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ABSTRACT
Modern biology is experiencing a rapid increase of data vol-
umes that challenges our analytical skills and existing cy-
berinfrastructure. Exponential expansion of the Protein Se-
quence Universe (PSU), a protein sequence space, together
with complexities of manual creation creates a major bottle-
neck in a biomedical research which requires a fusion of novel
analytical approaches and computational means. Compre-
hensive visualization tool can be instrumental in meeting the
need for functional annotation. Current existing resources
lack scalable visualization tools to study the structure of the
PSU. Here, we describe a multi-dimensional scaling (MDS)
implementation to create a 3D embedding of the PSU. Ap-
plying the method to the prokaryotic PSU shows that MDS
is capable of preserving important grouping structure such
as relative proximity of functionally similar clusters, and
a clear structural separation between clusters with specific
and general functions. We also discuss the merits of the
method including its scalable implementation and its role
as a protein annotation tool that could help alleviate major
bottleneck issue in modern biology. In conclusions, we em-
phasize the need for a transdisciplinary approach to quickly
and efficiently translate the influx of new data into tangible
innovations and long-awaited treatments.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
Biology and genetics; H.3.3 [Information Systems]: In-
formation Storage and Retrieval—Information search and
retrieval
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1. INTRODUCTION
Functional annotation of newly sequenced genomes and meta-
genomes is one of the principal challenges of modern biol-
ogy. Rapidly advancing sequencing technologies generate
peta- and even exa-scale data, exponentially expanding the
PSU [51, 54, 15]. Assigning functions to this glut of newly
sequenced proteins is an immense computational challenge
that requires advanced analytical tools and scaling capabil-
ities [58, 61, 50, 46, 45, 38, 36, 53, 35, 28, 37].

Surmounting the annotation challenge requires the ability
to coherently display a vast amount of protein information.
Currently, none of the existing resources provide interac-
tive tools to visualize and analyze data across large sets of
proteins. The analysis is typically done on the experiment
level and in the context of known relationships, e.g. path-
ways, complexes. Tools for pathway and network visualiza-
tion (e.g. Ingenuity or Biobase) do not relate to sequence
similarity or extend to the entire protein sequence universe.
To map the proteins beyond their network or pathway, to
estimate the mutual proximity of proteins identified in the
experiment (with respect to sequence similarity, expression
levels, structure, etc.) or to project the identified proteins
into the subspace of interest require ample computational ef-
fort. Clearly, such a resource-intensive approach is a major
undertaking for individual laboratories.

In order to infer protein function, sequence data analysis re-
lies on sophisticated statistical and machine-learning meth-
ods including pairwise and multiple sequence alignment al-
gorithms [2, 3, 19, 66], structure prediction models [55, 17],
motif and domain finding algorithms [59, 5, 20, 47],and clus-
tering methods [64, 29, 32, 67, 40]. Numerous databases
provide information about functions of proteins, protein do-
mains, and protein families including general resources [6,
8], pathways [30, 65, 12, 48], protein structure [9], protein



domains [20, 47], protein families [33, 29, 41, 67, 40, 64].

Currently, functional annotation and analysis is done on
a protein-by-protein basis that is tedious, time-consuming,
and relies on a multitude of resources. While the ‘manual’
approach is feasible for a small group of proteins, it quickly
becomes unsustainable as the volume of sequences expands
[23, 7]. Given the scale of modern research studies, the
inability to quickly and efficiently analyze protein sequence
data creates an ever expanding backlog of un-annotated pro-
teins [11, 39, 36, 35, 24].

A viable computational approach to functional annotation
uses clustering to identify functionally similar groups of pro-
teins [64, 29, 32, 67, 40, 38]. The cluster annotation can then
be propagated to newly assigned uncharacterized proteins.
In view of the exponential growth of data, this approach is
computationally advantageous as it facilitates the annota-
tion of large numbers of proteins.

To demonstrate the complexity of the protein functional an-
notation task, we completed a first of a kind all-versus-all se-
quence alignments for 9.9 million proteins in the UniRef100
database. The alignment was done on the Microsoft Win-
dows Azure cloud system [18] with 475 eight-core virtual
machines that produced over 3 billion filtered records in six
days. Protein classification into functional groups was then
performed using an innovative implementation of a single-
linkage algorithm on a Hadoop compute cluster using Hive
and the MapReduce paradigm [38]. Using the normalized
alignment score, we have assigned 68% of 5.1 million bac-
terial proteins into clusters in the Clusters of Orthologous
Genes (COG) database [64]. The remaining proteins were
classified into functional groups using Hive and custom jars
implemented on top of Apache Hadoop utilizing the MapRe-
duce paradigm. This implementation significantly reduced
the run time for non-indexed queries and optimized clus-
tering performance. Consequently, nearly 2 million proteins
were agglomerated into half a million functional groups. A
similar approach was applied to 2.8 million eukaryotic se-
quences from the UniRef100 [62], thereby expanding the eu-
karyotic database by over 1 million proteins and producing
100,000 new functional groups.

