
Parallel Data Mining on Multicore Clusters  
 

Xiaohong Qiu1, Geoffrey Fox2,   Huapeng Yuan2,   
Seung-Hee Bae2 

1Research Computing, UITS      2Community Grids Lab  
Indiana University 

Bloomington IN, U.S.A 
xqiu@indiana.edu gcf@indiana.edu   yuanh@indiana.edu   

sebae@indiana.edu 

George Chrysanthakopoulos3, Henrik Nielsen3 
3Microsoft Research 

Microsoft Corporation 
Redmond WA, U.S.A 

georgioc@microsoft.com    henrikn@microsoft.com

 
 

Abstract—The ever increasing number of cores per chip will be 
accompanied by a pervasive data deluge whose size will probably 
increase even faster than CPU core count over the next few years. 
This suggests the importance of parallel data analysis and data 
mining applications with good multicore, cluster and grid 
performance. This paper considers data clustering, mixture 
models and dimensional reduction presenting a unified 
framework applicable to bioinformatics, cheminformatics and 
demographics. Deterministic annealing is used to lessen effect of 
local minima. We present performance results on clusters of 2-8 
core systems identifying effects from cache, runtime fluctuations, 
synchronization and memory bandwidth. We discuss needed 
programming model and compare with MPI and other 
approaches. 

Keywords- parallel; data mining; multicore; clusters; 
applications;  MPI; CCR; performance; cache 

I.  INTRODUCTION 
There are many important trends influencing scientific 

computing. One is the growing adoption of the eScience 
paradigm which emphasizes the growing importance of 
distributed resources and collaboration. Another is the data 
deluge with new instruments, sensors, and the Internet driving 
an exponential increase of data and the associated data 
information knowledge wisdom pipeline which itself derives 
more bytes to worry about as in the results of simulations [1]. 
Multicore chips are challenging because they require 
concurrency to exploit Moore's law whereas the improved 
architectures and increasing clock speed of the last 15 years has 
allowed dramatic performance increase within a well 
established fixed (sequential) programming paradigm [2-4]. 
Understanding the data deluge is an important problem in all 
areas of computing from eScience to the commodity computing 
such as home PC's that are the main driver of the 
semiconductor industry. Thus we posit that it is important to 
look at data analysis and data mining and derive efficient 
multicore implementations. We would like these to be relevant 
for both eScience and commodity applications. The former 
could involve data from high throughput instruments used in 
Life Sciences. The latter includes the analysis of environmental 
and surveillance monitors or the data fetched from the Internet 
that could characteristic a user's interests. The RMS 
(Recognition, Mining, Synthesis) analysis from Intel [5, 6] 
identified data mining and gaming as critical applications for 

multicore chips. Scientific data is likely to be so voluminous 
that we need any implementation to work well on clusters of 
multicore chips with preferably the same programming model 
for the inter-chip as well as the intra-chip parallelism. On the 
other hand commodity applications might well not need cluster 
implementations but probably would prefer thread-based 
runtimes involving managed code - Java or C#. In most cases 
the data is likely to be distributed and so good Grid 
compatibility is an important requirement. High performance 
(scientific) computing has never had very sophisticated 
programming environments as the field is not large enough to 
support a major commercial software activity. Multicore could 
change the situation because of its broad importance but we 
then need a scientific computing programming model that is 
based on one applicable to commodity systems. 

Our work is performed on a variety of twin CPU multicore 
systems defined in Table 1 with a total of 4 or 8 cores (except 
for single CPU Intel 2a) and running variants of Linux and 
Windows operating systems. In the following section we 
briefly discuss our programming model and refer the reader to 
other papers [10-12] for more details. In section 3, we discuss 
the data mining algorithms investigated and give some overall 
performance results. In section 4, we identify the key features 
of the application structure and the implications for the parallel 
run time. We compare with other parallel programming 
approaches. The performance is investigated in more detail in 
the following sections, 5 for cache and 6 for memory 
bandwidth effects. Section 7 extends the results to clusters and 
compares thread and process based parallelism.  Section 8 has 
conclusions. 

II. PROGRAMMING MODEL 
The trends discussed in the introduction motivate the 

SALSA (Service Aggregated Linked Sequential Activities) [7] 
at the Community Grids Laboratory. SALSA is exploring a set 
of data mining applications implemented in parallel on 
multicore systems. This is implemented in managed code C# 
with parallel synchronization from a runtime CCR 
(Concurrency and Computation Runtime) developed at 
Microsoft Research [13, 14]. CCR supports both MPI style 
synchronization and the dynamic threading essential in many 
concurrent commodity applications. Further there is a service 
model DSS (Decentralized System Services) built on top of 



CCR [15]. CCR is a possible choice of runtime that could 
bridge between scientific and commodity applications as it 

supports the key concurrent primitives used in both of them. 
SALSA proposes that one builds applications as a suite of 
services [8, 9] rather than traditional subroutine or class 
libraries. The service model allows one to support integration 
within grid, cluster and inter-chip environments. Thus SALSA 
is exploring a possible future application (data mining) on 
multicore chips using a programming model that could be 
used across a broad set of computer configurations and could 
be the basis of a programming model that links scientific 
computing to commodity applications. We note that we 
program in a low level style with user responsible for explicit 
synchronization in the fashion that is familiar from MPI. There 
certainly could be general or domain specific higher level 
environments such as variants of automatic compilation, 
OpenMP, PGAS or even the new languages from Darpa's 
HPCS program [6, 16]. Our work can still be relevant as it 
uses a runtime that is a natural target for such advanced high-
level environments. 

