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Abstract—Large-scale iterative computations are common in 
many important data mining and machine learning algorithms 
needed in analytics and deep learning. In most of these 
applications, individual iterations can be specified as 
MapReduce computations, leading to the Iterative MapReduce 
programming model for efficient execution of data-intensive 
iterative computations interoperably between HPC and cloud 
environments. Further one needs additional communication 
patterns from those familiar in MapReduce and we base our 
initial architecture on collectives that integrate capabilities 
developed by the MPI and MapReduce communities. This 
leads us to the Map-Collective programming model which here 
we develop based on requirements of a range of applications by 
extending our existing Iterative MapReduce environment 
Twister. This paper studies the implications of large scale 
Social Image clustering where large scale problems study 10-
100 million images represented as points in a high dimensional 
(up to 2048) vector space which need to be divided into up to 1-
10 million clusters. This Kmeans application needs 5 stages in 
each iteration: Broadcast, Map, Shuffle, Reduce and Combine, 
and this paper focuses on collective communication stages 
where large data transfers demand performance optimization. 
By comparing and combining ideas from MapReduce and MPI 
communities, we show that a topology-aware and pipeline-
based broadcasting method gives better performance than 
other MPI and (Iterative) MapReduce systems.  

Keywords-Social Images, Data Intensive, High Dimension, 
Iterative MapReduce, Collective Communication 

I.INTRODUCTION 
The rate of data generation now exceeds the growth of 

computational power predicted by Moore’s law. Challenges 
to computation are related to mining and analysis of these 
massive data sources for the translation of large-scale data 
into knowledge-based innovation. MapReduce frameworks 
have become popular in recent years for their scalability and 
fault tolerance in large data processing and simplicity in 
programming interface. Hadoop [1], an open source 
implementation following original Google’s MapReduce [2] 
concept, has been widely used in industry and academia.   

However Intel’s RMS (Recognition, Mining and 
Synthesis) taxonomy [3] identifies iterative solvers and basic 
matrix primitives as the common computing kernels for 
computer vision, rendering, physical simulation, financial 
analysis and data mining. These and other observations 
suggest that iterative data processing runtime will be 
important to a spectrum of e-Science or e-Research 
applications as the kernel framework for large scale data 
processing. Several new frameworks designed for iterative 

MapReduce have been proposed to solve this problem, 
including Twister [4], Spark [5] and HaLoop [6]. The initial 
version of Twister targeted optimization of data flow and 
reducing data transfer between iterations by caching 
invariant data in the local memory of compute nodes but it 
did not support the communication patterns needed in many 
applications and we observe that a systematic approach to 
collective communication is essential in many iterative 
algorithms. Thus we generalize the (iterative) MapReduce 
concept to Map-Collective noting that large collectives are a 
distinctive feature of data intensive and data mining 
applications. This is supported by the remarks that 
“MapReduce, designed for parallel data processing, was ill-
suited for the iterative computations inherent in deep 
network training” [7] from a recent paper on deep learning.  

Social image clustering is such an application which is 
not only a big data problem but also needs an iterative solver. 
This produces challenges for both new algorithms and 
efficiency of the parallel execution which involves very large 
collective communication steps. We are addressing [8] the 
overall performance with an extension of Elkan's algorithm 
[9] drastically speeding up the computing (Map) step of 
algorithm by use of the triangle inequality to remove 
unnecessary computation. However this improvement just 
highlights the need for efficient communication which is a 
major focus of this paper. Note communication has been 
well studied, especially in MPI, but social image clustering 
stresses different usage modes and message sizes from most 
previous applications. In this paper, we study characteristics 
of large-scale image clustering application and identify 
performance issues of collective communication. Our work 
is presented in the context of Twister but the analysis is 
applicable to both MapReduce and other data-centric 
computation solutions. 

In this paper, we propose a topology-aware pipeline-
based method to accelerate broadcasting by at least a factor 
of 120 compared with simple algorithm (sequentially 
sending data from root node to each destination node). Our 
findings demonstrate that this strategy outperforms classic 
C++ OpenMPI methods [10] by 20% and Java MPJ by a 
factor of 4. We also use local aggregation in Map stage to 
reduce the size of intermediate data by at least 90%. These 
methods provide important collective communication 
capabilities to our new iterative Map-Collective framework 
for data intensive applications. Finally we evaluate our new 
methods on the PolarGrid [11] cluster at Indiana University.  

The rest of the paper is organized as follows. Section 2 
discusses the image clustering application. Section 3 



discusses collective communication in Twister and other 
environments Section 4 presents the design of the broadcast 
Collective. Section 5 investigates how the local aggregation 
mechanism works. Section 6 details the experiments and 
results while Section 7 discusses related work. Finally in 
Section 8 we present our conclusions and discuss future 
projects. 

