
High Performance Clustering of Social Images in a Map-Collective Programming
Model

Bingjing Zhang
Department of Computer Science
Indiana University Bloomington

zhangbj@indiana.edu

Judy Qiu
Department of Computer Science
Indiana University Bloomington

xqiu@indiana.edu

Abstract—Large-scale iterative computations are common in
many important data mining and machine learning algorithms
needed in analytics and deep learning. In most of these
applications, individual iterations can be specified as
MapReduce computations, leading to the Iterative MapReduce
programming model for efficient execution of data-intensive
iterative computations interoperably between HPC and cloud
environments. Further one needs additional communication
patterns from those familiar in MapReduce and we base our
initial architecture on collectives that integrate capabilities
developed by the MPI and MapReduce communities. This
leads us to the Map-Collective programming model which here
we develop based on requirements of a range of applications by
extending our existing Iterative MapReduce environment
Twister. This paper studies the implications of large scale
Social Image clustering where large scale problems study 10-
100 million images represented as points in a high dimensional
(up to 2048) vector space which need to be divided into up to 1-
10 million clusters. This Kmeans application needs 5 stages in
each iteration: Broadcast, Map, Shuffle, Reduce and Combine,
and this paper focuses on collective communication stages
where large data transfers demand performance optimization.
By comparing and combining ideas from MapReduce and MPI
communities, we show that a topology-aware and pipeline-
based broadcasting method gives better performance than
other MPI and (Iterative) MapReduce systems.

Keywords-Social Images, Data Intensive, High Dimension,
Iterative MapReduce, Collective Communication

I.INTRODUCTION
The rate of data generation now exceeds the growth of

computational power predicted by Moore’s law. Challenges
to computation are related to mining and analysis of these
massive data sources for the translation of large-scale data
into knowledge-based innovation. MapReduce frameworks
have become popular in recent years for their scalability and
fault tolerance in large data processing and simplicity in
programming interface. Hadoop [1], an open source
implementation following original Google’s MapReduce [2]
concept, has been widely used in industry and academia.

However Intel’s RMS (Recognition, Mining and
Synthesis) taxonomy [3] identifies iterative solvers and basic
matrix primitives as the common computing kernels for
computer vision, rendering, physical simulation, financial
analysis and data mining. These and other observations
suggest that iterative data processing runtime will be
important to a spectrum of e-Science or e-Research
applications as the kernel framework for large scale data
processing. Several new frameworks designed for iterative

MapReduce have been proposed to solve this problem,
including Twister [4], Spark [5] and HaLoop [6]. The initial
version of Twister targeted optimization of data flow and
reducing data transfer between iterations by caching
invariant data in the local memory of compute nodes but it
did not support the communication patterns needed in many
applications and we observe that a systematic approach to
collective communication is essential in many iterative
algorithms. Thus we generalize the (iterative) MapReduce
concept to Map-Collective noting that large collectives are a
distinctive feature of data intensive and data mining
applications. This is supported by the remarks that
“MapReduce, designed for parallel data processing, was ill-
suited for the iterative computations inherent in deep
network training” [7] from a recent paper on deep learning.

Social image clustering is such an application which is
not only a big data problem but also needs an iterative solver.
This produces challenges for both new algorithms and
efficiency of the parallel execution which involves very large
collective communication steps. We are addressing [8] the
overall performance with an extension of Elkan's algorithm
[9] drastically speeding up the computing (Map) step of
algorithm by use of the triangle inequality to remove
unnecessary computation. However this improvement just
highlights the need for efficient communication which is a
major focus of this paper. Note communication has been
well studied, especially in MPI, but social image clustering
stresses different usage modes and message sizes from most
previous applications. In this paper, we study characteristics
of large-scale image clustering application and identify
performance issues of collective communication. Our work
is presented in the context of Twister but the analysis is
applicable to both MapReduce and other data-centric
computation solutions.

In this paper, we propose a topology-aware pipeline-
based method to accelerate broadcasting by at least a factor
of 120 compared with simple algorithm (sequentially
sending data from root node to each destination node). Our
findings demonstrate that this strategy outperforms classic
C++ OpenMPI methods [10] by 20% and Java MPJ by a
factor of 4. We also use local aggregation in Map stage to
reduce the size of intermediate data by at least 90%. These
methods provide important collective communication
capabilities to our new iterative Map-Collective framework
for data intensive applications. Finally we evaluate our new
methods on the PolarGrid [11] cluster at Indiana University.

The rest of the paper is organized as follows. Section 2
discusses the image clustering application. Section 3

discusses collective communication in Twister and other
environments Section 4 presents the design of the broadcast
Collective. Section 5 investigates how the local aggregation
mechanism works. Section 6 details the experiments and
results while Section 7 discusses related work. Finally in
Section 8 we present our conclusions and discuss future
projects.

II.IMAGE CLUSTERING APPLICATION
Areas involving studies of images have recently been

revolutionized by the Internet that is providing an incredible
volume of data. For example, there are 500 million images
uploaded everyday on Facebook, Instagram and Snapchat
(such sites are what we term social and surprisingly are much
larger than Flickr) with 100 hours of video (video can be
considered as several images per second) uploaded to
Youtube every minute. This is motivating large scale
computer vision and deep learning studies that need the
infrastructure studied here. Our target image clustering
application groups millions of images into millions of
clusters each of which contains images with similar visual
features. Before starting image clustering, the dimensionality
reduction is done on original images first and each image is
represented in a much lower space (although retaining
dimensions of 512-2048) with a set of important visual
components which are called “feature vectors”. Analogous to
the use of “key words” in a document retrieval system, these
“features vectors” become the “key words” of an image.
Here we select 5 patches from each image and represent each
patch by a HOG (Histograms of Oriented Gradients) feature
vector of 512 dimensions. The basic idea of HOG features is
to characterize the local object appearance and shape by the
distribution of local intensity gradients or edge directions
[12].