TABLE I.  MACHINES USED 

AMD4 HPxw9300 workstation, 
2 AMD Opteron CPUs Processor 275 at 2.19GHz, L2 Cache 
2x1MB (for each chip), Memory 4GB, XP Pro 64bit and 
Server 2003 

Intel8a Dell Precision PWS690, 
2 Intel Xeon CPUs E5320 at 1.86GHz, L2 Cache 2x4M, 
Memory 8GB, XP Pro 64bit 

Intel8b Dell Precision PWS690, 
2 Intel Xeon CPUs x5355 at 2.66GHz, L2 Cache 2X4M, 
Memory 4GB,  
Vista Ultimate 64bit and Fedora 7 

Intel8c Dell Precision PWS690, 
2 Intel Xeon CPUs x5345 2.33GHz, L2 Cache 2X4M, 
Memory 8GB, Redhat 

Intel2a Dell PowerEdge 860,  
single CPU Dual-Core Intel Xeon 3050 2.13 GHz, Memory 
2GB, Windows Server 2003 Enterprise x64 Edition (part of 8-
node cluster) 

AMD8 Dell PowerEdge 2970,  
2 Quad Core Opteron 2356 at 2.3GHz, 4x512KCache, 
Memory 16GB, Server 2003 

 
A critical question for any system that spans multiple 

different domains is performance; integration of multiple 
paradigms is not so helpful unless the performance is 
reasonable in each paradigm. In previous papers [10-12], we 
have discussed CCR and DSS and given some core 
performance measurements that are encouraging. Here we 
focus on a broader set of applications and discuss in more 
detail their structure and performance. We see they have a 
classic loosely synchronous structure [26] and require 
synchronization similar to that provided by MPI. We explicitly 
compared [12] the performance of CCR with MPI for a typical 
"exchange" pattern where each thread (process for MPI) 
exchanges information with its neighbors in a ring topology. In 

our implementations, we are however using threads and not 
processes as the "parallel unit". This approach brings some 
challenges with efficient use of cache but allows good use of 
shared memory and link to familiar commodity programming 
models.  We note that our work uses Windows operating 
systems with Linux only used for (MPI) comparisons [11, 12]. 
We briefly note how our results extend to Linux and other 
languages besides C# in section 7. 

III. DATA MINING 
Before you begin to format your paper, first write and save 

the content as a separate text file. Keep your text and graphic 
files separate until after the text has been formatted and styled. 
Do not use hard tabs, and limit use of hard returns to only one 
return at the end of a paragraph. Do not add any kind of 
pagination anywhere in the paper. Do not number text heads-
the template will do that for you. 

In this paper we focus on a set of data mining algorithms 
given by a common formalism, which is defined by function F 
given in Equation (1) in terms of N data points X(x) labeled by 
x.  

Eqn. (1) covers clustering [17-19], Gaussian mixtures [22, 
23] with or without annealing and the GTM (Generative 
Topographic Mapping) dimensional reduction method. We 
look at clustering with deterministic annealing (DA) and GTM 
in this paper. F is either directly a cost function C to be 
minimized (negative of log likelihood) or in annealing methods 
C-TS, the "free energy" where T is a temperature and S is the 
Shannon Entropy [19]. Unlike simulated annealing, DA 
involves no Monte Carlo but rather optimizes (1) iteratively as 
temperature T is varied from high to low values. DA improves 
on the well known K-means clustering algorithm [20]. For DA 
clustering, the variables in (1) are given by:  

     a(x) = 1/N, g(k)=1, s(k) = 0.5                  (2) 

1

2
1

( ) ln ( ) where                             (1)

( ) ( ) exp[ 0.5( ( ) ( )) / ( ( ))]

N

x
K

k

F T a x Z x

Z x g k X x Y k Ts k
=

=

= −

= − −

∑

∑

Figure 1. GTM Projections for 2 clusters found by DA in space 
of 155 Chemical Properties labeled as . or + 



and T is temperature decreased to 1 by some schedule. DA 
finds K cluster centers Y(k) where K is initially 1 and is 
incremented by algorithm as T decreases. 