II.IMAGE CLUSTERING APPLICATION 
Areas involving studies of images have recently been 

revolutionized by the Internet that is providing an incredible 
volume of data. For example, there are 500 million images 
uploaded everyday on Facebook, Instagram and Snapchat 
(such sites are what we term social and surprisingly are much 
larger than Flickr) with 100 hours of video (video can be 
considered as several images per second) uploaded to 
Youtube every minute. This is motivating large scale 
computer vision and deep learning studies that need the 
infrastructure studied here. Our target image clustering 
application groups millions of images into millions of 
clusters each of which contains images with similar visual 
features. Before starting image clustering, the dimensionality 
reduction is done on original images first and each image is 
represented in a much lower space (although retaining 
dimensions of 512-2048) with a set of important visual 
components which are called “feature vectors”. Analogous to 
the use of “key words” in a document retrieval system, these 
“features vectors” become the “key words” of an image. 
Here we select 5 patches from each image and represent each 
patch by a HOG (Histograms of Oriented Gradients) feature 
vector of 512 dimensions. The basic idea of HOG features is 
to characterize the local object appearance and shape by the 
distribution of local intensity gradients or edge directions 
[12].  

We apply K-means Clustering [13] to cluster the similar 
HOG feature vectors as well as using Twister MapReduce 
framework to parallelize the computation. We depict K-
means Clustering algorithm as a chain of MapReduce jobs. 
The input data consists of a large number of HOG feature 
vectors each of which contains 512 dimensions and use 
Euclidean distance calculation to compare the distances 

between feature vectors and the cluster center vectors 
(centroids). Since the vectors are static over iterations, we 
partition (decompose) the vectors and cache each partition in 
memory. Afterwards a Map task is assigned to it in the job 
configuration. During each iteration execution, the job driver 
broadcasts centroids to all Map tasks. Each Map task then 
assigns feature vectors to their nearest cluster centers based 
on Euclidean distance calculation. Map tasks calculate the 
sum of vectors associated with each cluster and count the 
total number of such vectors. The Reduce task (to simplify 

this description, we use only one Reduce task here but 125 
are used in implementation) processes the output collected 
from each Map task and calculates new cluster centers of the 
iteration by adding all partial sums of partial cluster center 
values together, then dividing it by the total count of the data 
points in the cluster. By combining these new centroids from 
Reduce tasks, the job driver gets all updated centroids and 
the control flow enters the next iteration.  

One major challenge of this application is the amount of 
image data can be very large. Currently we have near 1 TB 
of data and we expect problems to grow in size by one to two 
orders of magnitude. For such a large amount of input data, 
we can increase the number of machines to reduce the data 
size per node, but the total data size (of cluster centers) 
transferred in broadcasting and shuffling still grows as the 
number of centers multiplies.  

For example, we cluster 7 million vectors to 1 million 
clusters. In one iteration, the execution is done on 1000 cores 
in 10 rounds with a total of 10000 Map tasks. Each task only 
needs to cache 700 vectors (358KB) and each node needs to 
cache 56K vectors, about 30MB in total. But for 
broadcasting data, the number of cluster centers is very large 
and the total size of 1 million cluster centers is about 
512MB. Therefore the centroids data per task received 
through broadcasting is much larger than the image feature 
vectors per task. Since each Map task needs a full copy of 
the centroids data, the total data sent through collective 
communication grows as the problem size and number of 
nodes increases. For the example above, the total data 
broadcasted is about 64 GB (because Map tasks are executed 
on thread level, broadcast data can be shared among tasks on 
one node).  

We now reach the shuffling stage. Here each Map task 
generates about 2 GB of intermediate data so that the total 
intermediate data size is about 20 TB. This far exceeds the 
total memory size of 125 nodes (each of which has 16 GB  
memory; 2 TB in total). Besides it also makes the 
computation difficult to scale as the data size grows with the 
number of nodes. In this paper, we successfully reduce 20 
TB of intermediate data to 250 GB with local aggregation in 
the Map Stage. But due to the memory limitation, 250 GB 
still cannot be handled by one Reduce task. We further 
divide the chunk size of the output from each Map task to 
125 blocks (numbered with Block ID from 0 to 124) and use 
125 reduce tasks (one task per node) to process the 
intermediate data. In this way, each Reduce task only 
processes 2 GB of data. Reduce task 0 processes all Block 0 
from all Map tasks, Reduce task 1 processes all Block 1 from 
all Map tasks, and so on and so forth. The output from each 
Reduce task is only about 4 MB so that the total data on 125 
Reduce tasks that needs to send back to the driver in 
Combine stage is about 512 MB which is relatively small 
and easy to handle. 