We apply K-means Clustering [13] to cluster the similar
HOG feature vectors as well as using Twister MapReduce
framework to parallelize the computation. We depict K-
means Clustering algorithm as a chain of MapReduce jobs.
The input data consists of a large number of HOG feature
vectors each of which contains 512 dimensions and use
Euclidean distance calculation to compare the distances

between feature vectors and the cluster center vectors
(centroids). Since the vectors are static over iterations, we
partition (decompose) the vectors and cache each partition in
memory. Afterwards a Map task is assigned to it in the job
configuration. During each iteration execution, the job driver
broadcasts centroids to all Map tasks. Each Map task then
assigns feature vectors to their nearest cluster centers based
on Euclidean distance calculation. Map tasks calculate the
sum of vectors associated with each cluster and count the
total number of such vectors. The Reduce task (to simplify

this description, we use only one Reduce task here but 125
are used in implementation) processes the output collected
from each Map task and calculates new cluster centers of the
iteration by adding all partial sums of partial cluster center
values together, then dividing it by the total count of the data
points in the cluster. By combining these new centroids from
Reduce tasks, the job driver gets all updated centroids and
the control flow enters the next iteration.

One major challenge of this application is the amount of
image data can be very large. Currently we have near 1 TB
of data and we expect problems to grow in size by one to two
orders of magnitude. For such a large amount of input data,
we can increase the number of machines to reduce the data
size per node, but the total data size (of cluster centers)
transferred in broadcasting and shuffling still grows as the
number of centers multiplies.

For example, we cluster 7 million vectors to 1 million
clusters. In one iteration, the execution is done on 1000 cores
in 10 rounds with a total of 10000 Map tasks. Each task only
needs to cache 700 vectors (358KB) and each node needs to
cache 56K vectors, about 30MB in total. But for
broadcasting data, the number of cluster centers is very large
and the total size of 1 million cluster centers is about
512MB. Therefore the centroids data per task received
through broadcasting is much larger than the image feature
vectors per task. Since each Map task needs a full copy of
the centroids data, the total data sent through collective
communication grows as the problem size and number of
nodes increases. For the example above, the total data
broadcasted is about 64 GB (because Map tasks are executed
on thread level, broadcast data can be shared among tasks on
one node).

We now reach the shuffling stage. Here each Map task
generates about 2 GB of intermediate data so that the total
intermediate data size is about 20 TB. This far exceeds the
total memory size of 125 nodes (each of which has 16 GB
memory; 2 TB in total). Besides it also makes the
computation difficult to scale as the data size grows with the
number of nodes. In this paper, we successfully reduce 20
TB of intermediate data to 250 GB with local aggregation in
the Map Stage. But due to the memory limitation, 250 GB
still cannot be handled by one Reduce task. We further
divide the chunk size of the output from each Map task to
125 blocks (numbered with Block ID from 0 to 124) and use
125 reduce tasks (one task per node) to process the
intermediate data. In this way, each Reduce task only
processes 2 GB of data. Reduce task 0 processes all Block 0
from all Map tasks, Reduce task 1 processes all Block 1 from
all Map tasks, and so on and so forth. The output from each
Reduce task is only about 4 MB so that the total data on 125
Reduce tasks that needs to send back to the driver in
Combine stage is about 512 MB which is relatively small
and easy to handle.

In Table 2, we give the time complexity of each part of
the algorithm; we use 𝑝𝑝 as the number of nodes, 𝑚𝑚 as the
number of Map tasks and 𝑟𝑟 as the number of Reduce tasks.
For the data, 𝑘𝑘 is the number of centroids, 𝑛𝑛 is the total
number of image feature vectors, and 𝑙𝑙 is the number of
dimensions. We note for map, an approximate estimate from
[8] of the improvement gotten by using triangle inequalities.

TABLE 1. TIME COMPLEXITY OF EACH STAGE

Stage Simple Improved
Broadcasting 𝑂𝑂(𝑘𝑘𝑙𝑙𝑝𝑝) 𝑂𝑂(𝑘𝑘𝑙𝑙)

Map 𝑂𝑂(𝑘𝑘𝑛𝑛𝑙𝑙/𝑚𝑚) 𝑂𝑂(𝑘𝑘𝑛𝑛/𝑚𝑚) [8]
Shuffle 𝑂𝑂(𝑚𝑚𝑘𝑘𝑙𝑙/𝑟𝑟) 𝑂𝑂(𝑝𝑝𝑘𝑘𝑙𝑙/𝑟𝑟)
Reduce 𝑂𝑂(𝑚𝑚𝑘𝑘𝑙𝑙/𝑟𝑟) 𝑂𝑂(𝑝𝑝𝑘𝑘𝑙𝑙/𝑟𝑟)

Combine 𝑂𝑂(𝑘𝑘𝑙𝑙) 𝑂𝑂(𝑘𝑘𝑙𝑙)

III.COLLECTIVE COMMUNICATION IN PARALLEL
PROCESSING FRAMEWORKS

In this section, we compare several big data parallel
processing tools and show how they are applied on big data
problems. These tools are MPI, Hadoop MapReduce and
MapReduce-like tools supporting iterative algorithms such
as Twister and Spark [5]. Furthermore, we analyze the
pattern of collective communication and how intermediate
data is handled in each tool (See Figure 3). In future, we
expect the ideas of these tools to be all converged in a single
environment for which our new optimal communication is
aimed in order to serve big data applications.

Often data-centric problems run on clouds which consist
of commodity machines, and the cost of transferring big
intermediate data is high. For example, in the image
clustering application example of this paper, broadcasting in
each iteration is needed and the size is about 500MB. Our
findings show that this operation and the big data can be a
great burden to current data-centric technology. This makes
it necessary to systematically develop a Map-Collective
approach with a wide range of collectives and with big data
not the MPI big simulation optimizations.