In this paper we also look at a second class of algorithms 
given by (1); namely dimensional scaling or the derivation of a 
set of vectors vi in a metric space where the distance between 
vectors i and j is given by a known discrepancy function  δij. 
Here  δij may come from the distance between points i and j in 
another vector space or be a discrepancy derived from an 
algorithm like BLAST comparing sequences in 
bioinformatics. In particular, we look at a powerful algorithm 
GTM developed in [21] and often used to map from high 
dimensional spaces to two or three dimensions for 
visualization. This is illustrated in Fig. 1 showing the 2D GTM 
projection of a cheminformatics problem with two different 
labels showing the mapping of two deterministic annealing 
clusters found by applying (2) implemented in parallel (for 
DA and GTM) to points x corresponding to different chemical 
compound defined by properties in 155 dimensions. GTM is 
closely related to SOM (Self Organizing Maps) and one of 
several dimensional scaling algorithms whose parallel 
implementation we will discuss in further papers. In equation 
(1), GTM corresponds to: 

1
2 2

( ) ( ( )) with fixed        (3)   

( ) exp( 0.5( ) / )          (4)

M

m m
m

m m

Y k W L kφ

φ λ λ μ σ
=

=

= − −

∑  

a(x) = 1; g(k) = (1/K)(β /2π)D/2 where space D dimensional; 
s(k) = 1/ β; T = 1 and β and Wm are varied for fixed K, L(k), 
and M below. L(k), λ and μm are vectors in the latent (2D) 
space.

 
 

The solution of (1) is implemented by a variation of the 
Expectation Maximization (EM) algorithm [22]:  

written for the case of DA clustering (GTM is similar but 
more complicated) where new values of cluster centers Y(k) 
are calculated iteratively from probabilities  of x belonging to 
cluster C(k). Note these algorithms are attractive as they 
combine the guaranteed decrease of F each iteration 
characteristic of EM with the avoidance of local minima 
coming from DA. The annealing in temperature corresponds 
to a multiscale approach with T1/D as a distance scale. The 
formalism described above involves several well understood 
algorithms but we believe that their integration and 
parallelization is novel. Further the value of annealing which 
determines the number of clusters or the number of mixture 
components as a function of T is not very broadly recognized.  

Initial results on the parallel performance of DA clustering 
are shown in fig. 2 for runs on the 8 core Intel machine labeled 
Intel8b in Table 1. The figure shows that DA has a parallel 
overhead [18] that decreases asymptotically like 1/grain size 
as the data set increases. Here grain size n is the dataset size N 
divided by the number of processors (cores) which is here 8. 
Putting T(P) as the execution time on P cores, we can define: 

         Overhead  f = (PT(P)-T(1))/T(1)                       (7) 

         Efficiency ε = 1/(1+f)  =  Speed up S(P)/P      (8) 

Thus the overhead of 0.05 seen for large n in Fig. 2 
corresponds to an excellent speedup of 7.6. The results for 
GTM in Fig. 3 show even smaller overheads even at small 
grain size due to the substantial additional computation (matrix 
multiplication and equation solving) in this case. In section 5, 
we emphasize that much of the critical overhead in multicore 
parallel code is not synchronization but rather due to 
interference between cores in the memory subsystem. 

 

IV. APPLICATION STRUCTURE 
The algorithms illustrated in equations (1-6) have a 

structure familiar from many scientific computing areas [6, 24-
26]. There is an iteration – in this case over the annealing 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1/Grain Size n

n = 500 50100

Parallel Overhead

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1/Grain Size n

n = 500 50100

Parallel Overhead

Figure 3. Total Parallel Overhead on Intel8b plotted against 8/N 
for GTM using M=256 and K=4096 

 

0

0.1

0.2

0.3

0.4

0 1 2 3 4

Parallel Overhead 10 Clusters

20 Clusters

10000/Grain Size

30 Clusters

1 1
2

( ) ( ) Pr[ ( ) ( )] / Pr[ ( ) ( )]   (5)

Pr[ ( ) ( )] exp[ 0.5( ( ) ( )) / ] / ( )   (6)

N N

x x
Y k X x X x C k X x C k

X x C k X x Y k T Z x
= =

= ∈ ∈

∈ = − −

∑ ∑

Figure 2.  Parallel Overhead for GIS 2D DA Clustering on Intel 
8b using C# with 8 threads (cores) and CCR synchronization. We 
show 3 values (10.20,30) for the number of clusters and plot 
against the reciprocal of the number of data points per thread 
 



schedule for T and the steps needed for the EM method to 
converge. Synchronization is needed at the end of each 
iteration. Further looking into more detail, we find that the 
iteration consists of sums like Equations (5) and (6) calculating 
vector and matrix elements combined with linear algebra [28]. 
The latter is identification of principal directions for DA 
clustering and matrix multiplication and linear equation 
solution for GTM. The sums themselves are first calculated in 
the memory of thread and then after synchronization, 
accumulated into “global” variables. This strategy assures good 
use of cache with negligible false sharing (see section 5). Thus 
we see that all these algorithms have a “loosely synchronous” 
structure where the parallel algorithm consists of “compute-

synchronize” stages where synchronization typically implies all 
cores reach a barrier [6, 26]. CCR supports the loosely 
synchronous paradigm with modest overheads analyzed in 
detail in earlier papers. Although CCR supports messaging like 
MPI we only use CCR for synchronization with the shared 
memory allowing data to be shared. This allows us highly 
efficient implementation of primitives such as the formation of 
global sums from those calculated locally; such primitives are 
some of the compute stages that our algorithms need. The 
results in Figs. 2  and 3 sum over all synchronizations and the 
overhead is proportional to 1/n as the dominant compute phase 
is the calculation of sums like (5) and (6) and these are directly 
proportional to n = N/P. 

