

Message-based MVC Architecture for
Distributed and Desktop Applications

By

Xiaohong Qiu

B.S. Beihang University, 1991

M.S. Syracuse University, 2000

DISSERTATION

Submitted in partial fulfillment of the requirements for the

degree of Doctoral of Philosophy in Computer Science

in the Graduate School of Syracuse University

May 2005

Approved __________________________________

Professors Kishan Mehrotra and Geoffrey C. Fox

Date ______________________________________

Abstract

The goal of this dissertation is to develop a paradigm for the next generation of

software applications with a clear architecture that unifies desktop and Internet

applications. It is aimed at addressing the issues of leveraging existing software assets

and incorporating advanced capabilities including collaboration and universal access. As

the overall Web systems design on top of the Internet is extremely complex, we divide

the task into two separate layers: message-based distributed application architecture and

underlying messaging infrastructure linking services together as part of a distributed

operating system.

This dissertation presents a new approach to building applications as Web Services in

a message-based Model-View-Controller (M-MVC) architecture. The premise of this

research is that distributed and Web applications which provide services and interface to

end users ought to be centered on message exchange. This encourages good design and is

an embodiment of the fundamental communication pattern of human interactions. The

research investigates a universal modular design with publish/subscribe messaging

linkage service model that converges desktop applications, distributed applications, and

Internet collaboration. This approach allows: maximum reusability of existing

components; flexible messaging scheme with high scalability; and automatic and

effective collaboration with interactivity of rich media Web content for diverse clients

over heterogeneous network environments. In addition, the approach suggests a uniform

interface for the next generation Web client with ubiquitous accessibility. We apply this

architecture to the quite complex example of a Scalable Vector Graphics (SVG) browser

and give detailed performance measurements to demonstrate the viability of the approach.

 © Copyright 2005
Xiaohong Qiu

All rights Reserved

Acknowledgement

My research work of the dissertation started in 2000 and ended in 2005 and built on

earlier work while I was studying for my Masters degree. This is an extraordinary

experience in my life. I feel great thankfulness to the people who have given me this

opportunity to exploit my potential to meet challenges and fulfill my research objectives.

Especially, I would like to sincerely thank Dr. Geoffrey C. Fox for his insight and

vision that enables me to involve into leading-edge research work. Professor Wei Li at

Beihang University first showed me the excitement of quality research. I would like to

thank Dr. Kishan Mehrotra, who has been supportive to my work and encourages me for

making good progress.

I appreciate all the people first at NPAC at Syracuse University and then in the

Community Grids Lab at Indiana University who created a great atmosphere for research.

Finally, I feel great gratitude to my parents and son. Without their devotion and

substantial support, I couldn’t have gone so far.

 i

Table of Contents

1 Introduction... 1

1.1 Motivation... 5

1.2 Statement of problems and insights .. 8

1.3 Why message-based MVC?.. 11

1.4 Design features of M-MVC and collaborative paradigms.................................... 21

1.5 Contributions... 27

1.5.1 Research achievements .. 27

1.5.2 Significance of research... 28

1.6 Summary of the dissertation ... 33

1.6.1 Scope of research ... 33

1.6.2 Research questions... 34

1.6.3 Methodology.. 36

1.6.4 Organization of the dissertation ... 39

2 Survey of Technologies ... 42

2.1 Event-based programming .. 42

2.1.1 Concept of event-based programming ... 42

2.1.2 Event models and publish/subscribe mechanism....................................... 44

2.1.3 Summary .. 50

2.2 MVC ... 51

 ii

2.2.1 MVC Concept .. 51

2.2.2 Communication mechanism ─ method-based versus message-based

approach.. 54

2.2.3 Decomposition strategies ... 57

2.2.4 Interactive patterns... 56

2.2.5 Summary .. 58

2.3 Messaging ... 58

2.3.1 Why messaging? .. 58

2.3.2 Messaging middleware .. 63

2.3.3 Summary .. 64

2.4 NaradaBrokering... 65

2.5 DOM ... 67

2.5.1 DOM, HTML, and XML ... 67

2.5.2 DOM structure ... 69

2.5.3 DOM event model.. 71

2.5.4 Summary .. 75

3 M-MVC Architecture ... 76

3.1 Characteristics of distributed applications .. 77

3.1.1 Human computer interaction.. 77

3.1.2 Distributed application and user interaction .. 78

3.1.3 Summary characteristic of events and distributed applications................. 80

3.1.4 Summary .. 83

 iii

3.2 Web Service pipeline model ... 84

3.3 Message-based MVC (M-MVC) .. 86

3.3.1 Comparison of MVC model and Web Service pipeline model 86

3.3.2 Generalization of MVC and Web Service pipeline model 89

3.3.3 Summary .. 92

3.4 SMMV and MMMV Interactive patterns ... 92

3.5 Related Work on MVC ... 94

3.6 M-MVC and messaging infrastructure with publish/subscribe scheme 101

3.7 M-MVC and Web Services... 103

4 Monolithic SVG experiment .. 106

4.1 Summary of SVG.. 106

4.2 Summary of Batik SVG browser .. 108

4.2.1 User interface of SVG browser.. 108

4.2.2 Architecture and implementation of SVG browser 111

4.3 Intercepting events in Batik SVG browser ... 114

4.4 Properties and structure of events ... 119

4.4.1 Classes of events .. 119

4.4.2 SVG browser events .. 122

4.5 Conclusions... 124

5 Collaborative SVG .. 125

5.1 Collaboration framework .. 125

5.2 Event-based collaboration... 128

 iv

5.3 Monolithic collaboration... 130

5.4 SMMV collaborative Web Service model.. 131

5.5 MMMV Collaborative Web Service model.. 132

6 MVC decomposed SVG experiment.. 135

6.1 Analysis of decomposition of Batik SVG browser... 135

6.2 Architecture of decomposed SVG browser in M-MVC paradigm 139

6.3 Analysis of user interface generated events.. 141

6.4 Hierarchical event structure .. 143

6.5 Implementation ... 145

7 Performance and Analysis ... 152

7.1 Test scenarios.. 152

7.2 Timing considerations... 155

7.2.1 Timing model... 155

7.2.2 Measurement units ... 157

7.2.3 User-perceived performance constraints.. 158

7.2.4 Performance optimization.. 159

7.2.5 Semantics of timing points... 160

7.3 Performance measurement and analysis ... 161

7.4 Summary ... 180

8 Architecture of Collaborative Message-based MVC ... 182

8.1 Lessons learnt.. 182

8.2 Proposed architecture (how would one code from scratch)................................ 184

 v

8.3 Comparison of Batik SVG Browser with proposed architecture........................ 186

9 Conclusions and Future Research Issues.. 187

9.1 Thesis summary .. 187

9.2 Answers to initial research questions.. 189

9.2.1 Can MVC be implemented in a message-based fashion?........................ 189

9.2.2 What principles are there to govern the decomposition of a given

application into MVC components? ... 189

9.2.3 What is the performance of the message-based MVC and what factors

influence it?... 189

9.2.4 How does M-MVC depend on the operating system, the application,

machines and network?... 190

9.2.5 What is the relationship of collaboration and Web services with MVC

paradigm?.. 191

9.2.6 What is the way to define state and state changes in collaborative

applications? ... 191

9.2.7 How easy is it to convert an existing application to message-based MVC?

... 192

9.2.8 What are the architectural and implementation principles to be used in

building applications from scratch in a message-based MVC paradigm?

... 192

9.3 Future research.. 192

Appendix .. 195

 vi

Appendix A Computer-based computing .. 195

Appendix B Internet and Web applications ... 196

Appendix C Network infrastructure... 198

Appendix D Overview of Web application architecture.. 204

Appendix E DOM.. 211

Appendix F Overview of SVG .. 212

F.1 Two types of computer graphics.. 212

F.2 SVG and the thesis project... 214

F.3 Essential features of SVG .. 218

F.4 An example of interactive SVG application .. 224

F.5 Summary .. 226

Appendix G Overall architecture of Batik ... 227

Appendix H Detailed analysis of Batik ... 228

Appendix I JavaScript event vs. AWT event... 242

Bibliography .. 243

 vii

List of Figures

1.1 Architecture of network system.. 13

1.2 M-MVC model.. 22

1.3 Collaboration paradigms deployed with M-MVC model 23

1.4 Message-based MVC and messaging infrastructure... 25

2.1 The general event/listener model .. 43

2.2 Java delegation event model ... 45

2.3 Topic-based Publish/Subscribe model.. 46

2.4 JMS Point-to-Point model... 48

2.5 MVC model .. 53

2.6 Architecture of Publish/Subscribe model based on NaradaBrokering event broker

notification service ... 66

2.7 A XML document rectLinking.svg with hyperlink element................................. 70

2.8 DOM tree representation of rectLinking.svg document 71

2.9 Interface of EventTarget ... 73

2.10 Event handler registration and event flow of DOM in a case of rectLinking.svg

document... 74

3.1 Double-linked multiple-stage pipeline model of Web applications 84

3.2 Comparison of MVC and three-stage Web Service pipeline................................ 87

3.3 Variations of M-MVC decomposition .. 90

3.4 SMMV vs. MMMV as MVC interactive patterns .. 93

 viii

3.5 Three MVC approaches based on different communication mechnism and

interactive patterns between Model and View... 95

3.6 Message forwarding and reply between sender and receiver 97

3.7 Struts/J2EE architecture.. 98

3.8 Message-based Publish/Subscribe with broker intermediary 102

3.9 Bi-directional interaction in M-MVC with Publish/Subscribe scheme 102

3.10 Web Services composition of M-MVC application, SOAP, and NB................. 104

4.1 Architecture of interactive SVG application... 107

4.2 Screen shot of Batik SVG browser ... 108

4.3 Architecture of Batik SVG browser.. 111

4.4 Making SVG collaborative by sharing of intercepted events 115

4.5 Collaborative SVG Event processing chart .. 123

5.1 Shared Output Port Collaborative Web Service Paradigm modified from a figure

in [Fox03].. 125

5.2 Shared Input Port Collaborative Web Service Paradigm modified from a figure in

[Fox03].. 126

5.3 Monolithic collaboration... 130

5.4 Architecture of SMMV collaborative Web Service model................................. 132

5.5 Architecture of MMMV collaborative Web Service model 133

5.6 This shows an exemplar pipeline with 2 model and 2 view components and 4

different ways of breaking the pipeline. The case (a) corresponds to a basic

SMMV situation and (b) would also be SMMV. (c) is MMMV while the

classification of (d) is ambiguous. .. 134

 ix

6.1 Method-based event notification versus message-based Publish/Subscribe with

broker intermediary... 136

6.2 Decomposition of SVG browser in stages of pipeline.. 139

6.3 Three among the different ways of decomposing SVG between client and Web

Service... 140

6.4 Hierarchical event composition .. 144

6.5 Decomposed SVG Browser in M-MVC paradigm... 145

6.6 Implicit and explicit state.. 149

6.7 Event flow chart of SVG applications .. 150

7.1 Single Model and View linked by messaging broker ... 154

7.2 Performance testing and timing points ... 155

7.3 Histograms of the elapsed time T1(first event to return)-T0 corresponds to test

case 1 of Table 7.1 and the row labeled 1 in table 7.3. 166

7.4 Histograms of the elapsed time T1(first event to return)-T0 corresponds to test

case 2 of Table 7.1 and the row labeled 2 in table 7.3. 168

7.5 Histograms of the elapsed time T1(first event to return)-T0 corresponds to test

case 2 of Table 7.1 and the row labeled 3 in table 7.3.. 170

7.6 Histograms of the elapsed time T1(first event to return)-T0 corresponds to test

case 2 of Table 7.1 and the row labeled 4 in table 7.3.. 172

7.7 Histograms of the elapsed time T1(first event to return)-T0 corresponds to test

case 2 of Table 7.1 and the row labeled 5 in table 7.3.. 173

7.8 Histograms of the elapsed time T1(first event to return)-T0 corresponds to test

case 2 of Table 7.1 and the row labeled 6 in table 7.3.. 174

 x

7.9 Distribution of the mean of mouseup events .. 178

7.10 Distribution of the mean of mousemove events ... 178

7.11 Distribution of the mean of mousedown events ... 178

7.12 Distribution of the standard deviation of mouseup events.................................. 179

7.13 Distribution of the standard deviation of mousemove events............................. 179

7.14 Distribution of the standard deviation of mousedown events............................. 180

B.1 ARPANET and its application.. 198

C.1 Network system in layered stack .. 199

C.2 Email application on ARPANET over an abstract communication channel 199

C.3 Internet versus OSI Architecture .. 201

C.4 Internet topology as network of networks .. 203

D.1 Basic structure of World Wide Web... 205

D.2 Comparison of two, three, and four tier model... 207

D.3 A Web Service stack... 211

E.1 IDL definition of Node interface .. 212

F.1 Research presentation web site using Macromedia Flash................................... 215

F.2 Scaling of SVG document .. 219

F.3 Graphical represnetation of rectangle.svg document.. 220

F.4 A SVG file rectangle.svg in XML format .. 221

F.5 SVG DOM tree representation of rectangle.svg document 223

F.6 A simple interactive SVG application of toggling rectangle 225

F.7 An interactive SVG example with scripting in rectOnClick.svg document 226

G.1 Batik Architecture... 227

 xi

H.1 JSVGViewerFrame ... 229

H.2 Data flow... 230

H.3 openLink ... 231

H.4 openLink (rendering) .. 232

H.5 GraphicsNode Event (DOM-Bridge-GVT event flow) 233

H.6 EventDispatcher.. 234

H.7 Handling of DOM Event... 235

H.8 Batik component paint1 .. 236

H.9 Batik component paint2 .. 237

H.10 Batik Component Paint ... 238

H.11 Graphics Node .. 239

H.12 Graphics Node Paint ... 240

H.13 Updatemanager ... 241

 xii

List of Tables

3.1 Typical distributed applications and properties of user interaction, system

behavior, and communication... 79

3.2 Definition of typical events of Web applications ... 80

3.3 Summary of typical Web applications and characteristics 82

3.4 Variants of MVC applications .. 100

4.1 Events for monolithic SVG collaboration applications 116

6.1 AWT Mouse Events.. 141

6.2 The relationship between a user interaction vs. AWT mouse events in SVG

applications ... 142

7.1 Testing environment settings .. 155

7.2 System configurations... 155

7.3 Average performance.. 162

7.4 Immediate bouncing back event ... 162

7.5 Basic NB performance in 2 hops and 4 hops.. 162

7.6 Reproducibility Performance tests.. 176

7.7 Average over 15 tests for three NB settings ... 177

I.1 JavaScript event vs. AWT event... 242

 1

Chapter 1

Introduction

“Everything should be made as simple as possible, but not simpler.”

— Albert Einstein [A. EINSTEIN]

Software architecture has always been a focal point of research for building

computer-based systems. Architectural design decisions are commonly made based on a

comprehensive evaluation and understanding of existing technologies and evolution,

social requirements, application functionality and behavior, and vision of the future.

Einstein’s advice is still enlightening today and works well for building software systems.

A good architecture not only comes from supplying a viable solution that accommodates

the latest developments and adapts to the needs of a fast-changing world, but also abides

by fundamental principles such as simplicity, reusability, scalability, portability,

performance, and reliability.

 2

Simple is never simplistic. Systems that are made too simple can not promise

sufficient functionalities while those made too complicated tend to dramatically increase

development and maintenance cost. Due to CPU and network bandwidth constraints,

traditional software systems were built with closely coupled structure. As they lacked

interoperability and reusability, individual system becomes increasingly complex.

As asserted by Alfred Chuang [A.CHUANG], "Application development represents

the future … Integration is about the past." Bridging the gap of development and

integration requires for a new method of linking today’s idea to legacy software so that it

won’t become “a roadblock to innovation, instead of a building block on which the future

can be built.”

While it's clear that Service Oriented Architecture (SOA) [SOA] and its current

implementation ─ Web services [WEBSERVICE] technology will have profound impact

on next generation of distributed applications by providing the interoperable platform that

maximizes the reusability of existing software assets, many aspects of this platform and

how to deploy service-enabled applications within this framework still require significant

research and development.

At the core of the new trend, interoperability and convergence allow development

of diverse loosely coupled applications that can be distributed and accessed in a

synchronous or asynchronous manner, from any client, across the network. Taken

individually, the imperatives such as reusability, interoperability, scalability, and ubiquity

are not new. What is new, however, is the need to execute all of them at once with a real

time collaborative access experience and in an alignment with the latest (Web) service

oriented framework.

 3

My work is motivated by understanding the nature of application design in terms of

system composition, interoperation, and communication; evaluating its impact on

performance; how these factors are deployed in different application domains including

desktop applications, distributed applications, and Internet collaboration; ultimately

seeking a unified solution that bridges the technology gaps.

This dissertation proposes a message-based Model-View-Controller (M-MVC)

architecture to building of service-enabled applications. This work looks into some

intrinsic design concepts of desktop system (MVC [MVC]), event-based messaging

system (NARADABROKERING [NARADABROKERING]), distributed system (Web

Services [WEBSERVICE]), and Internet collaboration (Web Service pipeline model

[Fox03]). We pursue a generalization of the existing models targeted at simplicity in

building message-based applications and offer a systematic approach that seamlessly

unify distributed and desktop applications.

As a relatively novel approach, it supplies a universal modular design for next

generation of software applications with an underlying messaging architecture that links

services together. It emphasizes a message centric approach of building distributed

applications that enables both interoperability and scalability, which reflects our

perspective of the Internet and Web pertaining to Internet being the network core,

messaging infrastructure as a layer of distributed operating system, and Web applications

supplying diverse services to heterogeneous end users.

Our exploration is conducted in design space of system composition (between

service and heterogeneous client graphics user interface), communication (with

messaging infrastructure in publish/subscribe scheme), interoperation (among constituent

 4

components enabling general collaborative patterns), and reusability (integration with

legacy desktop applications). This approach allows the deployment of M-MVC as a

paradigm of distributed applications with above essential system features that fulfill our

design goal.

In support of the primary design purpose, we have carried out experiments with

Batik Scalable Vector Graphics application [BATIK] for prototyping and performed a

series of performance measurements to test the effectiveness of our approach. Since

graphics user interface (GUI) plays an important role in enhancing human-computer

interaction and dominates interactive style applications, a graphics enriched open source

system like Batik provides us with an excellent environment for the investigation of

critical M-MVC properties. Especially, low-latency visual responses and compute

intensive rendering mechanism are highly demanding for the architecture of distributed

applications over the network. The aim is, in a coherent and quantitative manner, to

analyze the relationship of visual interactivity and system behavior and to identify factors

that affect overall performance of the message-centered approach.

Note that we uses distributed applications in a broader context than Web

applications with the former deploying on general network systems that may or may not

be based on the Internet protocols. However, since Internet-based Web applications are

dominant in the development of distributed applications, this thesis typically uses these

two terminologies interchangeably without distinction unless it is important to point out

the difference.

The remainder of the chapter outlines a complete picture of the thesis research.

Section 1.1 through 1.4 cover the general context and important issues for Web

 5

technology evolution; the thesis approach to messaging centric design applied to the M-

MVC model of Web application development and message-based collaborative

paradigms (SMMV and MMMV). Section 1.5 summarizes the contributions of this thesis.

Section 1.6 contains a summary of the research scope to highlight core technology

constituents, research questions, and experimental methodology. It poses a set of research

questions that guided our work; our answers to these questions are given in chapter 9.

Section 1.6 finishes with a roadmap of the rest of thesis which contains a detailed

technology analysis, system design and prototyping, performance evaluation, and

conclusions.

1.1 Motivation

Since the first electronic computer ENIAC [ENIAC1945] was built, many

innovative technologies have emerged as imposing forces in facilitating the revolution of

advanced computation and information processing at an accelerated speed. While Von

Neumann’s stored-program architecture [VONNEUMANN] still greatly influences the

building of most modern digital computers, the development of network and Internet

technologies has revolutionarily promoted computational power through interconnecting

scattered resources into a worldwide repository. Today, Internet and Web technologies

have evolved into a unique global information infrastructure that reshapes our society

pervasively throughout every branch. Traditional computing-intensive applications in

science and engineering fields have developed into an Information Technology (IT)

industry with extended services embracing computing, information management and

processing, and communication. These services, as we defined in this dissertation, are the

 6

“computation core”, which comprise the core computational components or

functionalities of the software systems.

Moore’s law [MOORE] implies that computer processing performance will

continue to improve. In addition, networks will also continue to increase in bandwidth

[GILDER] with however latency for long-distance linkages remaining higher than that

needed for interactive use. Thus, inevitable infrastructure improvements will tend to

create a unique opportunity but a great challenge for the deployment of a new application

architecture that better utilizes CPU power and the existing physical network’s

infrastructure in providing sophisticated services (e.g. Internet collaboration enabling

virtual enterprises and large-scale distributed computing) and multi-media rich interface

to end users from heterogeneous environments with properties such as scalability,

reusability, interoperability, ubiquity, reliability, high performance and cost effectiveness.

Recently, individual technologies and systems such as J2EE [J2EE], .NET

[DOTNET] and XML [XML] have contributed diverse solutions to Internet applications.

Technology innovations promise a better future with continuous newly added features

including ubiquity and collaboration. In reality, applications become increasingly

complex and a single application or platform solution can not meet all needs. The

developments and technology gap has brought the industry into a crossroad for changes

because it is no longer affordable to develop software infrastructure in a conventional

isolated (stove-piped) path. The benefits of productivity, efficiency and adaptability

demand for overall system design enabling software interoperability and convergence.

Web Services [WEBSERVICE] defines standard interoperable interfaces for

different software assets to communicate with each other through exchanging XML-

 7

based (SOAP) messages over a network. Vendors provide standards-complied software

implementations with programmable platforms enabling applications to be defined,

published, and used as Web Services. Web Services are a particular realization of a

Service oriented architecture (SOA) [SOA] which proposes that applications be built with

a decoupling of core business logic and database from the presentation layer, and use

Web Services technology to interoperate between the application logic and the

presentation layer. In essence, SOA and Web Services provide a generic and dynamic

distributed framework. Interoperability entails reusability of existing software assets.

Convergence closes the technology gap between different environments. Historically,

object oriented technologies like CORBA [CORBA] attempted to solve this problem but

CORBA is considered to be too closely coupled to provide a scalable distributed platform.

It is expected that there will be substantial increase in migration from traditional

approach to SOA in the design of future web-based distributed application. While Web

Services technology allows development of loosely coupled applications that can be

distributed and accessed as a collection of services, from any client, across the network; it

does not define a complete service enabled application development paradigm. Neither

does it define possible state and transition of a service (i.e. the nature of the input

messages inducing state change or the output messages reflecting state change), nor how

these factors affect GUI framework (although Portlets and WSRP are important

developments discussed later). There still needs to be substantial research to find a

unified and viable design for building service-enabled applications.

 8

1.2 Statement of problems and insights

Deployment of software applications is greatly influenced by supporting

functionalities of operating systems, which are in turn driven by the advancements of

underlying hardware subsystems in architecture and capabilities. The impact has many

dimensions that range from software architecture design, development and adoption of

programming language, and optimization of system performance with advanced

algorithms.

Rapid growth of network and Internet technologies has brought fundamental

changes in the new generation of computer technology. Particularly, continuous

improvement of computer CPU speed and network bandwidth enables design and

implementation of new software architecture with satisfactory performance that support

many capabilities previously impossible.

In this section we offer some assessment about recent developments, current

problems, and forward-looking features that we think will have a significant impact on

software design and engineering. Among many connected technical issues, we choose

five to summarize the situation:

First, the Internet provides a global information infrastructure for the sharing of

resources over heterogeneous environments. The communication subsystem of the

Internet has evolved into stability with the UDP [UDP] and TCP/IP [TCP/IP] network

stacks dominating the communication protocol domain [S. Shi] and forming a low-level

network protocol layer on top of the hardware network core.

Second, the work of constructing distributed operating system over the Internet is

not complete and is adding new functionalities to the general purpose platform. One

 9

current effort focuses on building of messaging infrastructure tailored for supporting

disparate applications. It involves software level routing intelligence, which goes beyond

the best-effort services (e.g. transmission of bit streams) provided by the stateless

hardware network core, and addresses issues including notification services, reliability,

Quality-of-Service, security, adaptability for multiple topologies (e.g. unicast [UNICAST]

and muticast [MULTICAST]) and scalability over heterogeneous platforms (wired,

wireless, and virtual private network (VPN) [VPN] subsystems), and customized

communication services for specific applications.

Third, software systems become increasingly distributed, complex, media rich,

interoperable, integrated, collaborative, and heterogeneous. This trend demands system

designs enabling flexibility and adaptability for fast change, expansion and incorporation

of existing assets in the operational systems. However, the devising of architecture for

Web applications is still an unfinished challenge. Particularly, lacking of an agreed

paradigm accommodating for increasing complex problems caused large amount of

isolated applications being repetitively constructed. Over the decades, the Internet

operating environment exhibits an architectural evolvement based on models including

client/server, multi-tier, peer-to-peer, a variety of distributed systems (e.g. RMI [RMI],

CORBA [CORBA], DCOM [DCOM], J2EE [J2EE] and .NET [DOTNET]), and Grids

[GRIDS] system. One latest development is service-oriented architecture (SOA) [SOA]

linked with loosely coupled messages for scalability and interoperability among existing

computer systems. Web Services [WEBSERVICE] supply software platforms for

building applications as services. Application developers need to meet the challenge ─

exploiting these new design concepts to provide scalable interoperable systems.

 10

Fourth, the deployment of Web applications show diverse directions but have

common features ─ namely, user interfaces and services for the sharing of information

and resources over Internet infrastructure (see table 3.1 and 3.2). The “sharing” can be

done asynchronously and synchronously at every possible stage along the deployment

pipeline. The original World Wide Web proposed sharing of HTML document using

HTTP protocol over the Internet (ref. Appendix D). The objects that need to be

synchronized may range from Web contents (e.g. video, audio and raw data streams),

user interactions (e.g. editing operations on shared whiteboard document), distributed

programs (e.g. distributed large-scale simulation components), to team participants who

are involved in development or management. The “sharing” can be organized through

unicast or multicast style of group communication to form ad hoc communities (e.g. P2P

network sharing of MP3 files) and virtual organizations or enterprises (e.g. Grids

supporting of structure and unstructured societies). Therefore, in the most general sense,

collaboration is the core problem and service of Web applications although people often

use the terminology “collaboration” to only apply to real-time synchronous Web

applications with compelling time constraints.

Finally, next generation of Web client should enable pervasive accessibility, which

has two implications: its ubiquitous availability to clients from heterogeneous platforms

(e.g. Windows, Linux, UNIX, Macintosh, PalmOS, and Symbian [SYMBIAN]) that

accommodate to thin client demands; its uniform Web interface that provides a platform

with integration of multiple services.

 11

1.3 Why message-based Model-View-Controller?

The primary purpose of Message-based Model-View-Controller (M-MVC) is to

provide a high-level application architecture that converges desktop application and

distributed application with automatic collaboration and universal access support, so as to

simplify the development of possible new generation of interactive applications.

M-MVC can be viewed as a distributed MVC paradigm, although it is not directly

extended from single user model to multiple users heterogeneous platforms. Rather, it is

rooted in a loose coupling (message centric) distributed architecture with extensions to

unify the legacy MVC approach.

Emerging (Web) service oriented architecture naturally fits into M-MVC paradigm,

as Web Services (ref. Appendix D) facilitate interoperability of applications as services.

We identify that the Model (or “computation core”) and the View of M-MVC correspond

to the service and presentation in SOA model respectively, and their linkage with loose

coupled messages can be achieved by publish/subscribe interface from underlying

messaging middleware, which plays an increasing central role in the development of

application as services with interoperability and scalability.

There is much confusion between the service, resource, and object. W3C [W3C]

first popularized the term “resource” and used it for any electronic entity. The term object

tends to refer to a software resource accessed by RPC and whose internals (class structure)

are effectively exposed by the RPC (RMI, CORBA IDL) mechanism. “Services”are

intrinsically loosely coupled; they can be associated with particular resources as in the

WSRF [WSRF] framework; they can have opaque implementation of capabilities which

might be accessed via RPC but with no expectation as to the internal class structure. In

 12

this thesis, we use the word “resource” in W3C manner to represent any electronic entity.

For instance, one can use resource to refer to a small data set for transaction, a

computation process, or a large database component. In a broad sense, a legacy desktop

(or client) application is also viewed a resource. In fact, a principle goal of the thesis is to

integrate such resources as valuable services into generic distributed system model.

We have a blueprint of the Internet and Web. As illustrated in figure 1.1, we take

the view that everything is a resource; no matter it is in form of information (e.g. raw data,

text file, bitmap image, MP3 music, video/audio stream, and program), physical device

(e.g. computer, printer, fax machine and sensor), and even human resource. All of the

distributed resources are linked together through local area network (LAN) [LAN] and

further interconnected to other networks via wide area network (WAN) [WAN], which

forms the largest internetworking infrastructure ─ Internet (see fig. C.4). Web, which is

built on top of the Internet ─ physical network core, provides communication channels

for the interactions with message streams. Web applications add sophisticated services

and interface for the “sharing” of services, objects, or resources for end users. Fig. 1.1

displays a layered view of the network system that includes the above constituents.

 13

The growing demand for intensive interoperation and communication highlights the

increasing importance of messaging ─ a ubiquitous solution embraces all forms of

communication. A message may contain information of diverse formats (e.g. text, media,

and raw data). A messaging service, as we discuss here, is a generic communication

mechanism that facilitates the exchange of loose-coupled messages among the distributed

objects or applications. Distributed resources or software components are wrapped with

(Web) service interface and immersed in a sea of messages.

From a technical perspective, there are some distinctive features. Traditional

distributed object model employs exchanging coupled-messages with explicit or implicit

shared context, which may be implemented by distributed version of method calls and

returns, such as those in RPC-based and RMI-based platforms. Message-based approach

produces light-weight loosely coupled services supporting asynchronous messages

linkage (e.g. one-way transmission from sender to receiver). The messages are contracts

Figure 1.1 Architecture of network system

File
Server

Laptop

Cellular
phone

PDA

Desktop

Workstation

Database

IBM

Supercomputer

S
hared

W
A
NNetwork Core

router

router

ATM
switch

IPTCP UDP

HTTP

SMTP

protocols
Application

H323

FT
P

W
S

D
L

routing

(SOAP)

ServiceWeb

Conferencin
g

A/V

St
re

am
in

g

Browsers

Web

Multiplayer game

W
hiteboard

Ove
rla

y

network

Applications

Messaging Infrastructure

Grid computing

P2
P

System

Sha
red

File

Telnet

M
ed

ia

SSL

 14

rather than direct coupling, which enable software level routing mechanism to provide

platform independent communication paradigms (e.g. publish/subscribe) with excellent

scalability. Further more, XML-based interface and specifications such as Simple Object

Access Protocol (SOAP) [SOAP], Web Services Description Language (WSDL)

[WSDL], and Universal Description, Discovery, and Integration (UDDI) [UDDI] that

provide a generic interoperable platform among heterogeneous systems, which increase

interoperability, reusability, and discovery of existing software components.

From an architectural view, a virtual distributed operating system is formed as an

intermediary layer over the conventional bit-level Internet infrastructure (physical

network and protocols such as IP, TCP UDP, HTTP, and SSH). Community Grids Lab’s

current effort NaradaBrokering [NARADABROKERING] focuses on building of

messaging infrastructure over IP and provides assurance of communication services

(reliability, QoS, security, firewall tunneling, event notification, publish/subscribe,

overlay, and peer-to-peer) tailoring for the support of diverse applications. The separation

of top level application architecture from underlying messaging infrastructure simplifies

the deployment overhead of applications and significantly increases application

portability.

The overall innovation and advancement in computer technologies provides a great

opportunity and foundation for deploying sophisticated distributed applications (e.g.

Internet collaboration enabling virtual enterprises and large-scale distributed computing).

Over the decade, the architecture of network-based applications keeps evolving ─ from

earlier client/server, to multi-tier, middleware, peer-to-peer and overlay models. There’re

also many systems that provide framework and standard APIs to address interoperable

 15

relationship between client graphics user interface (GUI) and server side application

behavior. Typical examples are JSP [JSP] and Java Server Faces (JSF) [JSF] for J2EE (or

similarly ASP for .Net), JSR-168 [JSR168] and WSRP [WSRP], and REST [R. Fielding].

Each example addresses issues in the scope of our targeted problem. However, one

still needs a paradigm with a highly flexible architecture that spans the spectrum of

platforms, programming languages, applications, and communication protocols so as to

accommodate to rapid changes of individual technologies and adapting to sophistication,

and cost-effective requirements in real world.

This motivates us to look into some intrinsic design concepts of client system

(MVC [MVC]), event-based messaging system ([NARADABROKERING]), distributed

system (Web Services [WEBSERVICE]), and Internet collaboration (double-linked

multiple-stage pipeline model [Fox03]). We pursue a generalization of the existing

models aimed at simplicity of building applications with following properties:

 separation of application architecture from underlying messaging infrastructure

for generality and portability

 proposing message-based MVC (M-MVC) approach to address the problem of

traditional tightly coupled Model, View, and Controller classes for scalability and

universality

 extending M-MVC architecture to legacy desktop applications so as to have a

uniform Web Services model with messaging linkage for reusability and

interoperability

 providing a paradigm with automatic collaboration and universal access

(including thin client interface such as PDA and cellular phone)

 16

 employing publish/subscribe scheme, which is provided by the messaging

infrastructure, for the exchange of messages among system components to

enhance group collaboration capability

As in any new approach, there will be many subtle factors that may not be

addressed by general architectural consideration. So, we choose to build a prototype with

a forward-looking architecture and conduct systematic experiments to explore and

identify general principles and key implementation issues associated with this approach.

Here, we list the major observations and analysis of the state-of-art in the evolving areas

of software design, which form the starting point of our work. We build up our key idea

in four stages:

We believe that Web applications ought to be built on messages to achieve

important features such as scalability and interoperability. Method-based linkage of

program components is obviously important and often the best approach. However such

linkage implies tight coupling which handicaps both modularity and distribution. One can

build distributed systems with RPC [RPC] like method-based models such as RMI,

CORBA, and COM. However although these platforms can be used in closely coupled

and self-contained applications, they do not perform well on Internet scale distributed

systems.

Computer messaging can be compared with information dissemination between

people. Messaging provides a mechanism facilitating the fundamental communication

pattern of human interactions. The messaging approach is consistent with important

principles in network design. Namely, scalability is more pressing than optimality in

large network systems [COMPUTERNETWORK]. Especially, it complies with the

 17

Internet structure, which is built on diverse interconnected autonomous subsystems and

subject to flexible expansion. Further more, interoperability for systems from different

platforms is an equally important design trait to pursue. Messages offer an abstraction

accommodating diverse system data format, which conveys critical exchanged data and

information for exchanging.

Historically, messages passing mechanism has been successful in parallel

computing [PARALLELCOMPUTING], a tightly coupled distributed model, with

satisfactory system performance for applications of sophisticated connectivity and

synchronization issues. Moore's Law says that computer processing speeds double every

18 months [MOORE] but Gilder's Law implies that network bandwidth rises even faster

than this [GILDER]. People’s ability to interact remains roughly constant. These trends

continue and the difference of performance improvements continuous to widen, implying

that explicit messaging gets more attractive especially for user interfaces (model-view

interaction) where one gains from both computer and communication performance

increases.