Traditionally, there are 7 collective communication
operations discussed in MPI [14]. The first four, broadcast,
scatter, gather, and allgather are called “data redistribution
operations” [14]. The remaining three, reduce(-to-one),
reduce-scatter, all-reduce are called “data consolidation
operations” [14]. In “data redistribution operations”, neither
Hadoop, Twister nor Spark covers all 4 operations. In detail,
Hadoop only has “broadcast” with no explicit “scatter” or
“gather”. Considering that in Hadoop data is managed by
HDFS, direct memory-to-memory collective communication
does not in fact exist. Twister has “broadcast”, “scatter” and
“gather”. Spark has “broadcast” and “gather”. Our
Twister4Azure system [15] supports “allgather” and
“allreduce” and in a later paper we will describe the
integration of these different collectives into a single system
that runs interoperably on HPC clusters (Twister) or PaaS
cloud systems (Twister4Azure) changing the implementation
to optimize performance for each infrastructure. The same

high level collective primitive is used on each platform with
different under-the-hood optimizations.

In MPI, several algorithms are used for broadcasting.
MST (Minimum-Spanning Tree) method is a typical
broadcasting method used in MPI [14]. This method is much
better than simple broadcasting by changing the complexity
term 𝑝𝑝 to ⌈𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝⌉ (𝑝𝑝 is the number of nodes). But it is still
insufficient when compared with scatter-allgather bucket
algorithm. This algorithm is used in MPI for long vectors
broadcasting which follows the style of “divide, distribute
and gather” [16]. In “scatter” phase, it scatters the data to all
the nodes. Then in “allgather” phase, it does bucket
algorithm. This method views the nodes as a chain. At each
step, every node sends data to its right neighbor [14]. This is
much better than the MST method because the time appears
constant. However, it is not easy to set global barrier
between “scatter” and “allgather” phases in cloud system to
enable all the nodes to do “allgather” at the same global time
through software control. As a result, some links will have
more load than the others and thus we arrive at network
contention. In addition, there is also the InfiniBand [17]
multicast based broadcasting method in MPI [18].

Though the methods heretofore reviewed are not perfect,
they all can reduce broadcasting time to a great extent. Still,
none of them are applied in data-centric solutions. However,
simple algorithm is commonly used. Hadoop system relies
on HDFS to do broadcasting. A component named
Distributed Cache is used to cache data from HDFS to local
disk of compute nodes. The API addCacheFile and
getLocalCacheFiles work together to complete the process of
broadcasting. There is no special optimization. The data
downloading speed depends on the number of replicas in
HDFS [18]. This method generates significant overhead (a
factor of 𝑝𝑝) when handling big data broadcasting. This will
be shown in later experiments.

We call this “simple algorithm” because it basically
sends data to all the nodes one by one. Initially in Twister, a
single message broker is used to do broadcasting in a similar
way. Though using multiple brokers in Twister or using
multiple replicas in HDFS could contain a simple 2-level
broadcasting tree and ease the performance issue, they won’t
fundamentally address the problem. As a result, to replace
the current broadcasting in Twister, in the next section, we
propose a chain-based broadcasting algorithm suitable for
cloud systems.

Meanwhile, other than using simple algorithm, Spark
adds BitTorrent [19] to enhance broadcasting speed.
BitTorrent is a well-known technology in internet file
sharing. The programming interface of broadcasting in Spark
is very different from MPI and Twister. Due to the
mechanism of late execution, broadcasting is not finished in
a single step but in two stages. When broadcasting is
invoked, the data is not broadcast until the parallel tasks are
executed. So broadcasting doesn’t execute on all the nodes
but only on the nodes where tasks are located.

For data consolidation operations, “reduce(-to-one)” and
“reduce-scatter” are parallel to a “shuffle-reduce” operation
in data-centric solutions. “Reduce-(to-one)” can be viewed as
using shuffling with only one Reducer while “reduce-scatter”
can be viewed as using shuffling with all workers as

(a) Map Only
(Pleasingly Parallel)

(b) Classic
MapReduce

(c) Iterative
MapReduce

(d) Loosely
Synchronous

- CAP3 Gene Analysis
- Smith-Waterman

Distances
- Document conversion

(PDF -> HTML)
- Brute force searches in

cryptography
- Parametric sweeps
- PolarGrid Matlab data

analysis

- High Energy Physics
(HEP) Histograms

- Distributed search
- Distributed sorting
- Information retrieval
- Calculation of Pairwise

Distances for
sequences (BLAST)

- Expectation
maximization
algorithms

- Linear Algebra
- Data mining include K-

means clustering
- Deterministic

Annealing Clustering
- Multidimensional

Scaling (MDS)
- PageRank

Many MPI scientific
applications utilizing
wide variety of
communication
constructs including
local interactions
- Solving Differential

Equations and
- particle dynamics with

short range forces

Pij

Collective Communication MPI

Input

Output

map

Input
map

reduce

Input
map

iterations

No Communication

reduce

Figure 3: Classification of Applications and Communication
Patterns

reducers. However, these operations are fundamentally
different in terms of semantics because “shuffle-reduce” is
based on Key-Value pairs while “reduce-(to-one)” and
“reduce-scatter” are based on vectors. The data abstraction of
the former is more flexible than the latter. In “shuffle-
reduce” the number of keys in one worker can be arbitrary.
For example, in word count, any word can be a key.
Furthermore, a value can be any arbitrary object which
encapsulates many different data types. However, “reduce-
scatter” requires the size of the vectors for reduction to be
identical in all workers. Because the number of words and
counts in each worker is hard to estimate, it is difficult to
replace “shuffle-reduce” to “reduce-scatter” in word count.
To simulate “shuffle-reduce” in MPI, we cannot use
collective communication in MPI directly. Instead we have
to customize the communication with send/receive calls.
Therefore the program is not simple and users have to
explicitly designate where the data goes. By contrast, in data-
centric solutions, data is managed by the framework, and
automatically goes to the destination according to their keys.