TABLE II.  CACHE LINE COMPUTATION TIMES 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing our multicore implementations with traditional 
parallel programming, we see that we are using essentially the 
same programming model with domain decomposition 
breaking up the application into parallel components that 
execute in a loosely synchronous fashion. However, the 
implementation of this model is different on multicore and 
clusters. On multicore we minimize memory bandwidth and 
maximize cache re-use; on clusters we need ingenious 
communication patterns (the MPI collectives) to move data 
around.  

This paper has focused on multicore performance as this is 
less well studied than traditional MPI and openMP approaches. 
We are using exactly the same decomposition that would be 
used in a traditional MPI approach but implementing 
communication more efficiently using the shared memory of 
the multicore node. Note the performance model of equations 
(7) and (8) used for our CCR results was originally developed 
for explicit messaging approaches like MPI [24-26]. We will 
present explicit performance results comparing CCR, MPI and 
MapReduce (Hadoop) [9] with this identical decomposition 
and performance model but the different communication 
approaches used for shared memory, tightly coupled and 
distributed systems respectively [27]. Each mapping in 

MapReduce can either correspond to a complete execution of 
one of our algorithms or more interestingly to one iteration step 
so MapReduce provides all needed internal synchronization for 
parallel algorithm. Efficient distributed execution requires 
larger grain size than either the CCR or tightly coupled MPI 
approaches. The common decomposition model suggests that 
PGAS (Partitioned Global Address Space) compilers [16] 
could support a common expression of the parallelism but map 
efficiently to the different runtimes. 

V. CACHE EFFECTS ON PERFORMANCE 
We found it quite hard to get reliable timing and identified 

two sources – cache addressed here and runtime fluctuations 
described in [12]. The largest effect which is straightforward 
to address comes from the nature of the cache on all machines 
listed in Table 1. If different cores access different variables 
but those are stored in the same cache line, then wild 
execution time fluctuations can occur. These are documented 
by a simple computation that calculates concurrent 
summations and stores them in an array element A(i) for 
thread i. The summation used a random number generator to 
avoid being compiled away and can be downloaded from our 
web site [7]. This natural implementation leads to an order of 

Machine OS Run Time 

Thread Array Separation (unit is 8 bytes) 
1 4 8 1024 

Mean 
(µs) 

Std Dev 
Mean (µs) 

Mean 
(µs) 

Std Dev 
Mean (µs) 

Mean 
(µs) 

Std Dev 
Mean (µs) 

Mean 
(µs) 

Std Dev 
Mean (µs) 

Intel8b 

Vista CCR C# CCR 8.03 .029 3.04 .059 0.884 .0051 0.884 .0069 
Vista  C# Locks 13.0 .0095 3.08 .0028 0.883 .0043 0.883 .0036 
Vista C 13.4 .0047 1.69 .0026 0.66 .029 0.659 .0057 

Fedora C 1.50 .01 0.69 .21 0.307 .0045 0.307 .016 

Intel8a 
XP CCR C# 10.6 .033 4.16 .041 1.27 .051 1.43 .049 
XP Locks C# 16.6 .016 4.31 .0067 1.27 .066 1.27 .054 

XP C 16.9 .0016 2.27 .0042 0.946 .056 0.946 .058 
Intel8c Redhat C 0.441 .0035 0.423 .0031 0.423 .0030 0.423 .032 

AMD4 

WinServer 
2003 

C# CCR 8.58 .0080 2.62 .081 0.839 .0031 0.838 .0031 
C# Locks 8.72 .0036 2.42 .01 0.836 .0016 0.836 .0013 

C 5.65 .020 2.69 .0060 1.05 .0013 1.05 .0014 

XP 
C# CCR 8.58 .0080 2.62 .081 0.839 .0031 0.838 .0031 
C# Locks 8.72 .0036 2.42 .01 0.836 .0016 0.836 .0013 

C 5.65 .020 2.69 .0060 1.05 .0013 1.05 .0014 



magnitude increase in run time over an implementation that 
stores results in A(Si) where the separator S is chosen so that 
adjacent elements of A are separated by 64 bytes or more. 
These results are documented in Table 2 that records the 
execution time as a function of S and as a function of several 
machine and operating system choices. One sees good 
performance with modest fluctuations as long as S 
corresponds to a separation of 64 bytes or more. On the other 
hand in most cases the performance is dreadful and 
fluctuations sometimes large for separations S less than 64 
bytes (the columns labeled 1 and 4 in units of double variables 
– 8 bytes – in Table 2). This effect is independent of 
synchronization used (compare CCR and Locks in Table 2) 
and is presumably due to the cache design on these modern 
multicore systems.  Looking at the separation of 8 or 1024 
doubles in Table 2, one can see that with compilers we used, C 
was much faster than C# and Linux faster than Windows. 
Most remarkably the Redhat Linux results do not show the 
degradation of performance seen for Windows for separation 
of 1 or 4 doubles. The Fedora Linux results on Intel 8b lie in 
between those of Windows and Redhat in Table 2 showing a 
factor of 5 difference between separation 1 and 8. Redhat has 
only a 5% effect while Windows varies widely with an up to a 
factor of 15 effect.  

