end pipeline for general scientific data and 

social media data processing.  

The paper is structured as follows. Section 2 introduces our use 

cases and data model, system-level requirements, and 

infrastructure in supporting social media data. Section 3 describes 

the features of ad hoc queries, and our research using high-level 

languages with NoSQL databases for query and data analysis. 

Section 4 gives performance benchmarks on applications. Lastly, 

we draw our conclusion and summarize the research directions in 

Section 5 and Section 6. 

2. TRUTHY - SOCIAL MEDIA 

OBSERVATORY 
Truthy is a public social media observatory developed as a 

research project at Indiana University. It analyzes and visualizes 

 

 



information diffusion on Twitter. Truthy monitors and collects 

Twitter data in real-time directly through the Twitter public 

streaming API [18]. Much of our work has been accomplished to 

support this observatory, upon which researchers have yielded 

inferences of human society by analyzing the social activities in 

cyberspace. 

One example of end-to-end social media data analysis [2] 

involved utilizing the IndexedHBase queries [12] on top of data 

mining techniques, such as eigenvector modularity [19] and label 

propagation [20]. The analysis was carried out on two datasets 

about political discussion collected during the six weeks leading 

up to the 2010 U.S. congressional midterm elections and 2012 

U.S. presidential elections. The results shown in [2, 12] prove that 

the retweet networks exhibited a highly segregated partisan 

structure; users of those tweets are mainly split into two 

homogenous communities corresponding to the political left and 

right leanings. Figure 1 shows the execution flow for getting the 

graph of political polarization. In 2012, the average amount of 

collected tweets each month was about 1 billion tweets. Such a 

large dataset proved problematic in terms of storage. Because of 

this we provide a fast processing layer to handle such high volume 

and complexity of data.  

 

Figure 1.  Sophisticated pipeline for visualizing Political 

Polarization 

This data observatory has been storing Twitter streaming data 

since July 2010; the current data size as of Aug 2015 is 

approximately 162TB. It includes raw compacted JSON files on 

HDFS, tweet fields and inverted indices stored as HBase tables. 

IndexedHBase [12] has been used to create inverted indices for 

raw tweets in JSON format. Various fields such as keywords, 

hashtags, geographical locations, user IDs, and retweet IDs have 

been stored as searchable rowkeys while the related tweet IDs are 

stored as associated (multi-column) values. Scientists and 

developers of Truthy perform ad hoc queries and post-query data 

analysis on these HBase tables, where tweet tables (JSON fields) 

and index tables are semi-structured with different amounts of 

columns.  

2.1 System Challenges for Truthy 
We have compared different NoSQL solutions to support indexing 

and fast queries on large-scale social media data. As a result, 

IndexedHBase was selected as the framework to store, serve, and 

perform data computation for data scientists [7-10] using YARN 

Hadoop and HBase as building blocks.  

Utilizing an infrastructure supported by IndexedHBase, our work 

delves into the system support for ad hoc queries and post-query 

data analysis performed on large-scale social media data. Based 

on our studies, the three categories of challenges are data-related, 

system-related, and programming and computation-related. Data 

related issues involve storing and serving incremental data on a 

scale of at least TB level, sustaining or creating indices with 

customized formats, and supporting flexible data schema for 

structured and semi-structured data with less disk consumption. 

System-related issues offer multi-tenancy to query clients and 

application developers, as well as allowing commodity hardware 

failures with fast/auto recovery. Finally, programming and 

computation-related issues support ad hoc query interfaces such as 

Pig, Hive, and Spark SQL, in addition to supporting customized 

programming in imperative programming languages such as Java 

and Python. They offer different levels of parallelism and 

sophisticated data mining and machine learning applications. 

3. AD HOC QUERY WITH NOSQL 

DATABASE 
A key characteristic of social media data analysis is ad hoc 

queries that select a subset data of interest from a very large 

dataset in databases, which has time and spatial attributes. Each 

row/field of tweet data is stored with an associated timestamp and 

their related column values. An example query could be “Find all 

the related tweets with given hashtag #computing in the time 

range between June 15th 2015 and July 10th 2015”. This type of 

query can be rewritten as traditional Select-Project-Join (SPJ) ad 

hoc queries. They project and join the two datasets, the records 

within that specific time, and other sets of records within the 

target fields, such as hashtags. The size of projection data, amount 

of generated temporary tables, and the type of join operations 

depends on the target fields of each query within a single table. 