As a result, shuffling can be viewed as a unique
collective communication in data-centric solutions. The
implementation is also different between runtimes. Hadoop
manages intermediate data on disk, so data is first
partitioned, sorted and spilled to disk, then transferred,
merged and sorted again at Reducer side. However,
shuffling in Twister is much simpler than it is in Hadoop.
Data is only regrouped by keys and transferred in memory
and there is no sorting [4]. So shuffling in Twister has much
better performance than in Hadoop.

In Spark, there are two APIs related to shuffling. One is
“groupByKey”, and another is “sort”. Remembering that
“shuffle” in Hadoop includes “regroup” and “sort”. Since
“shuffle” in Twister only contains “regroup”, it seems that
“shuffle” operation is not well defined. So is “sort” necessary
in “shuffle”? The answer is no. Firstly, in Twister, all the
intermediate data is managed in memory so that keys can be
regrouped through a large hash map. But for Hadoop, since
merging is done on disk, sorting becomes a required step to
put keys with the same hash code together. Secondly, many
applications such as word count and image clustering
applications mentioned above, it is sufficient that the data is
regrouped without being sorted. The ranking of each key is
not important to the application. As a result, we view
“shuffle” as only “regroup”.

In summary, we notice that collective communication is
not well studied in the context of MapReduce and data-
centric solutions. Furthermore it may not be optimally
implemented in the current runtimes. Though collective
communication operations have been used in MPI for
decades, they are still missing in MapReduce despite still
being required by the applications. In the image clustering
application, “broadcast” and “shuffle” are two important
operations involved. With optimization, we introduce new
Twister control flow with optimized broadcasting and local
aggregation feature (See Figure 2).

IV.BROADCAST COLLECTIVE COMMUNICATON
To address the need for high performance broadcasting in

the image clustering application, we replace the original

broker methods in Twister with a new chain method based
on TCP sockets to provide customized control of the
message routing in broadcasting.

A. Chain Broadcasting Algorithm
Here we propose chain method, an algorithm based on

pipelined broadcasting [21]. In this method, compute nodes
in Fat-Tree topology [22] are treated as a linear array and
data is forwarded from one node to its neighbor chunk-by-
chunk. Performance is enhanced by dividing the data into
many small chunks and overlapping the transmission of data
on nodes. For example, the first node would send a data
chunk to the second node. Then, while the second node
sends the data to the third node, the first node would send
another data chunk to the second node, and so on and so
forth [21]. This kind of pipelined data forwarding is called “a
chain”. It is particularly suitable for the large data sizes in
our communication problem.

The performance of pipelined broadcasting depends on
the selection of chunk size. In an ideal case, if every transfer
can be overlapped seamlessly, the theoretical performance is
as follows:

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑝𝑝, 𝑘𝑘,𝑛𝑛) = 𝑝𝑝(𝛼𝛼 + 𝑛𝑛𝑛𝑛 𝑘𝑘⁄) + (𝑘𝑘 − 1)(𝛼𝛼 +
𝑛𝑛𝑛𝑛 𝑘𝑘⁄) (3)

Here 𝑝𝑝 is the number of nodes, 𝑘𝑘 is the number of data
chunks, 𝑛𝑛 is the data size, 𝛼𝛼 is communication startup time
and 𝑛𝑛 is data transfer time per unit. In large data
broadcasting, assuming 𝛼𝛼 is small and 𝑘𝑘 is large, the main
term of the formula is (𝑝𝑝 + 𝑘𝑘 − 1)𝑛𝑛𝑛𝑛 𝑘𝑘⁄ ≈ 𝑛𝑛𝑛𝑛 which is
close to constant. From the formula, the best number of
chunks is 𝑘𝑘𝑜𝑜𝑃𝑃𝑜𝑜 = �(𝑝𝑝 − 1)𝑛𝑛𝑛𝑛/𝛼𝛼 when 𝜕𝜕𝑇𝑇 𝜕𝜕𝑘𝑘⁄ = 0 [21].
However, in practice, the actual chunk size per sending is
decided by the system and the speed of data transfers on each
link could vary as network congestion might occur when
data is continuously forwarded into the pipeline. As a result,
formula (3) cannot be applied directly to predict real
performance of our chain broadcasting implementation. But
the experiment results we will present later still show that as
𝑝𝑝 increases, the broadcasting time remains constant and close
to the bandwidth limit.

B. Rack-Awareness
This chain method is suitable for racks of machines with

Fat-Tree topology connection, which is a commonly used
network topology in clusters or in data centers [23]. Since
each node only has two links, which is less than the number
of links per node in Mesh/Torus [24] topology, chain
broadcasting can maximize the utilization of the links per
node. We also make the chain topology-aware by allocating
nodes within the same rack nearby in the chain. Assuming
the racks are numbered as 𝑅𝑅1, 𝑅𝑅2 and 𝑅𝑅3…, the nodes in 𝑅𝑅1
are put at the beginning of the chain, then the nodes in 𝑅𝑅2
follow the nodes in 𝑅𝑅1, and then nodes in 𝑅𝑅3 follow nodes in
𝑅𝑅2, etc. Otherwise, if the nodes in 𝑅𝑅1 are intertwined with
nodes in 𝑅𝑅2 in the chain sequence, the chain flow will jump
between switches, which overburdens the core switch.

To support rack-awareness, as seen in Hadoop, we write
and save configuration information on each node. Each node

can discover its predecessor and successor by loading this
information when starting. In the future, we are also looking
into supporting automatic topology detection to replace the
static specification of topology information.