 
Although the cache hardware architecture produces the 

effect of Table 2, its impact is very systems software 
dependent. We are obviously able to program around this 
feature but it is unfortunate as using A(i) to store results from 
thread i is surely a natural strategy. This effect is in fact well 
known [29, 30] but its implications are often not properly 
implemented. For example the C# sdk version 2.0 math 
random number generator uses such an array and so has 
unnecessarily poor performance. 

 
All the methods need parallelism in different stages. 

Dominant is the calculation of formulae like those in equations  
(5) and (6) and this is called the kernel in section 6. However 
there is linear algebra used to solve equations or in clustering 

algorithm to calculate correlation matrix to decide whether or 
not to split clusters. The latter uses the usual power method to 
find the leading eigenvector and easily parallelizes. However 
GTM has more extensive need for linear algebra with matrix 
multiplication as the most computationally demanding part. 
We implemented this as usual with blocking to lessen memory 
bandwidth needs and to make good use of cache. In Fig. 4, we 
plot the execution time as a function of block size. At small 
block sizes, cache is not used well and the memory bandwidth 
demands are highest. At large block sizes, the performance 
declines as the primitive block matrix computation will not fit 
into cache. This effect is seen first for the fully parallel case as 
cache is shared. Excellent 1 and 8 core performance is seen for 
block sizes between 32 and 256; we used block size 32 in 
GTM results of Fig. 3. Note that parallel matrix multiplication 
has essentially zero synchronization overhead as each block of 
the result matrix can be calculated independently. Thus we 
assign blocks to cores in a block scattered fashion and achieve 
load balance with no synchronization needed except at the end 
of the full computation. We stress that these results use 
straightforward C# code and have not been optimized for 
floating point performance with specialized kernels. 

 
We used some simple principles to ensure reasonable use 

of cache. Variables being updated frequently (such as those in 
equations 5 and 6 updated for each data point x) are stored 
locally to each thread i.e. to each core. This for example 

includes the blocks of matrix C in multiplication C = A B. 
Variables that are only read such as the matrices A and B, are 
not copied locally but accessed directly from shared memory. 

 

10.00

100.00

1,000.00

10,000.00

1 10 100 1000 10000

Execution Time
Seconds

Block Size

1 Core

8 Cores
Parallel Overhead 

∼ 1%

10.00

100.00

1,000.00

10,000.00

1 10 100 1000 10000

Execution Time
Seconds

Block Size

1 Core

8 Cores
Parallel Overhead 

∼ 1%

Figure 4. Timing of 4096X4096 Parallel Matrix
Multiplication as a function of block size for 1 and 8 cores on 
Intel8b 

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 1 Cluster

500,000

50,000

10,000
Scaled

Runtime

Datapoints
per thread

a)
1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 1 Cluster

500,000

50,000

10,000
Scaled

Runtime

Datapoints
per thread

a)

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

b)
0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

b)

Figure 5.   Scaled Run time on Intel8b using Vista and C# with 
CCR for synchronization on Clustering Kernel for three dataset 
sizes with 10,000 50,000 or 500,000 points per thread(core). 
Each measurement involved averaging over at least 1000 
computations separated by synchronization whose cost is not 
included in results (see text) 



Variables are padded if needed to avoid the cache interference 
effects of Table 2. As explained in introduction, we choose C# 
for our algorithms so we can get results relevant for 
commodity deployments but of course C will show similar 
effects to those presented here. 
 

VI. MEMORY BANDWIDTH EFFECTS 
In Figs. 5, 6 and 7 we isolate the kernel of the DA 

clustering algorithm of section 3 and examine its performance 
as a function of grain size n, number of clusters and number of 
cores. We measure thread dependence at three fixed values of 
grain size n (10,000, 50,000 and 500,000) where all results are 
divided by the number of clusters, the grain size, and the 
number of cores and scaled so the 10,000 data point, one 

cluster, one core result becomes 1. These figures then 
immediately allow us to identify key features of the 
computation as deviations from 1. We display cases for 1 
cluster (Figs. 5(a) 6(a) 7(a)) where memory bandwidth effects 
could be important and also for 80 clusters (Figs. 5(b) 6(b) 
7(b)) where such effects are small as one performs 80 floating 
point operations on every variable fetched from memory. The 
three figures have typical results covering respectively 
Windows and C# (Fig. 5), Windows and C (Fig. 6) and finally 
Linux and C (Fig. 7). Always we use threads not processes and 
C uses locks and C# uses CCR synchronization. Data is stored 
so as to avoid any of cache line effects discussed in the 
previous section. Further we do not include synchronization 
costs in these plots as we have considered these separately. 
Here we want to isolate the impact of runtime fluctuations on 
performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results for one cluster clearly show the effect of 
memory bandwidth with scaled run time increasing 
significantly as the number of cores used is increased. 