For instance, the execution flow of the example query given 

above firstly scans the entire raw data table and filters the required 

data by referring to the given predicates of time duration and 

hashtag. Then it generates two temporary tables and performs a 

single shared-key join. Due to the extra overhead of generating 

two tables separately, in addition to performing a join aggregation 

and scanning  entire rows of each target record, Gao et al. [7-9] 

has shown that the overall performance does not meet our 

expectations. By comparison, the HBase solution scans the index 

and raw tables once and immediately filters the data with the 

support of built-in “create timestamp” for each stored row/column 

in a table. Even adopting NoSQL databases as backend storage, 

there are limited choices of database solutions that can efficiently 

store large datasets with fast (inverted) index access to the time 

spatial data. IndexedHBase has been developed as the backend 

inverted index layer, where the data and indices are stored on top 

of HBase to support these complicated social media data queries. 

 

Figure 2. Dataflow for Ad hoc queries of social media data 

Most of our queries are HBase I/O intensive, which mainly 

perform random data access by specified row keys, e.g. tweet IDs 

to tweet table and keywords to text index tables. Each query must 

first retrieve the related tweet IDs from index tables by a given 

time range and queried keys. It then obtains the required columns 

from the tweet table and may perform a UDF to yield a stage-

ready result output on HDFS for further data analysis as shown in 

Figure 2. This differs from SQL database procedure. 

IndexedHBase must build the indices as separate tables on HBase, 

and it considers extra overheads when loading data into HBase. 

Based on the execution flow and different type of data 

transformation of these queries, we have identified four categories 

and a total of 17 queries as summarized in Table 1:  

1. Read-One-Write-One:  Obtain one related tweet ID 

from Index Table by the given queried key (e.g. 



hashtag), dump the whole tweet as result, e.g. get-

tweets-with-meme. 

2. Read-One-Transform-One: Obtain one related tweet ID 

from Index Table by the given queried key (e.g. 

hashtag), generate single output entry (e.g. user pair) 

from the obtained tweet, e.g. get-retweet-edges. 

3. Read-One-Transform-Many: Obtain one related tweet 

ID from Index Table by the given queried key (e.g. 

hashtag), generate multiple output entries as ArrayList, 

e.g. meme-cooccur-count. 

4. Single-Scan: read the statistic information directly from 

HBase table. 

Type Query Exe. Steps 

Read-One-

Write-One 

get-tweets-with-meme, get-

tweets-with-text, get-tweets-

with-userid, get-retweets, get-

tweets-with-time, get-tweets-

with-phrase 

2 

Read-One-

Transform-

One 

get-retweet-edges, get-mention-

edges 

2 

Read-One-

Transform-

Many 

meme-post-count, text-post-

count, userid-post-count, user-

post-count, user-post-count-by-

text, meme-cooccur-count 

2 

Single-Scan meme-timestamp-count, text-

timestamp-count, userid-

timestamp-count 

1 

Table 1. Classification of support social queries 

3.1 Query Execution with High-level 

Languages 
IndexedHBase includes Java MapReduce implementations driven 

by a wrapper bash shell. Despite this, it is not easy to add new 

queries or UDF without understanding the background of Hadoop 

MapReduce. Specifically, all the supported social media data 

queries are very straightforward ad hoc queries executed with 

common database operations such as FILTER, GROUP BY, JOIN, 

and FOR EACH with built-in or UDF functions. This motivated 

us to investigate the integration with high-level abstractions such 

as Pig, Hive, and Spark SQL for day-to-day query and data 

analysis. 

Most of these systems are considered as Dataflow type of system 

or  Dataflow programming model, which is a paradigm that 

models a program as a directed graph of data [21]. In both cases, 

data flows among a series of components such as operators and 

functions which serve as a “black-box” unit (the detailed 

implementations are already defined) to transform the incoming 

data from its original format into another. Data in the execution 

flow is clearly defined as either being input or output to every 

atomic component, independently handled on each and inherently 

run in parallel. 

