
Towards an Understanding of Scalable Query and Data
Analysis for Social Media Data using High-Level Dataflow

Systems
Tak Lon (Stephen) Wu

School of Informatics and Computing
Indiana University Bloomington

taklwu@indiana.edu

Judy Qiu
School of Informatics and Computing

Indiana University Bloomington

xqiu@indiana.edu

ABSTRACT

Nowadays there is great research potential in analyzing the vast

amount of data collected from social media and social network

applications. In order to explore the correlations among this data

and social activities, modeling techniques such as data mining and

machine learning have been applied in combination with ad hoc

query and complicated post-query analysis. Use of high-level

platforms such as Pig, Hive, and Spark SQL to support this type

of sophisticated analysis has become popular. However, the

question remains: which of the available software building blocks

can serve users best according to their data needs? This question

motivated us to research the execution flow and performance

characteristics of these platforms, focusing on our special interests

of social media data, to provide a detailed comparison of high-

level language frameworks for ad hoc queries and applications.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search process

General Terms

Experimentation, Performance, Languages

Keywords

Social Media Data Analysis, Pig, Hive, Spark SQL,

IndexedHBase, Dataflow

1. INTRODUCTION
Social media data and its applications have gained the attention of

commercial, academic and research communities. Many

interesting research applications [1-6] that deal with daily

activities, events, and knowledge in human society have been

yielded. The data collected by these metrics of social media is

vast, far exceeding constraints found in the low-level storage,

databases, and runtimes traditionally used to store and access

historical data. In practice, social media service providers such as

Twitter, Facebook and Instagram have accommodated users with

their customized solutions. However, for those research scientists

and application developers who subscribe to public social streams

and build their research systems and prototypes, it is challenging

to select appropriate software building blocks that can scalably

store, serve, and customize data schema for such immense data.

Gao et al. [7-10] working with the Truthy [11] project

demonstrates the usefulness of Apache software stacks with

IndexedHBase [12]. This in turn led to Truthy’s current

deployment on a large-scale and large-storage private cluster,

MOE. Though IndexedHBase and its Java API have met the

fundamental requirements for accessing and processing data

analysis, there are still unfulfilled areas where further research is

viable, especially when integrating the existing analysis pipelines

with Apache high-level language platforms such as Pig [13], Hive

[14] and Spark SQL [15]. Other challenges include ad hoc queries

and direct computation on top of storage and databases.

The scope of our research is outlined here in fine-grained low-

level perspective such as I/O(s) consumption benchmark,

comparison of system-level building blocks [16], and performance

optimization corresponding to different types of data processing.

Our goal is to understand the requisite background knowledge,

review the existing research, and performance benchmarks. Based

on these results we can identify the computation and performance

characteristics for queries and applications run on these high-level

platforms. Using these categories, we will further investigate the

differences between social media data and general data analysis to

identify the potential customizations for social data analysis using

high-level platforms.

This paper focuses on understanding the requirements and

boundaries of data systems that support various applications

integrated with ad hoc queries and data analysis, especially for

social media data. We benchmark query systems including Pig,

Hive, IndexedHBase and Spark SQL. In particular, our previous

work has investigated the possibility of using User Defined

Functions (UDF) to support complicated iterative algorithms with

fine-grained data aggregation and communication patterns [17].

We deploy an end-to-end pipeline for general scientific data and

social media data processing.

The paper is structured as follows. Section 2 introduces our use

cases and data model, system-level requirements, and

infrastructure in supporting social media data. Section 3 describes

the features of ad hoc queries, and our research using high-level

languages with NoSQL databases for query and data analysis.

Section 4 gives performance benchmarks on applications. Lastly,

we draw our conclusion and summarize the research directions in

Section 5 and Section 6.

2. TRUTHY - SOCIAL MEDIA

OBSERVATORY
Truthy is a public social media observatory developed as a

research project at Indiana University. It analyzes and visualizes

information diffusion on Twitter. Truthy monitors and collects

Twitter data in real-time directly through the Twitter public

streaming API [18]. Much of our work has been accomplished to

support this observatory, upon which researchers have yielded

inferences of human society by analyzing the social activities in

cyberspace.