The message-based approach is an indispensable part of the big picture of Web

system design. The latter requires a clear abstraction of an intermediate messaging layer

so as to hide the complexity and diversity of services that reconcile the differences

between underlying platforms and top level applications. Specifically, it decomposes a

Web system into physical networks or Internet, messaging infrastructure, and Web

application, as illustrated in figure 1.1. The system architecture includes hardware

network core, whose primary function is reliable transmission of binary bits over distance,

with routers and switches emerging at the edge and providing intelligent linkage; the ring

 18

of IP [IP] that offers critical routing protocols for the communication of large

heterogeneous inter-networks; the messaging infrastructure sphere provides intelligence

over IP, which includes a suite of traditional layered network protocols such as TCP

[TCP], UDP [UDP], and a variety of application protocols; the outer sphere that provides

application services to end users. We will cover related constituent components in detail

in section 2. Abstraction of the messaging infrastructure as a separate layer of Web

system has great significance. As discussed in the earlier section, the trend of Web

application development shows increasingly complexity in functionalities. It demands for

service aggregation with scalability, interoperability, reliability and pervasive

accessibility. Messaging and IP layers essentially form the core of distributed operating

system with rich communication services. This separation can greatly reduce the

deployment overhead of Web applications. More importantly, it reduces their dependency

on the details of underlying connectivity topologies and platforms and thus helps

application portability.

Service oriented architecture with loosely coupled messages linkage can

maximize its capability by using advanced messaging services of the underlying

infrastructure. We expect service oriented architectures will have a continuing

important role in Web applications deployment by preserving flexibility, scalability,

interoperability, and reusability over the Internet model of diversity and arbitrary

complexity. The history of Internet and Web technology saw the evolution of Web

applications with architectures dominated by centralized client-server system with

traditional point-to-point (unicast) connection, decentralized self-organizing peer-to-peer

(P2P) system that evolved to overlay network with application level multicast mechanism,

 19

and RPC-model (e.g. CORBA) derives from method-based system calls for tightly

coupled single CPU system (e.g. desktop applications) but with remote procedure calls to

support the distributed objects. Client-server and P2P models are suitable for solving

problems with features applicable to their patterns but real world problems can be

arbitrarily complicated. Examples can be seen in parallel applications with decomposition

in high dimensionality. On the other hand, RPC-like model deals well with distributed

objects or components for reusability but do not scale well. Message-based Web Service

model provides a unified approach that incorporates messaging flexibility with

components distribution. It accommodates to the diverse and scaling nature of the

Internet and also promotes Web applications development with Web Services for

reusability, interoperability, and scalability.

Message-based Model-View-Controller (M-MVC) provides a paradigm for

next generation of software applications. It emphasizes a universal modular service

model with messaging linkage converging desktop application, Web application, and

Internet collaboration; it suggests a uniform platform for next generation Web client.

Model-View-Controller (MVC) [MVC] is a fundamental architecture of Graphical User

Interface (GUI) [Krasner+Pope] with system decomposition into triad of Model, View,

and Controller for modularity. As a design paradigm, it is nothing new in the object-

oriented programming world. What has served to rejuvenate the MVC concept again,

however, is the realization that the pattern is particularly well-suited to addressing many

of the fundamental problems inherent in building Web or distributed applications (e.g.

design of user interface).

 20

An aspect of distributed applications that requires research attention is the user

interface. A well designed user interface is required if an effective use of the service is to

be achieved [Abdullah+Gay]. A user friendly interface provides visual cues that facilitate

navigation and effective access to available services. In client/server applications, Web

browsers have provided relatively simple but effective human/computer interfaces for

HTML content. In new generation of Web applications, GUI is expected to supply more

intensive human/computer interactions both in richness of multimedia contents and

versatility of communication. This puts high demands for a coherent architecture from

user interface to autonomous Web Services. Although SOA or Web Services provide

universal APIs for applications as services, however, they themselves do not address

system decomposition and user interface issues. Thereby, application developers have to

determine which component should reside in the service versus client interface. Further

more, next generation client interface promise ubiquitous accessibility, but common

client interfaces such as IE and Netscape Web browsers are not sufficient to deal with the

variety of client profiles (e.g. thin client interfaces for mobile devices). MVC, as a

paradigm for interactive applications, has a simple system division of computation and

presentation into two components: the Model and the View. This model makes it

impossible for the system process being controlled in a fine grained fashion for

distribution, especially for complex systems. For example, recent research shows

increasing demand for multi-tier architecture with separate business logic at back end

[LWLH]. To address the issues of the integration of legacy applications, M-MVC

proposes a generalization of the classic MVC model (ref. section 2.2) and the Web

Service pipeline model (3.2), which enables a unified service model with event-based

 21

messages linkage. In this architecture, system is decomposed of multiple stages and each

stage forms a modular component with input/output linked to event messages for

communication. As such, the decomposition of the Model and the View becomes a

flexible and systematic approach based on different combinations of multiple pipeline

stages, and messaging linkage facilitates for system division and distribution.

1.4 Design features of M-MVC and collaborative paradigms

As key to this dissertation, we propose "explicit message-based MVC" as an

approach that systematicly utilizes MVC in a message-based fashion with replacement of

conventional method-based model and exploiting it with Web Services architecture in

provision of a unified general approach of message-based service model for Web

applications.

One prominent feature of the architecture with M-MVC is that the deployment is

centered on distributed applications but devised for seamless integration of legacy

desktop applications and automation of emerging important features including Internet

collaboration and pervasive accessibility.

 22

M-MVC decomposes an interactive Web application using a flexible and fine-

grained double-linked multistage pipeline model (ref. section 3.2) with natural event

interactions. Theoretically, any part of an application with natural event interactions may

form an object or stage with messaging linkage along the pipeline. The events, which

represent the change of state, propagate along the path as messages that interconnect a

dynamic graph of a finite state machine. In M-MVC architecture, we exploit the model-

view compositions based on a variety of flexible combination strategies of these stages.

This scheme provides many possibilities for building of Web applications with thin client

interface facilitating universal access. We select a simple example ─ the three-stage

pipeline (see fig. 1.2) to illustrate our design concept with raw UI events forming the

View component; high level UI events and semantic events comprising the Model

component (a Web Service); message-based events that play the role of the Controller

linking the Model and the View components.

The major distinctions between MVC model and M-MVC model reflect different

vision of system composition. A canonical MVC structure encompasses Model, View,

Figure 2 MMVC model

Messages contain control information

Figure 1.2 M-MVC model

Input port Output port

Event as
messages

Rendering as
messages

User Interface

Raw UI
Display

Semantic

High Level UI

Model
Web Service

View

 23

and Controller ─ three independently existed and tightly coupled component classes at

application level. However, modern architecture emphasizes scalability and

interoperability. A refined Web service pipeline structure (ref. section 3.2) provides

building blocks that accommodate dynamic, diverse, distribution and coordinative nature

at Internet scale. M-MVC remedies the gap and argues that a basic system interaction is

accomplished by a series of transformation along pipeline stages between the two ends of

View and Model. M-MVC regards that Model (service) and View (user interface) are

distributed components of an application that are connected by messages in the

background infrastructure as part of distributed operating system (see fig. 1.4). There’s

no single Controller class, rather its semantics are contained within control messages and

processing is combined with various services along the pipeline stages.

From the beginning of our research on a generic model for building Web

applications, Internet collaboration and ubiquity have been considered as important

features to be integrated into the system design. We separately propose two interactive

patterns ─ Multiple Model Multiple View (MMMV) and Single Model Multiple View

(SMMV) for the general architecture of collaboration as Web Service model. The two

master
client

View

NaradaBrokeringNaradaBrokering

other
client

View

Model
as Web Service

other
client

View
other
client

View

BrokerBroker

master
client

View
other
client

View
other
client

View
other
client

View

NaradaBrokeringNaradaBrokering

Model
as WS

Model
as WS

Model
as WS

Model
as WS

BrokerBroker BrokerBroker BrokerBroker

Figure 1.3 Collaboration paradigms deployed with M-MVC model

a) SMMV b) MMMV

 24

graphics in fig. 1.3 illustrate how SMMV and MMMV are deployed with M-MVC

architecture, which facilitates assembly of either visual components (Views) or

aggregation of Web Services (Models) through messaging services (e.g.

NaradaBrokering [NARADABROKERING]).

SMMV and MMMV patterns extend the concepts of corresponding shared output

port and shared input port models of the event-based collaboration framework [Fox03]

and provide uniformed collaborative paradigms in publish/subscribe scheme for both

desktop and distributed applications. While multiple clients join in a collaborative session,

it is necessary to assign “master role” to one client at each time. By sharing events from

the “master client”, all participants behave in a consistent and coordinated manner.

SMMV is comprised of different client interfaces that share of the same model

component. Shared display and Instructor led learning applications have SMMV structure.

MMMV allows each client interface drive its own model, which is adaptable for more

sophisticated applications and various user interfaces. SMMV and MMMV support both

asynchronous and synchronous scenarios.

Figure 1.4 shows conceptual architecture for M-MVC applications. There are two

key elements: the structure of M-MVC itself and its relationship with the messaging

infrastructure.

 25

Firstly, application architecture constitutes a separate layer from underlying

communication infrastructure. Model (Web Service) and View components are

distributed in the application layer. Communication services (e.g. publish/subscribe and

reliable messaging), which are provided by messaging brokers, form the infrastructure

layer.

Secondly, as opposed to the tight coupling MVC triad (see fig. 2.5), M-MVC

demonstrates a framework with three dimensional expansions. Each Model and View

component can extend along the pipeline to form different stages of transformation (e.g.

layout styling filter in View and multiple tier component such as separate business logic

in Model) for system interaction and synchronization; and expand horizontally at each

stage to represent disparate profiles. Vertically, connections between scattered Model and

 26

View components are achieved via interfacing with messaging layer brokers that route

event messages (e.g. control information) over the networks.

The heart of problems that modern architecture faces is increasing complexity of

applications in versatile environment. As a case, fig 1.4 shows how M-MVC can be used

to model Portal [PORTAL] applications. “View1” is equivalent to Portal UI such as

JetSpeed [JETSPEED] that aggregates portlets user interfaces (“View0”, “View1m”, and

“View2”). A filter component for Web page layout styling might be needed as depicted

by “View11”. Portlets such as “Model0”, “Model1”, and “Model2” are consists of

different services that ultimately access various computing and database storage

resources that are distributed at the edge of the Internet (ref. fig. 1.1).

Note that distributed components, which include (Web) Services (Model) and User

interface (View) modules, are linked by messages through messaging brokers with a

variety of communication services. By registering with Publish/Subscribe services,

different clients dynamically join and leave the system while services are integrated on

demand. The approach also facilitates an automatic collaboration framework that can run

either in a client/server mode or in a peer-to-peer mode, depending on the run time

binding of messaging service with JMS or JXTA profile.

In this dissertation, we provide practice and experience that help to expedite the

process of message-based Web application deployment and supply feedback for the

construction of underlying messaging infrastructure, which is needed as this area is still

immature and one expects substantial evolution. In summary, M-MVC emphasizes a

combination of messaging flexibility as well as component modularity for the modeling

of real world complex problems. We have included the incentives of our approach of

 27

building distributed applications around messages, and briefly described some design

features of M-MVC in support of Web Service composition and major collaboration

patterns ─ SMMV and MMMV. A complete set of discussions on M-MVC that embraces

its design, implementation, and performance evaluation are provided in subsequent

chapters 2 to 7.

1.5 Contributions

1.5.1 Research achievements

The main contribution of this dissertation is to offer a comprehensive solution to

building applications centered on messages. It is the first research as far as we know that

systematically utilize Model-View-Controller (MVC) [MVC] paradigm for distributed

application deployment in a message-based fashion. It enables the provision of a

universal paradigm with a service model converging desktop applications, distributed

applications and Internet collaboration. This work has following implications:

 Proposing an “explicit Message-based MVC” paradigm (M-MVC) as the general

architecture of Web applications [QCF-06-03].

 Demonstrating an approach of building “collaboration as a Web service” through

making decomposition of M-MVC collaborative [QCF-07-03]. As an example,

we present architecture for three types of collaboration ─ monolithic, thin client,

and interactive client.

 Bridging the gap between desktop and Web application by leveraging the existing

desktop application with a Web service interface through “M-MVC in a

publish/subscribe scheme” [X.Qiu]. As an experiment, we convert a desktop

 28

application into a distributed system by modifying the architecture from method-

based MVC into message-based MVC.

 Proposing Multiple Model Multiple View MMMV and Single Model Multiple

View collaboration SMMV as the general architecture of “collaboration as a Web

service” model [Qiu+Jooloor].

 Identifying some of the key factors that influence the performance of message-

based Web applications especially those with rich Web content and high client

interactivity and complex rendering issues [QPU].

 Future work includes extending our ideas, tools and architectural principles to

other Web applications such as collaborative whiteboard and data visualization.

1.5.2 Significance of research

We propose a different approach of "explicit message-based MVC" (M-MVC)

paradigm for application deployment, which delineates our design concept of building

Web applications centered on messages. It encompasses our investigation of the

interoperating relationship among constituent components of applications ─ from tightly

coupled desktop application to loosely coupled distributed system. The most challenging

part of the research work is a unified solution that reconciles the different architectural

principles derived from the disparate system objectives of integrating MVC, messaging,

Web Services, and collaboration models. M-MVC replaces opaque method-based events

at application (Java) run-time level with exposed messages, and changes the tight

connections of conventional method-based MVC model to a loosely coupled messaging

for distribution.

 29

We now provide further definitions of system features: message-based Controller,

thin client as the View, and Web Service as the Model. M-MVC offers a framework with

a double-linked multiple-stage pipeline architecture to refine MVC decomposition; we

define MMMV and SMMV collaboration models using a publish/subscribe scheme

supplied by the underling messaging infrastructure. As a general architecture, it

emphasizes a modular service model with messaging linkage for reusability, scalability,

interoperability, and automatic collaboration with universal accessibility. We can identify

four generally important aspects:

Firstly, it provides a mechanism to make a desktop application as a Web service to

allow maximum reusability.

This is done through converting a desktop application into a distributed system with

modification of architecture from traditional method-based MVC to M-MVC in a

publish/subscribe scheme, where computation core or Model naturally becomes a

Web service. Conventionally, Web and desktop applications are developed with

different architecture. Nevertheless, integration of legacy client side systems or

existing components into up-to-date Web development is one of the crucial aspects

of the technology evolution. This approach suggests that desktop applications with

a good modular design can be modified to Web services, which greatly maximizes

the reusability of existing components for Web application development. The

architectural changes bring up issues that cause a challenge to the system. The

experience also helps in finding the principles of building Web applications from

scratch.

 30

Secondly, it allows us to have a different view of building distributed applications

around messages to achieve scalability and interoperability.

The architecture of traditional Web applications deployment is built on individual

platforms evolving underlying point-to-point model (e.g. client/server and multi-

tier), multicast model (e.g. peer-to-peer overlay network), and RPC-like distributed

system (e.g. RMI, CORBA, DCOM, J2EE and .NET). This dissertation has adopted

a different approach ─ a loosely-coupled message centric design with separation of

Web systems into application architecture and messaging infrastructure layer. A

message-based Web application with M-MVC architecture comprises three

functional modules: thin client interface represents “view”; computation core stands

for “model” which becomes a Web Service; messages, which convey abstracted

context information from both components and facilitate synchronization between

them, play the role as “Controller”. This approach enables a universal paradigm of

Web applications that applies to any of the above platform architectures, which is

also adaptable to wireless network, VPN [VPN], and future development of other

possible connecting topologies. This follows from our layered stack with a

messaging middleware providing a communication channel that handles underlying

network protocols and services over heterogeneous topologies. The higher level

Web applications focus on the deployment of presentation and interface services to

end users with high scalability and interoperability.

Thirdly, this paradigm provides a uniform architecture that bridges the gap

between desktop and distributed applications seamlessly to support universal access.

 31

Theoretically, any part of an application with nature events linkage can become

splitting points of the View from the Model, which forms a multi-stage pipeline.

However, traditional deployment of Web clients commonly mix presentation with

content, which made it hard to build a general architecture of uniform client

interface with rich Web content for service-oriented model. The M-MVC model

exploits a further separation of the rendering from the logic components of

traditional Web client, which enables a thin client structure. A thin client design

allows a desktop application to form a local service part of the Web application,

which also provides remote services to other Web services. Therefore, it facilitates

the seamless unification of desktop and Web application. This scheme is also

critical for universal and pervasive access. Particularly, it suggests a uniform

approach to build next generation Web client with desktop and web applications

sharing a common portlet (WSRP [WSRP], JSR168 [JSR168])-based architecture.

These ideas can unify PDA and desktop, as well as Linux, MacOS, Windows and

PalmOS applications to achieve pervasive accessibility.

Fourthly, this approach makes automatic collaboration ─ MMMV and SMMV

collaboration pattern provides the general model of collaboration as a Web Service.

Multiple Model Multiple View (MMMV) and Single Model Multiple View

(SMMV) present a generic collaboration approach that derived from our message-

based MVC architecture of Web applications. MMMV and SMMV accommodate

respectively instructor-led learning and participatory learning models. The trend of

Web applications deployment demands for the design of architecture in provision of

capabilities that allows assembly of diverse clients and aggregation of different

 32

services. From a client’s point of view, it requests for accessing to a variety of

services (e.g. email, search engine, and web browser); from the perspective of a

service, it holds commitment to supporting of heterogeneous client interface. As a

response to the trend, we demonstrate that M-MVC, as a paradigm of message-

based service model, has features of both messaging flexibility and component

distribution and is a suitable architecture for complex problems with many-to-many

interactions. More importantly, our work suggests that one need not develop special

“collaborative” applications. Rather any application developed as a Web service

with M-MVC model can be made collaborative using the tools and architectural

principles discussed in this thesis. This could motivate the development of new

desktop applications that preserve interoperability and sophisticated rendering

effect while gaining many capabilities (e.g. collaboration) not present in today’s

systems such as OpenOffice and Microsoft Office.

An additional contribution of this thesis is a taxonomy for event-driven message-

based collaboration. It covers a summary of features of event-based collaboration

applications, discussions of main design concepts embracing system composition (service,

client interface, and session control components), event structure and interactive pattern,

interfacing with messaging infrastructure in explicit publish/subscribe scheme, and

classification of monolithic and Web Service collaboration models. The key concepts

have applied in our system with scalable vector graphics content but are applicable to

other collaboration systems such as shared display, shared data visualization, audio/video

conferencing, and online games.

 33

1.6 Summary of the dissertation

1.6.1 Scope of Research

This dissertation builds on design concepts from different areas of computer

technology: desktop system, parallel system, distributed system, Internet collaboration,

and Web system. Our investigation comprises the following aspects:

 Model-View-Controller (MVC) [MVC], a fundamental paradigm that separate

system into triad of Model, View, and Controller, which is originated from

desktop system and becomes a design pattern of object-oriented programming

 Messaging [NARADABROKERING] [JMS] [WSNOTIFICATION]

[WSEVENT], a flexible and scalable message-based communication mechanism

adaptable for complex problems with high dimensionality

 Document Object Model [DOM], a component-based structure for distributed

system with a generic event mode; Scalable Vector Graphics (SVG) [SVG], an

application of DOM specification

 The Web Service pipeline model of Internet collaboration [Fox03], an event-

driven message-based collaboration framework that can be deployed in a clear

publish/subscribe scheme with the messaging infrastructure [NaradaBrokering]

support.

 Web services [WEBSERVICE], an implementation of emerging service oriented

architecture for Web applications

The detailed technical points and their utilization in the implementations are presented in

Chapter 3 to Chapter 6.

 34

1.6.2 Research Questions

In this dissertation, we consider two major classes of applications: one is personal

computer based, so called desktop application; the other is network or Internet based,

referred to as distributed or Web application. Deployment of the latter shows multiple

dimensions that are targeted for solving different problems. Among them, there is content

based hypermedia Web that supports desktop like high profile client interface with a mix

of text, audio, video, two dimensional and even three dimensional graphics; there is

Internet collaboration, which provides an interactive mechanism of sharing online

information and computing resources in a synchronous (e.g. video/audio conferencing,

multiplayer online game, shared whiteboard, Instant Messenger, portal for large-scale

distributed computing) and asynchronous (e.g. email, news group, shared file system,

Internet search engines) fashion; there is thin client platform (e.g. portlet aggregator such

as JetSpeed [JETSPEED] or uPortal [UPORTAL]) that offers a unified service interface

for variety of clients (e.g. PC, workstation, PDA and cellular phone) over heterogeneous

operating systems (e.g. Windows, MacOS, Linux, Unix, PalmOS and Symbian

[SYMBIAN]). All of these efforts motivate us to think about fundamental research of

software design and engineering issues from the desktop to the Web.

Desktop and Web applications are built on totally different methodologies ─ the

former is programmed on top of operating system optimized for using local CPU and

storage resources; the latter is developed on distributed operating system over physical

network and Internet infrastructure and takes advantage of online resources. Therefore,

they are normally viewed as on two parallel tracks. However, deployment of legacy

desktop operating system and applications have much longer history and have already

 35

formed a huge software industry with relatively matured technologies and a rich

collection of complex tools that range from text editing, graphics design, simulation,

computation, data visualization, to database management. On the other hand, Internet and

Web have seen tremendous growth over the last decade. Technologies of Web

applications and underlying distributed operating system over Internet are under

extensive development but are still immature and keep evolving. This situation suggests

that we may need to take another look at our methodology of Web development by

reviewing a considerable body of knowledge regarding work that already exists and

asking the following questions:

 Should we build every Web application from scratch or can we maximize reuse

by leveraging existing components from legacy desktop applications? If the

answer is yes, are there any design principles to follow? If not, is there a general

approach to bridge the gap from desktop to Web applications?

 What is the core problem of Web application deployment? How would one

abstract the problem into a generic model that best describes the features of

diversified Web applications? Based on this model, is there a design paradigm can

be preserved while detailed Web technologies change over the time?

We employed a variety of empirical approaches, which includes building prototypes,

to gain a systematic understanding of the design principles. Our work is based on the

investigation of fundamental design models: MVC paradigm of desktop applications and

messaged-based Web services of Web applications. This work also involves substantial

study of approaches to Internet collaboration. We propose M-MVC as a uniform

architecture for the deployment of desktop and Web applications with automatic

 36

collaboration capability. This dissertation seeks to answer the following research

questions:

- Can MVC be implemented in a message-based fashion?

- What principles are there to govern the decomposition of a given application into

M-MVC components?

- What is the performance of the message-based MVC and what factors influence it?

- How does M-MVC depend on the operating system, the application, machines and

network?

- What is the relationship of collaboration and Web services with M-MVC paradigm?

- What is the way to define state and state changes in collaborative applications?

- How easy is it to convert an existing application to message-based MVC?

-What are the architectural and implementation principles to be used in building

applications from scratch in a message-based MVC paradigm?

Each of these questions is discussed at the end of the thesis in Section 9.2.

1.6.3 Methodology

To exploit our general approach of building distributed applications, we choose

Batik SVG browser from Apache [APACHE] as the desktop application for experiments.

Batik [BATIK] is an open source project from Apache Software Foundation, which

involves industrial and individual effort that is lead by IBM. Batik SVG browser is an

interactive presentation style application that implements Scalable Vector Graphics (SVG)

specification version 1.0 [SVG], a recommendation of World Wide Web Consortium

(W3C) [W3C]. SVG implements W3C Document Object Model (DOM) [DOM]

 37

interface, which is an important model for Web application development with distributed

resources. The combination of its high interactivity with rich vector graphics content in

Extensible Markup Language (XML) [XML] format, DOM structure, and open source

implementation with open standard makes Batik SVG browser an ideal experimental case

for our investigation of building forward-looking Web applications architecture.

In this scenario, the de facto building blocks of Web applications should consist of a

document structure for the abstraction of Web resources (e.g. raw data, text, vector

graphics, and media stream), a generic model and architecture that defines an effective

mechanism for collaboration as a Web service, and a powerful messaging infrastructure

provides underlying support for communication services (e.g. a variety of

publish/subscribe models including peer-to-peer overlay network JXTA [JXTA] and Java

Message Service (JMS) [JMS] emulation, traversing firewalls, and multiple protocol

support) between application components and interface with other applications. In our

experiment, the three factors become SVG document object model (SVGDOM), M-MVC

paradigm and NaradaBrokering middleware [NARADABROKERING]. The composition

is illustrated in fig. 2.6 and the details of using messaging services with

NaradaBrokering’s publish/subscribe and point-to-point interfaces will be elaborated in

section 3.6.

We start from a survey of modern Web technologies and set up an experiment

methodology which enables us to have a complete analysis of a real desktop application

with open source and modify it into a distributed system as a testing base for further

prototype construction, evaluation and extension. Key steps of the research process are

briefly listed below:

 38

1) survey of new technologies to build Web applications for advanced architecture

systems with rich Web content [QIU-10-2000]

2) monolithic SVG experiment

3) collaborative SVG

4) MVC decomposed SVG experiment

5) architecture of collaborative message-based MVC in SMMV and MMMV

patterns

6) extensions of current work

The experiment is to make a presentation style client system with high interactivity

using vector graphics content as a collaborative Web service. The problem itself is

representative and complex in nature (see Table 1.1 and 1.2 for summary of typical Web

applications). In design space, MVC paradigm and message-based Web Services are

fundamental architectures from desktop to Web applications. Explicit message-based

MVC unifies traditional method-based MVC and message-based Web services model

seamlessly with automatic collaboration capability. These suggest that our approach has

general importance. It can be generalized and extended to other presentation style

applications (such as shared whiteboard, Office suite, and collaborative visualization for

computing that are separately developed in Community Grids Lab (CGL) [CGL]) and

non-presentation style applications (e.g. distributed computing applications like Grids

computing). We have tested our prototype infrastructure with application samples (e.g.

teacher-student scenario of shared SVG browser and multiplayer online chess game) that

demonstrate its viability in supporting of complex functionalities with stringent timing

constraints. This work provides a framework based on which one can carry on the ideas

 39

and experience gained from this thesis to explore interesting research topics such as

achieving performance optimization in depth and applying to other applications in

broadness.

1.6.4 Organization of the Dissertation

This dissertation is arranged in nine chapters. An overview, which consists of the

Introduction of Chapter 1 and Conclusions of Chapter 9, covers the general context of the

research. There is a review of core technologies which focuses on discussions of

architectural design schemes in Survey of Technologies of Chapter 2. The M-MVC

Architecture which is the central focus of the design approach is described in Chapter 3

which includes descriptions of the system structure. My research with experiments

associated with prototyping, implementation and architecture abstraction is contained in

Chapter 4 to 7. Chapter 8 presents a detailed performance evaluation of our results. Other

details of the thesis project in terms of background, underlying technology, and

implementation environments are attached in the appendices at the end followed by the

references. We now give a little more detail on the following chapters.

Chapter 2 surveys underlying technologies related to the dissertation for

understanding the composition, communication, and interoperation aspects of software

systems. These include section 2.1, an introduction to the foundation of interactive

applications: event-based programming and event models; in section 2.2, we study the

MVC paradigm which is the prevailing architecture for desktop and distributed

application with GUI interface; section 2.3, has a discussion of the important messaging

oriented middleware scheme for development distributed applications; as a specific

messaging middleware system, we describe Naradabrokering and its publish/subscribe

 40

communication service for event-based messages; section 2.5 delineates DOM structure

and event model which provides key programmable interfaces for building distributed

applications.

Chapter 3 covers the motivation and main concepts of M-MVC design. We start

with a summary of the characteristics of typical distributed applications via event-based

interaction between system components in section 3.1. An introduction to a Web Service

pipeline model in section 3.2 depicts how to decompose and analyze applications with a

fine grained pipeline diagram. Section 3.3 compares distinctions of MVC and Web

Service pipeline model and provides a unified approach ─ M-MVC to bridge the

application domains. We further propose SMMV and MMMV as two important

collaborative paradigms that deploys M-MVC model in section 3.4. In section 3.5, we

give an overview of various MVC approaches and provide an in depth discussion of

different design trade-offs. Then, a discussion in section 3.6 delineates the important role

of publish/subscribe messaging that provides support for delivering event messages with

group communication capability. Section 3.7 provides explanations of how to deploy M-

MVC model with Web Service architecture.

Chapter 4 describes our monolithic SVG experiments; by monolithic we imply that

the application is not decomposed but model and view are contained in the same program.

Section 4.1 includes a complete analysis of our test example ─ the open source Java

Batik SVG browser. Section 4.2 shows how to build collaborative SVG without

decomposing of Batik by intercepting events and sharing them among participants. We

present event structures that enable one to make monolithic applications collaborative

using SVG technology as an exemple.

 41

 In Chapter 5, we propose two event-based collaborative Web Service model

SMMV and MMMV which can be applied to instructor-led learning and participatory

education applications respectively. Our experiment with Batik SVG browser

decomposes it into separate view and model components. Chapter 6 shows an approach

to convert a standalone client application to distributed system with M-MVC. In section

5.1, we summarize collaboration framework in both monolithic and decomposed

(including Web Service) collaborative models.

Chapter 7 presents performance measurement and their analysis for the decomposed

SVG model. In sections 7.1 to 7.3, we describe various test scenarios and timing issues

and analysis performance results to identify key factors that impact the message-based

approach for building applications. From these SVG experiments, we have derived

lessons that can be instructive for future development, and these are contained in Chapter

8.

Finally, we conclude in Chapter 9 with a discussion of future work. Expansion of

current work suggests many interesting research topics for future research.

 42

Chapter 2

Survey of Technologies

This chapter is devoted to core technologies employed in the thesis project. We

have conducted investigations of foundational concepts pertaining to event-based

programming, MVC model, and messaging, in addition to NaradaBrokering middleware

and DOM technology. The following subsections are composed of an introduction to

each of the above subjects.

2.1 Event-based programming

2.1.1 Concept of Event-based Programming

Event-based programming is a programming style driven by events rather than

data/state for an application system’s runtime behaviors. In an event-based system,

components coordinate by interactions of generating and receiving events. In opposed to

the rule-based approach, event-based programming promotes system modularity and

 43

asynchronous response. The term “event” is used in a very broad sense. This dissertation

conceives “event” as any information that invokes the change of system state whilst

“state” is a transient status of a system set by a chain of runtime changes.

In general, an event-based system works in the following way: an event source

entity issues an event; an event target entity receives the information and handles it with

appropriate action. Fig. 2.1 shows the basic idea of how two different components

coordinated within a system by communicating with each other through an event, where

A and B are designated as event source and event listener components respectively. The

general event model of source-target pair may have variant implementations (e.g.

event/listener and producer/consumer models). However, this approach consists of a few

key features: there is no single flow of control through the program; an event occurs

spontaneously or asynchronously; the responses of the system are based on event

contents and the current state. This can be compared with rule-based programming that

has tight data flow control while the event-based model integrates system components

with scattered decoupled events.

Event-based programming has been widely used in various systems including

object-oriented systems, distributed component models, and a variety of Graphical User

Interface (GUI) applications such as Microsoft Windows and Visual Basic, Sun Java

Component
A

(Event Source)

Component
A

(Event Source)

Component
B

(Event Listener)

Component
B

(Event Listener)

register for event notification

issue event occurrence

Figure 2.1 The general event/listener model

 44

AWT and Swing, Netscape and Internet Explorer browsers, and Macromedia Generator

[GENERATOR]). It has become an extremely common framework for complex

distributed systems.

2.1.2 Event Models and Publish/Subscribe Mechanism

Event-based systems are supported by a number of event models that describe event

flow and propagation among the system components. Event flow describes the event-

based interaction between event source and event listener components. Event propagation

defines the mechanism how event listener (target) propagates the event further on to

notify related components. Examples of event models are Java event delegation, CORBA

OMG Event service [OMG] [CORBAEVENT], Web Service Notification

[WSNOTIFICATION] and the Java Message Service (JMS) [JMS], Netscape and

Internet Explorer browser event models [GOODMAN], W3C DOM event model

[DOM2EVENT]. These are all variants of the publish/subscribe mechanism and share the

general event/listener concept although they differ in implementation details.

The inherent system interaction pattern forms the essential signature of event-based

systems. The following of this subsection introduces the main concepts of Java

delegation event model and publish/subscribe model in an event broker based notification

service. These two are representative cases illustrating tightly coupled and less coupled

event-based systems respectively, which help our search for a uniform solution

converging and bridging desktop and distributed systems. Our survey also covers briefly

other major variants of publish/subscribe event models to show that our architecture of

message-based MVC incorporates a general event model which can accommodate

heterogeneous approaches and platforms.

 45

Java delegation event model

The Java-event model is termed as a delegation model (e.g. JDK 1.1 event model)

with multiple event listeners directly registering to an event source object and being

invoked through call back methods when a fired event is dispatched to target listeners.

Fig. 2.2 shows the basic one-to-many synchronous interactive relationship of

event/listener in Java delegation event model. However, the whole event process can be

more sophisticated in real applications such as Java AWT package. For instance, AWT

hosts many components (e.g. Window and Frame) laid out inside containers in a

hierarchical tree structure. Any of these components may become an event source object.

One event source may contain/hold different types of events with each event type

registered with multiple targeted event listeners; on the other hand, an event target

component may add multiple event listeners to one or different event source components

for notification of interested event types. Since W3C DOM as well as Java Swing

package [SWING], Netscape and IE browser has very similar event/listener structure and

share hierarchical tree model, a further discussion of system composition and event

propagation will be given in DOM event model in section 2.5.3.

Event
Source

Event
Source

register event x listeners

Invoke call back method
with event x

Figure 2.2 Java delegation event model

x EventListener 2

x EventListener n

x EventListener 1

 46

Publish/Subscribe Scheme

The classic publish/subscribe model is a topic-based communication pattern that

enables multiple subscribers registering to one or more topics (e.g. content based

information) while the publisher sends messages to topics; these messages are then

dispatched to registered subscribers. It provides a many-to-many relationship between

publishers and subscribers. The logic structure is illustrated in fig. 2.3. For instance,

Subscriber 3 subscribes to Topic A, B, and C while publisher 2 issues Topic C related

messages to subscriber 3, 4, and 5. In contrast with synchronous Java delegation event

model, the publish/subscribe approach provides a separate logic ─ notification service

between event source (publisher) and listener (subscriber) components. This can satisfy

the system need for a decoupled, dynamic, and interoperable scheme that supports both

synchronous and asynchronous event flow.

As a key element of publish/subscribe model, a notification service plays the role as

the “mediator” in between publisher and subscriber. The mediation may be conducted

through “broker”, a connector unit that routes topic events to the destination resource.

Figure 2.3 Topic-based Publish/subscribe model

Notification
Service

subscribe
deliver

Publish

Publisher 1 Publisher 2

Subscriber 1 Subscriber 2 Subscriber 3 Subscriber 4 Subscriber5

Topic A Topic B Topic C

broker
broker

broker

broker

 47

Literally, event and notification both refer to the information exchanged between the

participants, where event source generates event and publishes notification of event

occurrence to event listener. Notification may contain raw event data or processed or

interpreted information. The notification service can be done through, for example, topic-

based model or finer grained content-based model that embraces more expressive

precisions.

The Publish/Subscribe model supports participants (publisher/subscriber)

communicating through intermediary notification service in a many-to-many interactive

pattern [VIRGILLITO]. The decoupling of event source (publisher) and listener

(subscriber) has several desirable features for system integration: anonymity, many-to-

many, virtualized and asynchronous communication. Anonymous addressing allows

event routing between publisher and subscriber without them knowing each other. Many-

to-many communication naturally supports group communication (as for example

required in a collaboration system). Asynchronous communication promotes system

decoupling for distribution over different software environments. In addition, subscribe

and unsubscribe provides a mechanism that not only supports a long-term relationship

(e.g. durable subscription in JMS pub/sub model) but also allows interactive short-term

subscription (e.g. nondurable subscriber receives published messages only when it’s

actively registered within a session and remains in the context). All together, these traits

of publish/subscribe model increase distributed system for scalability and interoperability

for distributed systems with advantages of flexibility and dynamic response.

CORBA event model

 48

The OMG CORBA event model [CORBAEVENTSERVICE]

[CORBANOTIFICATIONERVICE] has supplier and consumer coordinated indirectly

through an intermediary event channel with push, pull and hybrid modes

[KLEINDIENST]. Push and pull define two approaches with event flow initiated from

supplier and consumer respectively. The event channel typically provides notification

service that “broadcast” non-typed or typed events from publisher to subscriber and

enables a many-to-many relationship. More sophisticated implementation may offer

services such as Quality of Service (QoS) [QOS], filtering, fault tolerance, and real-time

scheduling.