C. Buffer Management
Another important factor affecting broadcasting speed is

buffer management. The cost of buffer allocation and data
copying between buffers is not included in formula (3).
There are 2 levels of buffers used in data transmission. The
first level is the system buffer and the second level is the
application buffer. System buffer is used by TCP socket to
hold the partial data transmitted from the network. The
application buffer is created by the user to integrate the data
from the socket buffer. Usually the socket buffer size is
much smaller than the application buffer size. The default
buffer size setting of Java socket object in IU PolarGrid is
128KB while the application buffer we chose for
broadcasting is the total size of the data required to be
broadcasted.

We observed performance degradation caused by buffer
usage. One issue is that if the socket buffer is smaller than
128 KB, the broadcasting performance can be slowed down
due to the TCP window being unable to open up fully, which
results in throttling of the sender. Further large-sized user
buffer allocation during the pipeline forwarding can also
slightly slow-down the overall performance. To make a clean
comparison with MPI, which does buffer initialization before
broadcasting, we initialize a pool of free buffers once the
receiver program starts instead of allocating buffers during
the broadcasting.

D. Fault Tolerance
Communication fault tolerance intrinsic to Collective,

should be considered in chain broadcasting. When large data
is transmitted among a vast number of nodes,
communication failures become likely. Several strategies are
applied here in our approach. Firstly if there are failures in
establishing connection from node-to-node, a retry is issued.
Alternatively one can try other destinations. Secondly, if the
chain is seriously broken the whole broadcasting will restart.
Finally, at the end of broadcasting, the root waits and checks
if all the nodes have received all the data blocks. If the root
doesn’t get the ACK from the last node in the chain within a
time window, it restarts the whole broadcasting.

V.LOCAL AGGREGATION IN MAP STAGE
We already discussed the difference between shuffling in

Twister and other runtimes in Section 3.2. Based on the facts
presented in Section 2, the performance of shuffling depends
on the size of intermediate data. Since the data transferred is
very large and the number of links available for data
transmission is limited, the cost of shuffling is very high and
the whole process is unstable.

Some solutions try to use Weighted Shuffle Scheduling
(WSS) [20] to balance the data transfers by using the data
size to determine scheduling. However this strategy will not
help for this image clustering application, because the data
size generated for each Map task is the same.

We reduce the intermediate data size by using local
aggregation across Map tasks in Map stage. To support local

aggregation, we provide appropriate interface to help users
define the aggregation operation.

We notice that each Key-Value pair in intermediate data
is a partial sum of the components of data points associated
with a particular cluster. Since addition is an operation with
both commutative and associative properties, for any two
values belonging to the same key, we can do addition on
them and merge them to a single Key-Value pair, which has
no effect on the final result. This property can be illustrated
by the following formula:

𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , 𝑘𝑘𝑘𝑘𝑃𝑃 ,⋯ , 𝑘𝑘𝑘𝑘𝑗𝑗 ,⋯ , 𝑘𝑘𝑘𝑘𝑃𝑃� = 𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , �𝑘𝑘𝑘𝑘𝑃𝑃 ⊕
𝑘𝑘𝑘𝑘𝑗𝑗�,⋯ , 𝑘𝑘𝑘𝑘𝑃𝑃� = 𝑓𝑓�𝑘𝑘𝑘𝑘1,⋯ , �𝑘𝑘𝑘𝑘𝑗𝑗 ⊕ 𝑘𝑘𝑘𝑘𝑃𝑃�,⋯ , 𝑘𝑘𝑘𝑘𝑃𝑃� ∀ 𝑖𝑖, 𝑗𝑗, 1 ≤
𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 (4)

Here ⊕ represents a set of operations which are similar
to addition operation that can be applied on any two Key-
Value pairs. This will then generate a new Key-Value pair by
operating, 𝑓𝑓 is the Reduce function and 𝑛𝑛 is the number of
Key-Value pairs belonging to the same key. In our image
clustering application, ⊕ is the addition of two partial sums.
In other applications, we can also find an appropriate
operator. In Word Count [2], ⊕ is the addition of two partial
counts of the same word and can be operations other than
addition, such as multiplication and max/min value selection,
or just simple logical combination of the two values.

With ⊕ operation and also noting that Map tasks work at
thread level on compute nodes, we do local aggregation in
the memory shared by Map tasks. Once a Map task is
finished, it doesn’t send data out immediately but instead
caches the data to a shared memory pool. When the key
conflict happens, the program invokes a user-defined
operation to merge two Key-Value pairs into one. A barrier
is set so that the data in the pools are not transferred until all
the Map tasks in a node are finished. By trading
communication time with computation time, the data
necessary to be transferred can be significantly reduced.

VI.EXPERIMENTS
To evaluate performance of the new proposed

broadcasting method and local aggregation mechanism, we
conducted experiments about broadcasting and shuffling on
IU PolarGrid in the context of both kernel and application
benchmarking. The results demonstrate that chain method
achieves the best performance on big data broadcasting
compared with the other MapReduce and MPI methods. In
addition, shuffling with local aggregation can out-perform
the original shuffling significantly.

A. IU PolarGrid Cluster
IU PolarGrid cluster [11] uses a Fat-Tree topology to

connect compute nodes. The nodes are split into sections of
42 nodes which are then tied together with 10 GigE to a
Cisco Nexus core switch. For each section, nodes are
connected with 1 GigE to an IBM System Networking Rack
Switch G8000. This forms a 2-level Fat-Tree structure with
the first level of 10 GigE connections and the second level of
1 GigE connections. For computing capacity, each compute
node in PolarGrid uses a 4-core 8-thread Intel Xeon CPU

E5410 2.33 GHz processor. The L2 cache size per core is 12
MB. Each compute node has 16 GB total memory.
The bottleneck of this topology is that inter-switch communication
is through the one and only core switch and the connection is
limited to 10 GigE. As a result, reducing the number of inter-
switch communication times is considered the highest priority in
design of efficient collective communication algorithms for a fat-
tree topology.