One example of end-to-end social media data analysis [2]

involved utilizing the IndexedHBase queries [12] on top of data

mining techniques, such as eigenvector modularity [19] and label

propagation [20]. The analysis was carried out on two datasets

about political discussion collected during the six weeks leading

up to the 2010 U.S. congressional midterm elections and 2012

U.S. presidential elections. The results shown in [2, 12] prove that

the retweet networks exhibited a highly segregated partisan

structure; users of those tweets are mainly split into two

homogenous communities corresponding to the political left and

right leanings. Figure 1 shows the execution flow for getting the

graph of political polarization. In 2012, the average amount of

collected tweets each month was about 1 billion tweets. Such a

large dataset proved problematic in terms of storage. Because of

this we provide a fast processing layer to handle such high volume

and complexity of data.

Figure 1. Sophisticated pipeline for visualizing Political

Polarization

This data observatory has been storing Twitter streaming data

since July 2010; the current data size as of Aug 2015 is

approximately 162TB. It includes raw compacted JSON files on

HDFS, tweet fields and inverted indices stored as HBase tables.

IndexedHBase [12] has been used to create inverted indices for

raw tweets in JSON format. Various fields such as keywords,

hashtags, geographical locations, user IDs, and retweet IDs have

been stored as searchable rowkeys while the related tweet IDs are

stored as associated (multi-column) values. Scientists and

developers of Truthy perform ad hoc queries and post-query data

analysis on these HBase tables, where tweet tables (JSON fields)

and index tables are semi-structured with different amounts of

columns.

2.1 System Challenges for Truthy
We have compared different NoSQL solutions to support indexing

and fast queries on large-scale social media data. As a result,

IndexedHBase was selected as the framework to store, serve, and

perform data computation for data scientists [7-10] using YARN

Hadoop and HBase as building blocks.

Utilizing an infrastructure supported by IndexedHBase, our work

delves into the system support for ad hoc queries and post-query

data analysis performed on large-scale social media data. Based

on our studies, the three categories of challenges are data-related,

system-related, and programming and computation-related. Data

related issues involve storing and serving incremental data on a

scale of at least TB level, sustaining or creating indices with

customized formats, and supporting flexible data schema for

structured and semi-structured data with less disk consumption.

System-related issues offer multi-tenancy to query clients and

application developers, as well as allowing commodity hardware

failures with fast/auto recovery. Finally, programming and

computation-related issues support ad hoc query interfaces such as

Pig, Hive, and Spark SQL, in addition to supporting customized

programming in imperative programming languages such as Java

and Python. They offer different levels of parallelism and

sophisticated data mining and machine learning applications.

3. AD HOC QUERY WITH NOSQL

DATABASE
A key characteristic of social media data analysis is ad hoc

queries that select a subset data of interest from a very large

dataset in databases, which has time and spatial attributes. Each

row/field of tweet data is stored with an associated timestamp and

their related column values. An example query could be “Find all

the related tweets with given hashtag #computing in the time

range between June 15th 2015 and July 10th 2015”. This type of

query can be rewritten as traditional Select-Project-Join (SPJ) ad

hoc queries. They project and join the two datasets, the records

within that specific time, and other sets of records within the

target fields, such as hashtags. The size of projection data, amount

of generated temporary tables, and the type of join operations

depends on the target fields of each query within a single table.

For instance, the execution flow of the example query given

above firstly scans the entire raw data table and filters the required

data by referring to the given predicates of time duration and

hashtag. Then it generates two temporary tables and performs a

single shared-key join. Due to the extra overhead of generating

two tables separately, in addition to performing a join aggregation

and scanning entire rows of each target record, Gao et al. [7-9]

has shown that the overall performance does not meet our

expectations. By comparison, the HBase solution scans the index

and raw tables once and immediately filters the data with the

support of built-in “create timestamp” for each stored row/column

in a table. Even adopting NoSQL databases as backend storage,

there are limited choices of database solutions that can efficiently

store large datasets with fast (inverted) index access to the time

spatial data. IndexedHBase has been developed as the backend

inverted index layer, where the data and indices are stored on top

of HBase to support these complicated social media data queries.

Figure 2. Dataflow for Ad hoc queries of social media data

Most of our queries are HBase I/O intensive, which mainly

perform random data access by specified row keys, e.g. tweet IDs

to tweet table and keywords to text index tables. Each query must

first retrieve the related tweet IDs from index tables by a given

time range and queried keys. It then obtains the required columns

from the tweet table and may perform a UDF to yield a stage-

ready result output on HDFS for further data analysis as shown in

Figure 2. This differs from SQL database procedure.

IndexedHBase must build the indices as separate tables on HBase,

and it considers extra overheads when loading data into HBase.