JMS

Java Message Service (JMS) [JMS] is a message-based communication service in

supporting of Java programs. JMS supports messages that contain serialized Java objects

and other formats including messages that contain XML format. Using the JMS interface,

a programmer can invoke the core messaging services of IBM's MQSeries

[WEBSPHEREMQ], Progress Software's SonicMQ [SONICMQ], NaradaBrokering

[NARADABROKERING] and other messaging product vendors. JMS supports two

domains: publish/subscribe and point-to-point and both have intermediary message queue

structure that buffers and manages messages [JMSTUTORAL]. Within a single-threaded

Figure 2.4 JMS Point-to-point model

Client 2
(consumer)

Client 1
(producer)

MsgMsg

send fetch

acknowledgement

Message Queue

 49

transactional context ⎯ session, the former has subscriber and publisher exchange

messages through topics; the latter has producer sending a message to a specific message

queue and a receiver requesting messages by requesting from the queue and

acknowledging of acceptance (shown in fig. 2.4). JMS and the Web Service Notification

described in next subsection are and can be expected to be used as interoperability

frameworks between different messaging systems.

Web Services event system

Web Services event system defines how to construct an event-based message

exchange pattern, which enables Web services to act as event sources for subscribers. It

specifies interfaces of subscriber and event source, as well as event notification

mechanism, resource identification, and message structure. Each vendor or organization

comes up with a design in their own way. For instance, existing specifications of Web

Services Notification (WS-N) [WSNOTIFICATION] and Web Services Eventing (WS-E)

[WSEVENT] are from IBM and Microsoft with IBM support respectively.

WS-N comprises of a family of specifications that defines event-based

communication using a publish/subscribe pattern, which include WS-BaseNotification,

WS-BrokeredNotification, and WS-Topics. They separately defines Web Services

interface for point-to-point notification, intermediary notification broker, and topic

expression dialects. WS-E defines a simple asynchronous messaging model with "push"

delivery mode while general Delivery Modes extend to provide flexible customizations

for various subscriber requests that could be "pull" and "batched". WS-N and WS-E have

similar structure with common features such as event-based approach, event/listener

pattern (e.g. Subscriber/Publisher versus subscribing EventSink/EventSource), and

 50

asynchronous one-way message using SOAP [SOAP]. But there exist some differences.

For example, intermediate brokering is supported in WS-N but not with WS-E; all

resources are identified by an EndPointReference (EPR) in WS-E while WS-N refers to

WSRF [WSRF].

Recently, major vendors such as IBM and SUN have joined Microsoft in WS-

Eventing specification that provides the base standards of asynchronous

publish/subscribe style notifications to interested parties. The specification is expected to

define a commonly used baseline set of operations for web services communication.

2.1.3 Summary

Event-based programming supplies a flexible and dynamic asynchronous

interaction through event notification among distributed software components. An event

model plays the key role in event-based system design. The event models examined in

this section show an increasing important feature of distributed architecture ─ namely,

they allow broadcast event messages to multiple recipients with such version differing in

detail of a publish/subscribe framework. The topic-based publish/subscribe notification

service logic can be implemented either by one or more distinct brokers or internally to

the publisher and subscriber. For example, the former can be found in OMG CORBA

event mode [SCHMIDT], and NaradaBrokering [NARADABROKERING]; the latter is

used in Java delegation model, JMS [JMS] point-to-point mode and the Web Service

WS-Eventing [WSEVENT] and WS-BaseNotification [WSNOTIFICATION]

specifications for multiple subscribers to a single publisher. The event capture type of

DOM event model is similar to Java delegation model, which we will introduce in section

2.5.3.

 51

Publish/subscribe can be deployed in tightly coupling monolithic system like Java

and CORBA or in a message-based loose coupling platform independent approach such

as NaradaBrokering. The latter provides essential features that conform to our big picture

of building Internet systems with explicit separation of Web applications from messaging

infrastructure (refer to section 1.3 and fig. 1.1) and offers an important mechanism for the

integration of our message-based MVC architecture with messaging infrastructure

NaradaBrokering, which we will elaborate in the architecture design issues in section 3.6,

5.1 and 5.2.

2.2 MVC

2.2.1 MVC Concept

Model-View-Controller (MVC) is a fundamental paradigm for interactive

applications, which includes almost all modern graphics user interface (GUI) design and

becomes a popular design pattern of object-oriented programming (OOP)

[Cox+Novobilski]. MVC initially appeared openly in Smalltalk-80 implementation

[Goldberg+Robson], the “blue book”. The concept was explored in the “green book” [G.

Krasner]. MVC inherited from object-oriented programming idea of Simula 67

[SIMULA67] with integration of graphical user interfaces and interactive program

execution. Simula was a programming language originally designed and implemented for

discrete event simulation, which built on extension of Algol60 [ALGO60]. It introduced

main OO features including class, object, inheritance and virtual method. The great

success of MVC popularized OO concept, which has been highly influential on modern

programming methodology.

 52

MVC proposed the logical separation of presentation from behavior and data

structure in an interactive multiple windows programming environment. The main idea of

dividing a system into Model, View, and Controller components is elegant and may

appear simple, which can be found in many references as shown in figure 2.5. However,

pervasive MVC deployment has much richer implications and MVC concept itself

evolves over the time.

In the programming environment of Smalltalk-80 version 2.5 applications [S.

Burbeck], the definitions of the three components are as following: the View manages

rendering of bitmap buffered image of graphical and/or textual output; the Controller

interprets device input events (from mouse and key) and commands appropriate changes

to Model and View; the Model manipulates the behavior and data structure, responds to

requests for its state information from the View, and instructions to change state from the

Controller.

In the MVC triad, the relationship between constituents is build up on links. The

View and the Controller constitute a unique pair that associated with each other via an

instance variable pointer. At meantime, both have a “model” variable pointing to the

Model object. The Model is relatively loose-coupled with the other two components and

has a subtle communication scheme. In a simple passive mode, the Controller requests

the change of the Model (e.g. a character input from keyboard) and takes responsibility to

inform the View of this change. In a more sophisticated scenario, the Model may be

updated due to interaction from a third party component that is outside of the View-

Controller pair. The modification is notified to all dependents (e.g. view, subview and

other components) of the Model, which is facilitated by the event/listener mechanism as

 53

discussed in section 2.1.1. Note that the Model retains a hierarchical structure that allows

dependents (or listeners) to register. In Smalltalk-80 v2.5, a global mechanism

IdentityDictionary is used to keep track of the dependents and changed/update

mechanism is chosen to coordination between Model and its View so as to keep a

consistent context for the system state.

The workflow of an interaction shows the dependency relationship between the

components as marked in fig. 2.5. The process may involve multiple steps in an

interaction cycle.

1. It starts with a user input event (e.g. mouse click or key stroke).

2. The Controller receives and interprets the event and then authorizes the Model to

change.

3. The Model updates its state through modification of its data structure and

broadcast its completion to both Controllerl and View.

Note that in different implementations, the View can obtain the updated rendering

information directly from the notification in step 3.

4. Or request from the Model after being notified of the change by the Controller.

5. Or through the Controller as in step 5.

Figure 2.5 MVC model

Controller

View Model
Display output

Model a
cce

ss

Model access

view information dependent ch
ange

dependent change

User input

(Mouse/key events)

1

6

4

3
3

2
5

 54

6. The View renders graphics and/or text image buffer reflecting the change

accordingly as the last step.

Krasner and Pope delineated such MVC interaction process [Krasner+Pope] using the

FinalcialHistory example from Goldberg’s MVC tutorial.

The MVC model embodies a system design principle ─ namely, dividing a complex

system into smaller subsystems. The separation of MVC produces a coherent triad:

Model, View, and Controller, which follow the disciplines of software programming for

modularity. Inherently, it promotes component reusability of the Model and helps good

system development and maintenance of these modules. The principles of original

Smalltalk design suggest a “single paradigm language with very simple semantics and

syntax for specifying elements of a system and for describing system dynamics [ANSI

SMALLTALK].”

2.2.2 Communication mechanism ─ method-based versus message-based

approach

A key to MVC is an effective event handling mechanism for the communication

between Model and View components. Since user input triggers mouse (or key) events at

GUI, the Controller component is responsible for forwarding these events to the Model

and transforming them so as to invoke execution of methods that modifies data structure.

MVC is a common event-based programming model for interactive applications.

We classify the communication mechanism of MVC into two types: one is

“method-based”; the other is “message-based”. What is the difference between method-

based MVC and message-based MVC?

 55

Method-based MVC works with the Model and the View communicating through

method calls provided by underlying system that plays the role as the Controller. In a

desktop Windows application, Windows operating system acts as the Controller and

provides an event handling mechanism for invoking application Window’s call back

method on receiving of the Model change. The system puts an event (e.g. mouse click)

message in the corresponding application's message queue. Target application Window

invokes methods of the application's functional core on receiving of notification of an

event occurrence. The messages are hidden in operating system level so as to achieve

optimized performance result within tight-coupled components. A MVC Web application

built on RMI uses “skeleton” and “stub” interface to establish interactions between

Model and View with RMI framework being the Controller. In this scenario, the

Controller is implemented in a Remote Procedure Call (PRC). For both case, either

classic method call or the distributed version of RPC, are method-based.

Method-based MVC applications are typically targeted for a specific system (e.g.

RMI and Windows) that are designed for the optimization of individual platform

functionalities and performance. Therefore, these applications are not directly

interoperable with each other and do not scale well to distributed applications.

Message-based MVC tends to minimize explicit or implicit context so as to

decouple components and enable messaging logic insulating one from details of specific

implementation. It employs messaging for the exchange of context information between

the Model and the View components. The messaging mechanism can be as simple as

using HTTP protocol to deliver HTML page from an Apache Web server to a client

browser, or as sophisticated as messaging middleware systems such as NaradaBrokering

 56

that provides various messaging services including multiple transport protocol (e.g. UDP,

TCP, and HTTP), publish/subscribe, fault-tolerant, and security.

On can use the concepts from shared memory versus distributed memory of parallel

computing models to characterize method-based versus message-based approach; the

design tradeoffs are optimized for performance in the former and for distribution and

portability in the latter. The essential difference between method-based and message-

based communication approaches are as follows: RPC corresponds to taking a traditional

method-based application and executing it in a message-based fashion. Its goal is to

distribute parts of an application and implement the method calls with messaging. It has

the implication that the linked parts share both interfaces and internal class structure.

Service oriented architectures (SOA) focus just on the messages and the interfaces they

link, where the interfaces are thought of as contracts and not as traditional method

signatures. There is no implication that there is any correspondence in internal structure

between the two linked services even if the messages are used in a RPC request-response

pattern. Conceivably, message-based approach is going to surpass method-based

approach in future distributed systems, especially with the rapid growth of computer

processing capability and network bandwidth that reduce performance disadvantage.

2.2.3 Decomposition strategies

A decomposition strategy refers to the way that a system is divided into functional

modules. Model-View-Controller (MVC) is one way to decompose system into sub-

components. It was originally introduced to decompose a GUI desktop system into three

modules: the Model serves as computation core of the system; the View represents visual

 57

components; Controller conveys interaction between the above two. MVC is a frequently

used as the observer design pattern [J.COOPER] in object-oriented programming.

Because interactive style application commonly has GUI with complex composition

and corresponding graphics rendering issues, the logic separation of Model from View

implies that the Model (computation core) is encapsulated and does not have to interact

with user interface directly in any way. Hence, it makes coding more flexible and

maintenance relatively easy.

Although the definition of the Model, View, and Controller triad is relatively clear,

the composition of these components is somewhat dependent on the eye of beholder. For

instance, a simple text editor may contain string data structure for the Model and its

display for the View. In a client/server application (see fig. D.1), Web server and Web

browser forms the front tier and back end, entailing Model and View structure.

JavaBeans and JSP, which are building blocks of JSP Model 2 architecture (ref. fig. 3.5),

represent corresponding Mode and View constituents on server side. In our experiment of

Batik SVG decomposition (ref. fig. 6.2), DOM tree is the Model while GVT tree and

rendering constitute the View. Particularly, we show in fig. 3.3 that there are different

division possibilities between Model and View even with the same application.

2.2.4 Interactive patterns

Interactive pattern defines how Model and View components are organized to form

a system structure. In SmallTalk80 [Goldberg+Robson], the interactive patterns was

deployed with multiple Windows layout (View) sharing the same data structure (Model).

In typical client/server Web applications, multiple Web browsers (View) share a file

server (Model) to retrieve Web contents. For complex environments like J2EE and .NET,

 58

distributed components (Model) can be separately configured for corresponding

customized client interfaces (View) such as mobile devices.

2.2.5 Summary

MVC is a widely used paradigm for interactive applications that separates

presentation from data structure and behavior. This section attempts to introduce the key

concepts of MVC from the view of basic architecture elements: communication

mechanism, decomposition strategies, and interactive patterns. Further analysis of

Variant MVC approaches that include legacy desktop system, homogenous distributed

system, and (Web) service-oriented system is given in section 3.5. A summary of

representative application models such as Microsoft Windows, distributed Smalltalk,

J2EE (JSP), REST, and M-MVC are also provided.

2.3 Messaging

2.3.1 Why messaging?

Messaging provides a ubiquitous solution for all people and all forms of

communication by exchanging of message information among participating entities. The

term “messaging” subject to a wide band of definitions for describing various systems

such as email, online chat, voice-enabled communication. Here, we define messaging as

an asynchronous communication approach between computer resources.

Messages are used by us in a broad fashion. In this thesis, we refer to the term

“message” as formatted information that coordinates between source and destination

software application entities. The content (or payload) of a message are comprised of

diverse data types, such as image files, text documents, and audio/video streams.

 59

With the advent of the Web and increasing complexity of software applications,

there are compelling reasons as to why it is important to deploy messaging as the

communication scheme for Web-based applications, which we will elaborate in the

following perspectives: Web applications and communication features, Internet structure,

and IP traits and limitations.

Web applications and communication features

Communication aspects of computer technology have become an incredibly

important and evolving area. The broadband data communication provides high-speed

Internet access through means of options such as cable, phone line, wireless, and satellite.

The array of communication forms, which are integrated into the global information

infrastructure, makes it possible for millions of households to access the Internet in an

effective and practical manner. This development provides the framework for deploying

assorted real-time collaborative Web applications enabling a futuristic multimedia

enriched and highly interoperable Web, such as Voice-over-IP, video-on-demand,

interactive TV, rich graphics and animation online game over mobile devices, and virtual

enterprise support. The perspective, in turn, demands reliable and efficient

communication services for providing data or media stream exchange between distributed

entities.

The early Web applications were deployed using client/server model (ref. Appendix

B and D). Examples like email and Web browser typically send a request to the remote

server and receive a response message that embraces text or a mix of text and images.

The Web server can extend its access to backend database or business logic, which forms

a three or multi-tier model. However, traditional centralized client/server model presents

 60

an approach with limitations from its simple point-to-point connection that can no longer

keep up-to-date with a new set of application requirements with general distributed

features of complexity and heterogeneity.

Middleware, which encompasses distributed Tuples, RPC and RMI, distributed

object model like CORBA and DCOM, and message-oriented model such as JMS

[BAKKEN], provides a common infrastructure for large scale distributed applications.

For instance, enterprise applications commonly build on top of J2EE and .NET that are

modern versions of middleware systems. However, RPC based middleware systems are

based on callback methods in a distributed environment, which are typically associated

with synchronous and closely coupled implementations. They have limited parallel

support and exception handling facilities.

Different forms of group communication and real-time collaboration systems have

been investigated as natural models better served in simulation of information

dissemination patterns in the experience of daily life. For instance, broadcast type of

group communication allows distribution of media content from one source to multiple

recipients (e.g. Internet TV). Peer-to-peer (P2P) model provides a dynamic framework

with virtual online community sharing of information in a decentralized self-organizing

fashion (e.g. P2P MP3 file system). Message-oriented middleware (e.g. JMS, WS-

Notification, and WS-Eventing) is designed at application level and support multicast

style communication (e.g. publish/subscribe) as well as unicast (point-to-point) and

broadcast patterns.

 61

Internet structure

Internet is a network of interconnected networks (ref. appendix C). The variety of

networks may build on top of directly connected physical network such as Ethernet

[ETHERNET], token ring [TOKENRING] and wireless [WIRELESS]. They may have

their own media access protocols, addressing scheme, and service model. Building on top

of packet-switching technologies, Internet extends its linkage to provide a Wide Area

Network (WAN) by connecting the heterogeneous autonomous Local Area Network

(LAN) together. This hardware infrastructure makes up the network core of the global

information communication platform, as we illustrated in fig 1.1. At the meantime, a

wide band of communication protocols composed of LAN protocols, WAN protocols,

routing protocols, and network protocols provide conceptual layers supporting

information dissemination between computer resources scattered along the edge routers.

However, the Internet evolution presents an complicated situation ─ it does not

adhere rigorously to the seven layered Open systems interconnection (OSI) [OSI] model,

which was developed by International Standards Organization (ISO) attempting to

provide some standard framework of networks; rather, it has a conceptual architecture

composed of TCP, UDP over IP. This structure has been challenged, although the

Internet protocol stack has evolved into stability at low level that is equivalent to the

three lowest levels of OSI [OSI] (ref. fig. C.3). As an important evolving area for

emerging technologies, messaging middleware provides a generic framework above the

IP layer and below the application layer, which embraces publish/subscribe service to

distributed systems between dissimilar networks and software components.

 62

Internet Protocol

Over the time, the evolution of Internet Protocol (IP) [IP] as the foundation of the

Internet paved the way for the Internet being an information infrastructure that empowers

dispersed computers not only as computing devices but also as communication devices. It

defines how to route data frames or packages from host to host and supports multiple

networks interconnected into a single, logical network (appendix C). IP connects diverse

IP-based networks and has evolved to the de facto low level software communication

protocol of overall network protocol domains.

Unfortunately, the necessary capabilities needed to realize multicast are not

adequately supported in the current networks. The IP multicast solution has serious

scaling and especially deployment limitations, and cannot be easily extended to provide

enhanced data services. IP was originally designed as the best-effort protocol that ensures

reliable delivery of a packet to its destination, and lacks critical services for applications

such as Quality of Service (QoS) [QOS] providing delivery assurance. This is due to the

features of earlier network infrastructure with limited abilities of switching technologies

(e.g. best effort delivery) at the hardware level and primitive designated functionalities

(e.g. TCP providing reliable transport but with a time out causing loss of data) that

deployed at application level. With the deployment of applications like internet telephony,

streaming media, which are delay-sensitive, it is in need of transportation for these

applications with traits of end-to-end QoS assurance, which can be provided by

messaging services deployed at application level.

As a distinctive feature, the messages are time stamped and ordered, which

facilitates various communication services with properties such as QoS, Robust Delivery

 63

mechanism (e.g. fault tolerance), storage, and support for P2P interaction. These

capabilities suffice the demands of diverse applications and are especially important for

time-critical collaboration systems. Additionally, the form of rich messaging services

supplies a far more flexible and scalable framework over heterogeneous environments

than individual platforms.

2.3.2 Messaging Middleware

Messaging middleware provides a general communication mechanism which

consists of software host-to-host channel and Process-to-Process channel and facilitates

the sharing of various resources over a heterogeneous environment. In a

publish/subscribe messaging service scheme, senders label each message with the name

of a topic ("publish"), rather than addressing it to specific recipients. The messaging

system then sends the message to all eligible systems that have asked to receive messages

on that topic ("subscribe"). This form of asynchronous messaging is a far more scalable

architecture than point-to-point alternatives such as message queuing, since message

senders need only concern themselves with creating the original message, and can leave

the task of servicing recipients to the messaging infrastructure. It is a very loosely

coupled architecture, in which senders often do not even know who their subscribers are.

In conjunction with event-based programming, publish/subscribe provides a

mechanism that allows event producer to notify consumer(s) of event occurrence.

Publish/subscribe messaging service has become a widely used programming style that

supports interrupt-handling mechanisms for user input-device interactions. In parallel

computing, MPI [MPI] and PVM [PVM] provided “all the features one needed” for inter-

node messaging. NaradaBrokering aims to play the same role as a messaging

 64

infrastructure support Internet and Grids systems. However, the requirements and

constraints are very different. An Internet messaging infrastructure provides a seamlessly

communication channel with reliability and substantial flexibility services to application-

level deployment.

Message-oriented middleware (MOM) provides a new powerful messaging

paradigm that makes it easier to uncouple different parts of an enterprise application.

Messaging clients work by sending messages to a messaging server, which is responsible

for delivering the messages to their destination. Message delivery is asynchronous,

meaning that the client can continue working without waiting for the message to be

delivered. The contents of the message can be anything from a simple text string to a

serialized Java object or an XML document. Messaging is often used to coordinate

programs in dissimilar systems or written in different programming languages. Most

systems use the event-based messaging paradigm for capability such as notification,

publish/subscribe, and direct socket-to-socket transport. Apart from NaradaBrokering

[NARADABROKERING], examples of MOM that support publish/subscribe interface

include OMG Data Distribution Service for Real-Time Systems [OMG-MESSAGING]),

and Publish-Subscribe Notification for Web Services [PUB/SUBNOTIFICATION].

2.3.3 Summary

We overview messaging as a key communication technology to improve

interactions, reduce overhead, enhance work-process efficiencies, provide Quality of

Service (QoS), reliability, scalability and facilitate information sharing across Internet.

Messaging provides assurance that diverse data steams tailored for different applications

can be reliably and efficiently transported to their destination over the Internet. Messages

 65

contain contextual information (e.g. events) between distributed entities and allow virtual

addressing (indirectly via publish/subscribe scheme) that enables dynamical binding to

diverse evolving hosting environments for the communication between source and

destination in a loosely coupled manner. Based on our framework of building Web

applications centered on messages, event-based programming is an approach well-suited

for development of synchronous and asynchronous interactive systems. In the following

section, we introduce NaradaBrokering messaging system that provides the underlying

communication infrastructure for our message-based applications.

2.4 NaradaBrokering

NaradaBrokering [NaradaBrokering] is an event and messaging infrastructure that

can manage the unicast and multicast delivery of messages between the different

processes. NaradaBrokering copes with multiple protocols (e.g. TCP/IP, UDP, HTTP,

SSL, RTP, GridFTP, and HHMS) and tunnels through firewalls. It uses XML-based

publish/subscribe semantics generalizing that are familiar from JMS (Java Message

Service) [JMS] and we have shown this conveniently supports collaboration. Each shared

object corresponds to a topic and NaradaBrokering manages the associated topic-labeled

event streams with high performance and reliable messaging.

 66

Fig. 2.6 depicts the relationship between publisher, broker, and subscriber elements

that are based on NaradaBrokering notification service [NARADABROKERING]. The

brokers are organized in hierarchical clusters for scalability and routing efficiency

[PALLICKARA-06-04]. Each broker can attach one to multiple delivery service nodes

(DSN) that manage the topic(s) and queue(s) for events. In order to establish a

publish/subscribe relationship (as shown in fig. 2.3) under a common topic ─ “topic A”,

publisher 1 and subscriber 1 and 2 may initially connect to a local broker for registration.

Then, a published message using a system routing algorithm is routed along a chain of

routing brokers which forms a virtual path, and eventually reaches to the destination

resources across the network. NaradaBrokering maintains routing tables to record and

update the latest network configuration (e.g. assignment of brokers and load balance

monitoring). These tables are used starting from local cluster, and propagated to a remote

broker in a larger cluster domain, to publish an event message to remote subscribers.

Figure 2.6 Architecture of Publish/Subscribe model based on
 NaradaBrokering event broker notification service

Subscriber 1Subscriber 1

broker

broker

Notification service
over network

broker

broker

Publish

deliver

subscribe

Publisher 1Publisher 1

broker

Subscriber 2Subscriber 2

subscribe

deliver

broker

broker

represents a delivery service
node (DSN) that manages a
topic event queue for a broker

 67

2.5 DOM

2.5.1 DOM, HTML, and XML

Internet-based Web applications started from World-Wide Web (see Appendix D).

The key technologies of WWW comprises of accessing HTML [HTML] contents via

HTTP [HTTP] protocol and viewing them from different client user interface. HTML

defines abstract information in text tags. Document Object Model (DOM) [DOM]

provides “an application programming interface (API) for valid HTML and well-formed

XML documents. It defines the logical structure of documents and the way a document is

accessed and manipulated”.

DOM was the descendent of “Dynamic HTML” [DHTML] and originated to allow

JavaScript scripts and Java programs to be portable among Netscape [NETSCAPE] and

Internet Explorer [IE] version 4 Web browsers. At the time, web developers were able to

make HTML pages and adding animated interactive scripts for retrieving document on

remote web servers. Nevertheless, the content is manipulated with different

implementations of document object model in these earlier version browsers. Developers

accessing HTML document with JavaScript [JAVASCRIPT] had to write wrapper code

to reconcile the incompatibility between Netscape and Internet Explorer. In 1998, W3C

proposed Document Object Model (DOM) level 1 specification [DOM1] that defines “a

platform- and language-neutral interface that allows programs and scripts to dynamically

access and update the content, structure and style of documents”, which provides support

for HTML 4.0 [HTML] and XML 1.0 [XML]. DOM level 2 standard further specifies a

generic event model [DOM2EVENT]. Version 5 browsers (Mozilla NGLayout engine

 68

(Gecko) [MOZILLA] and Microsoft Internet Explorer 5) support the DOM level 2

specifications. DOM has been updated with level 3 enhancements.

DOM is important because it enabled far more than building of cross-browser

dynamic pages ─ it is an open standard with a generic hierarchical model that defines and

facilitates manipulation of structured information or object. DOM carefully defines “just”

the logical structure of “document” and an API (application programming interface) in

Object Management Group (OMG) IDL [OMG IDL]. Such a standard can effectively

specify HTML and any XML [XML] describable information. Particularly, it means that

it can represent the structure of Meta data abstracted by XML schema for any object

including distributed software component. As specified in DOM, it allows any language-

specific bindings and can be implemented with language-independent system such as

COM or CORBA. As examples, Java and JavaScript are provided as binding cases with

the specification. Therefore, DOM is regarded as a specification that can be used by

variety of environments and applications. We expect that DOM model will be applied

more extensively as a framework in building of future distributed systems.

The term of “document” is used here for defining any structured information or

object in an abstract manner. The concept of “object” has been used in a broad spectrum:

in lieu of the Internet and Web, we take the view that anything having to do with

resources ─ no matter it is in form of data, text, image, audio/video stream, MP3 music,

software, printer, fax machine, sensor, and even human being ─ is an object; in terms of

DOM, an object implies a document node that has both data structure and semantics of

attribute and behavior, which compatible pretty well to the naming of “document object

model”. In the following subsections, we give further discussion of two prominent

 69

aspects of DOM: the hierarchical structure of the organization and the event model for

interoperability.

2.5.2 DOM structure

DOM has a logic structure to represent a document in resembling the relationship of

composed objects. A hierarchical tree-like model is used as DOM model while it can be

employed in many other alternatives. Document is used as an indispensable concept

associated with information, resource, or object. It encompasses content and presentation

parts. Document content with well-defined structure provides efficiency for access,

manipulation, storage and interpretation. Presentation allows tailoring content’s rendering

features such as positioning, coloring, and fonts in visual browsers, aural devices, printers,

and handheld devices etc.

Since the tree structure is a fundamental topology widely used as the data structure

or the object model by various systems, DOM model has general indication and

applicability as an effective mechanism for complex systems in organization,

management, and manipulation of constituent objects. Although naming and

implementation details may vary, numerous applications, either proprietary or open

source, are deployed using tree-like objects model for documents. These systems include

common file system (e.g. UNIX), Smalltalk, OpenDoc [OPENDOC], OpenOffice

[OPENOFFICE], OpenInventer [OPENINVENTER], VRML [VRML], Java AWT

[AWT] and Swing [SWING], COM [COM], and OLE [OLE].

Node is the primary data type of document object. In another words, all objects of

DOM document implement the Node interface. There are twelve node types defined in

DOM (Core) Level 1 specification [DOM1CORE], which include document as the root

 70

node while element, text, entity, entity reference, and processing instruction etc. as child

nodes (see fig. E.1). Except for text node, element node is the most frequently used DOM

node and often associated with attributes. For visual convenience, we use following

rectLinking.svg example in fig. 2.7 to describe how DOM is employed to represent

structured XML information.

The corresponding DOM tree representation is displayed in fig. 2.8. It shows that

the first node encountered is the root document node when traversing a document. There

are three child nodes of the root node: ProcessingInstruction node that indicates

processor-specific information; DocumentType node providing doctype attribute such as

DTD entity that defines logic structure for the document; element node with svg content

body. Within the container g element, there’re text element and element 'a' that references

to a predefined hyperlink. One complication is that a graphical rect element is used as the

target element nested within the simple link element 'a'. In implementation, the mapping

between flattened XML document for storage and corresponding DOM tree objects

model in memory can be achieved by using XML parsers and serialization utility classes

respectively.

 1
 2

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
"http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">

<svg id="body" width="300" height="350" viewBox="0 0 300 350">

 <g id="content" transform="translate(0,0)">

 <text x="10" y="30" class="title" style="fill:black">Click on rectangle linking</text>

 <a xlink:href="http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/">
 <rect id="targetRect" x="30" y="40" width="100" height="60" style="fill:blue;" />

 </g>

</svg>

Figure 2.7 A XML document rectLinking.svg with hyperlink element

 71

Although the structure of a real application would be orders of magnitude more

complicated, the example shows that the DOM may be used to manage XML documents

in a hierarchical tree model that resembles document structure of the objects. As DOM

specifies just an interface (like interface class in Java and abstract class in C++) to access

and manipulate of the internal representation of corresponding applications, it is up to

specific implementations to define the semantics of the content. For instance, the

document object may be composed of a graphics, a text, a file, an audio/video stream, or

a software component. It the last case, DOM is a well-suited distributed object model.

Software programs, whether building around DOM or wrapping an interface over

existing assets that support by its implementation of the DOM, will have full DOM

features available provided by the mechanism.

2.5.3 DOM event model

As discussed earlier in section 2.1 of event based programming, an event system is

the backbone of interactive applications. The DOM event model specifies rules and

patterns of how to exchange and propagate information through events that drive system

svg
id = “body”

g
id = “content”

Figure 2.8 DOM tree representation of rectLinking.svg document

a
xlink:href="http://

www.w3.org

rect
id=“targetRect”

text
value=“Click on rectangle linking”

document

Processing instruction
“<? xml version=”1.0" standalone=”no” ?>”

DocumentType
“<!DOCTYPE svg …>”

 72

behavior. W3C defines the DOM event model [DOM3EVENT] as “a generic platform-

and language-neutral event system which allows registration of event handlers, describes

event flow through a tree structure, and provides basic contextual information for each

event”.

DOM event model [DOM2EVENT] provides two types of event-based

communication: one is the exchange of contextual information between DOM node and

external event handlers’ class; the other is event propagation along nodes of the

document tree structure.

As a primary event handling mechanism, the former is derived from the generic

event/listener model (see fig. 2.1). It allows external components (the event listeners) to

associate with any individual node (event source) in the DOM tree structure such that

they get notified when an event is dispatched. To achieve this, DOM event model

specifies EventTarget interface as shown in fig. 2.9. Each DOM Node that implements

the interface inherits the capabilities for the registration of EventListeners and

dispatching of event at the target Node. Since event contains contextual information, the

event model supplies an effective communication channel between internal DOM data

structure and external components.

 73

interface EventTarget {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 void removeEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 boolean dispatchEvent(in Event evt)
 raises(EventException);
};

Figure 2.9 Interface of EventTarget

The other event process is the internal event flow along the DOM tree. Since DOM

nodes are organized in a hierarchical parent-children relationship and events can be

forwarded from the root node downward to the event target node or in an opposite

upward direction, the DOM event model offers two methods of event flow. One is “event

capture” that propagates downward and notifies any registered EventListeners of

corresponding type of events along the path. The other is “event bubbling” that starts

invoking event listeners from the event target node and then propagates up parent chain

to the document root. An event listener can call “stopPropagation” method of the Event

interface to prevent any further event propagation. It can also choose to cancel default

action associated with the dispatched event.

 Taking a common interactive application ─ Web browser for example, Netscape

and Internet Explorer 5.0 have been designed to support DOM level 2 Event model

[DOM2EVENT] that specifies the operations and queries that can be made on a HTML

(or XML) document. For instance, hyperlinking is a frequently used interaction for

browsing webpages. The basic user input is “mouse click” on Web links that defined by

'a' element so as to retreive hypertext (or hypermedia) documents that are portable from

one platform to another. Consider the simple blue rectangle associated with a hyperlink to

a DOM website in the example displayed in fig 2.7, which can be tested by loading the

 74

file “rectLinking.svg” into a SVG enabled Web browser. A mouse click on the blue

rectangle would invoke downloading a new webpage.

An event flow chart is provided in fig. 2.10 to illustrate underlying event process of

the hyperlinking interaction via the DOM event model. The capability can be achieved by

using two basic DOM event interfaces: one is communication between external event

handler module and internal DOM element (e.g. link element 'a') where event listener is

registered; the other is event propagation along DOM tree structure, which can use either

capture or bubbling model depending on the direction of event flow (downward or

upward) between parent and child node.

As the example shows, a bubbling process is employed with the event target object

('rect' element) forwarding contextual information up to its parent link element. In fact,

any event listeners added to a node along the path of event propagation up to the root

document element would be triggered unless “stopPropagation” operation is performed.

In the graph, event target node 'rect' is trigged by an UI event (when user clicks on the

rectangle object in Web browser) and pass it on to its parent node. The node 'a' invokes

svg
id = “body”

g
id = “content”

Figure 2.10 Event handler registration and event flow of DOM in a case of rectLinking.svg document

a
xlink:href="http://

www.w3.org

rect
id=“targetRect”

text
value=“Click on rectangle linking”

document

Processing instruction
“<? xml version=”1.0" standalone=”no” ?>”

DocumentType
“<!DOCTYPE svg …>”

Cancellation of
event propagation

Event handler
add event listener

trigger with event and
contextual information

dispatched event bubbling
up from the EventTarget

 75

event handler module but chooses to cancel further event propagation. Conceivably, the

event handler module would conduct hyperlinking operation by fetching URI (Uniform

Resource Identifier) referenced document from a remote server and rendering it as a new

page in the Web browser.

2.5.4 Summary

DOM originated from the need of a cross browser document model for HTML and

XML but has extended to be a generic platform and language independent programmable

interface for distributed interoperable systems. Through the example of a XML document

with link element, we’ve described how essential DOM interfaces ─ the DOM tree

structure and the DOM event model are coordinated in support for an interactive Web

application to accomplish common user interactions (e.g. hyperlinking in a Web browser).

Particularly, the DOM event model supplies a powerful platform of event-based

communication that controls event flow over orthogonal directions: one is a derivative

event/listener model (like the java delegation model) that provides interoperability

between DOM component and external component; the other is internal event

propagation along the document tree structure for exchanging contextual information

between DOM nodes. All together, the DOM promotes a generic framework that

encompasses an effective object model and interoperability mechanism for complex

systems.

 76

Chapter 3

M-MVC Architecture

As in many ways, this dissertation is about designing of software architecture, the

sections of this chapter add greater background context for the motivation, key concepts,

and principal building blocks associated with our system architecture for its structure and

interoperability features. Specifically, we analysis characteristics of distributed

applications based on event-based system interactions; discuss message-based MVC (M-

MVC) as a uniform architecture of distributed and desktop applications; an Internet

collaboration framework with SMMV and MMMV as general Web Service paradigms

for collaboration. Related work that encompasses various MVC approaches is examined.

We describe how M-MVC is deployed with messaging infrastructure in a

Publish/Subscribe scheme; additionally, we give a brief introduction to double-linked

multiple-stage pipeline model and a summary of collaboration framework. This chapter

combines with the next five chapters to act as a foundation for the conclusions that follow

in chapter 9.