In Table 2, we give the time complexity of each part of 
the algorithm; we use 𝑝𝑝 as the number of nodes, 𝑚𝑚 as the 
number of Map tasks and  𝑟𝑟 as the number of Reduce tasks. 
For the data,  𝑘𝑘  is the number of centroids, 𝑛𝑛 is the total 
number of image feature vectors, and 𝑙𝑙  is the number of 
dimensions. We note for map, an approximate estimate from 
[8] of the improvement gotten by using triangle inequalities. 

TABLE 1. TIME COMPLEXITY OF EACH STAGE 

Stage Simple Improved 
Broadcasting 𝑂𝑂(𝑘𝑘𝑙𝑙𝑝𝑝) 𝑂𝑂(𝑘𝑘𝑙𝑙) 

Map 𝑂𝑂(𝑘𝑘𝑛𝑛𝑙𝑙/𝑚𝑚) 𝑂𝑂(𝑘𝑘𝑛𝑛/𝑚𝑚)  [8] 
Shuffle 𝑂𝑂(𝑚𝑚𝑘𝑘𝑙𝑙/𝑟𝑟) 𝑂𝑂(𝑝𝑝𝑘𝑘𝑙𝑙/𝑟𝑟) 
Reduce 𝑂𝑂(𝑚𝑚𝑘𝑘𝑙𝑙/𝑟𝑟) 𝑂𝑂(𝑝𝑝𝑘𝑘𝑙𝑙/𝑟𝑟) 

Combine 𝑂𝑂(𝑘𝑘𝑙𝑙) 𝑂𝑂(𝑘𝑘𝑙𝑙) 

 



III.COLLECTIVE COMMUNICATION IN PARALLEL 
PROCESSING FRAMEWORKS 

In this section, we compare several big data parallel 
processing tools and show how they are applied on big data 
problems. These tools are MPI, Hadoop MapReduce and 
MapReduce-like tools supporting iterative algorithms such 
as Twister and Spark [5]. Furthermore, we analyze the 
pattern of collective communication and how intermediate 
data is handled in each tool (See Figure 3). In future, we 
expect the ideas of these tools to be all converged in a single 
environment for which our new optimal communication is 
aimed in order to serve big data applications.  

Often data-centric problems run on clouds which consist 
of commodity machines, and the cost of transferring big 
intermediate data is high. For example, in the image 
clustering application example of this paper, broadcasting in 
each iteration is needed and the size is about 500MB. Our 
findings show that this operation and the big data can be a 
great burden to current data-centric technology. This makes 
it necessary to systematically develop a Map-Collective 
approach with a wide range of collectives and with big data 
not the MPI big simulation optimizations.  

Traditionally, there are 7 collective communication 
operations discussed in MPI [14]. The first four, broadcast, 
scatter, gather, and allgather are called “data redistribution 
operations” [14]. The remaining three, reduce(-to-one), 
reduce-scatter, all-reduce are called “data consolidation 
operations” [14]. In “data redistribution operations”, neither 
Hadoop, Twister nor Spark covers all 4 operations. In detail, 
Hadoop only has “broadcast” with no explicit “scatter” or 
“gather”. Considering that in Hadoop data is managed by 
HDFS, direct memory-to-memory collective communication 
does not in fact exist. Twister has “broadcast”, “scatter” and 
“gather”. Spark has “broadcast” and “gather”. Our 
Twister4Azure system [15] supports “allgather” and 
“allreduce” and in a later paper we will describe the 
integration of these different collectives into a single system 
that runs interoperably on HPC clusters (Twister) or PaaS 
cloud systems (Twister4Azure) changing the implementation 
to optimize performance for each infrastructure. The same 

high level collective primitive is used on each platform with 
different under-the-hood optimizations. 

In MPI, several algorithms are used for broadcasting. 
MST (Minimum-Spanning Tree) method is a typical 
broadcasting method used in MPI [14]. This method is much 
better than simple broadcasting by changing the complexity 
term  𝑝𝑝 to ⌈𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝⌉ (𝑝𝑝 is the number of nodes). But it is still 
insufficient when compared with scatter-allgather bucket 
algorithm. This algorithm is used in MPI for long vectors 
broadcasting which follows the style of “divide, distribute 
and gather” [16]. In “scatter” phase, it scatters the data to all 
the nodes. Then in “allgather” phase, it does bucket 
algorithm. This method views the nodes as a chain. At each 
step, every node sends data to its right neighbor [14]. This is 
much better than the MST method because the time appears 
constant. However, it is not easy to set global barrier 
between “scatter” and “allgather” phases in cloud system to 
enable all the nodes to do “allgather” at the same global time 
through software control. As a result, some links will have 
more load than the others and thus we arrive at network 
contention. In addition, there is also the InfiniBand [17] 
multicast based broadcasting method in MPI [18].  