Pig [13] is a dataflow system built on top of Hadoop MapReduce, 

which aims to serve as a high level abstraction interfacing with 

SQL database and MapReduce computation systems. Pig itself is 

a declarative DAG-flow system, but it uses Pig-Latin [22], a 

procedural language. This makes it flexible and allows users to 

choose different implementations of the same relational operator 

(e.g. JOIN and GROUPBY) in execution. Other than the built-in 

operators, a developer can apply their own sophisticated algorithm 

to the dataflow in Pig via its UDFs. Hive [14] is another high-

level platform, but it differs from Pig by supporting data 

warehouse ad hoc queries and simple MapReduce applications for 

structured data stored on HDFS [23]. It provides a SQL-like 

language, HiveQL, to execute on top of Hadoop. Most of the 

implementation concepts of Hive derive from SQL RDBMS. 

Spark SQL [15] is another open source project inspired by Hive. 

Instead of being coupled with the Hadoop MapReduce engine, it 

uses Spark as its low-level runtime, with DataFrame schema RDD 

as its major in-memory data structure embedded with named 

column (table-like) schema. The extensible query optimizer 

Catalyst is written in Scala, a different model from Hive and its 

predecessor Shark [24].  

Although we have not yet linked the ad hoc query with the post-

query analysis, we recognize the need for chaining this 

intermediate data to next-generation compute resources and 

fulfilling the dataflow of the entire analysis pipeline. Our previous 

work [17] has demonstrated the importance of in-memory 

computation and resource reuse for sophisticated machine 

learning applications with iterations. We have shown that 

incorporating the Hadoop plugin Harp allows general ETL queries 

to seamlessly integrate with sophisticated analysis applications 

[15]. This would save significant job restart overhead and enable 

fast resource allocation and reusability. Furthermore, it enables 

intuitive development writing prototypes of end-to-end pipelines 

in a single environment. Spark SQL has proposed a similar idea 

that uses the same platform and data abstractions for both queries 

and analysis, yielding meaningful results for sophisticated 

algorithms. Meanwhile, Apache Tez [25] shows the importance of 

resource reusability for complex DAG tasks on top of high-level 

platforms run on YARN Hadoop. 

4. PERFORMANCE RESULTS 
We measure the overhead of using these high-level platforms for 

the target ad hoc queries. Our experiments run on MOE, a large-

storage, large-memory and high-performance private cluster at 

Indiana University dedicated to the Truthy project [11, 26]. It 

consists of 3 login nodes and 10 compute nodes, where each login 

node is set up with two Intel(R) Xeon(R) CPU E5-2620 v2 CPUs, 

64 GB memory, and each compute node has two Intel(R) Xeon(R) 

CPU E5-2660 v2 CPUs, 128 GB memory, 48TB HDD and 

120GB SSD. All nodes are interconnected with a 10Gb Ethernet. 

We perform our tests on top of a Hadoop 2.5.1 cluster with 

different high-level platforms such as Pig 0.14.0, Hive 1.0.0, and 

Spark SQL 1.5.0. Meanwhile, IndexedHBase 0.2.0 is the Java 

MapReduce baseline.  

We have implemented a total of 17 ad hoc queries [12] written in 

Pig, Hive, IndexedHBase and Spark SQL. Other than the initial 

stage of searching related tweet IDs from index tables, we select 

three query implementations and benchmark them on different 

platforms to examine the runtime behaviors as shown in Figures 

3-5. Each query submission runs with a total of 587858 tweet IDs 

obtained from meme index tables by being given the most 

common hashtag, “Follow Friday” #ff and are equally assigned to 

9 workers; the default parallelism (the amount of reducers) is set 

to 4.  