 77

3.1 Characteristics of distributed applications

3.1.1 Human computer interaction

ACM SIGCHI defines human computer interaction (HCI) [HCI] as “a discipline

concerned with the design, evaluation and implementation of interactive computing

systems for human use and with the study of major phenomena surrounding them.” As

an interdisciplinary area, HCI has a broad relationship with computer science,

psychology, sociology, and industrial design.

It is of intrinsinc research interest for us to look into how human and machine

factors affect application design and engineering. Many modern software applications

inevitably have to build interface components to interact with a user. Prevailing

interactive Graphics User Interface (GUI) components commonly represents a large

proportion of overall system code lines. In addition, performance and reliability issues

arise due to spatial distance and bandwidth constraint that are particularly challenging for

building distributed application. We try to understand perspectives of user interaction

pattern, user interface design, system functionality and behavior, the communication

structure between user and computer, environment settings, and the impact of these

factors on design trade-offs implementation, and testing model of system efficiency and

viability. For instance, visual persistence (a human visual phenomenon of perceptual

sensitivity to latency) has significant impact on interactive application design and we will

discuss this in section 7.2.3.

There are many theoretical approaches to the studt of HCI in research area of

Cognitive Psychology [CARROLL]. “Interaction Analysis” is a method that studies

human interactivities based on social science [Jordan+Hendersion]. It is difficult to draw

 78

design principles and other abstract lessons from a technique that is concerned with detail

of a particular situation [Viller+Sommerville]. Thus, it is essential and helpful to extend

the survey to a variety of distributed applications in order to generalize interactive design

features. In following subsections, we focus on human context of utilizing Internet and

Web technologies in terms of social behavior and interaction to a computer in section

3.1.2 and give further summary of the characteristics of typical distributed applications

based on “events” ─ a quantitative measurement of system interaction in section 3.1.3.

3.1.2 Distributed application and user interaction

Nielsen’s reports reveal that more people are using the Internet than ever before: in

2004, three out of four Americans have access to the Internet from home [NIELSEN]; an

estimation of total online population worldwide reaches over 800 million

[INTERNETWORLDSTATS]. There is a diverse range of distributed systems or Web

based applications for the sharing of distributed resources, which includes email, file

transfer, Web browsers, distributed simulation, distributed database, instant messaging

(IM) [IM], voice-over-IP, blogging [BLOG], video/audio conferencing, Web-based

media-on-demand (e.g. playing MP3 music or movie on PC or even cellular phone by

downloading streams or files), interactive online game, participatory learning tools (e.g.

whiteboard), virtual enterprise, large-scale distributed computing, and many others

covering areas of e-Science, e-Learning, e-Business, entertainment, and general purpose

communication.

The following lists typical sample applications in table 3.1. The semantics of user

interaction define the primary interactions that a user invokes. The mode property that is

marked with positive or negative sign (“+”/“−”) delineates whether or not a user

 79

interaction causes modification of the system model or original data structure. Major

capabilities are provided in the system behavior field. Two types of communication ─

asynchronous and synchronous are defined here to distinguish whether the

communication requires participants to be present at different or around the same time.

Although there isn’t a strict line between them, it is reasonable to expect that a

synchronized interaction will complete within a few seconds’ time so as to achieve a real-

time experience. For example, email is deployed as an asynchronous communication

since it is not necessary for a receiver to access the mail immediately after receiving it

from the sender; an online chess game has two players involved in a timely interactive

manner, which is considered as a synchronous approach.

Table 3.1 Typical distributed applications and properties of user interaction, system behavior, and

communication

User interaction Communication
semantics Mode System behavior asynchronous synchronous

Email send/receive
email + store and forwarding

email √

Shared File System
(P2P) download files − document management

and distribution √

Instant Messenger online chat
(e.g. text) + sharing text information √

Distributed
Simulation n/a n/a computation and

synchronization √

Internet TV
Broadcast (Streaming
Media)

download and
play media − live broadcast of

media √

Video/Audio
Conferencing online meeting +

session management
and real-time sharing of
video/audio streams

 √

Shared Browser browsing web
pages −

session management
and real-time sharing of
web pages

 √

Shared Whiteboard editing text
and graphics +

session management
and real-time sharing of
graphical editing tools

 √

Multiplayer Online
Game (e.g. chess) move pieces +

session management
and real-time sharing of
interactive game

 √

Parallel Computing n/a n/a computation and
synchronization √

 80

3.1.3 Characteristic of events and distributed Applications

Computer-based technology started with computing but has evolved to empower

both computing and communication capabilities (ref. Computer-based computing in

appendix A). The advancement of broadband and Web application technologies open up

new vistas of communication, collaboration and coordination. While it is hard to compare

different aspects of disparate applications, we find that it is possible to summarize these

systems based on the fact that they have common features ─ “sharing” of distributed

resources, which are dominated by factors such as the nature and intensity of event-based

interactions; structure and features of resources or information for the sharing.

Here, we use “events” to refer to any forms of initiation or driving power for system

interactions and changes. As an example, an event may be defined as an input device

event (e.g. a mouse click or a key stroke from GUI) for an online game application.

Because system interactions are mainly conducted through events at different semantics

and level of granularities, we separately define some typical events such as

“MacroEvent” for major system interaction and “MicroEvent” for a small scale semantic

measurement in Table 3.2. Then, we list some applications in a comparison table (see

table 3.3) to highlight their characteristic centered on these events.

Table 3.2 Definition of typical events of distributed applications

 MacroEvent MicroEvent
Email writing an email a key stroke
Instant Messenger writing one line of message a key stroke
Shared File System
(P2P)

downloading a file n/a

Distributed Simulation messaging passing
(exchanging a message between components)

n/a

Internet TV Broadcast
(Streaming Media)

one-way buffering inter-frame delay

 81

Video/Audio
Conferencing

multi-way buffering (interactivity) inter-frame delay

Shared Browser loading a new URL a mouse click on a hyperlink
Shared Whiteboard drawing a new graphics component (e.g. a

rectangle, a line, a path)
a mouse movement

Multiplayer Online
Game (e.g. chess)

moving a piece a mouse movement

Parallel Computing updating a region held in a single node message passing
(exchanging a message between

components)

As distributed applications comprise interactions within internal constituent

components and with external applications through frequent exchange of event-based

messages, event plays an important role in the deployment of interactive distributed

systems. Every application has its own event semantics corresponding to different level

of measurement of the system changes and associated level of complexity in handling of

system behavior. Event model defines communication scheme and controls event flow

and propagation. The degree or tightness of coupling among different parts of an

application is indicated by nature of system interaction, semantics of inherent event, and

communication overhead (including network latency of these events) that have

significant influence on the overall system design and functionalities.

Table 3.3 allows some interesting observations. Several system aspects are

compared in terms of content and rendering features, timing of event-based interactivity,

and associated network connection issues. Applications work on different scope of data

set ─ some are simply byte streams like in shared file system and parallel computing;

some are in text, sound, graphics, or hybrid forms with rendering complications

especially for media rich content. The extra rendering cost includes various graphics

processing (e.g. filtering, mask effect, and rasterizing of vector graphics) and codec

(compression and decompression) effort.

 82

Table 3.3 Summary of typical distributed applications and characteristics

Content avg. min level of
interactivity

network connectivity features application

type Rendering
complexity

Macro
Event

Micro
Event

band-
width

latency
tolerance

level

reliability connectivity
type

Email text,
image

low min milli sec low minutes or
above

no point-to-
point

Instant
Messenger

text low sec milli sec low second no multicast

Shared File
System (P2P)

byte
stream

n/a min n/a high minutes or
above

yes multicast

Distributed
Simulation

byte
message

n/a sec n/a high 100’s
millisecs

yes point-to-
point

Internet
TV/Broadcast

image,
sound

high sec .033 sec high second no broadcast

Video/Audio
Conferencing

image,
sound

high sec .033 sec high 100’s
millisecs

no multicast

Shared
Whiteboard

text,
image

high sec milli
sec

low 10’s
millisecs

yes multicast

Multiplayer
Online Game

text,
image,
sound

high sec milli
sec

low 10’s
millisecs

yes multicast

Parallel
Computing

byte
message

n/a large > 10
microsec

high 10
microsecs

yes point-to-
point

As listed earlier in table 3.1, the “sharing” can be done asynchronously and

synchronously (usually referred to as “collaboration”) among participating parties within

a system. For instance, an email application typically provides text–based message

storage and forwarding service in loosely-coupled asynchronous manner while an instant

messenger (IM) is an instant messaging service that allows multiple clients hook up to it

for real time conversations. Also, collaboration services, such as IM, require session

control that hosts and manages the online status of the users.

As summarized in table 3.3, the deployment complexity of a synchronous

collaboration system is mainly decided by synchronization granularity and timing.

Typically, lower granularity corresponds to more stringent timing constraints.

Specifically, the timing of system features, especially their interactivity and fulfillment of

collaborative functionality, influences the deployment. For example, sharing of a

 83

presentation style system (e.g. graphics authoring tool such as whiteboard) is more

complicated than that of a text based application like instant messenger; while shared

browsers with collaboration functionality of interactive animation presents greater

challenges than sharing of a Web page change.

To guarantee functionalities, synchronous collaborative systems (e.g. video/audio

conferencing and multiplayer online game) have to deal with complex synchronization

problem while this is less constrained for loosely coupled asynchronous systems (e.g.

email and newsgroup). For instance, to achieve near real-time experience, network

latency tolerant level for collaboration system is typically around hundreds of

milliseconds for video/audio conferencing; tens of milliseconds for intensive interactive

applications such as multiplayer online game and collaborative whiteboard. Currently,

network transit times of transcontinental links are 100’s of milliseconds while local area

network including intranet of organization area could achieve a few milliseconds in

latency.

3.1.4 Summary

The analysis in this subsection aimed to provide a common ground for bridging

diverse interactive applications with a unified event-driven message-based architecture.

We’ve examined scenarios of typical distributed applications in terms of user interaction,

system behavior and communication. The feature table 3.3 further summarizes

characteristics of these applications based on event interactions in a quantitative manner.

 84

3.2 Web Service pipeline model

In the Web Service pipeline model [Fox03], the workflow of a Web application is

marked as a chain of objects linked with bi-directional connectors ─ in which events flow

and rendering results counter flow from resource to client end. In this context, an “object”

is literally a software component that implements certain functionality with input and

output connections to neighbor objects. The “connector” is event-driven message-based

linkage between adjacent objects. This basic double-linked multiple-stage pipeline

structure, as depicted in fig 3.1, can be used as building blocks to form more complex

hierarchical pipeline model for distributed systems like what is presented in shared input

port and share output port model of collaborative framework (ref. section 3.9.4). Note

that although we use the term “object”, it does not emphasize particularly on the object-

oriented model. Rather, it can be replaced by “resource” and each stage is a service

operating on a resource.

 The double-linked multiple-stage pipeline model suggests a number of properties

that promise advantages:

1. Fine grained Modular structure

The uniform stages and pipeline communication behavior with input and output

interfaces forms a regular modular structure. Theoretically, this pattern can be

applied to decomposition at any part within the system embracing natural event

linkages and produces multiple coordinated objects in a single application. Each

Object
or WS

Object’’
or WS’’

Object’
or WS’

Object
or Display

Figure 3.1 Double-linked multiple-stage pipeline model of Web applications

Object
or View

 85

stage or object, a primary distributed component, forms the core of a Web Service.

The advantage of using this modular multiple-stage approach is that system process

can be controlled in a fine grained fashion for dynamic distribution, which is

impossible in a canonical two-tier client-server model for Web applications and

MVC model for desktop applications. Further more, each service constitutes the “off-

the-shelf” building block that can be quickly integrated into a complex and large

scale systems.

2. Bidirectional double linked stages

A Web application is decomposed into components or stages. Each stage accepts

input, either information of component or the change of component, applies some

filters, and passes forward the results on to the next stage along the pipeline. Each

object forms a stage along the path of pipeline whilst the stage comprises a system

state in the perspective of the overall workflow. A state change is triggered by an

input event (e.g. a mouse click). A stateless system has design advantage of

simplicity since there’s no extra effort needed for keeping state information. The

prominence is that the double-linked structure enables “finite state change

architecture”. In a finite state architecture, every system change is labeled by an

“event” representing the changes of the system. Operationally, it is important to have

the invertible changes between adjacent stages. The structure of adjoining stateless

stages enables event-invoked traversal along bi-directions, which is crucial for

designing of event-based Web applications with collaboration capability. In contrast

with single directional forwarding pipeline model (e.g. UNIX pipe and common

software filters), the system automatically keeps track of its states through

 86

manipulating of ordered events while no extra storage and management are needed

for keeping transitory states information. This model also allows participatory

components to synchronize via a common state at each stage. We will discuss two

different approaches of collaboration through sharing of either states or events in

detail in chapter 5.

3. Messaging communication

The objects communicate with their nearby neighbors via messages. Messaging

allows dissemination of the messages in a very flexible manner (e.g. routing through

diverse network protocols), which facilitates the formation of dynamic

communication patterns (e.g. unicast and multicast) accommodating to different

system structure.

3.3 Message-based MVC (M-MVC)

3.3.1 Comparison of MVC model and Web Service pipeline model

Classic MVC model (ref. section 2.2) is originated from Smalltalk (ref. section

2.2.1) and defines a triad that separates the View from the Model with coordination of the

Controller component. Distributed applications with service oriented architecture can be

deployed using the Web Service pipeline model as described in section 3.2, which

constitutes a three-stage structure here, is designed especially to accommodate dynamic,

interoperable, and scalable Internet domain. While both application models present

modular architecture as shown in fig. 3.2a and fig. 3.2b, they have clear distinctions.

 87

a) different runtime environment

Classic MVC model is frequently used in legacy desktop or client side applications

such as Microsoft Window and Office suite. These systems assume that a software

application executes on local computer environment (e.g. multiple processes scheduled to

run on single CPU and memory). The Web Service pipeline model is designed for

distributed applications that may run over heterogeneous platforms and accessible for

multiple users. Various resources, which include CPU, memory, software program, and

data, are scattered over the edge of networks and interoperate through Web Service

interface by messages.

b) tightness of system coupling

In classic MVC model, Model, View, and Controller components are comprised of

classes with runtime instances sharing the same memory space. The interactions are

tightly coupled through global variables and method calls, which can be achieved at

microsecond level for optimal system performance. However, specific implementations

often use global data structure and tend to produce awkward inheritance structures (e.g.

Figure 3.2 Comparison of MVC and Three-stage Web Service pipeline

a. MVC Model

Controller

View

Display

Model

Messages contain control information

b. Three-stage Web Service pipeline

High Level UI

Raw UI
Display

Rendering as
messages

Events as
messages

Semantic

Events as
messages

Rendering as
messages

Input port Output port

Input port Output port
(Web Service)

(Web Service)

 88

interface class). High coupling of MVC greatly reduces interoperability and reusability of

software components [Y. Shan]. The Web Service pipeline model conducts

communications via loosely coupled messages over diverse platform via network

protocols. Table 3.3 shows the performance of event-based interaction and network

latency tolerance for typical message-based distributed applications, where millisecond

level fine-grained interaction is common for real time collaboration systems.

c) decomposition strategy

The canonical MVC model has a crude split of the triad with Controller being a

separate module in MVC model. Web Service pipeline model allows system division in a

fine grained manner at every stage. It delineates an interoperable relationship of

geographically distributed components as services. Other than the obvious difference in

system structure, two implications play important role in distinguishing their architectural

and implementation features.

Firstly, the MVC model provides the separation of an application’s presentation from

its data structure and behavior; the pipeline model allows further dividing of the data

structure from the operations conducted on them (e.g. separating business logic from

structure). Here, the data structure refers to a set of resources, the state, and operation is

comprised of stateless services.

Secondly, original Smalltalk MVC has a single Controller that takes responsibility for

accepting device input (e.g. mouse event) like a “sensor” whilst visual rendering is

performed in a separate View component. In distributed systems, the UI component

combines these two functions in a single user interface since it is not no sensible to

arrange a user input and its feedback (display) in geographically disparate location.

 89

Further more, the processing of incoming request can be conducted at any possible

pipeline stages and control information is contained in messages. Namely, Controller is

leveraged for distribution.

d) application context

Most desktop applications are designed for single user usage. Namely, there’s only

one participant interacts with UI for the application service. Interoperability and group

communication are essential capabilities of distributed applications. These systems

commonly involve multiple participants communicating in an asynchronous (e.g. email)

or synchronous (e.g. online game) fashion.

3.3.2 Generalization of MVC and Web Service pipeline model

Major differences between the design characteristics of classic MVC model and Web

Service pipeline model, as described in previous section ─ tight coupling versus loose

coupling, are consequence of disparate system runtime environment and context. The

difficulties associated with bridging the gap between desktop and distributed applications

have motivated our research to achieve a unified architecture that is adequate for both

application domains.

In order to provide some insights of the M-MVC concept, we provide two among

many M-MVC decomposition strategies side by side in fig. 3.3. Both graphs show clean

separation of presentation (View) from content (Model) with a delineation of refined

three-stage pipelines. Since each pipeline stage constitutes a modular component that

linked by messages, the same structure can be conveniently rearranged with service

interface adapting to various distribution profiles.

 90

It has been known that small device such as mobile phone has low memory and CPU;

limited display and bandwidth. To facilitate thin client profile sharing comparable

collaborative experience as regular profile, one solution is shared display (bitmap

rendering) to keep minimum UI functions. The graph on the left (fig. 3.3a) shows a

scenario for such thin client interface.

In contrast, graph 3.3b represents a model that suitable for applications with a thicker

front tier optimized for performance and rich profile. Common web browsers are typical

examples. Notably, runtime environment like J2ME is introduced in particular to support

the light weight demand of small devices. With the micro edition, client side can take

more responsibility such as high level UI event processing and sophisticated graphics

rendering or layout styling. For instance, mobile applications allow cartoon animation

[Girow+Mitgartz], map [Zaslavsky+Memon], and other graphics enriched content being

rendered with high quality using SVG Tiny technology.

Fig. 3.3 suggests that there’re many ways to decompose MVC. It also implies that M-

MVC model requires strict and delicately controlled modularity to deliver promised

Messages contain control information

a. M-MVC model for thin client

High Level UI

Rendering as
messages

Events as
messages

Semantic

Input port Output port

Model
(Web Service)

Raw UI
Display

View

Messages contain control information

b. M-MVC model for Web browser front tier

High Level UI

Rendering as
messages

Events as
messages

Semantic

Input port Output port

Model
(Web Service)

Raw UI
Display

View

Figure 3.3 Variations of M-MVC decomposition

 91

desirable design features. Several research issues are identified to achieve the design goal

of M-MVC.

a) Can tightly coupled MVC model be converted to loosely coupled service oriented

architecture?

b) How to support general collaborative paradigms?

c) How to evaluate the performance of system internal processes? Does the

message-based approach provide acceptable performance?

Briefly, the following are conceived to be important explorations in addressing the issues

described as above.

a) Modification of system architecture from method-based MVC to message-based

MVC.

b) Communication with Publish/Subscribe interface provided by underlying

messaging infrastructure for real-time collaboration.

c) Performance testing model that tracks down to smallest grained interaction (e.g.

mouse event for per pixel change).

Batik [BATIK] is a standalone client application for scalable vector graphics. To test

different aspects of M-MVC design, a set of extensive experiments with Batik are

conducted including collaborative applications (e.g. shared browser and interactive game)

and converting tightly coupled structured to distributed model. The distribution of Batik

poses a number of design or implementation issues that challenge the process. As

consequences, some interesting observations are obtained such as shared hidden state in

MVC; corresponding shared context between distributed components; role of object

serialization for messaging and synchronization; problems of excessive use of interface

 92

classes; influence of user interaction style, runtime and network environment to system

performance. Detailed discussions of the primary indications of design tradeoffs are

elaborated under related topics from Chapter 4 through 7.

3.3.3 Summary

M-MVC is a service-oriented architecture with messaging linkage that unifies

distributed and desktop applications. In synopsis of section 1.4, we already entailed its

design novelty of bridging several application domains with Publish/Subscribe

communication and support of generic collaboration paradigm (SMMV and MMVC). In

this section, we elaborated the essential building blocks of M-MVC.

3.4 SMMV and MMMV Interactive patterns

The MVC decomposition for modularity empowers component reusability. Based on

the interoperating relationship between the constituent Model and View components,

there are three models: one-to-one, one-to-many, and many-to-many. Correspondingly,

we propose three MVC interactive patterns: Single Model Single View (SMSV), Single

Model Multiple Views (SMMV), and Multiple Models Multiple Views (MMMV).

SMSV is the simple use of MVC in applications and is not our focus of this thesis.

However, following the terminology from parallel computing, we emphasize two

interactive patterns: MMMV generalizes the concept of MIMD [MIMD]; SMMV

generalizes the concept of SIMD [SIMD]. In practice, SMMV and MMMV patterns (fig.

3.4) can be applied in both asynchronous and synchronous applications, and thus form

general collaboration paradigms.

 93

A commonly used interactive pattern is SMMV, which promotes different

presentation layouts sharing of a single content model. This pattern represents the

structure of a class of desktop and Web applications: original SmallTalk-80 supports

multiple browser panes sharing the same content (e.g. text and/or graphics) through

multiple View-Controller pairs versus single Model structure; legacy interactive

applications (e.g. Microsoft Windows and Office) allow multiples window layouts

sharing the same data structure; typical client/server applications have variety of clients

(e.g. Windows, Unix, and Linux) using Web browsers to access a Web server for

documents through HTTP protocol.

SMMV has limitations as it assumes a single model structure. The problem arises for

a complex system, which tends to involve multiple model profile to support

corresponding customized view. New generation of Web application architecture

emphasizes ubiquity and interoperability, so as to accommodate dynamic and expandable

nature of the Internet. In another words, it needs for a framework that supports diverse

clients from heterogeneous platforms accessing a variety of services in either

asynchronous or synchronous fashion. MMMV is a generalization of SMMV that

View n-1 View nView 1 View 2

Model

a) Single Model Multiple View

View n-1 View nView 1 View 2

Model m-1 Model mModel 1 Model 2

b) Multiple Model Multiple View

Figure 3.4 SMMV vs. MMMV as MVC interactive patterns

 94

exploits a many-to-many mapping of MVC decomposition. Thereby, it represents a

central feature of new generation of interactive applications.

SMMV and MMMV are two interactive patterns that are well suited pattern for

building general collaboration framework. Chapter 5 elaborates on how to use them in

building collaborative Web Services through exploiting message-based MVC and Web

Service in a unified approach. We note that both SMMV and MMMV can be deployed in

an asynchronous and synchronous fashion. Earlier client/ server example shows a typical

Single Model Asynchronous Multiple View (SMAMV) pattern. On the other hand,

computer users watching CNN live news through media player is viewed a Single Model

Synchronous Multiple View (SMSMV) application since network buffered multimedia

streams are multicasted to subscribers over a common period of time. The most

challenging problem is the development of synchronous architectures with significant

time constraints.

3.5 Related Work on MVC

As an imperative technology, MVC has been predominantly used in the design of

interactive style applications to solve the real-world problems. Nevertheless, the use of

MVC concept alone is not sufficient if factors of modern technologies are not taken into

consideration. Notably, programming environment has fundamental changes compared

with slow CPU and limited memory space in early 80’s when original Smalltalk was

implemented. It seems that across the publications in both industrial and academia,

there’s much emphasis on MVC for specific platforms. However, papers examining

MVC paradigm under different stages of computer technology evolution are limited.

 95

In this section, we will provide a detailed classification based on the general

perspectives that comprise of a system design: decomposition strategy, interactive pattern,

and communication mechanism. In order to highlight communication and interactive

features, we classify MVC evolution into three stages. Fig. 3.5 lists three sample models:

a) classic method-based model; b) request/response model in method-based or message-

based style; c) message-based publish/subscribe model. A discussion of corresponding

work delineates variations of MVC approach from legacy desktop application, Web

application, to distributed application. A more complete summary with each category and

corresponding applications is shown in table 3.3.

In the communication column, “method-based” and “message-based” mechanism

defines the interaction interface: either through a coupled pair of method call and return

or decoupled messages. Accordingly, the degree of coupling is indicated by this feature.

However, in terms of timing, a typical runtime method call (e.g. Java) in a standalone

single processor environment is at microsecond level; “The rule of milliseconds”

suggests that millisecond and 100 milliseconds are typically found for the communication

in intranet and internet scope [Fox04]. These different timescales imply different

fundamental building ground for application architecture and viability.

View Model

C
o

n
tr

o
l

Messages View Model

Figure 3.5 Three MVC approaches based on different communication mechanism
 and interactive pattern between model and view

View Model

Broker

Pub/Sub

a) classic
(method-based)

b) request/response
(method-based or message-based)

c) publish/subscribe
(message-based)

 96

The communication patterns refer to the three models depicted in fig. 3.5. Interactive

pattern describes the interoperating relationship between the model and the view: one-to-

one, one-to-many, and many-to-many. Details of SMMV and MMMV concepts are

covered in section 3.4.

Classic MVC model in fig. 3.5a represents a tight coupling structure for desktop or

client applications. The interaction process is illustrated in fig. 2.5 of earlier section.

Apparent features include Model, View, and Controller instances run with multiple

process using shared memory and single processor; inter-component interactions via

method calls with messages hidden at system level; and single-user system. Legacy

desktop applications such as Microsoft Office suite employ asynchronous method calls.

However, original Smalltalk-80 defines messaging passing with similar semantics to

procedure call and sequential computation.

Real-world systems commonly contain entities that exist and do things concurrently.

A number of research efforts exploit parallel and distribution features for object-oriented

applications [Gao+Yuen] to facilitates a natural extension of Smalltalk.

ConcurrentSmalltalk [Yokote+Tokoro] introduces asynchronous method call to achieve

parallelism and atomic objects to maintain process request sequentially. Smalltalk (DS) [J.

Bennett] provides a Smalltalk implementation with modest supports for multiple users

sharing distributed objects. Object interaction in DS is conducted over a high bandwidth

network of Sun workstation. As depicted in fig. 3.6, it introduces proxy objects to refer

remote objects and employ message forwarding (blocking send at sender) and reply

service (invoke receiver’s action with returning result at receiver) for communication.

 97

[P. McCullough] defines “migration” as movement of an object from the remote

machine to the local machine and poses questions about whether arguments should be

passed by copying, by proxy, or by actual movement. Four possibilities are introduced to

address difficulties associated with moving object structure. They are: pass-by-value,

pass-by-reference, pass-by proxy, and pass-by-migration.

The Webjinn/DDD framework attempted to address presentation mixing with content

structure (“intra-crosscutting”) and code tangle within MVC using XP structure that was

introduced by [Kojarski+Lorenz].

J2EE and its counterpart .NET are two major platforms that host Web applications.

They are based on Java technologies (Servlet/JSP, EJB, and JDBC) and Microsoft

technologies (ASP, VBScript, MTS, ADO, COM, and COM+) respectively [MML]. Both

platforms incorporated MVC pattern to supply interactive UIs for emerging Web

Services framework. The expansion produced corresponding new Web platforms ─

Struts/J2EE and ASP.NET.

Apache Struts [STRUTS] is a server side technology based on JSP model 2

architecture [G. Seshadri] using front controller pattern [SSJ]. By integrating with Java

Servlets [SERVLET], JavaServer Pages (JSP) [JSP], JavaServer Faces (JSF) [JSF], EJB,

Local machine

Proxy Object

forwarded message

Remote machine

Remote Object

Figure 3.6 Message forwarding and reply between sender and receiver

result object

message destined
for remote object

 98

and JDBC technologies, it provides a MVC framework. As shown in fig. 3.7, the

Controller portion of the MVC architecture is focused on receiving requests from the

client and executes appropriate action for each request. In Struts, the primary component

of the Controller is a servlet of class ActionServlet. ActionMapping maps a URI request

path to an action class. The action class of the Controller servlet invokes business logic

beans and passes appropriate ActionMapping instance. An ActionForm of the View

represents HTML-like tag library to collect user inputs. When an action completes,

ActionForwards is used to facilitate Controller in selecting output pages for next display to

the user interface.

Distributed enterprise architecture tends to involve several components for fulfillment

of complicated business transactions. This illustrates that our classification is incomplete

as often the Web tier has multiple models but there is only single business logic. One

would classify these systems as SMMV or MMMV depending on the relative importance

of Web tier and business logic. In addition, the connection between Web clients and the

single Web-Tier Controller is via HTTP transport while the interaction between Web-

Tier MVC components is handled by method calls. We still classify Struts/J2EE as

message-based communication here. When ignoring the subtleties of Web GUI

Figure 3.7 Struts/J2EE architecture

B
row

ser

Request

View
Respond

Controller
(ActionControl classes)

Model
(JavaBeans)

(ActionForm classes)

Web Tier

Database
Business logic

(Enterprise servers)

Struts Tag
Libraries

Resource
properties file

 99

implementation, server side custom tags can be viewed as a implied form of the View as

opposed to bitmaps in image buffer at client.

Web Services for Remote Portlets (WSRP) [WSRP] is a communication protocol

between portal servers and backend portlet containers, while Java Specification Request

(JSR) 168 [JSR168] is a Java API for portlets to work with WSRP portals. These two

standards enable aggregation of portlets so that different portal products are available to

an organization, typically through a Web browser at client tier. JSR-168 and WSRP are in

orthogonal direction in architecture space and they can be implemented in either method-

based or message-based manner. However, they define the nature of the messaging for

message-based MVC, which produces an important technology in support of Web

Service applications.

In the Web portal example, multiples clients access backend computing and database

management services asynchronously through Web browsers from different platforms

(e.g. Windows, UNIX, and Linux). Web portal [PORTAL] provides a middleware

technology that provides a gateway interface for clients to communicate with backend

services through portlets. Currently, Web client interfaces are typically Web browsers

and application specific interface. JetSpeed ─ a relatively unsophisticated Web browser

based interface (HTML table with possibly embedded Java Applets) is commonly used as

the portlet container.

Representational State Transfer (REST) [R. Fielding] proposed a simplified version

of message-based approach that extended from client/server Web application architecture.

M-MVC (ref. section 1.4) and REST both are message-based architecture. The

 100

distinctions are: a) REST addresses scalability, reliability, tunneling through firewall and

security (SSL) issues within the containing system; M-MVC assumes that application

level architecture is separated from underlying messaging infrastructure and the latter

provides various communication services (e.g. QoS, fault-tolerance, event notification,

and publish/subscribe). b) REST is suitable for less time critical collaboration through

sharing of application state over HTTP protocol; M-MVC support both asynchronous and

synchronous collaboration through sharing of event (the change of application state) and

allows dynamic binding to transportation protocols. For the timescales of synchronous

collaboration, the affordable latency for an audio/video conferencing system (over UDP)

is 200 milliseconds with buffering and pre-fetching [AHMET] and 20 milliseconds for

SVG Web Services experiment (over TCP) of this paper with vector events and

combined rendering optimization. c) REST is designed for Web application; M-MVC is

proposed as a uniform architecture for both client and distributed application. d) REST is

a SMMV model that uses request/response interactive interface; M-MVC can be

deployed in either SMMV or MMMV with publish/subscribe scheme.

Table 3.4 Variants of MVC applications

Communication Interactive pattern Application type mechanism pattern

client/
desktop

distribut
ed

Degree
of

coupling method
based

message
based

method
call

request/
response

publish/
subscribe

SMMV MMMV

Microso
ft Office √ + + √ √ √

DS √ + √ √ √
Struts/
J2EE

 √ + √ √ √ √
JSR-168
&
WSRP

√ n/a √ √ √ n/a n/a

REST √ − √ √ √
M-MVC √ √ − √ √ √ √

 101

In summary, table 3.4 shows different MVC application examples that decrease in

degree of coupling between Model and View components ─ from client to distributed

domain with method-based to message-based interoperation. In general, loosely coupled

messages facilitate the overall system design with a more distributed, scalable and

interoperable communication mechanism, which enables a general framework for

heterogeneous platforms. M-MVC is a high-level application architecture that converges

desktop application and distributed application with automatic collaboration and

universal access support. Web Service naturally fits with M-MVC and we elaborate its

structure in subsequent section.

3.6 M-MVC and messaging infrastructure with publish/subscribe
scheme

In section 2.1, we’ve examined different versions of publish/subscribe as an

important asynchronous communication paradigm for distributed systems. Here, we

elaborate how M-MVC interfaces with event brokers of NaradaBrokering messaging

middleware. Fig. 3.8 shows two decoupled components A and B interacting with each

other via a topic-based notification service. Initially, component A sets up a topic session

using a broker’s client interface. The name of the topic is a reference path that typically

represents an event class. In order to register for the topic, component B subscribes to the

broker using a matching topic name established by A in step 2. Brokers maintain all the

active subscriptions and publishers under this topic. Whenever component A publishes an

event (step 3), the Broker routes it to current subscribers of the topic including B in step 4.

Component B can unsubscribe to disconnect from the session.

 102

The interaction between View and Model components are bi-directional as depicted

in fig. 3.9. The View subscribes for notification of the Model changes and execute

corresponding update rendering; the Model registers to get informed of UI events which

eventually invoke method calls that modify Model structure.

 M-MVC emphasizes a message-based architecture of Web applications enabling

Model and View distribution. The approach requires us to support the model-view

linkage with a high performance messaging middleware infrastructure. NaradaBrokering

has been separately developed and provides a variety of publish/subscribe models

including peer-to-peer and Java Message Service (JMS) emulation. M-MVC is not

sensitive to the details of NaradaBrokering and do not currently exploit its ability to

Figure 3.8 Message-based Publish/Subscribe with broker intermediary

B

Subscribe to event class

A

Broker

Set up an event class (t
opic)

publish
 an event class Send event

43

21

Figure 3.9 Bi-directional interaction in M-MVC with
Publish/Subscribe scheme

Model

Subscribe UI event

View Subscrib
e renderingPublish UI event

Publish rendering

Broker

 103

traverse firewalls and support multiple protocols. The use for collaborative SVG would

exploit these latter Grid messaging capabilities of NaradaBrokering.

3.7 M-MVC and Web Services

Web Services (ref. Appendix D) provide an implementation version of interfaces for

service oriented architecture (SOA). Ultimately, the services would offer GUI to end

users for access. Nevertheless, Web Services (or SOA) do not address system

composition issue and application developers have to determine which components

should reside in the service versus client interface.

M-MVC is a SOA that decomposes a system into the model (“computation core”) and

the View (visual component) with a messaging linkage. The model component naturally

becomes the “service” while the view component represent client interface. M-MVC

employ a double-linked multiple-stage pipeline model that refines MVC partition into

small grained stages with messages exchanging between the neighbor stages in both

directions. This structure has following properties:

a) The uniform stages and pipeline communication behavior with input and

output interfaces forms a regular modular structure. Theoretically, this pattern

can be applied to decomposition at any part within the system embracing

natural event linkages and produces multiple coordinated objects in a single

application. Each stage or object, a primary distributed component, forms the

core of a Web Service.

b) This modular multiple-stage approach facilitates the system process being

controlled in a fine grained fashion for distribution, which is impossible in a

 104

canonical two-tier client-server model for Web applications and MVC model

for desktop applications.

c) Each stage along the pipeline forms a synchronization point for collaboration.

d) Bi-directional traversal between adjoining stages enables invertible changes of

system state, which is an effective method for participatory components to

maintain a common state.

e) The messages, which contain event or rendering information, provide a

uniformed format for flexible dissemination over diverse communication

protocols and patterns (e.g. unicast and multicast).

The Web Services composition of M-MVC is further depicted in fig. 3.10, which

shows three elements: NaradaBrokering (NB) that provides communication services (e.g.