Though the methods heretofore reviewed are not perfect, 
they all can reduce broadcasting time to a great extent. Still, 
none of them are applied in data-centric solutions. However, 
simple algorithm is commonly used. Hadoop system relies 
on HDFS to do broadcasting. A component named 
Distributed Cache is used to cache data from HDFS to local 
disk of compute nodes. The API addCacheFile and 
getLocalCacheFiles work together to complete the process of 
broadcasting. There is no special optimization. The data 
downloading speed depends on the number of replicas in 
HDFS [18]. This method generates significant overhead (a 
factor of 𝑝𝑝) when handling big data broadcasting. This will 
be shown in later experiments. 

We call this “simple algorithm” because it basically 
sends data to all the nodes one by one. Initially in Twister, a 
single message broker is used to do broadcasting in a similar 
way. Though using multiple brokers in Twister or using 
multiple replicas in HDFS could contain a simple 2-level 
broadcasting tree and ease the performance issue, they won’t 
fundamentally address the problem. As a result, to replace 
the current broadcasting in Twister, in the next section, we 
propose a chain-based broadcasting algorithm suitable for 
cloud systems. 

Meanwhile, other than using simple algorithm, Spark 
adds BitTorrent [19] to enhance broadcasting speed. 
BitTorrent is a well-known technology in internet file 
sharing. The programming interface of broadcasting in Spark 
is very different from MPI and Twister. Due to the 
mechanism of late execution, broadcasting is not finished in 
a single step but in two stages. When broadcasting is 
invoked, the data is not broadcast until the parallel tasks are 
executed.  So broadcasting doesn’t execute on all the nodes 
but only on the nodes where tasks are located. 

For data consolidation operations, “reduce(-to-one)” and 
“reduce-scatter” are parallel to a “shuffle-reduce” operation 
in data-centric solutions. “Reduce-(to-one)” can be viewed as 
using shuffling with only one Reducer while “reduce-scatter” 
can be viewed as using shuffling with all workers as 
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reducers. However, these operations are fundamentally 
different in terms of semantics because “shuffle-reduce” is 
based on Key-Value pairs while “reduce-(to-one)” and 
“reduce-scatter” are based on vectors. The data abstraction of 
the former is more flexible than the latter. In “shuffle-
reduce” the number of keys in one worker can be arbitrary. 
For example, in word count, any word can be a key. 
Furthermore, a value can be any arbitrary object which 
encapsulates many different data types. However, “reduce-
scatter” requires the size of the vectors for reduction to be 
identical in all workers. Because the number of words and 
counts in each worker is hard to estimate, it is difficult to 
replace “shuffle-reduce” to “reduce-scatter” in word count. 
To simulate “shuffle-reduce” in MPI, we cannot use 
collective communication in MPI directly. Instead we have 
to customize the communication with send/receive calls. 
Therefore the program is not simple and users have to 
explicitly designate where the data goes. By contrast, in data-
centric solutions, data is managed by the framework, and 
automatically goes to the destination according to their keys.   

As a result, shuffling can be viewed as a unique 
collective communication in data-centric solutions. The 
implementation is also different between runtimes. Hadoop 
manages intermediate data on disk, so data is first 
partitioned, sorted and spilled to disk, then transferred, 
merged and sorted again at Reducer side.  However, 
shuffling in Twister is much simpler than it is in Hadoop. 
Data is only regrouped by keys and transferred in memory 
and there is no sorting [4]. So shuffling in Twister has much 
better performance than in Hadoop.  

In Spark, there are two APIs related to shuffling. One is 
“groupByKey”, and another is “sort”. Remembering that 
“shuffle” in Hadoop includes “regroup” and “sort”. Since 
“shuffle” in Twister only contains “regroup”, it seems that 
“shuffle” operation is not well defined. So is “sort” necessary 
in “shuffle”? The answer is no. Firstly, in Twister, all the 
intermediate data is managed in memory so that keys can be 
regrouped through a large hash map. But for Hadoop, since 
merging is done on disk, sorting becomes a required step to 
put keys with the same hash code together. Secondly, many 
applications such as word count and image clustering 
applications mentioned above, it is sufficient that the data is 
regrouped without being sorted.  The ranking of each key is 
not important to the application. As a result, we view 
“shuffle” as only “regroup”. 

In summary, we notice that collective communication is 
not well studied in the context of MapReduce and data-
centric solutions. Furthermore it may not be optimally 
implemented in the current runtimes. Though collective 
communication operations have been used in MPI for 
decades, they are still missing in MapReduce despite still 
being required by the applications. In the image clustering 
application, “broadcast” and “shuffle” are two important 
operations involved. With optimization, we introduce new 
Twister control flow with optimized broadcasting and local 
aggregation feature (See Figure 2). 

IV.BROADCAST COLLECTIVE COMMUNICATON 
To address the need for high performance broadcasting in 

the image clustering application, we replace the original 

broker methods in Twister with a new chain method based 
on TCP sockets to provide customized control of the 
message routing in broadcasting. 