The UniRef100 clustering project showcased both the promise
and the challenges of protein annotation. It took the con-
siderable efforts of a diverse group of researchers along with
multiple cloud systems to successfully complete the task. Es-
tablished open-source resources are struggling to cope with
the influx of data as well and are either no longer supported
[64, 41, 40] or have limited capabilities [29, 33]. All this
highlights the pressing need of the biological community for
a scalable and efficient computational approach to visualize,
explore and assign functional annotations to new proteins.

Protein sequence annotation is an example of one of the
grand challenges of modern biology that requires a focused,
concentrated effort of experts from multiple scientific fields.
In addition, the current funding climate severely limits the
capabilities of any single research laboratory [27] thus com-
pelling scientists to forge alliances and leverage skills across
different disciplines [49]. This drive for collective innovation
in data-enabled sciences translates into community efforts

such as DELSA, the Data-enabled Life Sciences Alliance.
The goal of the newly founded transdisciplinary alliance is
to create a synergy between the computer science and life
sciences to tackle modern biological challenges through best
computational practices and advanced cyberinfrastructure
[49, 38, 37].

In this paper, we propose using an MDS approach to create
a 3D embedding of the PSU [10]. The parallel implementa-
tion on a multigrid platform utilizes Iterative MapReduce,
the standard Message Passing Interface (MPI), and thread-
ing. The MDS representation provides an advanced visual
representation of the PSU. Furthermore, the scalable im-
plementation allows for efficient mapping and annotation of
newly sequenced data.

In what follows, we describe the method to create a 3D ren-
dering of 100,000 sequences from the prokaryotic PSU. We
briefly describe the data and outline the MDS implementa-
tion. The resulting 3D representation is given in the Results
section. We then discuss the application and merits of the
proposed approach to the functional annotation of new pro-
tein data.

2. MATERIALS AND METHODS
2.1 COG Database
A major principle of molecular evolution is that function-
ally important proteins tend to be conserved across species.
Clusters of Orthologous Groups of proteins (COGs) was a
project by the National Center for Biotechnology Informa-
tion (NCBI) [64]. The project constructed clusters of pro-
teins from 66 prokaryotic and seven eukaryotic genomes. For
each protein, the best aligned protein in every other genome
was determined using a sequence similarity search [2]. If
three proteins from three organisms were mutual best hits,
they created a triple. COGs are the result of exhaustive,
successive merging of triples with two common members.
Manual curation of the clusters was done by experts to en-
sure correct grouping and functional annotations. The COG
database is separated into COGs for prokaryotic genomes
and KOGs for eukaryotic genomes [63, 64]. In this paper,
we are using the COG database of prokaryotic genomes that
we will refer to as COGs.

2.2 UniRef Database
UniRef is composed of the distinct databases UniRef100,
UniRef90, and UniRef50, which have 100%, 90%, and 50%
sequence similarity, respectively, within protein clusters and
reduce the UniProt database size by approximately 10%,
40%, and 70%, respectively. Each cluster contains one refer-
ence sequence and all proteins within the similarity thresh-
old to the reference. UniRef retains annotation from all
members of the protein cluster to prevent information loss
[6, 62].

2.3 Multi-Dimensional Scaling
The MDS algorithm was used to project the protein se-
quence similarity data into a low-dimensional space [14, 42].
The method has an O(n2) computational complexity to map
n sequences into 3D. It can be heuristically solved in several
ways including the expectation maximization (EM) [10, 43,
13] and χ2-minimization [31].



In this paper, we used Sammon’s χ2 optimization [57] with
an objective function

H =

n∑
i,j=1
i<j

(f(δij)− d(xi, xj))
2

f(δij)
, (1)

where δij is the dissimilarity measure between sequences i
and j and d is the Euclidean distance between the corre-
sponding 3D projections xi and xj . Function f in equation
(1) is a monotone transformation of dissimilarity measure.
The denominator term in (1) ensures a larger contribution
from smaller dissimilarities thus making the clustering struc-
ture of the data more apparent. We used a highly robust
implementation of the nonlinear χ2 minimization with Lev-
enberg - Marquardt algorithm to regularize Newton’s equa-
tions [44].