HTTP, UDP, and TCP transportation protocols); SOAP (header, body, and encoding

rules); and application (event messages). Normally, SOAP messages use text encoding

(XML format) and are carried with HTTP protocol through port 80. However, the

overhead of replicated information in each envelope and header, XML parsing, and

HTTP protocol etc. added up can make this approach very inefficient. We use a high

performance approach ─ namely, only keeping initial negotiation message (e.g. message

NB

SOAP

Application

NB

SOAP

Application

1

1 1

1

1
i

i

i

ii

Mapped SOAP
Mapped SOAP

i > 1

Figure 3.10 Web Services composition of M−MVC application, SOAP, and NB

 105

1) with XML format whilst encoding subsequent messages (message i) with agreed

“mapped SOAP” format (e.g. native format for serialized event object) through NB

transport using a different port. This can be achieved by special encoding rules with

proper settings in SOAP header [HPSTREAMING]. Future releases of NaradaBrokering

will include implementation of this algorithm in support of high performance streaming

for Web Services. Apart from performance gains, which particularly important for time

critical applications, it allows a uniform interface for native transportation and Web

Services compliance.

 106

Chapter 4

Monolithic SVG experiment

4.1 Summary of SVG

Scalable Vector Graphics (SVG) (ref. Appendix F) is a programmable vector graphics

technology that embraces following features: mix of vector and raster graphics, open

standard, XML format, DOM structure. Particularly, with its support of the W3C DOM

event model, SVG satisfies the need for building complex interactive and scriptable Web

applications. As a specific DOM application with SVG semantics and XML syntax, it

provides a rich and scalable context for prototyping and evaluation of M-MVC design.

The underlying event model is a key capability that distinguishes SVG from a

language that is simply for describing rich graphical content with XML and facilitating

static graphics rendering. Interactivity enables SVG to response to user interaction such

as zoom in/out and hyper linking with dynamic rendering results. With Java and

JavaScript binding, sophisticated applications including scripting and animation can be

accomplished by manipulating SVG DOM elements.

We show in fig. 4.1 that a SVG application can be divided into visual component

(View), SVG DOM (Model), and application modules (third party software components

 107

with language binding such as JavaScript). The decomposition indicates a clear

separation of data structure from its representation and system behavior. The logic of

interactive SVG applications can be illustrated by event-based interactions supported by

DOM event model.

As discussed in section 2.5, there exist two types of event handling in a DOM

structure. One is the interaction between DOM and other external components; the other

is event propagation within DOM tree. The external event process is derived from basic

event/listener model (see fig. 2.1) and applies between decoupled model-view and model-

JavaScript components. The former assures that any SVG DOM structure change would

get notified in visual component and trigger corresponding update rendering. The latter

allows user input invoking access and modification of DOM from call back methods.

DOM Node interfaces (see fig. E.1) facilitates adding event listeners on element nodes to

receive notification of various types of events. We provide a simple example using a

toggled rectangle (ref. Appendix F.4) to illustrate how SVG animation is supported based

on user interactions.

register DOM mutation event listeners

notify DOM mutation event

Figure 4.1 Architecture of interactive SVG application

attach event handler
to DOM node

Invoke call back method

JavaScript
(app. behavior)

SVG DOM
(data structure)

SVG View
(presentation)

 108

4.2 Summary of Batik SVG Browser

4.2.1 User interface of SVG browser

Batik [BATIK] is “a Java-based toolkit for applications that want to use images in the

Scalable Vector Graphics (SVG) format for various purposes, such as viewing,

generation, or manipulation”. It has been built to conform to SVG 1.0 specification

[SVG]. As shown in fig. G.1, it provides developers with a set of core modules (e.g. SVG

parser and generator, DOM implementation, GVT and image renderer) that can be used

together or individually as building blocks for host Web applications.

Figure 4.2 Screen shot of Batik SVG browser

 109

Common Web browsers are used for browsing HTML document. Likewise, Batik

SVG browser is a client application for navigating SVG content. As vector graphics

allow zoom in/out, rotation, translation, and visual effects (e.g. clipping, masking, and

alpha channel), SVG browser is very suitable for presentation style client interfaces at

various display sizes. A screen snapshot of a modified SVG browser with a displayed

document from Batik “barChart.svg” [BATIK] is shown in fig. 4.2. The window is

comprised of two main parts: menu bar at the top and canvas area in the center. In

addition to file operations such as “open” and “reload” a local or remote SVG document,

the menu bar mainly provides a set of graphics functions including zoom in/out, rotation,

and translation. As discussed in section F.1, vector graphics are converted into bitmap-

based images (so called “rasterizing”) at the last moment before display. This allows the

flexibility of applying various imaging processing methods (e.g. affine transforms) while

keeping rendering with high resolution. Fig. F.2 compares the original and 2 times scaled

varChart.svg document.

Batik browser has three distinctive ways in presenting a SVG document, which are

described in the following:

One operating mode supported by Batik is loading in a SVG document with basic

image rendering options (affine transforms) provided by menu items. Since it doesn’t

change original SVG content and there is no real user interaction at all, this approach is

called “static SVG”. Batik defines it as “static mode” with parameter

ALWAYS_STATIC. There’s no event association between DOM and GVT image

renderer. In another word, operations are conducted only at the root node of SVG DOM

 110

tree. That is, taking SVG document as a whole. In fact, there’s no DOM structure needed

theoretically as all rendering state is held at GVT tree.

Another mode is so called “interactive SVG”, which supports hyperlink functions.

Since the semantics of mouse event (mouse click over a URI reference element), cursor

behavior (changing appearance), and action (invoking a SVG file loading) are straight

forward, limited DOM and GVT links is required. Batik uses

ALWAYS_INTERACTIVE to refer to the mode. Note we use URI here to include

references to an internal document fragment contained within a document file while URL

generally only indicates a path to a file location.

The third and most complete interaction mode is provided by “dynamic SVG” in

ALWAYS_DYNAMIC model. It allows a user to manipulate SVG content at run time

through adding, modifying, and deleting elements over SVG DOM structure. To enable

interactive and animation experience, substantial event-based interactions are involved

between SVG DOM, backend JavaScript, and client user interface components as

illustrated in fig. 3.9. Because mouse events are detected and captured on a per pixel

change basis, the process usually requires frequent accessing of GVT and internal SVG

DOM structure. DOM event model is used to handle event invocations and propagations.

In summary, static, interactive, and dynamic are different mechanisms that Batik

constructs and renders SVG in the browser. Interactive and dynamic SVG are performed

in canvas area by invoking mouse events that can be controlled in a fine grained per pixel

change manner. Corresponding Batik implementations provide reusable components for

building highly interactive client interface with SVG.

 111

4.2.2 Architecture and implementation of SVG browser

Batik SVG browser is an application built with core modules provided by Batik

toolkit. The architecture includes a set of XML handling, bridge/transcoding, rendering

and display classes, as shown in the patches from left to right of fig. 4.3 [T. DeWeese].

For convenience, we introduce each major package based on system workflow and refer

to a more detailed discussion in appendix.

A key piece of work for a SVG browser is to load in a SVG document from a URL

and prepare it for display. This process includes following steps: parsing URL, loading

SVG document, creating SVG DOM tree, building GVT tree, and rendering GVT. A

complete workflow from opening an URL link to rendering to display devices is provided

in fig. H.3 and H.4 in the appendix. To enable interactive and dynamic SVG features,

Batik deploys JavaScript coding, DOM event handling and JavaSwing update rendering

to repond to real-time user interactions.

The relationship between SVGDocument, bridge.GVTBuilder, and

bridge.BridgeContext are shown in fig. 4.3. The class of dom.svg.DocumentFactory

defines an interface to create SVG Document. A critical pre-processing step is loading

dom.svg.SVGDocumentFactory

bridge.GVTBuilder
svggen.SVGGraphics2D

gvt.renderer.Renderer

swing.JSVGCanvas
transcoder.Transcoder

bridge.BridgeContextbridge.BridgeContext
gvt.GraphicsNode

SVG file
org.w3c.dom.svg

SVGDocument

transcoder.ImageTranscoder

Figure 4.3 Architecture of Batik SVG browser

 112

SVG into memory. Based on parsed document path, the

org.apache.batik.bridge.DocumentLoader class decides whether to retrieve SVG

from a local file system or open a network connection for a remote server. Since SVG is

defined in XML, XML parser plays an important role in validating and/or parsing each

input tag. The process is depicted in fig. H.2, where SAXDocumentFactory provides

utility classes to build SVG DOM. Note that when a parsed SVG element is inserted into

the DOM structure, it also fires an event to invoke methods in

org.apache.batik.bridge.SVGGElementBridge class, which results in a correponding

graphics node being added to the GVT tree as well (ref. fig. H.5). As a distinctive design

feature, Batik introduces a GVT tree to seperately handle rendering and display classes.

DOM provides interfaces for accessing geometric information. Bridge classes implement

the interfaces by using GVT classes so as to accomplish the mapping between DOM

nodes and GVT nodes. It worth mensioning that bridge.BridgeContext holds useful

context information to discribe the mapping. The following example shows key steps to

load in a SVG document and build a GVT tree.

Although most sophisticated graphics systems use vector graphics, modern display

devices are based on rasterized images (ref. Appendix F.1). SVG enables rasterizing to

occur before writing to an offscreen image buffer, which allows much more flexibility for

transformation (e.g. scaling) and rendering optimization. Batik SVG browser uses the

ua = new UserAgentAdapter();
loader = new DocumentLoader(ua);
ctx = new BridgeContext(ua, loader);
svgDoc = loader.loadDocument(url);
svgRoot = svgDoc.getRootElement();
builder = new GVTBuilder();
gvtRoot = builder.build(ctx, svgDoc);

 113

canvas area for SVG display. The rectangular area maps to a corresponding image buffer

in memory. SVG rendering is handled by swing.JSVGCanvas, a Java Swing UI

component as depicted in fig. H.1.

Interface gvt.renderer.Renderer can be implemented by two ImageRenderers:

StaticRenderer and DynamicRenderer, which correspond to the rendering of static

SVG and dynamic SVG document. The “renderer.repaint(Shape area)” method

does the real work of rendering GVT tree into raster images (ref. fig. H.13). Returned

offscreen image is used by the renderer for rendering. Critical steps of the SVG rendering

process are listed in the following.

At lower level implementations, renderer.repaint(area) invokes rendering of

GraphicsNode in tiles (sub-regions of frame buffer) that cache image data for future

usage.

The image buffer is created based on properties of ColorModel and Raster, where cm

is ColorModel assigned to GraphicsUtil.sRGB_Unpre; wr is a WritableRaster and

DynamicRenderer renderer = new DynamicRenderer();
renderer.setTree(gvtRoot);
renderer.setTransform(ViewBox.getViewTransform(null, svgRoot, Width, Height));
renderer.updateOffScreen(Width, Height);
area = new Rectangle(0, 0, Width, Height);
renderer.repaint(area);
BufferedImage image = renderer.getOffScreen();

BufferedImage offScreen = new BufferedImage(cm,
 wr.createWritableTranslatedChild(0,0),
 cm.isAlphaPremultiplied(),
 null);
Graphics2D g2d = GraphicsUtil.createGraphics(offScreen, hints);
CompositeGraphicsNode node.primitivePaint(g2d);
AbstractGraphicsNode node.paint(g2d);

 114

provides pixel writing. The rendering starts from GVT root node. On encountering a

composite node, it needs to loop through the child nodes (ref. fig. H.11). The renderer

paints different types of node separately (see fig. H.12). GVT content in bitmap image is

represented by the offscreen image of JGVTComponent, a Swing UI component in

canvas area (ref. fig. H.8). For dynamic SVG document, the update rendering of

JGVTComponent can invoke other UI components such as border and menu container to

re-display as well. Note that SVG rastering can use either a single or double buffer as

shown in fig. H.9.

Two additional packages are transcoder.Transcoder and svggen.SVGGraphics2D.

The former converts SVG to traditional raster image format like PNG, JPEG, PDF, and

TIFF; the latter generates SVG content from Java Graphics2D applications. Since these

classes are not associated with the centeral work of the thesis project, we will not go into

further detail here.

4.3 Intercepting Events in Batik SVG Browser

We’ve designed a set of monolithic SVG applications based on Batik SVG browser

[QCF-07-03]. The experiments use SVG as a framework to build interactive

collaboration applications with publish/subscribe scheme. One type of applications is

mainly sharing of static SVG documents. Specifically, it allows sharing of URL

(including URI that pointing to document fragments) and affine transforms such as zoom

in/out and rotation. Because interactions on static SVG document are conducted only at

document root node, there’s no internal DOM event involved. The other type of

applications enables sharing of dynamic SVG features, which include sharing of

advanced capabilities such as hyperlink and animation. As JavaScript adds event listeners

 115

on SVG DOM elements to invoke call back methods in the process (ref. fig. 4.1), it

enables development of separate application logic (e.g. intelligence for online game using

JavaScript) from management of the DOM structure. DOM event model is extensively

used in this mode for user input invoked interactions.

Identical SVG applications can be made collaborative by sharing of events via

messaging broker, as illustrated in fig 4.4. As we have logical decomposition of an SVG

application into fine-grained pipelines (ref. fig. 3.1), a system interaction can be

represented clearly by the event workflow along the pipeline path from following stages:

user interface, GVT, SVG DOM and JavaScript. Interception of events can occur at any

stage of the pipeline on both legs. The intercepted event can then be published to a

common topic managed by the messaging broker, which is forwarded to other participant

applications. After receiving the event, target applications insert it into local system

pipeline at the same stage that invokes similar functions.

The concept of “event” can be defined in a broad sense for different applications (ref.

section 3.1.3). However, the complexity of a collaboration system largely depends on the

Output port Input port

View

Renderer

User Port

JavaScript

Application as Web Service

Port Facing Resource

Rendering as
 messages Event as messages

Model

Master client

Set up an event
class (topic)

Publish
 an event

to collaborative
clients

Subscribe to
the topic

Facing

Input port Output port

View

Renderer

User
Port

JavaScript

Application as Web Service

Port Resource

Rendering as
messages

Model

Participating client

Facing

Facing
Facing

Figure 4.4 Making SVG collaborative by sharing of
 intercepted events

Broker

GVT
GVT

SVG DOM
SVG DOM

 116

granularity level of events for sharing: the smaller the event, the more time constrained it

is. In an interactive SVG game application, for example, it is common to require event-

based interactions being controlled at per pixel change level. In this way, it allows timely

reaction to a stream of user inputs to achieve real-time experience. On the other hand,

sharing of URL event can be considered as large grained interaction, since large grained

events like loading and rendering a new graphics document are expected to be a less

frequent operation due to the huge overhead of I/O and computation.

We provide in Table 4.1 a list of events shared in the implementation of monolithic

SVG collaboration. These events can be used independently or combined to achieve a

variety of collaborative capabilities ─ as simple as a shared zoom in operation on a static

SVG document or as complicated as a shared chess online game. We classify the events

into Batik GUI Event, UIEvent, DOMEvent, SemanticEvent, and ControlEvent to show

that events are handled at different level of the system design. Further more, within an

application, the mechanism of processing events belonged to the same type (or feature) is

quite similar while events from disparate types are often treated very differently. The

complexity is dominated by event granularity and corresponding intensity of interaction

and we have summarized this feature in Table 3.3.

Table 4.1 Events for monolithic SVG collaboration applications

Event type Features Event name
COLLABORATIVE_NEWWINDOW_ACTION
COLLABORATIVE_WINDOW_RESIZE_ACTION
COLLABORATIVE_COMPONENT_RESIZED_ACTION
COLLABORATIVE_CLOSE_ACTION

Window/Viewer action

COLLABORATIVE_EXIT_ACTION
COLLABORATIVE_OPEN_ACTION
COLLABORATIVE_OPEN_LOCATION_ACTION

Load a document

COLLABORATIVE_OPEN_HYPER_LINK_ACTION
COLLABORATIVE_RELOAD_ACTION
COLLABORATIVE_BACK_ACTION
COLLABORATIVE_FORWARD_ACTION

Document history

COLLABORATIVE_LOCAL_HISTORY_BUTTON_ACTION

Batik GUI Event

Affine transformations
of SVG (e.g. scaling,

COLLABORATIVE_AFFINE_ACTION

 117

rotation, and
translation)

COLLABORATIVE_RESET_TRANSFORM_ACTION
COLLABORATIVE_SET_TRANSFORM_ACTION
COLLABORATIVE_PREVIOUS_TRANSFORM_ACTION

Affine transform history

COLLABORATIVE_NEXT_TRANSFORM_ACTION
COLLABORATIVE_PLAY_ACTION
COLLABORATIVE_PAUSE_ACTION

Animation through
thread control

COLLABORATIVE_STOP_ACTION
COLLABORATIVE_THUMBNAIL_DIALOG_ACTION
COLLABORATIVE_THUMBNAIL_DIALOG_CLOSE_ACTION
COLLABORATIVE_THUMBNAIL_DIALOG_MOUSE_RELEASE_ACTION
COLLABORATIVE_THUMBNAIL_OVERLAY_MOUSE_RELEASE_ACTION
COLLABORATIVE_THUMBNAIL_OVERLAY_MOUSE_DRAGGED_ACTION

Functions of the
panning window

COLLABORATIVE_THUMBNAIL_OVERLAY_MOUSE_PRESSED_ACTION
Other menu functions COLLABORATIVE_VIEW_SOURCE_ACTION
Collaboration changing
role request. Role
change between
participant/master
clients

COLLABORATIVE_CHANGE_ROLE_ACTION

COLLABORATIVE_UI_MOUSE_CLICK_ACTION
COLLABORATIVE_UI_MOUSE_DOWN_ACTION
COLLABORATIVE_UI_MOUSE_UP_ACTION
COLLABORATIVE_UI_MOUSE_OVER_ACTION
COLLABORATIVE_UI_MOUSE_OUT_ACTION

UIEvent RAW Event or
AWTEvent. Currently
only mouse event is
processed (no key
event)

COLLABORATIVE_UI_MOUSE_MOVE_ACTION
COLLABORATIVE_SET_ATTRIBUTE_ACTION
COLLABORATIVE_REMOVE_CHILD_ACTION

DOMEvent Mutation related DOM
tree change

COLLABORATIVE_APPEND_CHILD_ACTION
COLLABORATIVE_JAVASCRIPT_ALERT_ACTION
COLLABORATIVE_JAVASCRIPT_PROMPT_ACTION
COLLABORATIVE_JAVASCRIPT_CONFIRM_ACTION
COLLABORATIVE_JAVASCRIPT_SET_TIMEOUT_ACTION

JavaScript function
related event

COLLABORATIVE_JAVASCRIPT_SET_INTERVAL_ACTION

SemanticEvent

JavaScript function
dependent event

COLLABORATIVE_JAVASCRIPT_SET_PROMPT_INPUT_ACTION

DEFAULT
JOIN_IN_SESSION
REQUEST_FOR_CHANGING_ROLE
CHANGE_ROLE
REQUEST_FOR_A_BARRIER
SET_BARRIER
RELEASE_BARRIER

ControlEvent A simplified version of
session control events.
To be replaced by
XGSP events.

CONTROLLER
Serialization of DOM
action

COLLABORATIVE_SERIALIZED_DOM_ACTION

Serialization of
Graphics2D object

COLLABORATIVE_PAINT_SHAPE_ACTION

COLLABORATIVE_BEGIN_SYNC_ACTION
COLLABORATIVE_END_SYNC_ACTION

Miscellaneous
events

Synchronization for the
performance testing
model COLLABORATIVE_IMMEDIATE_BEGIN_SYNC_ACTION

Batik GUI Events are mainly comprised of ActionEvents that produced by Swing UI

components such as menu bar items. Corresponding reactions are predefined in an

application as AbstractAction classes with call back method

actionPerformed(ActionEvent e). On receiving of an ActionEvent, the event listeners

 118

added on the Swing UI components invoke the actionPerformed method and execute

containing operations. An action map is used in

org.apache.batik.apps.svgbrowser.JSVGViewerFrame.java to provide mapping

between reference names and instances of the AbstractAction classes.

UIEvent, DOMEvent, and SemanticEvent are related to RawUI, High level UI, and

Semantic stages of the M-MVC decomposition in fig. 1.2. Unlike Batik GUI Events that

deal with static SVG documents and auxiliary user interface functions, the group of

events associated with internal DOM structure and DOM event model are the core parts

of interactive SVG design and implementation. Because UIEvent, DOMEvent, and

SemanticEvent are defined on a per pixel change, per element node mutation, and

potential multiple modifications of the DOM structure, the granularity of events become

very small. Thereby, event sequence and time constraints are particularly sensitive due to

the nature of synchronization. For instance, a missing mouse move event over the

network in a sequence of mouse down, mouse move, and move up would generate a

totally different semantic meaning to a receiver since original “mouse drag” is replaced

by a “mouse click” instead. For another example, a prompt input dialog window of a

master client would block other treads’ execution until it receives the user input and

returns. At participating client side, however, there needs to be a similar thread

synchronization implementations to share the prompt window action but using master

client’s user input value instead. Because opening a prompt dialog and set prompt input

are two events with dependency, they must be processed in the correct order. These

examples illustrate some subtle event correlated situations that must be taken care of for

proper functioning. In particular, it shows why a high performance, QoS, and fault

 119

tolerance enabled messaging service provided by underlying messaging infrastructure is

essential for real-time interactive applications.

4.4 Properties and structure of events

 We need a sophisticated understanding of events as our research relies extensively on

the idea that the state of any entity (object, component of SVG browser, Web Service)

can be defined in terms of initial state and a stream of change events. In this chapter

sharing the change events gave us the monolithic collaboration of fig. 4.4. In section

4.4.1, we describe some broad classes of events while section 4.4.2 gives some specific

details of the SVG browser case. An important feature discovered from the research in

this chapter is the hierarchical structure of events for sophisticated interactive SVG

applications. This is shown and discussed later in fig. 4.5 where an initial single “root”

event such as a user mouse click, generates a multitude of different events as its pipelined

processing evolves.

4.4.1 Classes of Events

Here we describe three aspects of events that apply to general collaboration scenarios

and have been explored in earlier research [Fox98]. We implemented these ideas in our

systems.

1) Master and non-master events

In our collaborative session, all participating clients subscribe to a session (shared

application) topic through NaradaBrokering system. Note NaradaBrokering supports

traditional (in publish/subscribe systems) hierarchical topic labels and this is used to

conveniently label related event streams. Among the clients in a given shared application,

 120

only one client holds the “master” token and generates master events that trigger

collaborative behavior in the collaboration group. We term events that come from other

participating clients as non-master events. The master token can be changed dynamically.

Non-master clients can – as in all such collaborative architectures – choose whether or

not to follow precisely the master’s state. In the case of the chess game, this general

characteristic is refined to “Master whose turn it is to move”, “Opponent who will get the

next move” and “Observer”. This is typical of such games and “Opponent” and

“Observer” act as “non-masters” while the “master” token is exchanged between the

black and white players. As part of this early research, we built (using the same

NaradaBrokering infrastructure) a protocol where observers could bid for the player

(black or white) role. Although this was successful we did not pursue it as the intended

overall framework XGSP described below was delayed and this type of work was not

needed for our core M-MVC research.

2) Major events versus minor events

To build a robust system, we have to take into consideration that the following

scenarios will occur in the real world: clients will join and leave a collaborative session

asynchronously; a client system will crash and reboot; the replay service (recording of the

collaborative session so far) is requested, and so forth. For the purpose of synchronization

and replay functions, we design a mechanism that marks the possible synchronization

point with major events. Major events are selected semantic events (such as load a SVG

file and open a new window), which fully specify the application state. Chess game major

events correspond to the completion of each move. Minor events are events like “mouse

move” specifying “small” system changes. Note NaradaBrokering can save all published

 121

events (simply by subscribing a persistent store to the session) and so replay can always

be supported.

Collaboration involves sharing state between collaborating applications and we define

state in terms of a stream of time-stamped change (minor) events applied to a given initial

state, which is a major event. One commits this sequence of changes “every now and

then” to form new major events that fully specify the application but keep both the major

events and the minor events that led up to them. A change (minor) event based

application specification is most powerful as one can dynamically choose which events to

accept and which events to discard; further each collaborative client can inject their own

events. A state (major) event is the most efficient way of specifying the instantaneous

state of an application. By keeping both major and minor events we can trade off

performance and flexibility. Note both the full state and change specifications are thought

of as “just events”. CGL has shown that NaradaBrokering can efficiently support both

full state and change events; for example, the Anabas commercial web conferencing

system can use NaradaBrokering to handle multi-megabyte shared display events with

excellent performance [ANABAS].

This idea is important as it supports the concept of “undo” in an M-MVC application.

We suggest that systematic application of the event based application model – namely an

application is represented by initial state and a stream of change events – will produce a

very interesting computing environment where one can undo in a systematic powerful

fashion. However we did not pursue these ideas in our research presented here.

3) Collaboration as a Web Service (XGSP) Events

 122

All information in our approach is carried by events transported by NaradaBrokering.

The nature of the collaboration (e.g. who is in the session and what applications are

shared?) needs to be specified. CGL has developed a general architecture termed XGSP

or XML General Session Protocol for this [WUBF] [WBUF]. XGSP is the protocol that

controls a Collaboration Web Service. This service initiates collaborative applications

such as SVG discussed here and for example generates the “master token”. Thus the SVG

MVC Controller event handler must process both events specialized to the application

and such overall control events.

We note that XGSP has not been fully developed although the GlobalMMCS project

[FWUBP] has produced a powerful service-oriented audio-video conferencing

collaborative environment with a session server playing the role of “the Collaboration

Web Service”. This session server plays the role of a software MCU (Multipoint Control

Unit) and supports the parts of the H323 protocol needed for audio/video conferencing.

However although XGSP was architected to support general collaborative applications,

this capability was not implemented due to lack of resources in CGL. My research was

not developing “production collaborative SVG” and so we did not pursue this area in our

research. It is another topic for future research.

4.4.2 SVG Browser Events

Now we discuss special features of SVG events that are illustrated in fig. 4.5. As

already discussed, we classify SVG events into three categories – Raw UI events, High

Level events and Semantic events. Raw events are low level events that are directly

generated by user input ─ for example, mouse and keyboard events; High Level events

are generated by SVG from Raw events and W3C SVG/DOM events are of this category.

 123

Semantic events represent functionality of the SVG application or service. “Zoom” in a

SVG browser and “I Resign” in chess are such examples of semantic events.

We introduce a collaborative event as an object that wraps original SVG events with

additional context information needed by the collaboration and Service model. The

context information helps guide the events through the NaradaBrokering system to reach

other clients (subscribers in the same session). The receiving client un-wraps the

collaborative event and get an SVG event that defines detailed actions on the SVG DOM.

The Model part of Web service application analyses the SVG event based on its type and

then delivers the resultant rendering information to the associated View(s).

All events contain the information such as follows:

• An indication as to their category: either original Raw or High Level UI Event or

semantic events as generated by JavaScript or directly from the DOM by SVG

• Event characteristics (e.g. master or non-master, major or minor)

• Context information of the collaboration (e.g. client ID, session/topic, black or

white for the chess game or more generally application specific meta-data,

windows name in a multi-SVG viewer application, event sequence number)

• Context information of the Web services specifying application and collaboration

session.

The collaborative SVG event processing chart is show in fig. 4.5. Note that we serialize

Figure 4.5 Collaborative SVG event processing chart

Raw UI events
(e.g. Mouse and

key events)

High Level UI events
(e.g. SVG/DOM

events)

Semantic events
(e.g. Application
events such as

“capture” in chess
game)

Collaborative events
(e.g. Master Events
which has context

information of
collaboration and
information from
previous stages)

 124

SVG events using a natural XPATH syntax to specify DOM node position and its

properties.

4.5 Conclusions

We use this experiment to develop experience with Batik to design event structure

that can be used for later research. We also of course used the understanding of the

source code developed in this work to design the more delicate decompositions and event

captures needed in the message based MVC described later. Success at this stage was an

essential step to our later research.

We found good performance of the system but we do not present this here as it has

been demonstrated in other CGL systems such as the collaborative Anabas, PowerPoint

[WFP+04], and IDL applications [WFP+05] in CGL, which have also used

NaradaBrokering for such “monolithic” collaborations. Performance in collaboration

between inevitably distributed machines (often separated by a 100 milliseconds or more

network delay) is much less critical than that for M-MVC where one is dealing with

response on a single machine; thus our discussion of chapter 7 of M-MVC performance is

very thorough. We also used this monolithic system to develop the new collaborative

paradigms SMMV and MMMV described in Chapter 5. We note however, these

paradigms are actually better suited for the decomposed SVG browser in Chapter 6 and 7.

 125

Chapter 5

Collaborative SVG

5.1 Collaboration framework

Internet collaboration presents emerging important features with participatory and

interactivity in Web applications development. We have already explained briefly how

one can make message-based network applications collaborative in two modes – shared

input port and shared output port [Fox03]. We give more details here.

Fig. 5.1 Shared Output Port Collaborative Web Service Paradigm modified from a figure in [Fox03]

WS
View

WS
View

Event
(Message)

Service

Master

WS
View

Web Service
Message
Handler

Collaboration as a WS
Set up Session

with XGSP

Application or
Content source

WSDL

Web Service

F

I

U

O

F

I

R

O

Shared Output Port Collaboration

Other
Participants

Text Chat
Whiteboard
Have Multiple
masters

 126

Web Services interact via messages input or output through ports. These messages are

called “user-facing” (UFIO in figs. 5.1 and 5.2) or resource (service) facing (RFIO in figs.

5.1 and 5.2). The user facing ports handle all the negotiation and data for producing the

rendering associated with the Web Service. The negotiation is often associated with

Portlets [JSR168] and the WSRP protocol [WSRP]. The shared output port model shown

in fig. 5.1, has a single Web Service with the user facing messages on the output port

multicast to all clients. On the other hand the shared input port model replicates Web

services and they are synchronized by sharing input messages on resource facing ports.

There are many similarities between these two modes of collaboration.

Fig. 5.2 Shared Input Port Collaborative Web Service Paradigm modified from a figure in [Fox03]

1) The Web Services use all the usual protocols (WSDL, SOAP) on each port; this key

characteristic is left unchanged.

2) In each case, one multicasts the messages – either those arriving at a shared input port

or those produced by shared output port.

WS
View

WS
ViewEvent

(Message)
Service

WS
View

Collaboration as a WS
Set up Session with XGSP

Web
Service

F

I

U

O

F

I

R

O

Shared Input Port (Replicated WS) Collaboration

Web
Service

F

I

U

O

F

I

R

O

Web
Service

F

I

U

O

F

I

R

O

Master

Other
Participants

 127

3) Further in each case a client assigned with “master” token has “master role”. Requests

for switching between different roles (e.g. “master” versus “nonmaster” and player

versus observer) can be done dynamically as discussed in section 4.4.1.

4) Each model uses the “Collaboration as a Web Service” control service described in

the XGSP discussion in section 4.4.1.

The CGL has systematically developed this model with audio-video conferencing

[UWBF], text chats, whiteboards, PowerPoint [WFP+04], OpenOffice [Wang+Fox] and

shared display [LFKWQ]. Although our research contributed shared SVG [QCF-07-03]

to this suite, this is not our major contribution. Rather it is to extend this distributed Web

Service model to desktop applications including the key idea of separating Model and

View of the MVC paradigm by explicit messages and by controlling these messages by a

publish/subscribe mechanism. Note in the MVC language, the Web Services in figs. 5.1

and 5.2 are the Model and the “WS View” the View. There are other interesting analogies

between the distributed and desktop application case; for example we mentioned above

the WSRP protocol which could be usefully adapted as the Control protocol in MVC.

Portlets have a less fundamental role as enabling control of the layout of multiple service

views; however such a layout model could be “borrowed” from the Web Service

infrastructure and provide further powerful integration of the desktop and distributed

models.

Note that sometimes one views shared display as “different” from the shared “event”

based collaboration models. We view all these cases as just differing by where in the

pipeline from Model to View one shares events. Shared display shares at one extreme end

and its events correspond to changes in the bitmap of the rendered view. Other modes

 128

share at an earlier stage where the events define for example the state of the Model or

View in a less concrete fashion than the bitmap of the shared display.

Collaboration on this particular SVG project served well to teach us about remote

collaboration in general, both from a technological and an interpersonal standpoint. As

discussed later we developed two new models for collaboration based on our experience

in this regard.

5.2 Event-based collaboration

We discussed the critical concept of events in detail in section 4.4. Here we extend

the discussion focusing on issues important for collaboration. As we know, collaboration

corresponds to sharing of either system state or events among participating components.

Moreover, collaboration is accomplished through synchronization among participating

components by sharing of either state directly or event indirectly. This is described in

section 4.4.1 in terms of state change being specified by events. In this thesis, we discuss

two ways of building an event-based collaboration system: monolithic and Web service.

Our approach of event-driven message-based collaboration with Publish/Subscribe

scheme (see figs 3.6 and 3.7) has following implications:

 An “event” defines the incremental change of system state. We have given in

Chapter 4 a complete analysis of events and classify them as UI event,

SVG/DOM event, and semantic event categories in our collaboration experiments

with SVG. Event-based collaboration system works through timely

synchronization with updated event information communicated among

participating parties. Moreover, events can be queued and stored as record for

 129

retrieval and replay and we have these services in our messaging infrastructure for

supporting system reliability, Quality-of-Service and functionality.

 The event workflow of a presentation style application can be illustrated by its

propagation along a pipeline with stages consisting of objects (constituent system

components). As shown in fig. 6.2, the “U-turn” trip for Batik SVG browser starts

from user interaction triggering a mouse event to the completion of update

rendering in image buffer. Each stage forms a natural synchronization point for

collaboration. In a SVG Web Service model (ref. fig. 1.2), “Input port” and

“Output port” refer to interfaces between view and user facing port of Web

Service in input leg and output (rendering) leg of the pipeline.

 Event-based collaboration can be implemented in method-based fashion such as

those built on top of RPC-like system (e.g. CORBA). However, we adopt a

different approach of event-driven message-based Web Service model with

details of underlying platforms hidden in the implementation of the messaging

infrastructure level. We have elaborated this in the context of our general

approach of Web applications deployment in section 2.4. In our approach,

communication among distributed components is conducted indirectly through

messaging brokers.

 Publish/Subscribe schemes present the capability of handling complex topologies

with multiple topics and multiple clients. Our messaging infrastructure provides

topic management service and registration (for Publish/Subscribe) service so that

the collaboration system can host virtual collaborative community activities (e.g.

 130

shared browsers, multiplayer online game, and share whiteboard) in dynamic and

parallel fashion.

 Building on top of the collaboration framework, one can develop SVG

applications of instructor-led (SMMV) and participatory (MMMV) programming

models with Java and JavaScript as described later in this chapter. One can expect

this approach be applied to other presentation style application and programming

languages, and we have in our laboratory other initiatives on OpenOffice and

PowerPoint.

5.3 Monolithic collaboration

Monolithic collaboration (see fig. 5.3), is obtained when all participating components

are formed as replications of an existing application without explicit break up into a

separate Model and View component as required by the Web service architecture. This

approach works through interception of the events on a master application and allows

messaging broker to multicast them to the collaborating clients. It is a common strategy

for collaboration systems built on top of vendor’s APIs with event exposure with either

proprietary or open source implementations. We have described in detail in the case of

Figure 5.3 Monolithic collaboration

NaradaBrokering

Identical programs receiving identical events

master

SVG
browser

client
master master

SVG
browser

client
other master

SVG
browser

client
other master

SVG
browser

client
other

 131

SVG in chapter 4 although this mainly discussed the non collaborative case. The

monolithic approach is contrasted with the explicit separation between model and view

advocated in this thesis for MVC style applications. For the separated case which is

automatic for distributed Web services we discuss in the following two sections the two

modes depicted first in figures 5.1 and 5.2.

5.4 SMMV collaborative Web Service model

In the next two sections, we show that in the MVC framework, one can classify

collaboration in a way very familiar from parallel computing. In this case we are very

familiar with Flynn’s taxonomy [FLYNN] which includes the two key architectures

SIMD (Single Instruction Multiple Data) and MIMD (Multiple Instruction Multiple Data).

We show that the mode of fig. 5.1 can be thought of like SIMD and that of fig. 5.2 as

MIMD.