In this benchmark the memory demands scale directly with 
number of cores. Indeed a major concern with multicore 
system is the need for a memory bandwidth that increases 
linearly with the number of cores. In Fig. 6 we see a 50% 
increase in the run time with 8 cores with a grain size of 
10,000. This is for C# and Windows and the overhead is 
reduced to 22% for C on Windows and 13% for C on Linux. 

Further we note that naively the 10,000 data point case should 
get excellent performance as the dataset can easily fit in cache 
and minimize memory bandwidth needs. We do not observe 
this which illustrates that the current multicore hardware and 
software cache architecture is not optimized for the style of 
application discussed in this paper. We need to explore the 
cache behavior of more applications to quantify the 
architecture-algorithm relationship. 

 

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 1 Cluster

500,000

50,000

10,000
Scaled

Runtime

Datapoints
per thread

a)
1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 1 Cluster

500,000

50,000

10,000
Scaled

Runtime

Datapoints
per thread

a)

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

b)
0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C# CCR 80 Clusters

500,000

50,000
10,000

500,000

50,000
10,000

Scaled
Runtime

Datapoints
per thread

b)

Figure 5.   Scaled Run time on Intel8b using Vista and C# with 
CCR for synchronization on Clustering Kernel for three dataset 
sizes with 10,000 50,000 or 500,000 points per thread(core). Each 
measurement involved averaging over at least 1000 computations 
separated by synchronization whose cost is not included in results 
(see text) 

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 1 Cluster

500,000

50,000

10,000Scaled

Runtime

Datapoints
per thread

a)
1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 1 Cluster

500,000

50,000

10,000Scaled

Runtime

Datapoints
per thread1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 1 Cluster

500,000

50,000

10,000

500,000

50,000

10,000Scaled

Runtime

Datapoints
per thread

a)

0.8

0.825

0.85

0.875

0.9

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 80 Clusters

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

b)
0.8

0.825

0.85

0.875

0.9

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 80 Clusters

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

0.8

0.825

0.85

0.875

0.9

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Vista C Locks 80 Clusters

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

b)
Figure 6.   Scaled Run time on Intel8b using Vista and C with locks 
for synchronization on Clustering Kernel for three dataset sizes with 
10,000 50,000 or 500,000 points per thread (core) 

 



We get modest overheads for 80 clusters in all cases which 
is in fact why the applications of section 3 run well. There are 
no serious memory bandwidth issues in cases with several 

clusters and it this case that dominates the computation. This 
is usual parallel computing wisdom; real size problems run 
with good efficiency as long as there is plenty of computation. 
[6, 24-26] The data mining cases we are studying (Clustering, 
EM based Mixture models, Hidden Markov Models, Support 
Vector Machines) satisfy this and will run well on machines 

that naturally extend current Intel and AMD mainline 
multicore systems with 100’s of cores and memory bandwidth 
needs that are modest for large problems (such as many 
clusters to be determined). 

VII. COMPARISON OF MPI AND CCR ON CLUSTERS 
In Figures 8-10, we support both MPI and CCR for the full 

deterministic annealing clustering problem. Interestingly MPI 
uses mainly MPI_Allreduce or MPI_Bcast and elegantly 
implements needed synchronization. As we are using C# we 
chose the new MPI.NET implementation from Indiana [31] 
which performed excellently. All our runs are on Windows 
machines. We use the single AMD4 machine running all 
combinations of CCR and MPI in results reported in figure 8 
and a cluster of eight Intel2 machines for figure 9; figure 10 
uses a cluster of four AMD8 machines. Note from comparing 
the top and bottom of figure 8, that parallel overhead is just 
presenting execution time in a normalized fashion. We always 
use MPI for synchronization across nodes. Internal to the node, 
we implement the 2 (Intel2a), 4 (AMD4), 8 (AMD8) way 
parallelism using either CCR threads or MPI processes. In each 
case, we used the scaled speedup approach of fixed number of 
data points per computation unit. This is a thread if CCR used 
or a process if only MPI. When an MPI process has 2 CCR 
threads, it corresponds to two computational units with twice 
the data set size. So execution time should be independent of 
the MPI/CCR scenario if there are no parallel overheads and 
more precisely we can use the overhead defined in equation 
(7). Our results show a maximum overhead of 0.2 and 
efficiencies that are always greater than 80%. Our results show 
somewhat higher overheads for CCR than MPI on AMD4 and 
AMD8 and a detailed analysis shows this is due to higher 
runtime fluctuations for threads than processes on that 
machine. 