The transformation f is chosen heuristically to increase the
ratio of standard deviation to mean for f(δij) and to increase
the range of dissimilarity measures. For example, if f is
an identity, the high dimensional data will essentially be
projected onto the surface of 3D structure, which lowers the
utility of the mapping.

2.4 Implementation
We used a scaling, parallel traditional MPI with thread-
ing intranode for MDS implementation [21]. In the Reduce
phase of MapReduce, we used Twister, a MapReduce exten-
sion to support more efficient and broader range of commu-
nication collectives (including reduce, gather and broadcast
in an MPI language) [66, 68, 16]. In Twister, all communica-
tion avoids using intermediate disk and is built around Ac-
tiveMQ, an Apache publish-subscribe environment, in Java
Twister and around Azure primitives in the Microsoft cloud.

The method was applied to obtain a three dimensional pro-
jection of 100,000 sequences from well-characterized COGs
in prokaryotic PSU. Pairwise distances were calculated using
an MPI implementation of the Needleman-Wunsch (NW)
alignment algorithm. The NW algorithm was realized by a
parallel computation on the 24-core node system. The ef-
ficiency of the parallel distance computation was less than
that of MDS due to saturation of memory bandwidth.

Further, we applied a monotone square-root transformation
to the pairwise NW distances [34]. To map the data into a
3D Euclidean space, we fed the transformed distances into
an MPI implementation of the χ2 MDS. The resulting 3D
projection were visualized in PlotViz [56]. The calculations
were performed on a 768 core Microsoft HPC cluster.

The NW distance calculation required one day to complete
and the MDS job ran for three days. The parallel efficiency
of the code was approximately 70% based on earlier studies
that discuss both the inter-node and intra-node cases and
find that it is essential to adopt a hybrid model with intra-
node threading and MPI between nodes [21, 52, 22]. The
transformation was chosen heuristically to reduce the for-
mal dimension of distance data (in this case, from 244 with
original δij to 14 for f(δij) after mapping), which allows for

a more uniform coverage of the target Euclidean space by
the MDS projections.

3. RESULTS
Figure 1 shows the 3D embedding of the prokaryotic PSU.
Each point represents a particular sequence. The figure
shows the complexity of the PSU and the presence of dis-
tinct grouping structure. There is a strong correlation be-
tween the NW distances and the distances based on MDS
projections as illustrated by high intensity values along the
diagonal in Figure 5, left. The histogram of NW distances
in Figure 5 shows a lack of spatial separation between the
clusters. The excess of points with mapped distances less
than original values can be traced to equation (1) where
denominator depends on the original rather than mapped
distance.

For the eleven color-coded COG clusters in Figure 1, we
computed the centroids from their respective MDS projec-
tions. The dendrogram tree in Figure 3 shows a relative
proximity of the clusters to each other. Out of the eleven
selected clusters, COG1131 (yellow) and COG1136 (cyan)
are the tightest with respect to the mean intra-cluster dis-
tance. These two clusters are a part of a group that includes
seven COGs in all; see right branch of the dendrogram. The
other four COGs 1028, 0333, 0477, 0454 appear to be less
similar to these group of seven or to each other.
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Figure 3: The dendrogram tree of the cluster cen-
troids. The cluster labels are color-coded as in Fig-
ure 1.

The magnified view in Figure 4 details the neighborhood
structure of the COG1131 and COG1136 showing five more
COGs lying in close proximity. Remarkably, all seven clus-
ters are functionally similar and correspond to ABC-type
transport system, ATPase component (see Table 1). The
heatmap shows a good agreement between the NW distances
and MDS projections; see Figure 4.

Figure 1 shows the diversity of the PSU with respect to
the location, shape, dispersion and size of underlying pro-



Figure 1: MDS representation of the 100,000 sequences from well-characterized COGs in prokaryotic PSU.
Each point represents a protein sequence. Eleven COG clusters were color-coded as marked in the legend.
The number of proteins in each cluster is given in parentheses.

Figure 2: (left) The heatmap of the transformed NW distances versus the Euclidean distances between the
MDS projections and (right) the histogram of transformed NW distances for all COG proteins.



Figure 4: Magnified version of the prokaryotic PSU showing the seven functionally similar COG clusters.