Single Model Multiple View (SMMV) shown in figs 5.1 and 5.4 corresponds to

Flynn’s SIMD parallel computing case with multiple clients sharing a single Model

component. For the parallel computing analogy we find a single instruction stream shared

by multiple data elements. The SMMV collaboration model can be used for lecturing in

distance education and is common in client/server Web applications with multiple Web

browsers sharing a Web Server.

 132

5.5 MMMV Collaborative Web Service model

MMMV is a generalization of SMMV, which enables ubiquity with the customization

done from the Model at server side and is shown in fig. 5.2 and 5.5. Now we have

multiple models each driving its own separate view. This corresponds to Flynn’s MIMD

with multiple instruction units each driving its own data. We see model maps into CPU

and view maps into data as we compare collaboration and parallel computing.

Furthermore, we could have hybrid models which can mix SMMV and MMMV. Thus we

can have replicated models as in MMMV but with some or all models driving in SMMV

fashion more than one view.

client

•••

Client interface
view

Client interface
view

Client interface
view

Collaboration
Session control

server

N
ar

ad
aB

ro
ke

rin
g

Ev
en

t (
M

es
sa

ge
) S

er
vi

ce
 In

fra
st

ru
ct

ur
e

Model
Web Service

Figure 5.4 Architecture of SMMVC collaborative
Web Service model

 133

A rather deeper issue comes from the many tiers present in most web service

(distributed) applications. We can in fact have a general workflow (pipeline) with several

Model and View components as illustrated in fig. 5.6. As one example consider

JavaServer Faces (JSF) [JSF], which extends JavaServer Pages (JSP) [JSP] and Java

Servlet [SERVLET] technology. This allows a multi-tier Model component with a JSP

Web tier and backend business logic. This illustrates that our classification is incomplete

as often the Web tier has multiple models even if there is only single business logic. One

would classify these systems as SMMV or MMMV depending on the relative importance

of Web tier and business logic. Of course there are also confusing cases with multiple

services (resources) in the business logic.

Turning to education for examples where we noted that SMMV was the natural

distance education paradigm, we see that MMVC is the natural architecture for

developing applications such as participatory learning tools.

Figure 5.5 Architecture of MMMVC collaborative
Web Service model

client

•••

Client interface
viewModel

Web Service

Model
Web Service

Model
Web Service Client interface

view

Client interface
view

•••

Collaboration
Session control

server

N
ar

ad
aB

ro
ke

rin
g

Ev
en

t (
M

es
sa

ge
) S

er
vi

ce
 In

fra
st

ru
ct

ur
e

 134

Figure 5.6: This shows an exemplar pipeline with 2 model and 2 view components and 4 different ways of
breaking the pipeline. The case (a) corresponds to a basic SMMV situation and (b) would also be SMMV.
(c) is MMMV while the classification of (d) is ambiguous.

(a)

WS
View1

WS
View2

WS
Model1

WS
Model2

WS
View2

(b)

WS
View1

WS
View2

WS
Model1

WS
Model2

WS
View1

WS
View2

WS
View1

WS
View2

WS
Model1

WS
Model2

WS
View1

WS
View2

WS
Model2

(c)

(d)

WS
View1

WS
View2

WS
Model1

WS
Model2

WS
View1

WS
View2

WS
Model1

WS
Model2

 135

Chapter 6

MVC decomposed SVG experiment

In this chapter we describe how we explicitly prepared a sample M-MVC desktop

client by modifying the Batik Browser. The general approach is discussed in sections 6.1

and 6.2 while the following sections 6.3 and 6.4 describe features of the events used in

Batik. The final section 6.5 gives some explicit details of the decomposition used.

6.1 Analysis of decomposition of Batik SVG Browser

Key features of the architecture of SVG and related applications can be derived from

the MVC picture (fig. 3.2). We analyze all possible events of the SVG browser (ref.

Table 4.1) and divide them into three types corresponding to the three stages of the

pipeline in fig. 3.2(b). The event types are Raw Events (low level events including mouse

and keyboard events), High Level UI Events (DOM/SVG events) and Semantic Events

(application events such as shared SVG browser “Open file” events). Raw events are

generated in the View and are converted into messages for the Model. One can design

different View modules (with trade-offs in complexity and performance) through choice

 136

of which High Level UI events and semantic events to process in the Model and which in

the View component.

When we look at the processes of interacting with and rendering in a SVG application,

we can find that data typically flows through pipelines from one end (View) to the other

(Model) and vice versa. There are many ways of decomposing the pipelines and currently

we adopt three-stage pipeline architecture as shown in fig. 3.2(b). We can assume that

each stage of the pipeline is a module that can be used independently or combined with

others to provide a Web Service. Each stage also provides a natural synchronization point

for a collaboration system.

The basic idea is illustrated in fig. 6.1. Traditional event-based programming is used

extensively in the Batik SVG browser and most modern applications. Different parts of a

program are linked asynchronously with one part producing events that are passed to

listeners whose call-back method has been passed to the producer as shown in fig. 6.1a).

This can also be implemented with explicit messages where listeners subscribe to an

event class (topic) and events producers publish them to this topic. Our strategy is to

replace the listener model by the Publish/Subscribe broker model of fig. 6.1b). Note that

Figure 6.1 Method-based event notification versus message-based Publish/Subscribe with broker intermediary

B

Subscribe to event class

A

Broker

Set up an event class (t
opic)

publish
 an event class Send event

b) message based Publish/Subscribe with broker intermediary

A B
register call back method

invoke call back method
with event

a) method based event notification

 137

either approach can use explicit queues (maintained on a broker in the message case) or

alternatively integrate the broker into the producer as in most simple method-based event

models.

In a SVG application, a complete pass of an interactive process starts with a UI event

initiated by user input (e.g. a mouse click or a key stroke), interpretation and computation,

and ends with an output mostly consisting of text or graphics for re-display of the

updated image buffer. Mapping to the Web Service pipeline model (see fig. 3.2), Raw UI

events represent mouse (or key) events while High Level UI and Semantic events imply

DOM and application events. Each stage effectively is passed by twice during the

procedure ─ one is along event propagation path; the other is on rendering approach.

In a “conventional” MVC, “controller” executes its tasks through method calls since

messages are hidden in system level. We make a critical observation, namely

“conventional” MVC has to be replaced by an “explicit message-based” MVC in order to

of the application to be distributed. In our approach, we use “explicit control messages”

to abstract the semantic meanings of “controller” so that messages of the original system

are exposed and pulled into application level. Such abstraction generates structural

changes as the following:

a) Original client application is physically split into client user interface (“view”)

and core functional component (“model”). The latter naturally becomes a Web

Service on server side.

 138

b) Method calls, which play the role as “controller” in a client application, are taken

over by “explicit control messages” that communicate between client interface

and Web Service server through the network.

c) Our approach requires us to support our model view linkage with a high

performance messaging middleware infrastructure. Note that decoupled messages

are exchanged via event brokers of our underlying messaging infrastructure,

NaradaBorkering [NARADABROKERING], in a publish/subscribe scheme.

As depicted in figure 6.2, one can use this strategy in several parts of the SVG

browser and in doing so produce multiple web services coordinated in a single

application; there are natural event linkages between the client user interface and the

GVT (or Graphic Vector Toolkit, an internal module to represent graphical view of DOM)

tree used in Batik; another between GVT and the DOM tree and finally that between the

DOM and the Java or JavaScript application. After substantial experimentation, we chose

to split the SVG browser between the DOM and GVT tree. The resultant architecture is

shown in fig. 6.2. This choice has the advantage that it naturally generalizes to other

DOM applications. However we made for more pragmatic reasons as other choices

appeared to require major restructuring of the existing software. Our search for

appropriate places to split applications into message separated services illustrated two

important principles.

• Firstly one should split at points where the original method based linkage

involved serializable Java objects. Serialization is needed before the method

arguments can be transported and this is familiar from Java RMI.

 139

• More seriously we found that the Batik often involved large classes that

implemented many different interfaces. These interfaces often came from

different parts of the program and crossed the possible stages mentioned above.

Such “spaghetti” classes as in fig. 6.6a implied that additional state information

would need to be transmitted if we split at points where classes spanned interfaces

from different modules. Of course the message-based paradigm (fig. 6.6b) tends

to force a more restrictive programming model where all data is shared explicitly

and not implicitly via interfaces crossing splitting lines.

6.2 Architecture of decomposed SVG Browser in M-MVC
paradigm

We discuss here three different ways of introducing explicit messaging into SVG.

These are illustrative of several different possibilities. In the case of fig. 6.3(a), we aim at

making original client side application collaborative with minimal changes to the source

code structure. Master events are generated and replicated to participating clients through

Figure 6.2 Decomposition of SVG browser in stages of pipeline

SVG parser
Output (Renderer)

(update image buffer)

Input (UI events)

(e.g. Mouse and
key events)

JavaScript

(access and
manipulate DOM

element)DOM tree
(before mutation)

(DOM events)

DOM tree’
(after mutation)

GVT tree’

(GraphicsNode changes)

GVT tree
(GraphicsNode events)

Decomposition
Point

View Model

 140

the NaradaBrokering Message Service. We have elaborated this approach in monolithic

SVG collaboration experiment in section 4.3. In the case of fig. 6.3(b), the heavy weight

part of the computation is packaged as a Web Service that runs on a server thus make the

client very thin. This design is optimized for ubiquitous access for SVG document over

variety of hand held devices like PDA and cellular phone with bitmaps generated at

server side and shared among clients. In the case of fig. 6.3(c), we have a high

performance light weight version particularly designed for interactivity with compelling

time demands of an Internet game. This chapter focuses on the latter case.

Note that we can support collaboration in two extremes ─ firstly the shared input port

model where one replicates Web services and delivers events generated on a master View

client to all instances of the Model. These service their associated View component. This

has maximal flexibility for customization of each collaborative client. In the shared

output port of collaboration service, a single Model instance uses NaradaBrokering to

multicast rendering information to all collaborating View modules.

Shared SVG Browser on PDA

b. Decomposed WS optimized for thin
clients

Shared SVG Browser on PC

a. Non-decomposed collaborative SVG
requiring minimal changes to the original
source code

Messages contain control information

Event (Message) Service

R F I O

SVG

Semantic
High Level UI

Raw UI
Display

Collaborative Events and
Web Service messages

Internet Game

c. Decomposed WS optimized for
performance

Messages contain control information

Semantic

R F I O

U F I O

Web Service

Event (Message) Service

High Level UI
Raw UI
Display

Figure 6.3 Three among the different ways of decomposing SVG between client and Web Service

Rendering as
messages

Events as
messages

Input port Output port

Rendering as
messages

Events as
messages

Messages contain control information

Semantic
High Level UI

R F I O

U F I O

Web Service

Event (Message) Service

Raw UI
Display

Input port Output port

Collaborative Events and
Web Service messages

Collaborative Events and
Web Service messages

 141

6.3 Analysis of User Interface generated events

Mouse events in the canvas area are the smallest grained UI events being capturing

per pixel change. They enable various nifty interactive and animated functions. The

trade-off, on the other hand, is that the fine-grained event-based control can dramatically

increase the number of events for processing and add interaction overhead over the

network. In the case of “move a piece” in chess, for example, a few to over several dozen

mouse events may be generated depending on the path that a user drags the mouse.

Therefore, we investigate in depth of the relationship between user interactive pattern and

basic structure of mouse events here in this subsection and hierarchical event structure in

section 6.4. The idea is to provide a common ground for decomposed SVG experiment

and further event-based optimization in section 7.2.4.

In Java programming environment, an AWT event (UI event) is invoked when a user

interacts with application GUI using an input pointer device such as mouse. In

java.awt.event.MouseEvent.java class, mouse events are defined in following types:

Table 6.1 AWT Mouse Events

Event Type Description
MOUSE_CLICKED The “mouse clicked” event is generated when a “mouse pressed” and a “mouse

released” occur in a row.
MOUSE_PRESSED The mouse button has been pressed.
MOUSE_RELEASED The mouse button has been released.
MOUSE_MOVED The mouse position has changed.
MOUSE_ENTERED The mouse pointer has entered a graphical component.
MOUSE_EXITED The mouse pointer has left a graphical component.
MOUSE_DRAGGED The “mouse dragged” event occurs when the mouse position changes while a mouse

button is pressed.
MOUSE_WHEEL The “mouse wheel” event is only used when a mouse equipped with a wheel has its

wheel rotated.

We have illustrated in fig. 6.2 the event flow of SVG applications. JavaScript allows

adding event listeners on SVG elements to invoke scripting functions (see lines 23 and 32

 142

of fig. F.7). A mapping between major JavaScript events and corresponding AWT events

are listed in Table I.1 in Appendix.

There’re many possible ways that one can generate mouse events. We list in Table

6.2 typical user actions and corresponding events they fire to facilitate analysis of event

interactions in interactive and dynamic SVG applications. Here, we refer as an element to

any SVG graphical object rendered in canvas area. A mouse event suffixed with

bracketed star (*) represents potential multiple entries.

Table 6.2: The relationship between a user interaction vs. AWT mouse events in SVG applications

No. User action Sample function AWT mouse events

MOUSE_CLICKED 1

Click on an element invoke hyperlink
MOUSE_PRESSED,
MOUSE_RELEASED

2 Drag an element move a piece in
chess

3 Draw an simple shape draw a line or curve

MOUSE_PRESSED,
MOUSE_MOVED(*),
MOUSE_RELEASED

4 Move mouse into an element highlight a
hyperlink

MOUSE_ENTERED, MOUSE_MOVED

5 Move mouse out of an element MOUSE_MOVED, MOUSE_EXITED
6 Move mouse into and out of an element MOUSE_ENTERED, MOUSE_MOVED,

MOUSE_EXITED

The above table presents several interesting features of the relationship among user

action and mouse events:

 A user action can be deployed in different ways. For example, a mouse click

action in case 1 can be handled by responding either to MOUSE_CLICKED event or

MOUSE_PRESSED and MOUSE_RELEASED events.

 Some basic event patterns are shared by different application functions. As shown

in cases 2 and 3, superficially different application behaviors such as an animated

“move a piece” in chess game and “draw a line” in whiteboard actually are based

on the same MOUSE_PRESSED, MOUSE_MOVED(*), MOUSE_RELEASED pattern.

 143

 Some actions fire multiple events. For instance, moving mouse into an element

(case 4) invokes both MOUSE_ENTERED and MOUSE_MOVED events. However, not all

events are associated with system behavior like cases in cases 5 and 6.

 Some AWT events are grouped sharing the same context, such as what occurs

when a semantic event implies multiple atomic events (see fig. 6.4).

In order to reduce unnecessary event processing cost and network bandwidth, events

with no significant role such as in cases 5 and 6 can be eliminated or compressed. At the

meantime, events that are connected to the same semantic context should be packed into

one message to aid effective processing. The pattern of MOUSE_PRESSED, MOUSE_MOVED(*),

MOUSE_RELEASED in cases 2 and 3 shows a good example for such compression.

6.4 Hierarchical event structure

In an interactive application, there are a variety of events that are coordinated in

driving system behavior. A complex system with modular design is commonly

decomposed into a hierarchical pipeline structure such as that presented in fig. 5.6. These

events are generated at different stages in a pipeline and form a hierarchical event

structure.

A hierarchical event structure is exemplified in fig. 6.4 for the situation of SVG

applications. In general we start with a “root” event at the beginning of the processing

pipeline and as the processing proceeds each stage generates one or more dependent

events that form a hierarchical cascade. We can also expand this idea to include case

where a semantic action includes more than one “atomic events”. Dragging a mouse from

 144

A to B on the screen could be an interesting semantic action; it can generate very many

atomic mouse move and mouse over events.

For example, a semantic event such as “moving a piece” in a chess application

encompasses the invocation of a sequence of UI events ─ “mouse down”, “mouse

move” … and “mouse up”. The number of intermediary mouse move events reflects the

distance of change in pixels. Likewise, “drawing a line” in a SVG whiteboard application

embraces similar event stream. However, the semantic meaning and corresponding

changes on the Model ─ SVG DOM are very different. The former triggers DOM

mutation events with modification of x, y coordinate attributes of an existing graphics

node, the piece. The latter adds a new graphics object, a “line”, to the DOM structure.

This suggests that system behavior largely depends on application level events (or

semantic events such as “move a piece”) while the low level raw events (or UI events)

mainly contain coordinate information. While it is difficult or perhaps even meaningless

to compare application performance at semantic event level, it is possible to investigate

system features by measuring at standard low level visual interaction, which is based on

6.4 Hierarchical event composition

EE

s1
s1 s2

s2

a2
a2

move a
piece

move a
piece

a3
a3

mouse
down

mouse
down

mouse
move

mouse
movea1

a1
mouse

up
mouse

up

• • • • • •Semantic events

UI events mouse
move

mouse
move

• • • • • •

 145

UI event (mouse or key stroke event) that invokes corresponding data structure and

graphical presentation changes.

6.5 Implementation

The diagram of decomposed Batik SVG browser in M-MVC structure is shown in fig.

6.5. It illustrates the design features of building distributed systems with simple services

(ref. section 8.2 and [G. Fox]). Notably, we insert several event queues to buffer events

between major SVG components, which include JSVGCanvas, GVT, and DOM. As

introduced in section 6.1 (ref. fig. 6.1), replacing method calls with explicit messages

allows decoupling of system classes with natural event connections. The event queues not

only facilitate distributing small grained components as services, but also provide other

two important supports ─ sequencing events and performance optimization.

The decoupled JSVGCanvas, GVT, and DOM components constitute the three stages

along the pipeline. They supply nature synchronization points for collaboration. The

JSVGCanvas and GVT stages generate sequential events, which are invoked by AWT

events from user interactions and propagated along GVT tree respectively. However,

Figure 6.5 Decomposed SVG Browser in M-MVC paradigm

NB
client
NB

client

NB eventNB event

NB eventNB event

batch processing
rendering request

Subscriber 2
JSVGCanvas

Input

Subscriber 2
JSVGCanvas

Rendering

Subscriber 2GVT NB
client
NB

client
Subscriber 2DOMNB

client
NB

client

Subscriber 2DOMNB
client
NB

clientSubscriber 2GVT

vector events/event
compression

EventProcessor

EventProcessor

Subscriber 2JavaScript

 146

DOM is not synchronized in Batik implementation. Namely DOM structure changes and

the DOM Mutation events produced thereafter are not synchronized when triggered by UI

events. Since one user interaction could invokes many atomic DOM modifications, fig.

6.7 shows that unsynchronized DOM Mutation events e1, e2 ... en are sequenced before

feeding into the pipeline at GUI side for rendering.

In general, a pipeline structure expects that events are all sequenced. As Batik

implementation does not fully implement this constraint, there exist some constraints on

application functions. For example, JavaScript loop function “timeout” can generate

unpredictable results in terms of the number of actions and the time they consume and it

is not supported in Batik. The Batik’s algorithm of DOM event processing and GVT

update rendering works fine as long as all classes are tightly coupled sharing the same

context such as local memory and unpredictable operations are prohibited so that each

group of user invoked computations are guaranteed to complete in a short enough period

of time. However the possible lack of sequencing of events is more problematic in MVC

decomposed SVG with a distributed implementation. Disparate CPU processing

capability and network latency add more uncertainty to the system runtime behavior, and

represent some of the well known hard problems that distributed applications commonly

encounter. We note that NaradaBrokering supports guaranteed delivery of messages in

the order they are delivered to the system. Thus problems can occur not to the bad

ordering but to change in correlation of events if their relative timing gets distorted. This

can be addressed by good system design and well identified events. However Batik was

not in our opinion well architected in this regard. These issues did not affect the chess

application used in our tests.

 147

The event queue between JSVGCanvas and GVT stages is designed for performance

optimization. The class of org.apache.batik.gvt.event.AWTEventDispatcher.java

dispatches an AWT event to its containing GraphicsNode of the GVT tree using

coordination information. We’ve discussed in section 6.3 that although a large number of

UI events are produced, not all of them are relevant to the application behavior. Therefore,

it is beneficial to compress unused events at this early stage to reduce computation and

network transportation cost. Groups of events can be identified for a vector event based

on common event patterns (ref. sections 6.3 and 6.4) although this can also be done at a

later stage when events are packed into a message payload for network transmission.

The EventProcessor component is designed to buffer and process all types of events.

It is used at both event propagation and rendering legs of the pipeline. Currently M-MVC

implementation provides one event queue (EventRepository) that hosts all types of

events (ref. Table 4.1) and the EventProcessor access and process events in a

synchronized and sequential manner. Events with different priorities are treated

differently. For example, ControlEvent has higher priority than other Batik events thus is

handled first. The EventProcessor also interprets event flags to identify events that

share the same semantics context and schedules batch processing of the events in a group.

The EventProcessor is responsible for forwarding events (e.g. to DOM in propagation

leg), invoking Batik methods (which is conducted by UpdateManager via Runnable

queue), and interfacing with NaradaBrokering via NB client to upload and unload

messages for message passing over the network.

We note that events exist in different layers of the system stack. In the case of M-

MVC decomposed SVG browser, there’re two levels of event: system events like AWT

 148

event and application events (including Swing events, Batik events, and collaborative

SVG events). Here, we refer different types of event such as UI, high level and semantic

events (ref. Table 4.1) to correspond to different stages of the pipeline structure. These

event types can be mapped to AWT event, SVG/DOM event, and application event.

At each level, there may be one or many event queues hosting the events. There may

be only one system event queue while each application may have its own event queue.

The operating system is responsible for making sure the right events get to the right

programs. Java virtual machine has one main AWT event queue

(java.awt.EventQueue). To access the native system event queue, a Java program (but

not applet) use the Toolkit.getDefaultToolkit().getSystemEventQueue() method

in the java.awt.Toolkit package. Swing and Batik both have its own event queue. We

regard the Runnable queue that is managed by UpdateManager (ref. fig. H.13) as the

event queue of Batik, which controls the system event flow. Especially, it coordinates

between DOM changes and update rendering for proper responses to user invoked

interactions. We keep the Batik queue in our implementation (e.g. for batch processing

rendering requests) but limit its usage as a local queue rather than a global event structure.

For distribution purpose, we convert Batik architecture from a single global event

queue into multiple localized event queues in M-MVC decomposition. Both tightly

coupled (e.g. standalone or desktop systems) and distributed interactive style applications

require an event approach, which implies that an event queue structure is needed for

storing each user interaction invoked events (e.g. mouse or key events). In a broad sense,

our experiment with SVG decomposition suggests an effective approach to change at

architecture level from a tight coupled MVC model to a distributed M-MVC pipelined

 149

model. We note that it elegantly support major collaboration paradigm (ref. sections 3.4,

5.4 and 5.5). The design of the needed distributed queues both at application and system

(messaging) layer needs further research.

Batik separates the structure of the SVG DOM and GVT. However, they share

BridgeContext as shown in fig. 4.3. The Bridge package provides critical mapping

information between DOM tree nodes and GVT tree nodes that facilitates processing of

SVG document and rendering of GVT tree. We refer as “shared state” in fig 6.6 to the

global information shared by different parts of the system. The class interfaces and

variables that are used by Batik across the system pipelines make the conversion to the

distributed model harder as M-MVC structure tend to force a more restrictive modular

programming model.

Figure 6.6 Implicit and explicit state

subscribe

A B

Broker

publish

send event

b) Separated component/service model

subscribe

A
View

B

Broker

publish

send event

a) Conventional shared state model

Shared stateShared state

A

We employ a mirrored DOM structure at client side. In this way, we can achieve M-

MVC with separated service model, which shares data explicitly and not implicitly via

interfaces crossing splitting lines while avoid dramatic modifications of the Batik

structure. Fig. 6.7 depicts the event flow chart that discloses the relationship of user input

and system behavior in a fine grained event-based interaction.

 150

Figure 6.7 Event flow chart of SVG applications

Output
(Rendering)

Output
(Rendering)

UI events
(mouse event)

UI events
(mouse event)

GVT node
change event
GVT node

change event

GVT node
event

GVT node
event

Collaboration
event

Collaboration
event

JavaScriptJavaScript

DOM event
(locating element)

DOM event
(locating element)

DOM mutation
event

DOM mutation
event

Collaboration
event

Collaboration
event

NB eventNB eventCollaboration
event

Collaboration
event

NB eventNB event

DOM event
(locating element)

DOM event
(locating element)

DOM mutation
event

DOM mutation
event

e2

en

•••

e1

Collaboration
event

Collaboration
event

e1e2 • • • en

There’re two directions of event propagation in a pass of event processing, View to

Model and Model to View, which accomplish separate functionalities.

 One direction is mainly for receiving UI events and locating the event target in the

Model at server side. The GVT tree helps convert a mouse event from its device

coordinate system to user coordinate system.

 As SVG applications add event listeners on the DOM model, this leg starts with the

targeted node(s) invoking call back methods of listener’s class with fired event(s).

Typically, designated application functions (e.g. JavaScript) manipulate DOM

structure that produces multiple DOM mutation events including insertion, removal,

and modification attributes (e.g. x, y coordinates and color) and text value of the

nodes. In response to the DOM changes, GVT tree keeps track in a “dirty list” of

graphics nodes that need updated rendering.

We use “event stream” to describe the continual flow of events between View and

Model ends. The composition of an event stream is largely depended on the pattern of

system and user behaviors. Considering an example, when the user initiates a semantic

event “move a piece”; then the input device invokes a stream of User Interface (UI)

events ─ mouse down, mouse move… and mouse up. The number of intermediary mouse

move events reflects the distance of this piece being dragged in pixels. A system state

 151

change request propagates along the pipeline and communication between adjoin stages

implemented as event-based messages. Therefore, one can describe the system interaction

in terms of its events as shown in fig. 6.7.

Along the path of event propagation, an event is processed before being forwarded to

the next stage. The performance of a pass for a mouse event, therefore, is composed of

the latency at each stage and the connection cost between the stages. Presumably, the cost

of a semantic event is the sum of each pass invoked by the UI events making up the

semantic event. Nevertheless, some computation such as DOM mutation occurs in

parallel as shown by events e1, e2 ... en in fig. 6.7. We present in the next chapter a

performance evaluation to measure the details of the event-based interactive approach.

The fact that common operations such as JavaScript “timeout” are forbidden in Batik

suggest that the model is incomplete. It is not surprising that general M-MVC approach

needs one to extend the Batik infrastructure. However, for the purpose for this thesis

research of M-MVC, we just implemented within these constraints as we are not

producing a new production SVG browser but rather exploring research concepts. This

restriction was not a problem with the chess application used in the tests of chapter 7.

 152

Chapter 7

Performance and Analysis

We have started an extensive series of performance measurements to demonstrate the

viability of our approach. The main purpose is to identify key factors that influence the

performance of M-MVC in particular and message-based model in general of building

distributed applications. This section includes a complete description of the testing

approach and presents key measurements.

7.1 Test Scenarios

Our investigation is carried out based on experiments with conversion of Batik SVG

browser [BATIK], a stand alone client application from Apache. The process of

converting it from a tightly coupled method-based desktop system to a loosely coupled

message-based system with distributed Model and View components provides us a unique

opportunity for an in depth understanding of the structures from both application domains

and how architectural changes impact system functionality. The implementation used in

these tests is fully described in chapter 6.

 153

While one can employ various interactive applications built on Batik SVG API for

performance measurement, we use the same chess application as we used for testing our

collaborative model [QCF-07-03] so as to have a consistent experimental approach.

Game applications allow one to generate real-time system processes in a highly

interactive manner. Many advanced facets of system design including graphical quality,

user action processing capability, group communication efficiency and reliability, game

engine robustness, and overall system integration and coordination can be tested in a

comprehensive fashion.

Messaging plays a centric role in providing a software level communication channel

that connects distributed components together. M-MVC employs NaradaBrokering

[NARADABROKERING] as the underlying messaging infrastructure. The collaboration

interactions between decoupled MMMV Model-Model or SMMV Model-View

components are done through intermediary event brokers with publish/subscribe or point-

to-point interface that is provided by NaradaBrokering as messaging services (see fig.

1.3). Here are using messaging between the model and view of a traditional desktop

application.

We adopt the decomposition strategy of the Model and the View of Batik SVG

browser as delineated in fig. 1.2. The “View” including client interface components

(Swing GUI and GVT rendering) is dynamically downloaded to client. The “Model”

consisting of DOM and JavaScript modules naturally becomes a service which could run

standalone or on a Web server. Event-oriented messages, which are transported through

our messaging infrastructure ─ NaradaBrokering, play the role of the “Controller”.

 154

There are many variables that we can vary in our tests including the locations of Model,

View, and Event Broker (NaradaBrokering) and the choice of type of host computer and

network connection. One can also vary the application running in the Model (Web

service). One can investigate either the single Model and View or the collaborative

models. To simplify the issues, here we present some investigations with Broker, Model

and View in the single Model and View case as displayed in fig. 7.1.

We list scenarios for a set of performance tests: environment settings in table 7.1 and

system configurations in table 7.2. Each test case presents a choice of combinations based

on network, operating system, and CPU configurations. The coupling of the Model and

the View components varies when Broker distance changed from direct switch connection

to remote site in campus or inter-city area. In test 1 to 6, the Broker either shared the

same runtime environment or ran in a distinct operating system platform in

communication with Model and View, where both of these were run with Windows on

desktop computers. Hosting computers of Broker and View were varied to delineate the

influence of CPU processing power.

View Model

BrokerBroker

Figure 7.1 Single Model and View linked by
messaging broker

 155

Table 7.1 Testing environment settings

Test scenarios Environment Settings

Broker distance No Description Event Broker
(NB0.97 Server)

View
(Client)

Model
(Service)

Network
connection type area hop

1 Switch connection desktop2 desktop1 desktop2 direct switch 10 meters 1
2 Switch connection desktop3

(High-end desktop)
desktop3 desktop2 direct switch 10 meters 1

3 Office area linux
(gridfarm1)

desktop1 desktop2 hub 10 meters 1

4 Within-City
(Campus area) linux HPC cluster node desktop1 desktop2 routers 40 miles n/a

5 Inter-City

Solaris (ripvanwinkle)
(light loaded)

desktop1 desktop2 routers 100 miles n/a

6 Inter-City

Solaris (complexity)
(heavy loaded)

desktop1 desktop2 routers 100 miles n/a

Table 7.2 System configurations

Computer Hardware Software
No. Type Brand Processor CPU (MHz) RAM OS
1 desktop Dell Dimension 8100 Intel Pentium 4 1500 523,344KB Windows 2000
2 desktop Dell Dimension 8100 Intel Pentium 4 1500 512MB Windows XP
3 desktop (highend) Dell Dimension XPS Intel Pentium 4 2990 1GB Windows XP
4 Solaris (grids/community) SUN Ultra-60 UltraSPARC II 450 1GB Solaris 5.8
5 Solaris

(ripvanwinkle/complexity)
SUNW, Sun-Fire-880 UltraSPARC III 900 16GB Solaris 5.9

6 Linux (gridfarm1) Angstrom, Phython Intel Xeon 2400 2GB Linux 2.4
7 Linux cluster

(supercomputer node)
IBM 470 processors 1.1 Teraflops 0.5 TB Linux 2.4 SMP

7.2 Timing Considerations

7.2.1 Timing Model

A Graphics User Interface (GUI) provides the conventional computer-based

interactive style applications for visual evoked responses. A complete pass of system

behavior is started with user input in the View, event interpretation and process in the

Figure 7.2 Performance testing and timing points

T0

Machine B

Output
(Rendering)

Output
(Rendering)

Input
(UI events)

Input
(UI events)

GVT tree’GVT tree’

GVT treeGVT tree

Machine A

Event
Processor

Event
Processor

JavaScriptJavaScript

DOM tree
(before mutation)

DOM tree
(before mutation)

DOM tree’
(after mutation)

DOM tree’
(after mutation)

Machine C

Event
Processor

Event
Processor

T3 T1T4 T2

BrokerBroker

Notification service
(NaradaBrokering)

Model (Service)View (Client)

Event
Processor

Event
Processor

Event
Processor

Event
ProcessorDOM tree’

(mirrored)
DOM tree’
(mirrored)

DOM tree
(mirrored)
DOM tree

(mirrored)
T0

Figure 7.2 Performance testing and timing points

T0

Machine B

Output
(Rendering)

Output
(Rendering)

Input
(UI events)

Input
(UI events)

GVT tree’GVT tree’

GVT treeGVT tree

Machine A

Event
Processor

Event
Processor

JavaScriptJavaScript

DOM tree
(before mutation)

DOM tree
(before mutation)

DOM tree’
(after mutation)

DOM tree’
(after mutation)

Machine C

Event
Processor

Event
Processor

T3 T1T4 T2

BrokerBroker

Notification service
(NaradaBrokering)

Model (Service)View (Client)

Event
Processor

Event
Processor

Event
Processor

Event
Processor

Event
Processor

Event
ProcessorDOM tree’

(mirrored)
DOM tree’
(mirrored)

DOM tree
(mirrored)
DOM tree

(mirrored)
T0

 156

Model, and ended with re-display in the View corresponding to the system state change.

At a high level, three parts contribute to the major cost of performance ─ computation at

View and Model, and interaction between them. Performance is sensitive both to the

nature of the application and the coding style and system architecture used. Further even

with the same application, one will often find different results reflecting background

loads in system and the nature of the user interaction.

The procedure of interactions between user and SVG applications is illustrated in fig.

7.2. This shows the “U” turn trip along the pipeline delineates two legs of event

propagation: one from input device to Broker and then the Model; the other from the

updated DOM model via Broker to GVT tree and output of image rendering. Each stage

is comprised of a component with different runtime states based on its function during the

event process. Note that the communication between the View and the Model is routing of

event-based messages via Broker over the network while the inter-stage interaction

within View or Model component is done by runtime method call. When the system is

active, continuous events are pumped in and propagate along the pipeline and invoke

system state changes. However, as soon as user interaction stops, the application returns

to its inactive status. The event flow, at high level, is pretty much like current flow in an

open or closed circuit system. We found that the system performance is mainly composed

of the latency at client (GUI and GVT for locating event and graphical rendering), service

(application JavaScript code manipulates DOM elements), and messaging (event

processing, buffering, and routing). We add a timer at each of the marked timing points

T0, T1, T2, T3, and T4 in fig. 7.2 to scrutinize the cost and characteristics of the modules

delineated by these timers, and we will give further explanations in following subsections.

 157

7.2.2 Measurement Units

Considerations have to be taken as to at what granularity level one should conduct the

performance measurement. The level of granularity affects the type of events available

for observation, which further influence the structure of model classes [Veit+Herrmann].

In the SVG experiments, the timing model is built upon a refined multiple stage pipeline

structure contained within MVC framework. This allows us to observe inter-component

interactions at fine grained level within the M-MVC structure. We note that an event has

hierarchal composition that reflects the stack of system design described in chapter 6 (see

fig. 6.4). The modeling is based on input event invoking interaction on GUI components,

which correspond to element node of the SVG DOM structure. The semantics of an event

comprises of the contextual information about a graphical object. These events drive the

system state change.

As performance measurement is directly related to the choice of event for testing, we

choose to track down system interactions within the testing model to the smallest atomic

unit ─ mouse event ─ that is triggered by detection of each pixel change for performance

measurement purpose.

This approach has two advantages: firstly, it provides a common ground for

examining event process at a fine grained level; secondly, it supplies a quantitative

method that its measurement results imply essential architectural and environmental

features influencing semantic event (application level event) and overall system

performance.

 158

7.2.3 User-perceived performance constraints

It is known that human visual system (retina and brain) retains an image for a fraction

of a second after it views the image. Simply put, human eye can not detect a visual

change within about 1/20th to 1/30th of a second. This phenomenon is called visual

persistence, which is essential to all visual display technologies. It has been understood

since the first days of movies [A. Huk]. For computer-based GUI, it implies that time

delay of each system change including visual analysis and graphical feedback must be

lower than the 30 millisecond time frame to achieve coherent view ─ with prompt image

update and no flickering. Of course often a complex model change can take longer than

this to process and render.