Based on the execution flow and different type of data

transformation of these queries, we have identified four categories

and a total of 17 queries as summarized in Table 1:

1. Read-One-Write-One: Obtain one related tweet ID

from Index Table by the given queried key (e.g.

hashtag), dump the whole tweet as result, e.g. get-

tweets-with-meme.

2. Read-One-Transform-One: Obtain one related tweet ID

from Index Table by the given queried key (e.g.

hashtag), generate single output entry (e.g. user pair)

from the obtained tweet, e.g. get-retweet-edges.

3. Read-One-Transform-Many: Obtain one related tweet

ID from Index Table by the given queried key (e.g.

hashtag), generate multiple output entries as ArrayList,

e.g. meme-cooccur-count.

4. Single-Scan: read the statistic information directly from

HBase table.

Type Query Exe. Steps

Read-One-

Write-One

get-tweets-with-meme, get-

tweets-with-text, get-tweets-

with-userid, get-retweets, get-

tweets-with-time, get-tweets-

with-phrase

2

Read-One-

Transform-

One

get-retweet-edges, get-mention-

edges

2

Read-One-

Transform-

Many

meme-post-count, text-post-

count, userid-post-count, user-

post-count, user-post-count-by-

text, meme-cooccur-count

2

Single-Scan meme-timestamp-count, text-

timestamp-count, userid-

timestamp-count

1

Table 1. Classification of support social queries

3.1 Query Execution with High-level

Languages
IndexedHBase includes Java MapReduce implementations driven

by a wrapper bash shell. Despite this, it is not easy to add new

queries or UDF without understanding the background of Hadoop

MapReduce. Specifically, all the supported social media data

queries are very straightforward ad hoc queries executed with

common database operations such as FILTER, GROUP BY, JOIN,

and FOR EACH with built-in or UDF functions. This motivated

us to investigate the integration with high-level abstractions such

as Pig, Hive, and Spark SQL for day-to-day query and data

analysis.

Most of these systems are considered as Dataflow type of system

or Dataflow programming model, which is a paradigm that

models a program as a directed graph of data [21]. In both cases,

data flows among a series of components such as operators and

functions which serve as a “black-box” unit (the detailed

implementations are already defined) to transform the incoming

data from its original format into another. Data in the execution

flow is clearly defined as either being input or output to every

atomic component, independently handled on each and inherently

run in parallel.

Pig [13] is a dataflow system built on top of Hadoop MapReduce,

which aims to serve as a high level abstraction interfacing with

SQL database and MapReduce computation systems. Pig itself is

a declarative DAG-flow system, but it uses Pig-Latin [22], a

procedural language. This makes it flexible and allows users to

choose different implementations of the same relational operator

(e.g. JOIN and GROUPBY) in execution. Other than the built-in

operators, a developer can apply their own sophisticated algorithm

to the dataflow in Pig via its UDFs. Hive [14] is another high-

level platform, but it differs from Pig by supporting data

warehouse ad hoc queries and simple MapReduce applications for

structured data stored on HDFS [23]. It provides a SQL-like

language, HiveQL, to execute on top of Hadoop. Most of the

implementation concepts of Hive derive from SQL RDBMS.

Spark SQL [15] is another open source project inspired by Hive.

Instead of being coupled with the Hadoop MapReduce engine, it

uses Spark as its low-level runtime, with DataFrame schema RDD

as its major in-memory data structure embedded with named

column (table-like) schema. The extensible query optimizer

Catalyst is written in Scala, a different model from Hive and its

predecessor Shark [24].

Although we have not yet linked the ad hoc query with the post-

query analysis, we recognize the need for chaining this

intermediate data to next-generation compute resources and

fulfilling the dataflow of the entire analysis pipeline. Our previous

work [17] has demonstrated the importance of in-memory

computation and resource reuse for sophisticated machine

learning applications with iterations. We have shown that

incorporating the Hadoop plugin Harp allows general ETL queries

to seamlessly integrate with sophisticated analysis applications

[15]. This would save significant job restart overhead and enable

fast resource allocation and reusability. Furthermore, it enables

intuitive development writing prototypes of end-to-end pipelines

in a single environment. Spark SQL has proposed a similar idea

that uses the same platform and data abstractions for both queries

and analysis, yielding meaningful results for sophisticated

algorithms. Meanwhile, Apache Tez [25] shows the importance of

resource reusability for complex DAG tasks on top of high-level

platforms run on YARN Hadoop.