Since all of these are I/O intensive queries using HBase, a major 

overhead is the data retrieval time communicated with the HBase 

tweet table which stores the original tweet fields. Other than get-

tweets query, which dumps the entire tweet to HDFS, every 

implemented UDF only scans a subset of columns and yields a 

specified format such as edge pair (user ID and retweet user ID) 

and a list of mentioned hashtags in the related tweet. The 



transformed data are collected and accumulated by using the 

standard data aggregation operations, e.g. GROUP BY and 

reduceByKey. Compared with traditional row-based databases, we 

reduce significant I/O overhead with the help of the columnar 

scanning in HBase. Note that the computation time of Spark SQL 

takes longer as Spark performs “map-only” worker execution; it 

includes the UDF transformation time (from DataFrame RDD to 

Java RDD) and cross-worker data aggregation/communication 

time, along with the output to HDFS time. 
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Figure 3. Performance breakdown for get-tweets 
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Figure 4. Performance breakdown for get-retweet-edges 

As shown in Figures 3-5, IndexedHBase performs the best as it 

has minimum startup overhead for constructing the high-level 

execution flow. Also, before writing data to the output buffer, 

each worker is optimized with an in-memory combination; if there 

is any intermediate data, they share the same emit key. Note that 

the computation time of Spark SQL takes longer as Spark 

performs “map-only” worker execution; it includes the UDF 

transformation time (from DataFrame RDD to Java RDD) and 

cross-worker data aggregation/communication time, along with 

the output to HDFS time. 

Since all our queries in Table 1 are compiled and run as YARN or 

Hadoop jobs, we evaluate the local write bytes (except Spark SQL 

which does not have a reduce stage) and investigate the data 

aggregation overhead. Figure 6 shows that for queries with reduce 

stages (get-retweet-edges and meme-cooccur-count), Pig and Hive 

implementations generate more intermediate data that matches the 

increasing time of execution. This is due to these high level 

abstractions using tuple-based computations and emitting each 

processed tuple to the output buffer. IndexedHBase is a Java 

MapReduce implementation with which the output of the mapper 

is optimized, combining the emitted values that share the same 

output key. We observe this behavior from the intermediate record 

sizes as shown in Table 2. 
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Figure 5. Performance breakdown for meme-cooccur-count 
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Figure 6. Intermediate Local write in bytes 

Query Pig Hive IndexedHBase 

get-tweets 587858 587858 587858 

get-retweet-

edges 
179486 179463 167740 

meme-

cooccur-

count 

90216 90125 63524 

Table 2. Mapper output (combined if any) record sizes 

5. CONCLUSION 
This paper compares social media data query performance on a 

large-scale data observatory. To address the challenges in various 

levels of this observatory, we proposed to use inverted indices 

generated by IndexedHBase with different high-level abstractions 

to perform efficient query and post-query data analysis. The 

benchmarks show that major overhead of ad hoc queries come 

from I/O and job startup and IndexedHBase can further improve 

query performance compared to other high level platforms. Our 

future work will be centered on an integrated solution that makes 

it simpler and more efficient for users to conduct query and 

analysis. This implies that programming interface, computation 

extension, and locality-aware data linkage are constructed within 

an interoperable platform. We have achieved better resource 

utilization by reducing the resource allocation overhead, and fast 

data access with in-memory caches for frequently used data 



within a pipeline [17]. With optimized query execution flow, we 

can support real-time and statistical data metrics of data 

processing.  

Our research currently does not investigate the query optimization 

of databases [27-30] with optimization strategies such as 

predicates move-around [29], which have been implemented in 

many database [31-33, 14] and dataflow [13] systems, especially 

for Select-Project-Join (SPJ) ad hoc queries. However, the social 

media data queries can prove challenging for traditional SPJ 

database systems. Our implementation therefore avoids the SPJ 

complexity by using inverted indices with associated timestamps 

within the same cell of data. 

6. FUTURE WORK 
We have integrated Harp with Pig [17] to show the advantages of 

using customized data aggregation and in-memory computation 

for ad hoc query and analysis applications. We have produced a 

survey [16] to evaluate the basic features and fundamental 

differences among Pig, Hive and Spark SQL. Based on these 

efforts, we plan to extend our research from state-of-the-art 

Apache high-level language platforms to end-to-end solutions that 

link multiple compute components into a single development and 

platform. We will evaluate these high-level platforms versus 

domain-specific languages such as R and Matlab.  
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