Human perceptual sensitivity to latency of human-machine interactions puts stringent

time constraint over system design and is especially challenging to distributed media rich

applications. This is due to compute intensive graphics image processing and rendering

plus extra network latency overhead. However, messages that containing representation

data and control instructions must be delivered and processed before rendering can begin

and this can lead to possible bottlenecks of overall system performance. To achieve

proper functioning and real time experience, interactive style applications usually employ

optimizations for improved system performance. The Batik SVG browser itself buffers

changes to exploit visual persistence and it only updates the rendering every 20

milliseconds.

We discuss network performance in the next subsection and this impacts the M-MVC

application significantly as it can add 100’s of milliseconds to the user interaction.

However we intend M-MVC to be used in the local environment where our results show

 159

good performance even when components are separated by about 40 miles corresponding

to the connection between the Bloomington and Indianapolis campuses of Indiana

University with a very good network link. Note collaboration applications MMMV and

SMMV are not so sensitive to network latency as the events are pipelined and non-

masters follow master events. Here one is sensitive to the acceptable delay in round-trip

audio for interactive conversations. As discussed in Uyar’s thesis [A. Uyar], this is an

order of magnitude longer than the delay associated with visual persistence.

7.2.4 Performance optimization

Using the network for message sending almost always cause delay of system

interaction. How should one improve the efficiency of communication for interactive

applications? In real systems, people design various enhancement technologies to boost

performance, which include buffering (or caching), pre-fetching, compression (or

optimized codecs), optimization algorithms (e.g. pattern search, rasterizing, art effect, and

font support) that tweak graphics rendering. High performance messaging is another

achievable goal [HPSTREAMING] over current network transit latency at a few

milliseconds of local area network (e.g. intranet of organization area) [Fox04] and 100’s

of milliseconds of the internet scope (e.g. transcontinental links). On reliable high latency

links, one can get better performance by replacing TCP by UDP and using application

level fault tolerance; another approach to improving bandwidth but not latency is parallel

TCP streams as popularized in GridFTP and other fast FTP modifications. Both of these

ideas will be supported in NaradaBrokering and using UDP could be helpful in some

circumstances but we do not explore this here.

 160

Due to the central role that events play in deployment of interactive style applications

(ref. section 2.1.1), in this thesis, we propose two event-based methods to optimize

application performance: one is “vector event” and the other is “event compression”.

Packing small messages into a single larger one for transmission is a common way to

reduce network transportation overhead. Likewise, uploading multiple events into one

message payload constitutes a vector event that can be unpacked at receiver side.

Theoretically, any mouse event can be associated with specific action that changes

system state. However, not all events have the same significance to application behaviors,

which suggests that it is possible to eliminate some events without impacting the essential

functionality. Based on the analysis in section 6.3, one can choose to use “vector event”

and “event compression” methods independently or combined to optimize performance.

As a reference, we provide analysis of typical mouse events and their impact on overall

system performance in Table 7.3 described a little later.

7.2.5 Semantics of timing points

When measuring the duration of a method call, one can either stick with the simple

elapsed time, that is the clock difference between method entry and exit, or make the best

effort to correct for the multi-threaded nature of the JVM. In the estimated CPU time

mode, the data of the thread status sampler and the cumulative CPU time of each thread

as reported by the operating system are used to weight all method calls. For both modes,

a calibration phase at startup calculates run-time parameters for a self-correction

algorithm which account for the times used by the profiling process itself. We address

this issue indirectly by timing performance of the some of the key operations with and

without other threads running. As we will see the elapsed time of the messaging is greatly

 161

impacted by interference with other threads. This complicates the measurements of

overheads as the simple clock differences give you an overestimate as they record the

pure overhead time plus the time of concurrent threads that do not represent overhead.

We present here four timings for each of the test scenarios with the timing positions

shown in fig. 7.2 which is a simplified version of the pipeline shown in fig. 6.2. The

results in table 7.3 give mean, the error in its determination, and the standard deviation.

The times T0, T1, T2, T3, and T4 are all measured in the View and defined as follows:

 T0: start time

 T1: A given user event such as a mouse click can generate multiple associated

DOM change events transmitted from the Model to the View. T1 is the arrival

time at the View of the first of these.

 T2: This is the arrival of the last of these events from the Model and the start of

the processing of the set of events in the GVT tree

 T3: This is the start of the rendering stage

 T4: This is the end of the rendering stage

7.3 Performance measurement and analysis

The performance tests are designed to investigate overall performance of message-

based MVC; the cost of messaging and interfacing between application and underlying

messaging infrastructure; relationship of application behavior and functionality in a fine

grained view, and the influences of environment settings. Since interactive style

applications involve human and computer interactions, our performance measurement

and analysis reflect the impact of both indispensable factors as well.

 162

We have performed a series of performance measurements to test the effectiveness of

our approach. There are many variables including position of Model, View, and Event

Broker (NaradaBrokering) and the choice of type of host computer and network

connection. One can also vary the application running in the Model Web service. One can

investigate either the single Model and View or the collaborative models. We list

scenarios for a set of performance tests: testing environment settings in table 7.1 and

system configurations in table 7.2. Tables 7.3 to 7.5 contain a selection of measured data.

Table 7.3 Average performance

Mousedown events Average of all mouse events (mousedown, mousemove, and mouseup)

Test First return – Send time:
T1-T0 (milliseconds)

First return – Send time:
T1-T0 (milliseconds)

Last return – Send time:
T’1-T0 (milliseconds)

End Rendering
T4-T0 (microseconds)

No mean ± error Stddev mean ± error stddev mean ± error stddev mean ± error stddev
1 33.6 ± 3.0 14.8 37.9 ± 2.1 18.7 48.9± 2.7 23.7 294.0± 20.0 173.0
2 18.0 ± 0.57 2.8 18.9 ± 0.89 9.07 31.0 ± 1.7 17.6 123.0 ± 8.9 91.2
3 14.9 ± 0.65 2.8 21.0 ± 1.3 10.2 43.9 ± 2.6 20.5 414.0 ± 24.0 185.0
4 20.0 ± 1.1 4.8 29.7 ± 1.5 13.6 49.5 ± 3.0 26.3 334.0 ± 22.0 194.0
5 17.0 ± 0.91 4.3 24.8 ± 1.6 12.8 48.4 ± 3.0 23.3 404.0 ± 20.0 160.0
6 20.0 ± 1.3 6.4 29.6 ± 1.7 15.3 50.5 ± 3.4 26.0 337.0 ± 22.0 189.0

Table 7.4 Immediate bouncing back event

Boucing back event Average of all mouse events (mousedown, mousemove, and mouseup)

Test Bounce back – Send time:
(milliseconds)

First return – Send time:
T1-T0 (milliseconds)

Last return – Send time:
T’1-T0 (milliseconds)

End Rendering
T4-T0 (milliseconds)

No mean ± error Stddev mean ± error stddev mean ± error stddev mean ± error stddev
1 36.8 ± 2.7 19.0 52.1 ± 2.8 19.4 68.0 ± 3.7 25.9 405.0 ± 23.0 159.0
2 20.6 ± 1.3 12.3 29.5 ± 1.5 13.8 49.5 ± 3.1 29.4 158.0 ± 12.0 109.0
3 24.3 ± 1.5 11.0 36.3 ± 1.9 14.2 54.2 ± 2.9 21.9 364.0 ± 22.0 166.0
4 15.4 ± 1.1 7.6 26.9 ± 1.6 11.6 46.7 ± 2.9 20.6 329.0 ± 25.0 179.0
5 18.1 ± 1.3 8.8 31.8 ± 2.2 14.5 54.6 ± 4.9 32.8 351.0 ± 27.0 179.0
6 21.7 ± 1.4 9.8 37.8 ± 2.7 19.3 55.6 ± 3.4 23.6 364.0 ± 25.0 176.0

Table 7.5 Basic NB performance in 2 hops and 4 hops

2 hops

(View – Broker – View)
4 hops

(View – Broker – Model – Broker – View)

 Test

milliseconds milliseconds
No mean ± error stddev mean ± error stddev
1 (Switch connection) 7.65 ± 0.61 3.78 13.4 ± 0.98 6.07
2 (Switch connection, high end desktop) 4.46 ± 0.41 2.53 11.4 ± 0.66 4.09
3 (Office area, linux on UltraSPARC) 9.16 ± 0.60 3.69 16.9 ± 0.79 4.85
4 (Campus area, linux HPC cluster node) 7.89 ± 0.61 3.76 14.1 ± 1.1 6.95
5 (Inter-City, solaris light loaded) 7.96 ± 0.60 3.68 14.0 ± 0.74 4.54
6 (Inter-City, solaris heavy loaded) 7.96 ± 0.60 3.67 16.8 ± 0.72 4.47

 163

The results tables 7.3 to 7.5 record times between the processing markers T0 T1 and

T4 shown in fig. 7.4. Figures 7.3 through 7.8 give detailed histograms extending the

results of table 7.3. Each row of the table corresponds to averages over many event

processing sequences i.e. to averages over processing of mouse events with

understanding that for efficiency strings of mouse move events (generated by the system

as each pixel is passed) are passed as single vector events. Note from the figure that

events start on the View as a User Interface Mouse action and the pipeline sends them

through the Model and back to the View.

In tables 7.3 and 7.4, we used the same JavaScript chess program described in earlier

papers [QCF-07-03]. All events are W3C DOM compliant as required by the SVG

application. T0 represents the time that messages are transmitted from View to Model

after initial processing in View of mouse event. T1, recorded in the View, represents the

time that the associated events are returned from the Model to the View. A given user

interface event generates several Model events which are sent back to the View as

separate messages and we record in tables 7.3 and 7.4 the times of the first and last

messages in this returned sequence. The final time recorded T4 corresponds to the end of

the rendering update in the View component. All times are recorded relative to the

processing marker T0. We record mean, statistical error in the mean and standard

deviation of the distribution. Essentially all plots show broad distributions with large

standard deviations.

In table 7.3, we record the difference between types of mouse events by recording

both all mouse down processing sequences and the results averaged over mouse move,

mouse down and mouse up. Table 7.4 records times for a special bounce back event

 164

generated automatically for these runs by the Model component as soon as it receives a

message from the View. These bounce back events are solely to help us understand better

how much time is messaging overhead and how much is time spent automatically in the

model. Table 7.5 does not concern Batik and SVG at all. It records times for the View

sending a message to NaradaBrokering and recording its return (2 hop events); the 4 hop

events correspond to messages going from View location to NaradaBrokering to Model

location and back. In all cases for table 7.5, a simple Java program generating events of

the same structure as used in SVG was used. However this program did no further work

on the message – only its communication. So this table 7.5 records the natural overhead

from NaradaBrokering without significant thread interference. This is about 2

milliseconds per event but is increased in some entries in table 7.5 and in the bounce-

back event of table 7.4 by interference between communication and other active threads

on the Model and View computers. This interference probably accounts for the broad

distribution seen in essentially all results. We have studies of clean unloaded Linux and

Windows machines documenting the 2 millisecond per hop NaradaBrokering natural

overhead. Note configuration 2 includes the fastest client – desktop3 – and this impact is

very clear in all the tables. It is worth noting that Moore’s law helps M-MVC for

increasing client performance will reduce the M-MVC overhead and the better results on

desktop3 highlight this.

Note that much of the time delay from Model to View comes from waiting for a CPU

that has been scheduled to a different (from the communication) Batik thread. For

example comparing the first two rows of tables 7.4 and 7.5 (Bounce back time versus 4

hops), the two tables are measuring the same computation and communication time but

 165

table 7.4 is 10-20 milliseconds longer than table 7.5. This can be explained by the large

(extraneous to message passing) computations on the Model and View in table 7.4 which

delay the processing of messages which increases both the mean and the standard

deviation – as this delay in scheduling the communication thread has a large variability.

The measurements in the first two columns are an upper limit on the overhead due to

the decomposition and this varies from 20-40 ms with most measurements at the lower

end of this range. This holds for all broker positions from collocation in the desktop to

remote location (in Indianapolis with the Clients in Bloomington). We call this an upper

limit as it is processed concurrently with essential computation (the thread scheduling

issue) and we get some improvement in M-MVC due to concurrent processing between

Model and View for operations sequentialized in the conventional version. The difference

between column 1 and column 3 of table 7.4 measures the 30 ms typically spent on

Model processing; this is an underestimate as it does not include the scheduling delay

discussed above – an overestimate is gotten by replacing column 1 numbers from table

7.4 with the 4 hop measurements of table 7.5. Comparing columns 1 and 2 of table 7.3

shows that mouse down events are processed quicker than average – that is because most

of chess application processing used in the Model occurs for Mouse up events.

Comparing columns 1 and 2 of table 7.4 shows the 10-15 ms processing needed on the

Model before any events are generated in response to a given mouse event received from

the View.

The following group of six graphs show detailed performance comparisons of

average mouse events, mousedown event, mouseup event, and mousemove event

corresponding to test 1 to 6 (scenarios defined in table 7.1 and results listed in table 7.3).

 166

While in columns one and two of table 7.3, we only listed message transit time for the

mousedown events and the average of all events between T1 and T0 (first returned and

sent) for each testing case.

Figure 7.3 shows for the three major mouse event types (up, down, move) rather clear

peaks with widths at half height of about 10-15 milliseconds. Mouse move shows the

lowest and mouse up the largest means but the shapes are comparable. It is useful to

compare these results with those with the faster desktop in figure 7.4. The better

performance of the next figure represents about 2 years of “Moore’s Law” improvement

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

minimum T1-T0 in milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 5

 m
ill

is
ec

on
d

bi
ns

Message transit time in M-MVC Batik browser

all events
mousedown event
mouseup event
mousemove event

Figure 7.3 Histograms of the elapsed time T1(first event to return)-T0 for three types of mouse
events and the set of all mouse events which is just the sum of the first three histograms. This
data corresponds to test case 1 of Table 7.1 and the row labeled 1 in table 7.3. The configuration
is in detail: NB on Model; Model and View on two desktop PCs; local switch network connection. A few
events with timing greater than 100 milliseconds are not shown on the plot

 167

and illustrates our thesis that our architecture will get more attractive as computers

continue to improve in performance!

 168

Figure 7.4 shows the best results of the set and highlights the importance of the client;

this was a higher-end Dell desktop than the rather old 1.5 Ghz clients used in the other

runs. Of course the 3 Ghz Pentium used in this desktop is now commonplace and one

should consider this to be expected performance on a modern desktop. The means and

standard deviations are substantially reduced from the previous figure while the relative

performance of the different types of events is unaffected. Note that for the chess

application used the view computation is greater than that needed in the JavaScript model

component. One interesting deduction of this set of measurements is that the choice of

client is more important than the server which can be moved from Windows to Linux or

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

minimum T1-T0 in milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 5

 m
ill

is
ec

on
d

bi
ns

Message transit time in M-MVC Batik browser

all events
mousedown event
mouseup event
mousemove event

Figure 7.4 Histograms of the elapsed time T1(first event to return)-T0 for three types of mouse
events and the set of all mouse events which is just the sum of the first three histograms. This
data corresponds to test case 2 of Table 7.1 and the row labeled 2 in table 7.3. The configuration
is in detail: NB on View; Model and View on two desktop PCs with “high-end” graphics Dell for View;
local switch network connection. A few events with timing greater than 100 milliseconds are not shown
on the plot

 169

to Solaris and from local machine to a server in the next town. This gives much less

effect than switching from a 1.5 Ghz to 3 Ghz client.

 170

The case in fig 7.5 is a very practical one; two modest desktops served by a local low-

end Linux server. One finds excellent performance. We find it interesting that one usually

gets better performance moving the NaradaBrokering broker off the desktops; the better

broker performance (there are no scheduling overheads) outweighs the increasing

network overhead. In contrast, we had a set of tests (not listed in the thesis) with

NaradaBrokering broker separately running on a heavily loaded desktop (as item 2

defined in Table 7.2) with local switch connection. The performance of NB on desktop

server is not as good as that in fig 7.5 with NB on “gridfarm1” machine running Linux

server. Another observation is that the results in fig. 7.7 (“ripvanwinkle” with 100 miles

round trip distance) generates similar pattern as in fig. 7.5 (local connection) except with

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

minimum T1-T0 in milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 5

 m
ill

is
ec

on
d

bi
ns

Message transit time in M-MVC Batik browser

all events
mousedown event
mouseup event
mousemove event

Figure 7.5 Histograms of the elapsed time T1(first event to return)-T0 for three types of
mouse events and the set of all mouse events which is just the sum of the first three
histograms. This data corresponds to test case 3 of Table 7.1 and the row labeled 3 in table
7.3. The configuration is in detail: NB on 2-processor Linux server; Model and View on two
desktop PCs; local switch network connection. A few events with timing greater than 100
milliseconds are not shown on the plot

 171

a slightly lower performance corresponding to the greater network delay for

“ripvanwinkle”. Our results show that use of windows desktops to run NaradaBrokering

is never good even when one uses a machine running the model and view with no

network delay. Windows scheduling introduces delays of 10-20 millisecond overhead

that is much larger than the 1-2 millisecond delays coming from network transit within

the extended university campus and the similar intrinsic processing time needed by

NaradaBrokering on a clean Linux/UNIX machine. We have not looked at a Windows

server (which has a different scheduling algorithm from desktop Windows) for

NaradaBrokering; this could be better than the desktop Windows used in tests.

 172

The plot of figure 7.6 uses a HPC Linux cluster as the NaradaBrokering server. Of

course we are only using one node and so this is not a parallel computing application. It

does illustrate that this type of HPC engine can be used in Web Server mode with each

node running different services.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

minimum T1-T0 in milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 5

 m
ill

is
ec

on
d

bi
ns

Message transit time in M-MVC Batik browser

all events
mousedown event
mouseup event
mousemove event

Figure 7.6 Histograms of the elapsed time T1(first event to return)-T0 for three types of
mouse events and the set of all mouse events which is just the sum of the first three
histograms. This data corresponds to test case 4 of Table 7.1 and the row labeled 4 in table
7.3. The configuration is in detail: NB on one node of HPC Linux cluster; Model and View on two
desktop PCs; routers network connection. A few events with timing greater than 100 milliseconds
are not shown on the plot

 173

Here in figure 7.7, we see good performance even for an inter-city scenario. The
NaradaBrokering server was located in Indianapolis 100 miles from the two client
desktop machines in Bloomington. We note that we give results averaged over events of
a single run (i.e. a single game of chess). The results from run to run differ – presumably
due to other applications on the desktops and servers – but the same systematics are seen.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

minimum T1-T0 in milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 5

 m
ill

is
ec

on
d

bi
ns

Message transit time in M-MVC Batik browser

all events
mousedown event
mouseup event
mousemove event

Figure 7.7 Histograms of the elapsed time T1(first event to return)-T0 for three types of
mouse events and the set of all mouse events which is just the sum of the first three
histograms. This data corresponds to test case 5 of Table 7.1 and the row labeled 5 in table
7.3. The configuration is in detail: NB on 8-processor Solaris server; Model and View on two
desktop PCs; remote network connection through routers. A few events with timing greater than 100
milliseconds are not shown on the plot

 174

The configurations of figures 7.7 and 7.8 are similar with the server “complexity” of

the last figure tending to be more heavily used than “ripvanwinkle” used in figure 7.7.

The typically good performance for the two scenarios with the NaradaBroker situated in

Indianapolis highlight that excellence of modern institutional networks. The differences

between these figures are most pronounced for the mouse up event which has a very

broad distribution in figure 7.8. This probably due to poor performance of the desktop

holding the model for this run, but more likely stems from the heavy loaded server that

reduces the processing capability of NaradaBrokering.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

minimum T1-T0 in milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 5

 m
ill

is
ec

on
d

bi
ns

Message transit time in M-MVC Batik browser

all events
mousedown event
mouseup event
mousemove event

Figure 7.8 Histograms of the elapsed time T1(first event to return)-T0 for three types of
mouse events and the set of all mouse events which is just the sum of the first three
histograms. This data corresponds to test case 6 of Table 7.1 and the row labeled 6 in
table 7.3. The configuration is in detail: NB on 8-processor Solaris server; Model and View
on two desktop PCs; remote network connection through routers. A few events with timing
greater than 100 milliseconds are not shown on the plot.

 175

We carried out a new set of tests to further investigate the reproducibility of the

measurements and determine the relative importance among multiple factors that affect

the overall system performance. These factors, which discussed in previous performance

analysis, include CPU processing power, network latency, operating system scheduling,

and computation intensive applications.

The experiments are conducted in three testing scenarios that differ in the location of

host machine for NaradaBrokering that is placed respectively on the Model (M), View

(V), or standalone on a remote ripvanwinkle server (R). As shown in Table 7.6, each case

comprised 15 tests split over three days: 5 tests per day. The measured values of mean

(Mean) and standard deviation (Stdev) are listed for three types of mouse event: mouse

down, mouse move, and mouse up. Due to the specifics of the particular testing

application, mouse down and mouse up events are associated with the least and the most

significant load in Batik respectively. Note that each performance datum represents an

average over 100 events of the same type.

Several interesting features are observed from the above testing results:

1) Ripvanwinkle ALWAYS better

Model and View run on desktop 2 and desktop 1 (ref. table 7.2) respectively and are

directly linked with switch connection; while ripvanwinkle is a Solaris UltraSPARC

machine (ref. table 7.2) 100 miles roundtrip away from the clients. The fact that

NaradaBrokering on ripvanwinkle always had better performance than running on Model

or View locally suggests that good server processing capability may outweigh the

disadvantage of network latency at inter-city distance in our experiments. This

observation is encouraging since it demonstrates that user interactive and computation

 176

intensive applications (e.g. shared SVG chess game) can accommodate to distributed

message-centered architecture (M-MVC) with satisfactory performance.

Table 7.6 Reproducibility Performance tests

In an exploratory run with NaradaBrokering running over the local network on a Dell

PC with Window XP (heavy loaded), we found very poor performance. For example, the

mean of the “mousedown” event was 92 milliseconds compared to 16 milliseconds on

ripvanwinkle. In both cases, Model and View run on the same two desktops (desktop 2

and desktop 1) and we are comparing NaradaBrokering running either on a separate

Windows XP desktop or a remote Solaris UltraSPARC machine (ripvanwinkle). Note

that there’re over a dozen system critical processes, which spawn over a hundred often

sleeping threads, on the Windows desktops even before running our testing applications.

The performance data emphasizes the important impact of CPU and thread scheduling

efficiency that we discussed earlier.

 177

2) Means and standard deviations do not vary much from run to run

Average performance over the 15 tests of three NB configurations is listed in table

7.7. Note that the standard deviation of mean of the means of mouse events is quite small,

which shows the stable and reproducible feature of the tests.

Table 7.7 Average over 15 tests for three NB settings

Test
Data
type

Event type NB location Mean of mean Stdev of mean
of means

Model 24.8 1.20
View 18.7 0.550

Mousedown

Ripvanwinkle 15.4 0.290
Model 52.9 1.79
View 52.6 2.79

mouseup

Ripvanwinkle 40.0 1.31
Model 25.7 1.91
View 22.7 2.69

Mean

mousemove

Ripvanwinkle 17.2 0.986
Model 10.3 1.68
View 4.13 0.695

mousedown

Ripvanwinkle 3.51 0.513
Model 14.7 1.28
View 14.9 1.93

mouseup

Ripvanwinkle 11.9 1.58
Model 13.8 1.98
View 16.6 2.73

Stdev

mousemove

Ripvanwinkle 9.00 2.60

Figure 7.9 to 7.11 illustrate the distribution of the means of “mouseup”,

“mousemove”, and “mousedown” events with each separately listed for three

NaradaBrokering locations: NB-Model, NB-View, and NB-ripvanwinkle.

 178

36 38 40 42 44 46 48 50 52 54 56
0

0.5

1

1.5

2

2.5

3

3.5

4

milliseconds

Distribution of the mean of mouseup events

NB on Model
NB on View
NB on ripvanwrinkle

Figure 7.9

15 20 25 30
0

1

2

3

4

5

6

milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 0

.5
 m

ill
is

ec
on

d
bi

ns

Distribution of the mean of mousemove events

NB on Model
NB on View
NB on ripvanwrinkle

Figure 7.10

N
um

be
r

of
 e

ve
nt

s
 in

 0
.5

 m
ill

is
ec

on
d

 b
in

s

14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7

8

milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 0

.5
 m

ill
is

ec
on

d
bi

ns

Distribution of the mean of mousedown events

NB on Model
NB on View
NB on ripvanwrinkle

Figure 7.11

milliseconds

 179

The following graphs in figure 7.12 to 7.14 histogram the standard deviations of the 15

runs of “mouseup”, “mousemove”, and “mousedown” events in three NaradaBrokering

settings. The mouse down event has least model processing but has larger standard

deviation while NaradaBrokering on Model and View are similar except for mouse down

where NB-View better.

8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

2

2.5

3

3.5

4

illi d

nu
m

be
r o

f e
ve

nt
s

in
 0

.5
 m

ill
is

ec
on

d
bi

ns

Distribution of the standard deviation of mouseup events

NB on Model
NB on View
NB on ripvanwrinkle

Figure 7.12

4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

nu
m

be
r o

f e
ve

nt
s

in
 0

.5
 m

ill
is

ec
on

d
bi

ns

Distribution of the standard deviation of mousemove events

NB on Model
NB on View
NB on ripvanwrinkle

nu
m

be
r

of
 e

ve
nt

s
 in

 0
.5

 m
ill

is
ec

on
d

 b
in

s

Figure 7.13

 180

2 4 6 8 10 12 14
0

1

2

3

4

5

6

milliseconds

nu
m

be
r o

f e
ve

nt
s

in
 0

.5
 m

ill
is

ec
on

d
bi

ns

Distribution of the standard deviation of mousedown events

NB on Model
NB on View
NB on ripvanwrinkle

milliseconds

Figure 7.14

7.4 Summary

These first results show the main issues to be the algorithmic effect of breaking the

code into two, the network and broker overhead, and thread scheduling interference of

operating system between interfaces of SVG application and messaging brokers. Our

initial tests show the client to server and back transit time is only 20% of the total

processing time in the scenarios where the message broker is local. Note that the Batik

SVG Browser already uses a 20 ms buffer in its rendering engine to collect all updates

occurring in time windows of this size; M-MVC adds a similar overhead. Little

optimization has been attempted as the current results indicate that the processing

overheads to be already acceptable. We will in the near future use Linux clients and study

the large thread scheduling effects in more detail.

The performance results we’ve presented through experiments with SVG applications

however do not suggest that general M-MVC application implementations would

generate exactly the same performance data. Nor do we try to achieve the most optimized

 181

performance for these particular experiments at this stage. Rather, our approach has been

focused on investigating viability of the M-MVC approach and factors that impact overall

system functionality and performance when the architecture changes from tight-coupled

to loose-coupled model. The aim is to identify general issues for the design and

implementation of service-oriented message-based applications, particularly embracing

areas of messaging correlated technology, human-machine interaction, and environment.

As a systematic experimental approach, it helps to clarify the ambiguities or subtle

differences between method-based MVC and message-based MVC approaches and

provides resources with preliminary data that can be used in design decisions.

 182

Chapter 8

Architecture of Collaborative Message-
based MVC

8.1 Lessons learnt

We have studied both standalone and collaborative applications in both traditional

MVC and Message-based MVC architectures. Our results suggest that the performance of

M-MVC applications is acceptable and that M-MVC becomes very attractive due to its

great advantage in developing cross-platform and collaborative capabilities. We learnt

several important lessons from studying the Batik Java code.

We think it is reasonably clear that although many modern applications adopt MVC

(Model-View-Control) paradigm, they may not strictly follow the principles in

implementation. By not faithfully following modular design principle the applications do

not have a clear "control" mechanism which includes a well defined explicit

communication channel between "model" and "view". Usually, there exits direct linkage

(not through a well defined "control") between the Model and the View in the MVC

paradigm. For example, some functional modules in Batik involve information from

 183

many stages across the pipeline of Section 3.3, rather than just providing the linkage

between the two modules. Often capabilities are instantiated in GUI ("View") but execute

functions in the backend "model" through direct methods calls. We suggest that MVC is

popular and the role of the model and view relatively well defined. However the

architecture and implementation of the control mechanism between these components is

less standard. This thesis has explored and advocates use of a publish/subscribe (listener)

architecture for the control between loosely coupled (service oriented architecture) model

and view. We recommend designing the model-view linkage as messaged based to get

M-MVC. Note that a message based linkage can be implemented with method calls if one

wishes to get greater efficiency when model and view share a common address space.

This is familiar from MPI in parallel computing that can use explicit messaging on

distributed memory and pointer manipulation and method calls on shared memory.

Further there are difficulties from the Batik software not providing "Object

Serialization". Object Serialization (the process of reading and writing objects) has many

uses, including remote method invocation (RMI). In addition to the object streams,

java.io has other classes and interfaces that define the API to help classes perform

serialization for its instances. However existing java codes like Batik, use data structures

that are not easily serializable and this also makes it hard to split the application into a

Web service. We expect other software has similar problems and recommend the

interaction between model and view use serializable classes.

We found good performance in a message-based version of Batik described in

chapters 6 and 7. However there were important issues that needed attention. We found

that the “natural” delay of one to two milliseconds in the messaging infrastructure

 184

(NaradaBrokering) was often impacted by the thread scheduling in the operating system.

This was apparent in our Batik case as NaradaBrokering was running in same machine as

some very compute intensive rendering. This effect had not been seen in previous uses of

NaradaBrokering which had run this software standalone in its “own CPU”. It is not yet

clear how important this effect is. It affects the performance measurement a lot; however

the impact on user-perceived performance is less. One is attributing to NaradaBrokering

a delay that is inevitable anyway and present in the original Java code. However we think

this effect could be important in new generations of desktop machines and their operating

systems. For instance multi-CPU and multi-core CPU desktops are of growing important.

We expect a growing use of explicit messaging and suggest that this could be assigned to

a dedicated CPU (core).

8.2 Proposed architecture (how would one code from scratch)

We combine the M-MVC ideas with those of service-oriented architectures [Atkinson

et. al.] and the concept of “Grids of Grids of simple services” [G. Fox]. The latter

describes the principle of simple services which are “as small as possible” subject to the

communication overhead of breaking capability out as a service being acceptable. This

concept is another analogy with parallel computing where we know that acceptable

efficiency requires that problems be large enough so that the decomposed parts are large

enough that computational work within each node is large compared to the inter-node

communication [Fox94]. Usually communication compared computing for a system

component is a “surface” effect and the ratio of communication to computation decreases

like (system complexity)1/d for an effective dimensionality d. As analyzed by Fox, this

concept is more general than the geometric structure of science and engineering

 185

simulations with d defined as an information dimension which may or may not be the

same as the geometric dimension [Fox94]. In our case it says that are usually many ways

of defining model and view and as seen in figures 3.2(b), 3.3 and 5.6, possibilities of

breaking up the model and view into multiple components. In the simple service concept,

one breaks up the full system into simple services defined as above. This is not well

defined for the size of the communication between simple services is obviously

dependent on the implementation. So we somewhat quantify this concept by requiring

that the communication be implemented by publish-subscribe mechanisms and preferably

with serializable exchanged objects. We leave moot the implementation of the service

linkage which need not be explicit messages but some optimized “shared memory” model.

Further we do not want these ideas to replace existing software engineering principles

and component models. Rather they are principles to be defined for components that can

exploit the M-MVC model. That is for components that need to be isolated so they can be

re-implemented on different clients and servers, run in distributed fashion, or whose

events must be exposed to support collaboration. Traditional software engineering

techniques should be used inside the simple services. We note that our work suggests it

would be interesting to research publish/subscribe architectures that can run in

interoperable and efficient fashion on shared and distributed memory (system).

Thus we propose building all applications as simple services with M-MVC

corresponding to the View being one or more such services. This then unifies the web and

desktop models for applications.

 186

8.3 Comparison of Batik SVG Browser with proposed
architecture

This application has an MVC architecture but was not designed in a way to make it

easy to break it into simple services linked by messaging. In particular there was one

particular Java class (corresponding to the Bridge capability) that “ran throughout the

application” like a piece of Spaghetti. As well the primary signature, it had many different

entry points implementing interfaces reflecting capabilities spread throughout Batik. This

Spaghetti Java structure made it very much harder to decompose Batik in an elegant way.

As described in chapter 6, we successfully implemented an M-MVC architecture but this

could have been much easier! We see no reason why an SVG browser could not be

designed in a fashion where for example the modular structure of fig 6.2 is properly

reflected in the Java code. The resultant system would be easier to maintain as well as

having the M-MVC advantages of supporting collaboration and easier portability to

different platforms.

 187

Chapter 9

Conclusions and Future Research Issues

9.1 Thesis Summary

The concept of Service Oriented Architectures and Web Service technology in

particular provide a general platform that promises to maximize interoperability and

reusability for next generation of software applications. However, the issue of software

system integration and convergence is only addressed for applications that are

intrinsically loosely coupled from their geographic distribution. This thesis explores an

approach that builds a message centered application architecture spanning desktop to

Internet applications. By doing so, it prepares a service-enabled application ready to be

either conveniently integrated into Web Service platform or to run on a desktop or even

with a handheld interface. This approach could make universal deployment of and access

to heterogeneous software assets a reality.

We believe our prototype showed directly how a message-based MVC (three-stage

pipeline) model can generate a powerful application paradigm suitable for SVG and other

presentation style applications. As SVG is an application of the W3C DOM, we can

 188

generalize the approach for other W3C or similar DOM based applications. Essentially

all “office” (document oriented) applications can and perhaps should be developed with

the W3C DOM. Thus our work applies straightforwardly to OpenOffice (StarOffice) and

Microsoft Office suites and we believe its applicability is much broader. Further our

approach suggests that one need not develop special “collaborative” applications. Rather

any application developed as an M-MVC style service can be made collaborative using

the tools and architectural principles discussed in this thesis.

Note that Moore’s law implies that computer performance will continue to improve

while networks will also continue to increase in bandwidth with however latency for long

distance linkage remaining higher than that needed for interactive use. Thus inevitable

infrastructure improvements will tend to make our approach more attractive in the future.

These ideas can also suggest a uniform approach to user interface design with desktop

and web applications sharing a common portlet (WSRP, JSR168)-based architecture.

This could motivate the development of new desktop applications with many capabilities

not present in today’s systems such as OpenOffice [OPENOFFICE] and Microsoft Office.

The CGL research laboratory currently looking at extending these ideas to OpenOffice

[Wang+Fox] while a limited implementation is possible using the rather crude event

interface exposed for PowerPoint [WFP+04]. These ideas can unify PDA and desktop, as

well as Linux, MacOS, Windows and PalmOS applications.

We’ve demonstrated a new way of building universal applications centered around

explicit messaging. At meanwhile, we’ve also realized that this is just a start of a major

topic with many issues that need further study which could lead to important research

results.

 189

9.2 Answer to Initial Research Questions

Here we summarize answers to the questions given in the introduction of Chapter 1.

9.2.1 Can MVC be implemented in a message-based fashion?

We suggest the answer is yes and that a major contribution of this thesis is to

demonstrate this as shown in Chapters 3-7. In fact we think the message based model

MVC makes it clearer how to implement the control part which is essentially the

negotiation between model and view embodied in the messages. Recent Web Service

standards WSRP Web Services for Remote Portlets [WSRP] and WS-Management [WS-

MANAGEMENT] provide interesting protocols to implement control. WSRP is

specifically aimed at Web Service user facing ports while WS-Management is a general

protocol for communication and negotiation between services.

9.2.2 What principles are there to govern the decomposition of a given

application into MVC components?

This is discussed in detail in section 8.2 which is based on implementation described

for SVG in chapter 6. We propose building applications as simple services whose size is

as large enough to ensure acceptable communication but as small as is useful to achieve

modular development with loosely coupled message-linked services.

9.2.3 What is the performance of the message-based MVC and what factors

influence it?