4. PERFORMANCE RESULTS
We measure the overhead of using these high-level platforms for

the target ad hoc queries. Our experiments run on MOE, a large-

storage, large-memory and high-performance private cluster at

Indiana University dedicated to the Truthy project [11, 26]. It

consists of 3 login nodes and 10 compute nodes, where each login

node is set up with two Intel(R) Xeon(R) CPU E5-2620 v2 CPUs,

64 GB memory, and each compute node has two Intel(R) Xeon(R)

CPU E5-2660 v2 CPUs, 128 GB memory, 48TB HDD and

120GB SSD. All nodes are interconnected with a 10Gb Ethernet.

We perform our tests on top of a Hadoop 2.5.1 cluster with

different high-level platforms such as Pig 0.14.0, Hive 1.0.0, and

Spark SQL 1.5.0. Meanwhile, IndexedHBase 0.2.0 is the Java

MapReduce baseline.

We have implemented a total of 17 ad hoc queries [12] written in

Pig, Hive, IndexedHBase and Spark SQL. Other than the initial

stage of searching related tweet IDs from index tables, we select

three query implementations and benchmark them on different

platforms to examine the runtime behaviors as shown in Figures

3-5. Each query submission runs with a total of 587858 tweet IDs

obtained from meme index tables by being given the most

common hashtag, “Follow Friday” #ff and are equally assigned to

9 workers; the default parallelism (the amount of reducers) is set

to 4.

Since all of these are I/O intensive queries using HBase, a major

overhead is the data retrieval time communicated with the HBase

tweet table which stores the original tweet fields. Other than get-

tweets query, which dumps the entire tweet to HDFS, every

implemented UDF only scans a subset of columns and yields a

specified format such as edge pair (user ID and retweet user ID)

and a list of mentioned hashtags in the related tweet. The

transformed data are collected and accumulated by using the

standard data aggregation operations, e.g. GROUP BY and

reduceByKey. Compared with traditional row-based databases, we

reduce significant I/O overhead with the help of the columnar

scanning in HBase. Note that the computation time of Spark SQL

takes longer as Spark performs “map-only” worker execution; it

includes the UDF transformation time (from DataFrame RDD to

Java RDD) and cross-worker data aggregation/communication

time, along with the output to HDFS time.

0

50

100

150

200

250

300

Pig Hive IndexedHBase Spark SQL

E
x

ec
u

ti
o

n
 T

im
e

in
 S

e
co

n
d

s

Job Startup Time Map Setup Time Data Loading Time

HBaseIO Time Map Computation Time Map Cleanup Time

Shuffle Time Red. Setup Time Red. Computation Time

Red. Output Time

Figure 3. Performance breakdown for get-tweets

0

20

40

60

80

100

120

Pig Hive IndexedHBase Spark SQL

E
x

ec
u

ti
o

n
 T

im
e

in
 S

ec
o

n
d

s

Job Startup Time Map Setup Time Data Loading Time

HBaseIO Time Map Computation Time Map Cleanup Time

Shuffle Time Red. Setup Time Red. Computation Time

Red. Output Time

Figure 4. Performance breakdown for get-retweet-edges

As shown in Figures 3-5, IndexedHBase performs the best as it

has minimum startup overhead for constructing the high-level

execution flow. Also, before writing data to the output buffer,

each worker is optimized with an in-memory combination; if there

is any intermediate data, they share the same emit key. Note that

the computation time of Spark SQL takes longer as Spark

performs “map-only” worker execution; it includes the UDF

transformation time (from DataFrame RDD to Java RDD) and

cross-worker data aggregation/communication time, along with

the output to HDFS time.

Since all our queries in Table 1 are compiled and run as YARN or

Hadoop jobs, we evaluate the local write bytes (except Spark SQL

which does not have a reduce stage) and investigate the data

aggregation overhead. Figure 6 shows that for queries with reduce

stages (get-retweet-edges and meme-cooccur-count), Pig and Hive

implementations generate more intermediate data that matches the

increasing time of execution. This is due to these high level

abstractions using tuple-based computations and emitting each

processed tuple to the output buffer. IndexedHBase is a Java

MapReduce implementation with which the output of the mapper

is optimized, combining the emitted values that share the same

output key. We observe this behavior from the intermediate record

sizes as shown in Table 2.