B. Broadcasting
We compared chain method with MPI_BCAST in Open

MPI 1.4.1 [25]. We also compare the current chain
broadcasting method with other designs such as chain
method without topology awareness and simple broadcasting
as a means to show the efficiency of the new method.

We measure the broadcasting time from the start of
calling the broadcasting method to the end of the calling
return. We test the performance of broadcasting from a small
scale to a medium large scale. The range includes 1 node, 25
nodes with 1 switch, 50 nodes under 2 switches, 75 nodes
with 3 switches, 100 nodes with 4 switches, 125 nodes with
5 switches, and 150 nodes with 5 switches. The tests are for
different data size, including 0.5 GB (500MB), 1 GB, and 2
GB. Each result is the average of 10 executions. There are
only milliseconds of differences between execution times
therefore we omit the error in the following charts.

Figure 6 shows the comparison between chain method
and MPI_BCAST method in Open MPI. The time cost of the
new chain method is stable as the number of processes
increases. This matches the broadcasting formula (3) and we
can conclude that with proper implementation, the actual
performance of the chain method can achieve near constant
execution time. Besides, the new method achieves 20%
better performance than MPI_BCAST in Open MPI.

However if the chain sequence is randomly generated but
not topology-aware, the performance degrades quickly as the
scale grows. Figure 8 shows that chain method with
topology-awareness is 5 times faster than that of the chain
method without topology-awareness. For broadcasting
within a single switch, we see that as expected, there is not
much difference between the two methods. However, as the
number of nodes and the number of racks increase, the
execution time increases significantly. When there are more
than 3 switches, the execution time become stable and
doesn’t change much. Because there are many inter-switch
communications, the performance is constrained by the 10
Gb bandwidth and the throughput ability of the core switch.

C. Shuffling and Local Aggregation
To benchmark the performance of shuffling using local
aggregation, we choose the following settings to run the
image clustering application. For job settings, we choose 125

Figure 6. Performance comparison of Twister chain method
and Open MPI MPI_Bcast

Figure 8. Chain method with/without topology-awareness

Figure 9. Comparison between shuffling with and without
local aggregation

Figure 10. Communication cost per iteration of the image
clustering application

0

5

10

15

20

25

1 25 50 75 100 125 150

Bc
as

t T
im

e
(S

ec
on

ds
)

Number of Nodes
Twister 0.5GB MPI 0.5GB
Twister 1GB MPI 1GB
Twister 2GB MPI 2GB

0

20

40

60

80

100

1 25 50 75 100 125 150

Bc
as

t T
im

e
(S

ec
on

ds
)

Number of Nodes
0.5GB 0.5GB W/O TA
1GB 1GB W/O TA
2GB 2GB W/O TA

0 200 400 600

Sh
uf

fli
ng

w
ith

 lo
ca

l…
Sh

uf
fli

ng
w

ith
ou

t…

Average Iteration Time (Seconds)
Broadcast (include serialization & de-serialization)
Shuffle and Reduce (include Reduce task)
Combine

0 50 100 150 200

Average Iteration Time (Seconds)
Broadcast (include serialization & de-serialization)
Shuffle and Reduce (include Reduce task)
Combine

nodes to run the application with 1000 Map tasks (each node
with 8 Map tasks) and 125 reduce tasks (each node with 1
Reduce task). For data settings, we restrict the number of
centroids to 500K and focus on testing the performance of
collective communication. Since 500K centroids can
generate about 1 GB of intermediate data per task, the
overhead from shuffling is significant. We measure the total
time from the start of shuffling to the end of the Reduce
phase noting that reducers start asynchronously (a reducer
starts once it gets all the data). Time costs on Reduce tasks
are included but on average it is just around 1 second and is
negligible compared with the data transfer time.

Figure 9 shows the time difference of shuffling with or
without local aggregation in Map stage in the settings above.
Without using local aggregation, the output per node is 8 GB
and the total data for shuffling is about 1 TB. After using
local aggregation, the output per node is reduced to 1 GB and
the total data for shuffling is only about 125 GB and the time
cost on shuffling is only 10% of the original time; an
improvement from about 8 minutes to only 40 seconds. To
reduce intermediate data from 1 TB data to 125 GB data, we
only need an extra 20 seconds in local aggregation.

D. Image Clustering Application
We successfully cluster 7.42 million vectors into 1

million cluster centers. We create 10000 map tasks on 125
nodes. Each node has 80 tasks. Each task caches 742 vectors.
For 1 million centroids, broadcasting data size is about 512
MB. Shuffling data is 20 TB, while the data size after local
aggregation is about 250 GB. Since the total memory size on
125 nodes is 2 TB, we even cannot execute the program
unless local aggregation is performed. Figure 10 presents the
collective communication cost per iteration, which is 169
seconds (less than 3 minutes). Note that we are currently in
development of a new faster Kmeans algorithm [8][9] that
will drastically reduce the current hour-long computation
time in Map stage by up to a factor l (the dimension which is
currently 512 to 2048) and so the improved communication
time is highly relevant.

VII.RELATED WORK
In Section 3 we discussed the runtime of several data

processing tools and compared the collective communication
within them. Here we summarize the analysis and add other
observations. Collective communication algorithms are well
studied in MPI runtime although the Java implementations
are less well optimized. Each communication operation has
several different algorithms based on message size and
network topology such as linear array, mesh and hypercube
[14]. Basic algorithms are pipeline broadcast method [21],
minimum-spanning tree method, bidirectional exchange
algorithm, and bucket algorithm [14]. Since these algorithms
have different advantages, algorithm combination
(polymorphism) is widely used to improve the
communication performance [14]. Furthermore some
solutions also provide auto algorithm selection [26].