A. Chain Broadcasting Algorithm 
Here we propose chain method, an algorithm based on 

pipelined broadcasting [21]. In this method, compute nodes 
in Fat-Tree topology [22] are treated as a linear array and 
data is forwarded from one node to its neighbor chunk-by-
chunk. Performance is enhanced by dividing the data into 
many small chunks and overlapping the transmission of data 
on nodes. For example, the first node would send a data 
chunk to the second node. Then, while the second node 
sends the data to the third node, the first node would send 
another data chunk to the second node, and so on and so 
forth [21]. This kind of pipelined data forwarding is called “a 
chain”.  It is particularly suitable for the large data sizes in 
our communication problem. 

The performance of pipelined broadcasting depends on 
the selection of chunk size. In an ideal case, if every transfer 
can be overlapped seamlessly, the theoretical performance is 
as follows: 

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑝𝑝, 𝑘𝑘,𝑛𝑛) = 𝑝𝑝(𝛼𝛼 + 𝑛𝑛𝑛𝑛 𝑘𝑘⁄ ) + (𝑘𝑘 − 1)(𝛼𝛼 +
𝑛𝑛𝑛𝑛 𝑘𝑘⁄ )                                                                                          (3)                                                                     

Here 𝑝𝑝 is the number of nodes, 𝑘𝑘 is the number of data 
chunks, 𝑛𝑛 is the data size, 𝛼𝛼 is communication startup time 
and 𝑛𝑛  is data transfer time per unit. In large data 
broadcasting, assuming 𝛼𝛼 is small and 𝑘𝑘 is large, the main 
term of the formula is  (𝑝𝑝 + 𝑘𝑘 − 1)𝑛𝑛𝑛𝑛 𝑘𝑘⁄ ≈ 𝑛𝑛𝑛𝑛  which is 
close to constant. From the formula, the best number of 
chunks is 𝑘𝑘𝑜𝑜𝑃𝑃𝑜𝑜 = �(𝑝𝑝 − 1)𝑛𝑛𝑛𝑛/𝛼𝛼  when  𝜕𝜕𝑇𝑇 𝜕𝜕𝑘𝑘⁄ = 0  [21]. 
However, in practice, the actual chunk size per sending is 
decided by the system and the speed of data transfers on each 
link could vary as network congestion might occur when 
data is continuously forwarded into the pipeline. As a result, 
formula (3) cannot be applied directly to predict real 
performance of our chain broadcasting implementation. But 
the experiment results we will present later still show that as 
𝑝𝑝 increases, the broadcasting time remains constant and close 
to the bandwidth limit.  

B. Rack-Awareness 
This chain method is suitable for racks of machines with 

Fat-Tree topology connection, which is a commonly used 
network topology in clusters or in data centers [23]. Since 
each node only has two links, which is less than the number 
of links per node in Mesh/Torus [24] topology, chain 
broadcasting can maximize the utilization of the links per 
node. We also make the chain topology-aware by allocating 
nodes within the same rack nearby in the chain. Assuming 
the racks are numbered as 𝑅𝑅1, 𝑅𝑅2 and 𝑅𝑅3…, the nodes in 𝑅𝑅1 
are put at the beginning of the chain, then the nodes in 𝑅𝑅2 
follow the nodes in 𝑅𝑅1, and then nodes in 𝑅𝑅3 follow nodes in 
𝑅𝑅2, etc. Otherwise, if the nodes in  𝑅𝑅1 are intertwined with 
nodes in  𝑅𝑅2 in the chain sequence, the chain flow will jump 
between switches, which overburdens the core switch.  

To support rack-awareness, as seen in Hadoop, we write 
and save configuration information on each node. Each node 



can discover its predecessor and successor by loading this 
information when starting. In the future, we are also looking 
into supporting automatic topology detection to replace the 
static specification of topology information. 

C. Buffer Management 
Another important factor affecting broadcasting speed is 

buffer management. The cost of buffer allocation and data 
copying between buffers is not included in formula (3). 
There are 2 levels of buffers used in data transmission. The 
first level is the system buffer and the second level is the 
application buffer. System buffer is used by TCP socket to 
hold the partial data transmitted from the network. The 
application buffer is created by the user to integrate the data 
from the socket buffer.  Usually the socket buffer size is 
much smaller than the application buffer size. The default 
buffer size setting of Java socket object in IU PolarGrid is 
128KB while the application buffer we chose for 
broadcasting is the total size of the data required to be 
broadcasted. 