0

20

40

60

80

100

120

Pig Hive IndexedHBase Spark SQL

E
x

ec
u

ti
o

n
 T

im
e

in
 S

e
co

n
d

s

Job Startup Time Map Setup Time Data Loading Time

HBaseIO Time Map Computation Time Map Cleanup Time

Shuffle Time Red. Setup Time Red. Computation Time

Red. Output Time

Figure 5. Performance breakdown for meme-cooccur-count

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

get-tweets get-retweet-edges meme-cooccur-count

B
y

te
s

Pig

Hive

IndexedHBase

Figure 6. Intermediate Local write in bytes

Query Pig Hive IndexedHBase

get-tweets 587858 587858 587858

get-retweet-

edges
179486 179463 167740

meme-

cooccur-

count

90216 90125 63524

Table 2. Mapper output (combined if any) record sizes

5. CONCLUSION
This paper compares social media data query performance on a

large-scale data observatory. To address the challenges in various

levels of this observatory, we proposed to use inverted indices

generated by IndexedHBase with different high-level abstractions

to perform efficient query and post-query data analysis. The

benchmarks show that major overhead of ad hoc queries come

from I/O and job startup and IndexedHBase can further improve

query performance compared to other high level platforms. Our

future work will be centered on an integrated solution that makes

it simpler and more efficient for users to conduct query and

analysis. This implies that programming interface, computation

extension, and locality-aware data linkage are constructed within

an interoperable platform. We have achieved better resource

utilization by reducing the resource allocation overhead, and fast

data access with in-memory caches for frequently used data

within a pipeline [17]. With optimized query execution flow, we

can support real-time and statistical data metrics of data

processing.

Our research currently does not investigate the query optimization

of databases [27-30] with optimization strategies such as

predicates move-around [29], which have been implemented in

many database [31-33, 14] and dataflow [13] systems, especially

for Select-Project-Join (SPJ) ad hoc queries. However, the social

media data queries can prove challenging for traditional SPJ

database systems. Our implementation therefore avoids the SPJ

complexity by using inverted indices with associated timestamps

within the same cell of data.

6. FUTURE WORK
We have integrated Harp with Pig [17] to show the advantages of

using customized data aggregation and in-memory computation

for ad hoc query and analysis applications. We have produced a

survey [16] to evaluate the basic features and fundamental

differences among Pig, Hive and Spark SQL. Based on these

efforts, we plan to extend our research from state-of-the-art

Apache high-level language platforms to end-to-end solutions that

link multiple compute components into a single development and

platform. We will evaluate these high-level platforms versus

domain-specific languages such as R and Matlab.

7. ACKNOWNLEDGEMENT
We gratefully acknowledge support from the National Science

Foundation (grant OCI-1149432) and would like to thank our

colleagues in the SALSA team, Prof. Filippo Menczer and our

collaborators in the Truthy team at Indiana University for their

support and comments.

8. REFERENCES
[1] Joseph M Hellerstein and Michael Stonebraker, Predicate

migration: Optimizing queries with expensive predicates.

Vol. 22. 1993, ISBN: 0897915925: ACM.

[2] Michael Conover, Jacob Ratkiewicz, Matthew Francisco,

Bruno Gonçalves, Filippo Menczer, and Alessandro

Flammini. Political polarization on twitter. in ICWSM. 2011.

[3] Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno

Gonçalves, Alessandro Flammini, and Filippo Menczer.

Detecting and Tracking Political Abuse in Social Media. in

ICWSM. 2011.

[4] Michael D Conover, Bruno Gonçalves, Alessandro

Flammini, and Filippo Menczer, Partisan asymmetries in

online political activity. EPJ Data Science, 2012. 1(1): p. 1-

19.

[5] Joseph DiGrazia, Karissa McKelvey, Johan Bollen, and

Fabio Rojas, More tweets, more votes: Social media as a

quantitative indicator of political behavior. PloS one, 2013.

8(11): p. e79449.

[6] Mohsen JafariAsbagh, Emilio Ferrara, Onur Varol, Filippo

Menczer, and Alessandro Flammini, Clustering memes in

social media streams. Social Network Analysis and Mining,

2014. 4(1): p. 1-13.

[7] Xiaoming Gao, Investigation and Comparison of Distributed

NoSQL Database Systems.

[8] Xiaoming Gao and Judy Qiu, Scalable inverted indexing on

NoSQL table storage. 2010.

[9] Xiaoming Gao, Vaibhav Nachankar, and Judy Qiu.

Experimenting lucene index on HBase in an HPC

environment. in Proceedings of the first annual workshop on

High performance computing meets databases. 2011: ACM.

[10] Xiaoming Gao, Evan Roth, Karissa McKelvey, Clayton

Davis, Andrew Younge, Emilio Ferrara, Filippo Menczer,

and Judy Qiu, Supporting a Social Media Observatory with

Customizable Index Structures: Architecture and

Performance, in Cloud Computing for Data-Intensive

Applications. 2014, Springer. p. 401-427.