Other papers have a different focus than our work. Some
of them only study small data transfers up to megabytes level
[14] [27] while some solutions rely on special hardware

support [16]. The data type is typically vectors and arrays
whereas we are considering objects. Many algorithms such
as “allgather” operate under the assumption that each node
has the same amount of data [14] [16], which is uncommon
in a MapReduce model. As a result, although shuffling can
be viewed as a Reduce-Scatter operation, its algorithm
cannot be applied directly on shuffling since the data amount
generated by each Map task is unbalanced in most
MapReduce applications.

There are several solutions to improve the performance
of data transfers in MapReduce. Orchestra [20] is one such
global control service and architecture to manage intra- and
inter-transfer activities in the Spark system, where we gave
some test results in section 3.1. It not only provides control,
scheduling and monitoring on data transfers, but also
optimization on broadcasting and shuffling. For
broadcasting, it uses an optimized BitTorrent-like protocol
called Cornet, augmented by topology detection. For
shuffling, Orchestra employs weighted shuffle scheduling
(WSS) to set the weight of the flow as proportional to the
data size; we noted earlier this optimization is not relevant in
our application.

Hadoop-A [28] provides a pipeline to overlap the shuffle,
merge and reduce phases and uses an alternative Infiniband
RDMA based protocol to leverage RDMA inter-connects for
fast data shuffling. MATE-EC2 [29] is a MapReduce like
framework for EC2 [30] and S3 [31]. For shuffling, it uses
local aggregation and global aggregation. This strategy is
similar to what we did in Twister but as it focuses on EC2
cloud environment, the design and implementation are
totally different. iMapReduce [32] and iHadoop [33] are
iterative Mapreduce frameworks that optimize the data
transfers between iterations asynchronously, where there
exists no barrier between two iterations. However, this
design doesn’t work for applications which need broadcast
data in every iteration because all the outputs from Reduce
tasks are needed for every Map task.

Microsoft Daytona [38] is a recently announced iterative
MapReduce Azure runtime developed by Microsoft that
builds on some of the ideas of the earlier Twister system.
Currently Excel DataScope is presented as an application of
Daytona where an Excel interface allows manipulation of
cloud or local data. The results can be returned to the Excel
client or remain in the cloud for further processing and
visualization.

VIII.CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated the first steps

towards a high performance Map-Collective programming
model and runtime using the requirements of a large scale
clustering algorithm. We replaced broker-based methods and
designed and implemented a new topology-aware chain
broadcasting algorithm. Compared with the simple broadcast
algorithm, the new algorithm reduces the time burden of
broadcasting by at least a factor of 120 over 125 nodes. It
gives 20% better performance than best C/C++ MPI methods
(and four times faster than Java MPJ) and a factor of 5
improvements over non-optimized (for topology) pipeline-
based method over 150 nodes. The shuffling cost after using
local aggregation is only 10% of the original time. In

particular, collective communication has significantly
improved the intermediate data transfer for large scale image
clustering problems.

In future work, we will improve the Kmeans algorithm
[8][9][35] and apply the Map-Collective framework to other
iterative applications [36] including Multi-Dimensional
Scaling where the allgather primitive is needed. We will also
extend current work to include an allreduce collective that is
an alternative approach to Kmeans. The resultant Map-
Collective model that captures the full range of traditional
MapReduce and MPI features will be evaluated on Azure
[15] as well as IaaS/HPC environments. We will integrate
Twister with Infiniband RDMA based protocol and compare
various communication scenarios. Initial observation
suggests a different performance profile from that of the
Ethernet network evaluated here. Furthermore we will
integrate topology and link speed detection services and
utilize services such as ZooKeeper [37] to provide
coordination and fault detection.

ACKNOWLEDGEMENT
The authors would like to thank Prof. David Crandall at Indiana
University for providing the social image data. This work is in part
supported by National Science Foundation Grant OCI-1149432

REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.
[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. Sixth Symp. on Operating System Design and
Implementation, pp. 137–150, December 2004.

[3] Dubey, Pradeep. A Platform 2015 Model: Recognition, Mining and
Synthesis Moves Computers to the Era of Tera. Compute-Intensive,
Highly Parallel Applications and Uses. Volume 09 Issue 02. ISSN
1535-864X. February 2005.

[4] Jaliya.Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-
Hee Bae, Judy Qiu, Geoffrey Fox. Twister: A Runtime for iterative
MapReduce, in Proceedings of the First International Workshop on
MapReduce and its Applications of ACM HPDC 2010 conference
June 20-25, 2010. 2010, ACM: Chicago, Illinois.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster Computing with Working Sets. In HotCloud, 2010.

[6] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.
Haloop: Efficient Iterative Data Processing on Large Clusters.
Proceedings of the VLDB Endowment, 3, September 2010.

[7] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M.
Ranzato, A. Senior, P. Tucker, K. Yang, A. Ng, Large Scale
Distributed Deep Networks, in proceedings of NIPS 2012: Neural
Information Processing Systems Conference.

[8] Judy Qiu, Bingjing Zhang, "Mammoth Data in the Cloud: Clustering
Social Images", to appear in the book on "Clouds, Grids and Big
Data" to be published in the series "Advances in Parallel Computing"
by IOS Press publishers, 2013. Book Editors: Charlie Catlett,
Wolfgang Gentzsch, Lucio Grandinetti, Gerhard Joubert, and Jose
Vasquez-Polett

[9] Charles Elkan, Using the triangle inequality to accelerate k-means, in
TWENTIETH INTERNATIONAL CONFERENCE ON MACHINE
LEARNING, Tom Fawcett and Nina Mishra, Editors. August 21-24,
2003. Washington DC. pages. 147-153.