We observed performance degradation caused by buffer 
usage. One issue is that if the socket buffer is smaller than 
128 KB, the broadcasting performance can be slowed down 
due to the TCP window being unable to open up fully, which 
results in throttling of the sender. Further large-sized user 
buffer allocation during the pipeline forwarding can also 
slightly slow-down the overall performance. To make a clean 
comparison with MPI, which does buffer initialization before 
broadcasting, we initialize a pool of free buffers once the 
receiver program starts instead of allocating buffers during 
the broadcasting. 

D. Fault Tolerance 
Communication fault tolerance intrinsic to Collective, 

should be considered in chain broadcasting. When large data 
is transmitted among a vast number of nodes, 
communication failures become likely. Several strategies are 
applied here in our approach. Firstly if there are failures in 
establishing connection from node-to-node, a retry is issued. 
Alternatively one can try other destinations. Secondly, if the 
chain is seriously broken the whole broadcasting will restart. 
Finally, at the end of broadcasting, the root waits and checks 
if all the nodes have received all the data blocks. If the root 
doesn’t get the ACK from the last node in the chain within a 
time window, it restarts the whole broadcasting. 

V.LOCAL AGGREGATION IN MAP STAGE 
We already discussed the difference between shuffling in 

Twister and other runtimes in Section 3.2. Based on the facts 
presented in Section 2, the performance of shuffling depends 
on the size of intermediate data. Since the data transferred is 
very large and the number of links available for data 
transmission is limited, the cost of shuffling is very high and 
the whole process is unstable.  

Some solutions try to use Weighted Shuffle Scheduling 
(WSS) [20] to balance the data transfers by using the data 
size to determine scheduling. However this strategy will not 
help for this image clustering application, because the data 
size generated for each Map task is the same. 

We reduce the intermediate data size by using local 
aggregation across Map tasks in Map stage. To support local 

aggregation, we provide appropriate interface to help users 
define the aggregation operation.  

We notice that each Key-Value pair in intermediate data 
is a partial sum of the components of data points associated 
with a particular cluster. Since addition is an operation with 
both commutative and associative properties, for any two 
values belonging to the same key, we can do addition on 
them and merge them to a single Key-Value pair, which has 
no effect on the final result. This property can be illustrated 
by the following formula: 

𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , 𝑘𝑘𝑘𝑘𝑃𝑃 ,⋯ , 𝑘𝑘𝑘𝑘𝑗𝑗 ,⋯ , 𝑘𝑘𝑘𝑘𝑃𝑃� = 𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , �𝑘𝑘𝑘𝑘𝑃𝑃 ⊕
𝑘𝑘𝑘𝑘𝑗𝑗�,⋯ , 𝑘𝑘𝑘𝑘𝑃𝑃� = 𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , �𝑘𝑘𝑘𝑘𝑗𝑗 ⊕ 𝑘𝑘𝑘𝑘𝑃𝑃�,⋯ , 𝑘𝑘𝑘𝑘𝑃𝑃� ∀ 𝑖𝑖, 𝑗𝑗, 1 ≤
𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛         (4)   

Here ⊕ represents a set of operations which are similar 
to addition operation that can be applied on any two Key-
Value pairs. This will then generate a new Key-Value pair by 
operating, 𝑓𝑓 is the Reduce function and 𝑛𝑛 is the number of 
Key-Value pairs belonging to the same key. In our image 
clustering application, ⊕ is the addition of two partial sums.  
In other applications, we can also find an appropriate 
operator. In Word Count [2], ⊕ is the addition of two partial 
counts of the same word and can be operations other than 
addition, such as multiplication and max/min value selection, 
or just simple logical combination of the two values. 

With ⊕ operation and also noting that Map tasks work at 
thread level on compute nodes, we do local aggregation in 
the memory shared by Map tasks. Once a Map task is 
finished, it doesn’t send data out immediately but instead 
caches the data to a shared memory pool. When the key 
conflict happens, the program invokes a user-defined 
operation to merge two Key-Value pairs into one. A barrier 
is set so that the data in the pools are not transferred until all 
the Map tasks in a node are finished. By trading 
communication time with computation time, the data 
necessary to be transferred can be significantly reduced. 

VI.EXPERIMENTS 
To evaluate performance of the new proposed 

broadcasting method and local aggregation mechanism, we 
conducted experiments about broadcasting and shuffling on 
IU PolarGrid in the context of both kernel and application 
benchmarking. The results demonstrate that chain method 
achieves the best performance on big data broadcasting 
compared with the other MapReduce and MPI methods. In 
addition, shuffling with local aggregation can out-perform 
the original shuffling significantly. 