 

 

 

Figure 7.   Scaled Run time on Intel8b using Fedora Linux and 
C with locks for synchronization on Clustering Kernel for three 
dataset sizes with 10,000 50,000 or 500,000 points per thread 
(core). Results (not shown) for Redhat are similar to Fedora and 
are available from [7]. 

 

0.98

1.03

1.08

1.13

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Fedora C Locks 
1 Cluster

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

a)
0.98

1.03

1.08

1.13

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Fedora C Locks 
1 Cluster

500,000
50,000

10,000Scaled
Runtime

Datapoints
per thread

a)

1.025

1.03

1.035

1.04

1.045

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Fedora C Locks 
80 Clusters 500,000

50,000

10,000Scaled
Runtime

Datapoints
per thread

b)
1.025

1.03

1.035

1.04

1.045

1 2 3 4 5 6 7 8
Number of Threads (one per core)

Intel 8b Fedora C Locks 
80 Clusters 500,000

50,000

10,000Scaled
Runtime

Datapoints
per thread

b)

Figure 8: Comparison of MPI and CCR and their 
mixture on AMD4 in “scaled speedup” with 400,000 
data points per  computation unit (thread if CCR used, 
process if MPI only). We plot execution time and 
overhead from equation (7)  

Figure 9: Comparison of MPI and CCR and their 
mixture on Intel2a in “scaled speedup” with 1,600,000 
data points per computation unit (thread if CCR used, 
process if MPI only). We plot the parallel overhead 
from equation (7)  



 

 

 

 

 

VIII. CONCLUSIONS 
We have looked at a class of interesting data mining 
algorithms and shown efficient parallel implementations with 
speedups on large “production” problems of greater than 7.5 
on an eight core system. We do not believe parallel studies of 
these algorithms have been discussed previously. Although the 
parallelism used familiar data parallel techniques, it was not 
trivial to get good multicore performance in face of the 
memory, cache and fluctuation overheads discussed here. We 
are currently tackling applications with millions of data points 
(PubChem for example has 18 million chemical compounds) 
each with thousands of properties (dimension D in equations 
1-6); the data deluge will only increase the challenge! Simple 
approaches like K-means and the basic EM approach often 
find local minima. Here we are developing a suite of robust 
data mining algorithms that can be applied to large problems 
and use techniques like annealing to mitigate the local minima 
issue.  
 

We believe our initial results are encouraging and show 
that managed code can deliver high performance algorithms. 
In the future we will investigate further algorithms and apply 
them with collaborators to interesting applications. This will 

hopefully contribute to e-Science and quantify the important 
programming principles for multicore systems. We will also 
extend our work to cover larger clusters of multicore systems 
and compare with both MPI and popular distributed 
programming paradigms like MapReduce [9]; early results can 
be found in ref. [32]. Our current results are focused on C# for 
Windows but the basic message is valid for other languages 
and the Linux O/S. In fact as seen in sections 5 and 6, Linux 
shows typically less overhead than Windows. We note that 
Windows is expected to be important in future architectures 
for client side data mining (naturally on Windows) perhaps 
supported by a cloud of Windows machines to off load 
problems that exceed the capacity of a client. Further the 
comparison between CCR and MPI illustrates the differences 
between thread and process-based implementation. We expect 
use of threads for cores inside a node and traditional process-
based MPI between nodes to be the dominant execution model 
for “commodity” applications; for example OpenMP would 
generate this. 

 

REFERENCES 
[1] Tony Hey and Anne Trefethen, The data deluge: an e-Science 

perspective in “Grid Computing: Making the Global Infrastructure a 

Figure 10: Comparison of MPI and CCR and their mixture on AMD8 in “scaled speedup” with 160,000 data points for 
each of 10 clusters per computation unit (thread if CCR used, process if MPI only). We plot the parallel overhead from 
equation (7). We show results grouped by parallelism from 1 to 32-way with increasing use of CCR as one moves from 
left to right. The number of nodes, MPI processes per node and CCR threads per process is shown as abscissa. 



Reality” edited by Fran Berman, Geoffrey Fox and Tony Hey, John 
Wiley & Sons, Chicester, England, ISBN 0-470-85319-0, February 2003. 
 

[2] Jack Dongarra Editor The Promise and Perils of the Coming Multicore 
Revolution and Its Impact, CTWatch Quarterly Vol 3 No. 1 February 07.    

 
[3] David Patterson The Landscape of Parallel Computing Research: A 

View from Berkeley 2.0 Presentation at Manycore Computing 2007 
Seattle June 20 2007.  

 
[4] Annotated list of multicore Internet sites  

http://www.connotea.org/user/crmc/   
 

[5] Pradeep Dubey Teraflops for the Masses: Killer Apps of Tomorrow 
Workshop on Edge Computing Using New Commodity Architectures, 
UNC 23 May 2006.  
 