[10] MPI Forum, “MPI: A Message Passing Interface,” in Proceedings of
Supercomputing, 1993.

[11] PolarGrid. http://polargrid.org/.
[12] N. Dalal, B. Triggs. Histograms of Oriented Gradients for Human

Detection. CVPR. 2005
[13] J. B. MacQueen, Some Methods for Classification and Analysis of

MultiVariate Observations, in Proc. of the fifth Berkeley Symposium

on Mathematical Statistics and Probability. vol. 1, L. M. L. Cam and
J. Neyman, Eds., ed: University of California Press, 1967.[

[14] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn.
Collective communication: theory, practice, and experience.
Concurrency and Computation: Practice and Experience, 2007, vol 19,
pp. 1749–1783.

[15] Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, and Judy Qiu,
"Scalable Parallel Computing on Clouds Using Twister4Azure
Iterative MapReduce ", Future Generation Computer Systems vol. 29,
pp. 1035-1048, 2013.

[16] Nikhil Jain, Yogish Sabharwal, Optimal Bucket Algorithms for Large
MPI Collectives on Torus Interconnects, ICS '10 Proceedings of the
24th ACM International Conference on Supercomputing, 2010

[17] Infiniband Trade Association. http://www.infinibandta.org.
[18] T. Hoefler, C. Siebert, and W. Rehm. Infiniband Multicast A

practically constant-time MPI Broadcast Algorithm for large-scale
InfiniBand Clusters with Multicast. Proceedings of the 21st IEEE
International Parallel & Distributed Processing Symposium. 2007

[19] BitTorrent. http://www.bittorrent.com.
[20] Mosharaf Chowdhury et al. Managing Data Transfers in Computer

Clusters with Orchestra, Proceedings of the ACM SIGCOMM 2011
conference, 2011

[21] Watts J, van de Geijn R. A pipelined broadcast for multidimensional
meshes. Parallel Processing Letters, 1995, vol.5, pp. 281–292.

[22] Charles E. Leiserson, Fat-trees: universal networks for hardware
efficient supercomputing, IEEE Transactions on Computers, vol. 34 ,
no. 10, Oct. 1985, pp. 892-901.

[23] Radhika Niranjan Mysore, PortLand: A Scalable Fault-Tolerant
Layer 2 Data Center Network Fabric, SIGCOMM, 2009

[24] S. Kumar, Y. Sabharwal, R. Garg, P. Heidelberger, Optimization of
All-to-all Communication on the Blue Gene/L Supercomputer, 37th
International Conference on Parallel Processing, 2008

[25] Open MPI, http://www.open-mpi.org
[26] MPJ Express, http://mpj-express.org/
[27] H. Mamadou T. Nanri, and K. Murakami. A Robust Dynamic

Optimization for MPI AlltoAll Operation, IPDPS’09 Proceedings of
IEEE International Symposium on Parallel & Distributed Processing,
2009

[28] P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk. Toward
message passing for a million processes: Characterizing MPI on a
massive scale Blue Gene/P. Computer Science - Research and
Development, vol. 24, pp. 11-19, 2009.

[29] Yangdong Wang et al. Hadoop Acceleration Through Network
Levitated Merge, International Conference for High Performance
Computing, Networking, Storage and Analysis (SC'11), 2011

[30] T. Bicer, D. Chiu, and G. Agrawal. MATE-EC2: A Middleware for
Processing Data with AWS, Proceedings of the 2011 ACM
international workshop on Many task computing on grids and
supercomputers, 2011

[31] EC2. http://aws.amazon.com/ec2/.
[32] S3. http://aws.amazon.com/s3/.
[33] Y. Zhang, Q. Gao, L. Gao, and C. Wang. imapreduce: A distributed

computing framework for iterative computation. In DataCloud '11,
2011.

[34] E. Elnikety, T. Elsayed, and H. Ramadan. iHadoop: Asynchronous
Iterations for MapReduce, Proceedings of the 3rd IEE International
conference on Cloud Computing Technology and Science
(CloudCom), 2011

[35] Jonathan Drake and Greg Hamerly, Accelerated k-means with
adaptive distance bounds, in 5th NIPS Workshop on Optimization for
Machine Learning. Dec 8th, 2012. Lake Tahoe, Nevada, USA.

[36] Bingjing Zhang, Yang Ruan, Tak-Lon Wu, Judy Qiu, Adam Hughes,
Geoffrey Fox. Applying Twister to Scientific Applications,
Proceedings of the 2nd IEE International conference on Cloud
Computing Technology and Science (CloudCom), 2010

[37] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ZooKeeper: wait-
free coordination for internet-scale systems, in USENIXATC’10:
USENIX conference on USENIX annual technical conference, 2010,
pp. 11–11.

[38] Microsoft Daytona. Retrieved Feb 1, 2012
http://research.microsoft.com/en-us/projects/daytona/.

http://hadoop.apache.org/
http://polargrid.org/polargrid
http://www.infinibandta.org/
http://www.bittorrent.com/
http://www.open-mpi.org/
http://mpj-express.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://research.microsoft.com/en-us/projects/daytona/

	I. INTRODUCTION
	II. IMAGE CLUSTERING APPLICATION
	III. COLLECTIVE COMMUNICATION IN PARALLEL PROCESSING FRAMEWORKS
	IV. BROADCAST COLLECTIVE COMMUNICATON
	A. Chain Broadcasting Algorithm
	B. Rack-Awareness
	C. Buffer Management
	D. Fault Tolerance

	V. LOCAL AGGREGATION IN MAP STAGE
	VI. Experiments
	A. IU PolarGrid Cluster
	B. Broadcasting
	C. Shuffling and Local Aggregation
	D. Image Clustering Application

	VII. RELATED WORK
	VIII. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENT
	REFERENCES