[11] Karissa McKelvey and Filippo Menczer, Design and

prototyping of a social media observatory, in Proceedings of

the 22nd international conference on World Wide Web

companion. 2013, International World Wide Web

Conferences Steering Committee: Rio de Janeiro, Brazil. p.

1351-1358.

[12] Xiaoming Gao and Judy Qiu. Social Media Data Analysis

with IndexedHBase and Iterative MapReduce. in Proc.

Workshop on Many-Task Computing on Clouds, Grids, and

Supercomputers (MTAGS 2013) at Super Computing. 2013.

[13] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep

Kamath, Shravan M. Narayanamurthy, Christopher Olston,

Benjamin Reed, Santhosh Srinivasan, and Utkarsh

Srivastava, Building a high-level dataflow system on top of

Map-Reduce: the Pig experience. Proc. VLDB Endow.,

2009. 2(2): p. 1414-1425.

[14] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng

Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete

Wyckoff, and Raghotham Murthy, Hive: a warehousing

solution over a map-reduce framework. Proc. VLDB

Endow., 2009. 2(2): p. 1626-1629.

[15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai,

Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer

Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia,

Spark SQL: Relational Data Processing in Spark, in

Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data. 2015, ACM:

Melbourne, Victoria, Australia. p. 1383-1394.

[16] Tak-Lon (Stephen) Wu, Bingjing Zhang, Clayton Davis,

Emilio Ferrara, Alessandro Flammini, Filippo Menczer, and

Judy Qiu, Scalable Query and Analysis for Social Networks:

An Integrated High-Level Dataflow System with Pig and

Harp, in Big Data in Complex and Social Networks, My T.

Thai, Hui Xiong, and W. Wu, Editors. 2015.

[17] Tak-Lon Wu, Abhilash Koppula, and Judy Qiu. Integrating

Pig with Harp to support iterative applications with fast

cache and customized communication. in Proceedings of the

5th International Workshop on Data-Intensive Computing in

the Clouds. 2014: IEEE Press.

[18] Twitter Inc.; Available from: https://twitter.com/.

[19] Mark EJ Newman, Finding community structure in networks

using the eigenvectors of matrices. Physical review E, 2006.

74(3): p. 036104.

[20] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara,

Near linear time algorithm to detect community structures in

large-scale networks. Physical Review E, 2007. 76(3): p.

036106.

[21] Dataflow programming; Available from:

https://en.wikipedia.org/wiki/Dataflow_programming.

[22] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,

Ravi Kumar, and Andrew Tomkins, Pig latin: a not-so-

https://twitter.com/
https://en.wikipedia.org/wiki/Dataflow_programming

foreign language for data processing, in Proceedings of the

2008 ACM SIGMOD international conference on

Management of data. 2008, ACM: Vancouver, Canada. p.

1099-1110.

[23] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and

Robert Chansler. The hadoop distributed file system. in Mass

Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on. 2010: IEEE.

[24] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J.

Franklin, Scott Shenker, and Ion Stoica, Shark: SQL and rich

analytics at scale, in Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data.

2013, ACM: New York, New York, USA. p. 13-24.

[25] Apache Tez, 2014; Available from:

http://tez.incubator.apache.org/.

[26] Xiaoming Gao and Judy Qiu, Supporting End-to-End Social

Media Data Analysis with the IndexedHBase Platform. 2013.

[27] Matthias Jarke and Jurgen Koch, Query optimization in

database systems. ACM Computing surveys (CsUR), 1984.

16(2): p. 111-152.

[28] Johann Christoph Freytag, A rule-based view of query

optimization. Vol. 16. 1987, ISBN: 0897912365: ACM.

[29] Alon Y Levy, Inderpal Singh Mumick, and Yehoshua Sagiv.

Query optimization by predicate move-around. in VLDB.

1994.

[30] Surajit Chaudhuri. An overview of query optimization in

relational systems. in Proceedings of the seventeenth ACM

SIGACT-SIGMOD-SIGART symposium on Principles of

database systems. 1998: ACM.

[31] Spark SQL; Available from: https://spark.apache.org/sql/.

[32] PortageSQL; Available from: http://www.postgresql.org/.

[33] MySQL; Available from: https://www.mysql.com/.

http://tez.incubator.apache.org/
https://spark.apache.org/sql/
http://www.postgresql.org/
https://www.mysql.com/