A. IU PolarGrid Cluster 
IU PolarGrid cluster [11] uses a Fat-Tree topology to 

connect compute nodes. The nodes are split into sections of 
42 nodes which are then tied together with 10 GigE to a 
Cisco Nexus core switch.  For each section, nodes are 
connected with 1 GigE to an IBM System Networking Rack 
Switch G8000. This forms a 2-level Fat-Tree structure with 
the first level of 10 GigE connections and the second level of 
1 GigE connections. For computing capacity, each compute 
node in PolarGrid uses a 4-core 8-thread Intel Xeon CPU 



E5410 2.33 GHz processor. The L2 cache size per core is 12 
MB. Each compute node has 16 GB total memory.  
The bottleneck of this topology is that inter-switch communication 
is through the one and only core switch and the connection is 
limited to 10 GigE. As a result, reducing the number of inter-
switch communication times is considered the highest priority in 
design of efficient collective communication algorithms for a fat-
tree topology. 

B. Broadcasting 
We compared chain method with MPI_BCAST in Open 

MPI 1.4.1 [25]. We also compare the current chain 
broadcasting method with other designs such as chain 
method without topology awareness and simple broadcasting 
as a means to show the efficiency of the new method.  

We measure the broadcasting time from the start of 
calling the broadcasting method to the end of the calling 
return. We test the performance of broadcasting from a small 
scale to a medium large scale. The range includes 1 node, 25 
nodes with 1 switch, 50 nodes under 2 switches, 75 nodes 
with 3 switches, 100 nodes with 4 switches, 125 nodes with 
5 switches, and 150 nodes with 5 switches. The tests are for 
different data size, including 0.5 GB (500MB), 1 GB, and 2 
GB. Each result is the average of 10 executions. There are 
only milliseconds of differences between execution times 
therefore we omit the error in the following charts.  

Figure 6 shows the comparison between chain method 
and MPI_BCAST method in Open MPI. The time cost of the 
new chain method is stable as the number of processes 
increases. This matches the broadcasting formula (3) and we 
can conclude that with proper implementation, the actual 
performance of the chain method can achieve near constant 
execution time. Besides, the new method achieves 20% 
better performance than MPI_BCAST in Open MPI.  

However if the chain sequence is randomly generated but 
not topology-aware, the performance degrades quickly as the 
scale grows. Figure 8 shows that chain method with 
topology-awareness is 5 times faster than that of the chain 
method without topology-awareness.  For broadcasting 
within a single switch, we see that as expected, there is not 
much difference between the two methods. However, as the 
number of nodes and the number of racks increase, the 
execution time increases significantly. When there are more 
than 3 switches, the execution time become stable and 
doesn’t change much. Because there are many inter-switch 
communications, the performance is constrained by the 10 
Gb bandwidth and the throughput ability of the core switch. 

C. Shuffling and Local Aggregation 
To benchmark the performance of shuffling using local 
aggregation, we choose the following settings to run the 
image clustering application. For job settings, we choose 125 

 
 

Figure 6. Performance comparison of Twister chain method 
and Open MPI MPI_Bcast 

Figure 8. Chain method with/without topology-awareness 
 

  

Figure 9. Comparison between shuffling with and without 
local aggregation 

Figure 10. Communication cost per iteration of the image 
clustering application 
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nodes to run the application with 1000 Map tasks (each node 
with 8 Map tasks) and 125 reduce tasks (each node with 1 
Reduce task). For data settings, we restrict the number of 
centroids to 500K and focus on testing the performance of 
collective communication. Since 500K centroids can 
generate about 1 GB of intermediate data per task, the 
overhead from shuffling is significant. We measure the total 
time from the start of shuffling to the end of the Reduce 
phase noting that reducers start asynchronously (a reducer 
starts once it gets all the data). Time costs on Reduce tasks 
are included but on average it is just around 1 second and is 
negligible compared with the data transfer time.  

Figure 9 shows the time difference of shuffling with or 
without local aggregation in Map stage in the settings above. 
Without using local aggregation, the output per node is 8 GB 
and the total data for shuffling is about 1 TB. After using 
local aggregation, the output per node is reduced to 1 GB and 
the total data for shuffling is only about 125 GB and the time 
cost on shuffling is only 10% of the original time; an 
improvement from about 8 minutes to only 40 seconds. To 
reduce intermediate data from 1 TB data to 125 GB data, we 
only need an extra 20 seconds in local aggregation. 

D. Image Clustering Application 
We successfully cluster 7.42 million vectors into 1 

million cluster centers. We create 10000 map tasks on 125 
nodes. Each node has 80 tasks. Each task caches 742 vectors. 
For 1 million centroids, broadcasting data size is about 512 
MB.  Shuffling data is 20 TB, while the data size after local 
aggregation is about 250 GB. Since the total memory size on 
125 nodes is 2 TB, we even cannot execute the program 
unless local aggregation is performed. Figure 10 presents the 
collective communication cost per iteration, which is 169 
seconds (less than 3 minutes).  Note that we are currently in 
development of a new faster Kmeans algorithm [8][9] that 
will drastically reduce the current hour-long computation 
time in Map stage by up to a factor l (the dimension which is 
currently 512 to 2048) and so the improved communication 
time is highly relevant. 