[6] Geoffrey Fox tutorial at Microsoft Research Parallel Computing 2007: 
Lessons for a Multicore Future from the Past February 26 to March 1 
2007. See http://www.infomall.org for this and other cited Indiana 
University papers. 

 
[7] Home Page for SALSA Project at Indiana University 

http://www.infomall.org/salsa. 
 

[8] Dennis Gannon and Geoffrey Fox, Workflow in Grid Systems 
Concurrency and Computation: Practice & Experience 18 (10), 1009-19 
(Aug 2006), Editorial of special issue prepared from GGF10 Berlin.  

 
[9] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data 

Processing on Large Clusters, OSDI'04: Sixth Symposium on Operating 
System Design and Implementation, San Francisco, CA, December 2004. 
 

[10] Xiaohong Qiu, Geoffrey Fox, and Alex Ho Analysis of Concurrency and 
Coordination Runtime CCR and DSS, Technical Report January 21 2007.  
 

[11] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae, George 
Chrysanthakopoulos, Henrik Frystyk Nielsen High Performance Multi-
Paradigm Messaging Runtime Integrating Grids and Multicore Systems, 
published in proceedings of eScience 2007 Conference Bangalore India 
December 10-13 2007.  
 

[12]  Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae, 
George Chrysanthakopoulos, Henrik Frystyk Nielsen Performance of 
Multicore Systems on Parallel Data mining Services Technical report 
November 19 2007. 
 

[13] Microsoft Robotics Studio is a Windows-based environment that 
includes end-to-end Robotics Development Platform, lightweight 
service-oriented runtime, and a scalable and extensible platform. For 
details, see http://msdn.microsoft.com/robotics/ 
 

[14] Georgio Chrysanthakopoulos and Satnam Singh “An Asynchronous 
Messaging Library for C#”, Synchronization and Concurrency in 
Object-Oriented Languages (SCOOL) at OOPSLA October 2005 
Workshop, San Diego, CA.  
 

[15] Henrik Frystyk Nielsen, George Chrysanthakopoulos, “Decentralized 
Software Services Protocol – DSSP” 
http://msdn.microsoft.com/robotics/media/DSSP.pdf 
 

[16] Internet Resource for HPCS Languages 
http://crd.lbl.gov/~parry/hpcs_resources.html 
 

[17] Geoff M. Downs, John M. Barnard Clustering Methods and Their Uses 
in Computational Chemistry, Reviews in Computational Chemistry, 
Volume 18, 1-40 2003. 
 

[18] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox Statistical 
mechanics and phase transitions in clustering Phys. Rev. Lett. 65, 945 - 
948 (1990). 
 

[19] Rose, K.  Deterministic annealing for clustering, compression, 
classification, regression, and related optimization problems, 
Proceedings of the IEEE Vol. 86, pages 2210-2239, Nov 1998. 
 

[20] K-means algorithm at Wikipedia http://en.wikipedia.org/wiki/K-
means_algorithm 

[21] Bishop, C. M., Svensen, M., Williams, C. K. I. GTM: The generative 
topographic mapping. Neural Comput. 1998, 10, 215-234. 
 

[22] Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum-
likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. 
Ser. B (methodological), 39, 1–38.  
 

[23] Naonori Ueda and Ryohei Nakano Deterministic annealing EM 
algorithm Neural Networks Volume 11, Issue 2, 31 March 1998, Pages 
271-282.  
 

[24] “The Sourcebook of Parallel Computing” edited by Jack Dongarra, Ian 
Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, 
and Andy White, Morgan Kaufmann, November 2002. 
 

[25] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker Solving 
Problems in Concurrent Processors-Volume 1, Prentice Hall, March 
1988. 
 

[26] Fox, G. C., Messina, P., Williams, R., “Parallel Computing Works!”, 
Morgan Kaufmann, San Mateo Ca, 1994. 
  

[27] Geoffrey Fox “Messaging Systems: Parallel Computing the Internet and 
the Grid”, EuroPVM/MPI 2003 Invited Talk September 30 2003.  
 

[28] J Kurzak and J J Dongarra, Pipelined Shared Memory Implementation of 
Linear Algebra Routines with arbitary Lookahead - LU, Cholesky, QR, 
Workshop on State-of-the-Art in Scientific and Parallel Computing, 
Umea, Sweden, June 2006.  
 

[29] T. Tian and C-P Shih Software Techniques for Shared-Cache Multi-Core 
Systems Intel Software Network 
http://softwarecommunity.intel.com/articles/eng/2760.htm   
 

[30] How to Align Data Structures on Cache Boundaries, Internet resource 
from Intel, http://www.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/43837.htm 
 

[31] MPI.NET: High-Performance C# Library for Message Passing 
http://www.osl.iu.edu/research/mpi.net/  
 

[32] Geoffrey Fox Data Analysis from Cores to Clouds HPC 2008 High 
Performance Computing and Grids workshop Cetraro Italy July 3 2008 
http://grids.ucs.indiana.edu/ptliupages/presentations/Cetraro_SALSA_Ju
ly3-08.pptx   

 