Figure 5: (left) The heatmap of the transformed NW distances versus the Euclidean distances between the
MDS projections and (right) the histogram of transformed NW distances for the seven COG clusters in
Figure 4.



tein groups. While some clusters are rather tight, others are
scattered throughout a sizeable domain. For example, com-
pare the tight COG0333 cluster of ribosomal protein L32
with the diffuse COG0454 (HPA2) and COG0477 (Perme-
ases of the major facilitator superfamily); see also Table 1.

From the biological standpoint, this spatial distinction con-
forms well with clusters’ functionality. For example, a tight
COG3839 cluster contains 142 proteins sequences of the
sugar transport systems that are similar both in function
and composition. Similarly, COG1126 of the polar amino
acid transport system proteins with very specific functions
appears as a very tight cluster. In turn, COG1131 is fairly
diffuse as it combines 244 multidrug transport system pro-
teins that differ in the amino acid composition and func-
tional mechanisms. The similarity between different clus-
ters is reflected by the distance that separates them. For
example, the two oligopeptide transport systems, COG4608
and COG0444, have similar shape and are located in close
proximity to one another.

As mentioned, in our previous work, we used all-versus-all
alignment of 10 million UniRef100 proteins to populate the
existing COG clusters [38]. The last column in Table 1
shows the number of UniRef100 proteins added to each of
the eleven clusters from Figure 1. Notably the most diffuse
clusters were expanded most.

4. DISCUSSION
Functional protein annotation is one of the most important
and resource-intensive challenges in biology [7] Rapid in-
flux of data from newly sequenced genomes together with
the limited number of annotation experts creates a major
bottleneck stalling scientific advances. The number of se-
quenced genomes is only poised to increase in the next five
years. The Earth Microbiome Project alone is expected to
sequence 500,000 microbial genomes, which will contain on
the order of 1.5 billion protein sequences and half a tril-
lion amino acids [15]. This is well over a 100 fold increase
in the number of sequenced microbial genomes and pro-
teins currently contained in GenBank. The i5K Insect and
other Arthropod Genome Sequencing Initiative plans to se-
quence the genomes of 5,000 insects and related species over
the next five years, yielding nearly 100 million new protein
sequences [54]. Assigning functions to this glut of newly
sequenced proteins is an immense computational challenge
that requires innovative approaches with advanced analytic
and scaling capabilities.

In this paper, we used the NW algorithm for sequence align-
ment. It will be of interest to compare NW to alternative
dissimilarity measures such as BLAST and Smith Waterman
Gotoh [2, 60, 25]. The MDS implementation used here in-
corporated deterministic annealing into the EM approach,
achieving significantly better results with little increase in
execution time [34]. Note that the MDS method is not re-
stricted to protein sequences and can be readily adapted to
other types of biological data. In addition, the newly devel-
oped MDS interpolation methods allow a quick mapping of
sequences into the existing projection space. The interpola-
tion runs in O(n) time after an initial MDS embedding with
the O(n2) approach [4].

The example of the COG data demonstrates that MDS can
be effectively used to create a comprehensive 3D projection
of the PSU while preserving the fundamental grouping struc-
ture. The 3D mapping of the protein space allows interactive
exploratory data analysis that is a mandatory precursor to
statistical modeling and comparisons. The projection pro-
vides a unique perspective on the organization of protein
space that so far had been largely described by volumes of
summary statistics. The low-dimensional representation can
be further used to integrate protein data together with infor-
mation on function, pathways, structure, etc. and perform
the analysis across domains of interest. Furthermore, the
proposed implementation is scalable and would allow for the
incorporation of large volumes of data at a minimum cost.

The proposed visualization method could be instrumental in
enabling prompt and reliable annotation and characteriza-
tion of newly sequenced proteins. For example, the UniRef
mapping resulted in 70-fold increase in the size of clusters.
Clearly, the manual curation of new clusters is a daunting
task. By inspecting the expanded universe, one could iden-
tify specific features within each cluster and use them to
verify the annotations.

The challenges associated with the functional annotation of
newly sequenced genomes cannot be solved by the life sci-
ences community alone. A successful and sustainable solu-
tion requires a new trans-disciplinary approach that would
leverage and adopt most prominent advances of modern sci-
ences. This turn to collective innovation in data-enabled
sciences is essential for truly ground-breaking medical dis-
coveries and advances that may benefit public health. Sci-
entific alliances like DELSA stand to harness the diversity of
skills and expertise, quickly and efficiently translating the in-
flux of new data into tangible innovations and long-awaited
treatments [49, 37].
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