VII.RELATED WORK 
In Section 3 we discussed the runtime of several data 

processing tools and compared the collective communication 
within them. Here we summarize the analysis and add other 
observations. Collective communication algorithms are well 
studied in MPI runtime although the Java implementations 
are less well optimized. Each communication operation has 
several different algorithms based on message size and 
network topology such as linear array, mesh and hypercube 
[14]. Basic algorithms are pipeline broadcast method [21], 
minimum-spanning tree method, bidirectional exchange 
algorithm, and bucket algorithm [14]. Since these algorithms 
have different advantages, algorithm combination 
(polymorphism) is widely used to improve the 
communication performance [14]. Furthermore some 
solutions also provide auto algorithm selection [26].  

Other papers have a different focus than our work. Some 
of them only study small data transfers up to megabytes level 
[14] [27] while some solutions rely on special hardware 

support [16]. The data type is typically vectors and arrays 
whereas we are considering objects. Many algorithms such 
as “allgather” operate under the assumption that each node 
has the same amount of data [14] [16], which is uncommon 
in a MapReduce model. As a result, although shuffling can 
be viewed as a Reduce-Scatter operation, its algorithm 
cannot be applied directly on shuffling since the data amount 
generated by each Map task is unbalanced in most 
MapReduce applications.  

There are several solutions to improve the performance 
of data transfers in MapReduce. Orchestra [20] is one such 
global control service and architecture to manage intra- and 
inter-transfer activities in the Spark system, where we gave 
some test results in section 3.1. It not only provides control, 
scheduling and monitoring on data transfers, but also 
optimization on broadcasting and shuffling. For 
broadcasting, it uses an optimized BitTorrent-like protocol 
called Cornet, augmented by topology detection. For 
shuffling, Orchestra employs weighted shuffle scheduling 
(WSS) to set the weight of the flow as proportional to the 
data size; we noted earlier this optimization is not relevant in 
our application.  

Hadoop-A [28] provides a pipeline to overlap the shuffle, 
merge and reduce phases and uses an alternative Infiniband 
RDMA based protocol to leverage RDMA inter-connects for 
fast data shuffling. MATE-EC2 [29] is a MapReduce like 
framework for EC2 [30] and S3 [31]. For shuffling, it uses 
local aggregation and global aggregation. This strategy is 
similar to what we did in Twister but as it focuses on EC2 
cloud environment, the design and implementation are 
totally different. iMapReduce [32] and iHadoop [33] are 
iterative Mapreduce frameworks that optimize the data 
transfers between iterations asynchronously, where there 
exists no barrier between two iterations. However, this 
design doesn’t work for applications which need broadcast 
data in every iteration because all the outputs from Reduce 
tasks are needed for every Map task.  

Microsoft Daytona [38] is a recently announced iterative 
MapReduce Azure runtime developed by Microsoft that 
builds on some of the ideas of the earlier Twister system. 
Currently Excel DataScope is presented as an application of 
Daytona where an Excel interface allows manipulation of 
cloud or local data. The results can be returned to the Excel 
client or remain in the cloud for further processing and 
visualization. 

VIII.CONCLUSIONS AND FUTURE WORK 
In this paper, we have demonstrated the first steps 

towards a high performance Map-Collective programming 
model and runtime using the requirements of a large scale 
clustering algorithm. We replaced broker-based methods and 
designed and implemented a new topology-aware chain 
broadcasting algorithm. Compared with the simple broadcast 
algorithm, the new algorithm reduces the time burden of 
broadcasting by at least a factor of 120 over 125 nodes. It 
gives 20% better performance than best C/C++ MPI methods 
(and four times faster than Java MPJ) and a factor of 5 
improvements over non-optimized (for topology) pipeline-
based method over 150 nodes. The shuffling cost after using 
local aggregation is only 10% of the original time. In 



particular, collective communication has significantly 
improved the intermediate data transfer for large scale image 
clustering problems. 

In future work, we will improve the Kmeans algorithm 
[8][9][35] and apply the Map-Collective framework to other 
iterative applications [36] including Multi-Dimensional 
Scaling where the allgather primitive is needed. We will also 
extend current work to include an allreduce collective that is 
an alternative approach to Kmeans. The resultant Map-
Collective model that captures the full range of traditional 
MapReduce and MPI features will be evaluated on Azure 
[15] as well as IaaS/HPC environments. We will integrate 
Twister with Infiniband RDMA based protocol and compare 
various communication scenarios. Initial observation 
suggests a different performance profile from that of the 
Ethernet network evaluated here. Furthermore we will 
integrate topology and link speed detection services and 
utilize services such as ZooKeeper [37] to provide 
coordination and fault detection.  
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