 190

The performance of M-MVC was studied in detail in chapter 7 and we found that the

overheads of the explicit messaging was 20-40 ms for our modification of SVG and about

10-20% of time needed by SVG for typical action measured. We found in this study that

thread scheduling generates major influence on this performance which had not been

anticipated; we see operating system support of such messaging as an interesting future

research area. The measured value will be reduced for cleaner decompositions as would

be possible for M-MVC applications built from scratch. Table 7.5 shows that the raw

overhead of the messaging system was just 15 ms and either less CPU intensive or

cleaner implementations would see our measured overhead reduced to this. In simpler

scenarios in fact we measure NaradaBrokering overheads of 2 ms per hop or a total of 8

ms for the round trip from model to view by way of the broker. Our laboratory expects to

develop a special in memory version of NaradaBrokering for use in Web Service

containers and peer-to-peer interactions that will substantially reduce overheads. Further

continued improvement in CPU performance will reduce this overhead and in 3-5 years it

will be essentially negligible on a desktop with a factor of 4-8 better performance. We

performed one important optimization; namely we used “vector events” that transmitted

multiple mouse move events that were generated every pixel traversed by the user’s

mouse. This type of optimization will always be important and can be extended to take

account of other lightweight events such as mouse over. We emphasize that the current

overhead is small compared to that generated by geographical distribution and so is

already unimportant in collaborative applications.

9.2.4 How does M-MVC depend on the operating system, the application,

machines and network?

 191

We didn’t investigate the operating system dependence of our model although

standard NaradaBrokering benchmarks [NARADABROKERING] show better

performance on Linux than Windows operating systems. Our SVG desktop application

when decomposed was not sensitive to the network overhead over the university campus

net with its high speed backbone as shown in the tables of chapter 7. The 100 ms or more

typical network delay between institutions would be noticeable. As discussed above, we

identified features of the SVG application (clumsy decomposition, CPU intensive

rendering) that increased the overhead. Cleaner simpler applications will less lower

overheads although quite possibly a larger ratio of overhead to intrinsic rendering time.

9.2.5 What is the relationship of collaboration and Web services with MVC

paradigm?

As we discussed in sections 9.2.1 and 9.2.2 above, we suggest that M-MVC provides

a uniform service-oriented architecture that supports collaboration for Web services and

desktop applications. Chapter 5 provides a detailed discussion of our SMMV and

MMMV collaboration modes that capture the shared output port and shared input models

of Web service collaboration.

9.2.6 What is the way to define state and state changes in collaborative

applications?

Defining the state and identifying its changes is a critical and often very difficult part of

the construction of collaborative applications. Fox noted [FOX03] this could be

simplified for Web services by sharing the messages on input or output (user-facing)

ports. We have extended this with the M-MVC concept by sharing the control and model-

 192

view interactions of an MVC application. We have discussed the structure of the state

change events in section 4.4 and chapter 5.

9.2.7 How easy is it to convert an existing application to message-based

MVC?

This is described in section 8.3 and was difficult for Batik due to the existence of

large classes with many non serializable interfaces that cut cross many different parts of

the program. Several problems associated with subclassing and inheritance has been

identified by some researchers. Lieberman asserts that inheritance is disadvantageous for

highly interactive, incremental software development [H. Lieberman] while the smalltalk

work [J. Bennett] also suggested it was not suitable for distributed applications. Our

experiments with Batik support these conclusions.

9.2.8 What are the architectural and implementation principles to be used

in building applications from scratch in a message-based MVC

paradigm?

This is described in detail in Section 8.2 and involves breaking the application into

simple service-oriented modules that can be efficiently implemented linked by messages.

We explained there the principles to be used in decomposing the application.

9.3 Future Research

There are obviously many interesting deployment projects using the ideas in the

thesis to build practical applications. More over, M-MVC provides fertile ground for

important research issues that raised by our work. We give a few ideas below.

 193

The performance data suggests the need to understand scheduling overheads and if

these can or should be reduced. We only have limited data on the differences in operating

system dependence and the comparison of Linux and Windows is a clear short term

research project. Handheld devices with Symbian and Palm O/S need to be included. We

should also study the uPortal and Jetspeed portals and see if their design and their

associated standards (JSR-168, WSRP) need changes to support desktop applications.

This seems likely as the portals themselves are not themselves built according to the

“simple service” principle. Some of these issues are being researched by Pierce’s group

in CGL which leads the OGCE (Open Grid Computing Environment) which is a major

portlet research and development project [OGCE]. We suggest that this research could

usefully address M-MVC in this architecture and see how standards like WSRP and WS-

Management could be used to standardize control interfaces in MVC.

We introduced vector events to reduce message traffic and this needs further research;

we also think a more powerful optimization could involve an in-memory operation mode

for message systems like NaradaBrokering. A similar idea was originally proposed in

CGL to allow NaradaBrokering to support directly Web Service containers like Apache

Axis. This raises the general issues of how one builds “simple services” designed for both

distributed and shared memory. In chapter 7, we also noted the possible importance of

optimized transport with the use of UDP with application level fault tolerance and this is

another research area. Chapter 6 emphasized the importance of application level queues

and yet these are currently distinct from queues managed by NaradaBrokering. A careful

study of the different ways of supporting multiple queues at different levels of the system

could be fruitful.

 194

Our performance results in chapter 7 highlighted the importance of the client

performance. A useful short term project would look at this more systematically

(extending the results exemplified by figure 7.4 on faster more modern desktops). It

could be interesting to project M-MVC performance to the future by studying the

differences we can see today with clients that span a 4 year vintage.

Our study of collaboration in chapter 5 emphasized the importance of a general

message based protocol to support applications. CGL has proposed XGSP for this

[WUBF] [WBUF] but only implemented a version for audio-video conferencing. It

would be interesting to extend this work to general applications supporting the different

modes SMMV and MMMV with different types of participants described in section 4.4.1.

Since Batik implements scalable vector graphics (SVG) [SVG] ─ an open standard

for interactive graphics interface, such experience has general significance in helping us

to understand of similar commercial tools such as Microsoft PowerPoint

[POWERPOINT], Adobe Illustrator [ILLUSTRATOR] and PhotoShop [PHOTOSHOP],

Corel Draw [CORELDRAW], and Macromedia Flash [FLASH], which has proprietary

implementations. CGL has investigated extending these ideas to OpenOffice [Wang+Fox]

while a partial implementation is possible using the limited event interface exposed by

Microsoft for PowerPoint [WFP+04].

 195

Appendix

Appendix A

Computer-based computing

The history of computing originated from ancient time, when human beings endeavor

to stretch their knowledge and creativity from counting numbers. This effort ─ including

the creation of device facilitated computing tools ─ has been continued through out the

whole process of human civilization.

In 1945, the first electronic computer ENIAC [ENIAC1945] was built. It was

originally intended for solving artillery calculation problem. But its general-purpose

design demonstrated a new approach of building digital machines in support of large-

scale computing at the time.

Over the decades, these machines have emerged as an imposing force that affect our

society in every aspects of civilization including science, social science, commerce, the

arts, and the humanities. The automation of our lives has involved subtle alterations in

knowledge acquisition and information dissemination. As a brief and cursory

introduction, these features are shown in a clear trace of the transition between

generations of computer technology ─ from small computer systems, large-scale

processors integration and supercomputers, to connect geographically dispersed

computing power into a global information infrastructure, the Internet.

Small computer systems started with the revolution of primitive general purpose

programmable electronic computer with advancement including improvement of I/O

devices and semiconductor technologies; development of programming languages [M. A.

 196

Malik] such as FORTRAN [FORTRAN], ALGOL [ALGOL60], COBOL [COBOL], and

C [C]; introduction to time-sharing operating system like UNIX [UNIX].

Supercomputers targeted for high performance computing and communication, which

is dominated by massive parallel systems with development from pipelining, vector

processing, which are limited to use of single-user workstations, to “Hypercube”

[HYPERCUBE] with distributed memory architecture that aggregated 128 processors at

the time. Derivative parallel algorithms and programming techniques includes widely

used SIMD [SIMD] and MIMD [MIMD] programming model, and message passing

interface (MPI) [MPI] as communication mechanism between processors.

Development of the Internet led to tremendous gains from the existing computing

powers by providing availability and pervasive accessibility to these distributed resources,

which form highlighted spots in the interwoven and linked global information

infrastructure. The effort has also inspired spawning of distributed computing

technologies and Web technologies which including the development of object-oriented

style programming with representative language such as C++ [C++] and Java [JAVA];

software development environment including CORBA [CORBA], COM [COM], J2EE

[J2EE], and .NET [DOTNET]; structured data descriptive language XML [XML];

dynamic connection to database through JDBC [JDBC] and ODBC [ODBC].

Appendix B

Internet and Web applications

Computer network, distributed system, Internet [INTERNET 1969], Net and World-

Wide Web (WWW or Web) [WWW 1991] all refer to inter-connected computer systems,

 197

with focus from different aspects. As one of the greatest successful examples of

technology advancing human civilization, Internet started with research innovations of

computer network technologies and has transformed and revolutionized as a global

information infrastructure. Its influence goes beyond technology sector and evolves into a

unique, complex, diversified, and synergistic world-wide system combined with

technological, organizational, and community involvements. With the increasing of

online population, we expect Internet and Web applications to generate more-than-ever

impact in depth and broadness on our society in information acquisition, community

operations and electronic commerce. An ever-ongoing effort of world communication

will, in turn, motivate spawning of new innovative Web technologies. To get a whole

picture of the evolution of Web applications, we first trace back to the beginning of

Internet.

In December 1969, Internet was born ─ ARPANET [ARPANET 1969] connected

four host computers together through Interface Message Processors (IMP) and formed the

first true computer network, as shown in fig. B.1(a). Although fledging, it allows

computers from four university campuses in the U.S. to “talk” to each other. In these

times, one starts off sending request of exchanging data by typing commands from a

computer keyboard. The data is fragmented into “packages”, delivered to the destination

host over high speed telephone line, and then reassembled in original order at arrival.

Email (or electronic mail) was an initial “hot” application that developed on top of

ARPANET (see fig. B.1(b)), which provided early person-to-person communication by

sending messages over the Internet.

 198

(b)

Host
Email

Application

Host

Host
Email

Application

Communication
channel

Host

IMP

Host

Host

Host

HostIMP

IMP

IMP

Figure B.1 ARPANET and its application: (a) ARPANET’s four node network; (b) Email application on
 ARPANET over an abstract communication channel

(a)

Appendix C

Network Infrastructure

Layered network

A typical layered network system can be illustrated in a stack as in Figure 2.2. The

lower level is more close to computer and telecommunication hardware; the upper level

is application software for user interaction; in between them is network infrastructure.

Open Systems Interconnection (OSI) [OSI] reference model and Internet are two widely

used network architecture. The former is considered the primary logical architectural

model for inter-computer communications with standard seven-layer architecture; the

latter, which comes from experience of building ARPANET, bundles several functional

units into one layer and forms a four-layer model instead. As a general principal, both are

designed for connectivity among a large number of computers with high-performance,

low-cost, robustness and expandable linkage. The central idea is a layered approach to

modular design ─ decomposition of the system into components/objects stack from low

to high level.

 199

In contrast, fig. C.1 depicts a graph that reflects the general design scheme of network

system and fig. C.2 shows a specific example of Internet application ─ email. There are

two types of communication interfaces: within local system, each lower level object

provides service interface to adjacent higher level object; between counterparts (or peers)

of two systems, a peer interface of communication service is defined. The abstraction of

object (or layer) and its two service interfaces are referred as protocol. For the case,

starting with user input of email message on host computer 1, Process-to-Process

Channel Protocol (PPCP) wraps email data and forwards it down to Host-to-Host

Protocol (HHP). After adding its own information to the header of the datagram, HHP

forwards it further into the physical network. On the destination host, opposite operations

are executed and original email data is recovered in application interface with attached

protocol information removed along each bypassed level.

Figure C.2 Email application on ARPANET over
 an abstract communication channel

DataPPCPHHP

Host 1 Email
Application

HHP

PPCP

Data

DataPPCP

Host 2

Data

DataPPCP

Email
Application

HHP

PPCP

Service
interface

Peer-to-peer
interface

Figure C.1 Network system in layered stack

Application

Hardware

Host-to-host connectivity

Process-to-process channels

While there’re many ways of designing systems, layering abstraction has general

prominent advantages ─ it reduces the complexity of network topology in two

dimensions: it forms manageable modules in vertical thus avoids spaghetti code; it

 200

confines protocol specification in horizon within each peer level with clear interpretation,

which supports upper-layer protocol transparency ─ encapsulation (high-level message

wrapped inside low-level message) and delivery of the high-level message only operate at

the same layer without acquisition of knowing its details. Modular design facilitates reuse

and replacement of existing program components, which helps system maintenance.

Moreover, layering provides a service model that allows flexible bundle and expansion of

layers (or components) in an arbitrarily complex network system. In section 3.6, we

elaborate utilizing the expandable feature of layered service in our design of M-MVC for

Web applications, which has separate application level architecture from underlying

messaging infrastructure. Here, we describe an example of bundling multiple functions

into one layer in a case of TCP/IP protocol, which is the distinction of Internet

architecture from that of OSI model.

TCP/IP protocol

Around middle 70’s, TCP/IP protocol [TCP/IP], short for Transmission control

protocol/internet protocol, was developed as a standard of communication between

different networks in a common language. IP defines how to route data frames or

packages from host to host and supports multiple networks interconnected into a single,

logical network; TCP, built on top of IP, provides detection and correction of erroneous

data during transmission. In 1984, Domain Name System (DNS) [DNS] set up a tier

structure that marks every online host computer with a unique IP address for access

identification. Internet was originally limited to the access of large research organizations.

Along with the development of micro-computers, TCP/IP was modified to support for

personal computers which typically connected through unreliable telephone lines. These

 201

changes helped it become adopted as major Internet protocol by national governments

around middle 80’s. TCP and UDP [UDP], an unreliable datagram delivery protocol

proposed in 1980, form the so-called end-to-end protocol that provides service to variety

of application protocols. Fig. C.3 shows the mapping of TCP in Internet and Transport

layer in OSI [OSI]; both are equivalent in function to Process-to-Process Channel in the

stack of a typical layered network system in fig. C.1.

Internet ─ an internetwork of networks in an open architecture

It worth mentioning that between mid 70 and early 90’s, many innovative

technologies advanced computer and computer network, and generated great impact on

the rapid growth of Internet.

• Main stream computers running in university mostly use UNIX [UNIX] operating

system. Telnet [TELNET 1972], a remote connection service for controlling a

computer; and FTP [FTP], file transfer protocol that allows data being sent in

chunks between computers provide application tools for network access. UNIX-

to-UNIX protocol [UUCP 1976] opened up networking to the broader academic

SynSyn Class Count Header CRCBody
8 8 8 14 1642

01 000 111 10

coding/conversion

Figure C.3 Internet versus OSI Architecture

process-to-process
channel

Internet

Application

IP

Network

TCP UDP

OSI

Physical

Data link

Network

Application

Session

Presentation

Transport

packet

message

bits

frame

session control

interface to user

 202

community, on top of which Usenet newsgroup [USENET] supplies a system that

archives news "articles" in hierachy and exchanges them between writers and

readers.

• Parallel computing highlighted supercomputing by advancing computer in

capacities and computation speeds, and stimulated the expansion of computer

network in serving for high performance computing. In 1986, NSF establishes 5

super-computing centers to provide high-computing power for all This allows an

explosion of connections, especially from universities.

• Personal computer [PC 1981] was introduced by IBM in 1981. Incorporating

personal computers into Internet encourages expansion of online population of

individual users. The potential market attracts entering of commercial exploitation

of Internet from 90’s.

 203

Figure C.4 Internet topology as network of networks

Wireless
access point

PDA

Cellular
phone

Laptop

hub

Wireless

FDDI

IBM

Front-end
processor

Sumpercomputer

IBM

Terminal

bridge

Jet Printer

Laptop

Ethernet

Desktop

Token
Ring

Laser Printer

Workstation

File server

Terminal

LAN

ATM switch

router router
WAN

router

router

Internet represents a design concept of openness. It implies an open architecture ─ a

Wide Area Network (WAN) [WAN] freely available to interconnected autonomous Local

Area Network (LAN) [LAN]. The sub-networks and their linkage packages, which routes

through routers, are equally treated. This concept greatly facilitated subsequent advance

of network technologies. Today, Internet has evolved as a ubiquitous network accessible

from heterogeneous subnets building on wired (e.g. Ethernet [ETHERNET], FDDI

[FDDI], and Token-ring [TOKENRING]) and wireless [WIRELESS] deployment at Data

link and Physical layers. The topology, which is enriched with diverse subsystems (see

fig. C.4), provides a powerful global infrastructure that facilitates development of

 204

growingly sophisticated information services for academia, organization, business and

community.

Appendix D

Overview of Web Application Architecture

World-Wide Web (WWW) [WWW 1991] marks a big leap forward from Internet to

Web. WWW is developed by Tim Berners-Lee and scientists at CERN (Geneva), the

European centre for High Energy Physics. Lee made clear comments on Internet and

Web [TIM B.L.]:

“The Web is an abstract (imaginary) space of information. On the Net, you

find computers ─ on the Web, you find document, sounds, videos, …

information. On the Net, the connections are cables between computers; on

the Web, connections are hypertext links. The Web exists because of programs

which communicate between computers on the Net. The Web could not be

without the Net. The Web made the net useful because people are really

interested in information (not to mention knowledge and wisdom!) and don't

really want to have know about computers and cables.”

WWW was originally implemented using a non-GUI browser for retrieving and

viewing documents from Internet in a multi-platform environment. It was based on three

key technologies: Hypertext Transfer Protocol (HTTP) [HTTP] which provides a

mechanism of accessing online information as file document; Hypertext Markup

Language (HTML) [HTML] that defines document format in text tags; an important

concept of building consistent client user interface so that users could access information

 205

from many types of computers. Mosaic [MOSAIC], developed at National Center for

Supercomputing Applications (NCSA), was the first browser with Graphical User

Interface (GUI). Its commercial version, Netscape browser, became immediately popular

as it frees personal computer users from the narrowed desktop to an open cyberspace by

navigating the Web with easy point and click. Basic structure of World Wide Web as a

Web application is illustrated in fig. D.1. By clicking on a hyperlink, a client can request

for a Web page that is indicated by URL [URL] from a remote server through HTTP in a

request and response cycle.

Figure D.1 Basic structure of World Wide Web

URL

HTML page

HTTP protocol

Server with
Resources

Browsers display
Web page

Web applications are typically built on top of TCP/IP. In early days, client-server

architecture is widely used in Internet applications including FTP, Email, NFS [NSF1989]

and variety of Web browsers using HTTP protocol. Along with Web applications

becoming more sophisticated, the exploration of their architectures and technologies

reflects an in depth deployment approach from the intrinsic views of Internet and Web.

Meanwhile, this approach is greatly influenced by the advance of ad hoc technologies

including computer hardware, telecommunication and software engineering. Our

discussion of the evolution implies two themes: one is the timeline; the other is different

perspective of views of Web applications. Based on architectural topology, they can be

classified into centralized versus decentralized system, which further evolve into three

categories: client/server, multi-tier, and peer-to-peer (P2P) [P2P]. With respect to

 206

forming a service model over existing Internet infrastructure, there are grids [GRIDS]

and overlay network [OVERLAYNETWORK]. Both of them are originally designed to

provide middleware services for distributed system: the former aims to support massive

computational applications; the latter offers a software routing mechanism that simulates

multicast over IP at transportation level, which effectively supports P2P applications

such as video/audio conferencing. JXTA [JXTA] is an example of P2P overlay network.

From the point of view of interoperable relationship between distributed components,

Web applications are built with Web services [WEBSERVICE] that communicate

through SOAP [SOAP] with messages typically in XML [XML] format.

Client/server model

In a two-tier client-server model, the first tier is client side interface; the second tier is

the Web server, which is usually associated with file system or database. Web browsers

such as Internet Explorer (IE) [IE] or Netscape Navigator (Netscape) [NETSCAPE] are

dominant client side interfaces to Internet. Technologies such as Java [JAVA], JavaScript

[JAVASCRIPT 1995] and ActiveX [ACTIVEX] enhances browser environment by

bringing dynamic interaction with embedded code that runs in HTML browser. Through

Common Gateway Interface (CGI) [CGI], tier two server interfaces with external

applications. CGI scripts, including Perl [PERL], C/C++, Tcl [TCL] and VisualBasic

[VB], are typical server side technologies that provide interactions with many different

systems like graphics renderer and database. Client/server model, as request/response

architecture, is suitable for applications of single service supporting multiple clients.

 207

Multi-tier model

To accommodate the need of scalability for large-scale applications with complex

services that support potentially hundreds of thousands of users, a more sophisticated

approach is adopted as multi-tier architecture. In the case of common three-tier

application, a system is explicitly separated into functional modules including client

interface, broker/server and file system (or database storage). Apart from benefits of

modular software engineering as a general principle, this approach is perceived to allow a

long lasting architecture while detailed technologies for individual component change

over the time. For instance, in building customizable applications, the client interface

used to run on Windows and UNIX may need to upgrade to Linux operating system.

Such modification will only affect the first tier without causing changes to full life cycle

of the software development. A comparison of architectures of two, three, and four tier

model is depicted in fig. D.2. Servlet [SERVLET] and Java Server Pages (JSP) [JSP]

eventually usurped CGI as the prevalent server side technologies. JDBC [JDBC] provides

a bridge between client and backend database, which allows SQL [SQL] queries to be

issued at middle tier.

Figure D.2 Comparison of 2, 3 and 4 tier model

Middle tiers

Client

Back end

HTML &
JavaScript

Thin client

Relational
database

JDBC
Enterprise
Javabean

Servlet

Java

Relational
database

JDBC
Enterprise
Javabean

Java &
JDBC

Fat client

Relational
database

 208

Middleware layer

The concept of “middleware” has emerged and plays an important role in the

development of large-scale distributed applications such as business application

deployment. Taking the view that Internet is consists of distributed objects; a middleware

system comprises a layer in between application and network infrastructure (or operating

system). The platform supplies a rich set of services to distributed system by fostering

application portability and interoperability: CORBA [CORBA], DCOM [DCOM], DCE

[DCE], Java RMI [RMI] forms the RPC/RMI-systems; transaction processing systems

forms the business logic, MQSeries [MQSeries] and MSMQ [MSMQ] provides message

queuing service; LDAP [LDAP] offers directory access protocols, ODBC [ODBC],

JDBC and mediators supplies database access and integration; COM+ [COM+], CORBA,

Enterprise Java Beans (EJB) [EJB] provides component models. Middleware

technologies keep evolving ─ nowadays, J2EE [J2EE] plus XML solution and .NET

[DOTNET] already replace CORBA and DCOM as new generation platforms for

building Web applications.

Peer-to-Peer model

The classification of two-tier and multi-tier architecture is originated from two

dimensional layering view of a system between interface and service, with evolution

from one-to-one to multi-to-multi model. However, both two-tier and multi-tier

architecture defines fixed clients and servers with server provide centralized service. As a

contrast, Peer-to-peer (P2P) [P2P] architecture has emerged as a self-organizing

decentralized network system with a dynamic and adaptive paradigm ─ it does not

distinguish client and server in a static way; peer nodes (or "servents") hold equal

 209

position to other peers and dynamically join or leave Internet on the edge. In real

implementation, P2P application could be fully distributed or semi-centralized. File

sharing systems such as Gnutella [GNUTELLA 2000], Napster [NAPSTER], and Freenet

[FREENET] are examples of the above two types. P2P application commonly provides

locater function using controlled-flooding mechanisms, where a query is forwarded from

a node to its neighbor’s recursively. The query would end up either with the querying

node receiving a reply or its propagation stopping at end of Time-To-Live (TTL). P2P

presents a model, which unlike client/server architecture, does not sensitive to individual

server’s availability. However, flooding-based system does not scale well. It is mainly

because flooding looking up mechanism is build on top of stateless multicast over IP and

it imposes communication overheads.

Web Services

WWW marks the beginning of the Web by using HTTP to transport HTML document

across the Internet while Web Services are poised for a new generation of Web by

providing development environment that enables highly dynamic program-to-program

interaction [CKB]. Compared with conventional monolithic systems, Web Services

extend the idea of traditional Web application servers to make an application framework,

which have fundamental characteristics embracing dynamic bound components and

loosely coupling message linkage that maximize the flexibility, interoperability, and

reusability of software assets. As a platform neutral and programming language

independent framework of building distributed systems, it aims to address the issues with

existing distributed computing models such as CORBA, JAVA RMI, distributed

Smalltalk [GOTTSCHALK]. The limitations of these systems are mainly due to tight

 210

coupling of system components, which reduces the possibility of cross-platform

interoperability and just-in-time integration of services.

Service oriented architecture (SOA) [SOA] is a new generation of web-based

distributed application infrastructure. The impetus of adopting SOA is the realization that

interoperability and loose coupling are essential features that can greatly simplified the

tasks of building, integrating and extending distributed systems such as enterprise

applications.

Web Services [WEBSERVICE] provide universal APIs that support the general

framework and are becoming an increasingly important feature of Internet and Grid

systems. They support a loosely coupled service oriented architecture that builds on

previous distributed object architectures like CORBA, Java RMI, and DCOM to provide

dynamic, scalable, and interoperable systems. The broad applicability of this approach

includes enterprise software, e-Science and e-Business. Correspondingly there are a

growing number of powerful tools that are available for building, maintaining and

accessing Web Service-based systems. These tools include portals that allow user front-

ends to Web Services. This model for user interaction has new standards like portlets

with WSRP (Web Services for Remote Portlets) [WSRP] and the Java Specification

Request JSR168 [JSR168] supporting lightweight interfaces to the backend resources.

There are variants of Web Services architecture depending on the details of Web

Services stack from different organizations [MYERSON]. Examples include IBM

[WSCA] [WSFL], Microsoft [CKB], W3C [BOOTH], Sun, BEA, Hewlett-Packard,

Oracle, and ebXML [EBXML]. The Web Services architecture defines the relationship

 211

between Service Provider, Service Requester, and Service Broker, and how to “engage” a

Web Service between the requester and the provider via intermediate broker by Publish,

Find, and Bind operations using WSDL [WSDL] and UDDI [UDDI] protocols.

A Web service stack is depicted in fig. D.3. It shows that Web Services interact by

exchanging of messages in SOAP format while WSDL is used for describing a service as

contract. According to IBM Web Services Conceptual Architecture [WSCA], XML

messaging layer is “the most fundamental underpinnings” of the Web Services

architecture that provides network accessibility of services. Implementations of Web

Services include open source project Axis [AXIS] from Apache.

Appendix E

DOM

Definition of Node interface in Independent Definition Language (IDL) as specified

in Document Object Model (DOM) Core Level 1 Specification by W3C.

Figure D.3 A Web service stack

XML-based messaging

Application

Network protocols

Service description

HTTP, FTP,
email etc.

SOAP

WSDL

 212

IDL Definition

Appendix F

Overview of SVG

F.1 Two types of computer graphics

There are two types of computer graphics: raster and vector. The raster graphics is

made up of pixels. The vector graphics is composed of paths.

Raster images are commonly referred as bitmap images. Examples include JPEG

(Joint Photographic Experts Group), GIF (Graphics Interchange Format), TIFF (Tagged-

Image File Format), PNG (Portable Network Graphics) and PICT (Macintosh graphics)

interface Node {
 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval
 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
};

Figure E.1 IDL definition of Node Interface

 213

format. Since a bitmap uses an array of pixels with values indicating the color or shade,

bitmap images have a fixed resolution and cannot be resized without losing image quality.

They tend to have much larger file sizes than vector graphics because of pixel-based

storage. Individual raster technology often employs different compression approaches to

reduce the file size for storage and fast download.

Vector graphics use mathematical relationships between points and the paths

connecting them to describe an image. Vector formats can also integrate raster images

thereby represent a combination of lines, curves, and bitmaps. Common vector formats

include AI (Adobe Illustrator), CDR (CorelDraw), CGM (Computer Graphics Metafile),

SWF (Shockwave Flash), DXF (AutoCAD and other CAD software), and SVG (Scalable

Vector Graphics). Typically Vector-based images are not translated into bitmaps until the

last possible moment. Therefore they have much more flexibility for transformation (e.g.

scaling) while keep high resolution. In addition, vector images describe graphics object at

metadata level (e.g. text-based description of properties), which tend to have much

smaller file sizes than raster-based bitmaps for storage and transmission.

In general, bitmaps are suitable for photographs and images with subtle shading

whilst vector graphics are best used for page layout, interaction and distribution of

applications. However, most modern output devices, including computer monitors, dot-

matrix printers, and laser printers, are raster devices while almost all sophisticated

graphics systems, including CAD systems and animation software, use vector graphics.

The reconciliation of the difference between raster graphics and vector graphics occurs

when rasterizing occurs during the process of implementation.

 214

In fact, vector font technology has been viewed as an important feature of operating

system. Many printers (e.g. PostScript printers) have been used vector graphics with

internal converter to raster images. With all the merits of vector graphics, future software

applications would primarily use vector-based technology to create, import, display and

print graphics objects alongside with bitmaps.

F.2 SVG and the thesis project

The impetus for the thesis project occurred in spring 2000, when our research group

conducted a survey of new technologies for building Web based applications for

education. At that time, Macromedia Flash [FLASH] had become a popular toolkit for

Web designers ─ its fascinating movie like web interface immediately attracted our

attention since developers already got used to common HTML web pages. Flash provides

a fresh vector-based authoring platform with graphical user interface (GUI) that allows

one to easily manipulate document layout, mix sound and animation, ultimately generate

an interactive multimedia movie as web content. Then it can be exported to a SWF file,

the binary format of Flash content, and played by Flash Player plug-in in Internet

Explorer (IE) [IE] or Netscape Navigator (Netscape) [NETSCAPE] web browser.

We gained initial experience by building a research presentation web site [QIU-10-

2000] using Flash 5.0 [FLASH5] as the snapshot displayed in fig. F.1; and combined

with Macromedia Generator 2.0 [GENERATOR2], presenting a simple example of

dynamic delivery of contents provided by a text source file. The former demonstrates

how a stunning animated internet would look like with rich media web content such as

vector graphics (with ActionScript [ACTIONSCRIPT] interaction); the latter shows an

 215

integrated data driven authoring case with potential supporting architecture that consists

of client, server and database ─ a typical three-tier web application model of the time.

Macromedia was not the first one providing vector-based animation authoring tools.

However, it uses vectors to pack graphics and animation objects, adding a bit of sound,

and creatively coded to use SWF format for delivery of the rich media over to Web.

However, with Flash and Generator integration, it supplied an all-in-one package. This

model seemed quite successful in offering a platform that reconciled the gap between

artistic vector graphics designing and graphical content authoring in web browsers, which

appeared to split users into artist and programmer group.

At the mean time, we noticed that W3C proposed a series of multimedia related

specification in 2000 including Scalable Vector Graphics (SVG) 1.0 specification [SVG]

Figure F.1 Research presentation web site using Macromedia Flash

 216

as a candidate recommendation and Synchronized Multimedia Integration Language

(SMIL) 2.0 specification [SMIL2.0] as a working draft. After substantial investigation

and assessment of the core technologies, a technical report about Flash 5.0 and Generator

2.0 was completed [QIU-01-2001] in January of year 2001. As a conclusion, we found

that SVG provides a better programmable environment than Flash for our research

purpose. In contrast to other vector graphics technologies such as Macromedia Flash, the

most attractive features of SVG are its openness and compatibility of existing standards,

which can be further outlined in following aspects:

 open standard versus proprietary product;

 XML file format versus binary SWF format;

 conformation to DOM (core architecture and event model) versus internal data

structure and event handling;

 JavaScript versus ActionScript programming language for scripting and

animation applications.

Although as a technology, SVG hasn’t yet come up with a Flash-like authoring

platform, it has been successfully deployed in various application areas. SVG is well

accepted by the geography community in developing Geographical Information System

(GIS) (e.g. interactive mapping system) [BFF2003] [ADCOCK2004]. Its vector graphics

feature is especially suitable for zooming to fit various display devices including small

screen such as PDA and mobile phone [KALLIO] [ZM04]. To meet industry demands,

W3C has proposed two mobile profiles [SVGMOBILE]: SVGTiny (SVGT) and SVG

Basic (SVGB) that entail SVG specification 1.0 with special customization for mobile

devices based on constraints of low memory, CPU, and small display settings. SVG-

 217

based commercial or non-commercial tools provide viewing (Adobe SVG viewer

[ADOBESVG], Corel SVG Viewer [CORELSVG]), editing, presentation, data

visualization, conversion capabilities [SVGIMPLEMENTATIONS].

In retrospect, we’ve made a wise decision in carrying out our investigation and

experiments based on open standard SVG [SVG] and open source implementation ─

Batik SVG viewer project [BATIK] . The reason is two-folds. New generation of Web

applications are composed of rich media content and client interface. SVG contains

technical and implementation details that allow us to have an in depth/complete

evaluation of the tactics of graphical rendering and the mechanism of event-based

interactive relationship between the visual constituent and its data structure. Further more,

as a standalone client application, Batik SVG provides an ideal case for our experiments

to analysis different architectural principles, which facilitates the investigation of a

uniform software design strategy for distributed applications that bridge the gap so as to

maximally leverage existing components and incorporate collaboration capability.

Based on our progress with SVG experiments, in 2002, the original effort of building

an advanced Web-based education system supporting rich media content ─ collaborative

application with SVG ─ has been extended and emerged the idea for designing a generic

architecture of message-based Web applications that justified for emerging loosely

coupled Web Services oriented software model. Message-based MVC (or M-MVC) was

developed as a paradigm of messaging linkage service model converging desktop

application and Web application with automatic collaboration advantage. In the main

body of the thesis, we elaborate how exploration of SVG along its multiple dimensions

 218

service as a coherent approach to the M-MVC solution that is adaptable for emerging

trends of the Internet and Web evolution.

F.3 Essential features of SVG

SVG is the acronym of Scalable Vector Graphics. W3C defines SVG as “a language

for describing two-dimensional graphics and graphical applications in XML” in

specification version 1.0 [SVG]. Compared with HTML content, SVG has richer Web

graphics flavor, which can be viewed as a specification for “graphics of HTML”. The

feature of an open standard for interactive vector graphics as well as those inherited from

XML and DOM makes SVG a unique technology for Web applications.

Vector graphics feature

As a rich graphical content, SVG includes three types of graphical objects (vector

shape, text and image) that can be nested, grouped, transformed and styled, in addition to

graphical processing (clipping, masking and filtering). SVG content can be dynamically

updated (zoom, rotate and translate) without loss of rendering resolution.

Anybody who has experienced the frustration of trying to zoom or enlarge a bitmap

image but produced an unrecognizable rough and smoggy picture would probably agree

that scaling is one of the most desirable vector graphics features that SVG can bring to

the table. As shown in fig. F.2, a few snapshots captured the rendering of a Batik SVG

example barChat.svg in original size as a comparison to its 2x enlarged size. The merit is

that high quality visual results are always guaranteed no matter at what scale level. This

is an important feature for interactive systems. As often one needs to magnify a picture

(e.g. a photo or map) for a closer look or detailed information. Likewise, it helps to zoom

 219

out a graph for a panorama view on a small hand held device so as to keep the same

visual feel as on regular PC display. In this sense, SVG provides a vector graphics

technology that enriches the solutions designed for support of ubiquity and hypermedia

for next generation of client interface.

XML feature

SVG is an open standard that defines graphical objects in XML [XML]. Because

XML has been widely used for structured information exchange, SVG gains many

advantages such as scalable, accessible, structured, and rich format by building on the

existing standard. Through supporting of XLINK [XLINK] and SVG view specification

Figure F.2 Scaling of SVG document

 220

(or XPointer [XPOINTER]), SVG provides an effective way for referencing both remote

external document object (e.g. the ' href ' attribute on the 'a' element) and internal

document fragment (specified on attribute of 'view' or 'g' element). Apart from being used

as a standalone graphical content, SVG is also a usable XML namespace that is

accessible from other namespace document (e.g. XTHML) or third party application like

JDBC. It is an attractive portable intermediate format for exporting (e.g. from Illustrator

and PowerPoint); transcoding between vector graphics (e.g. pdf and PowerPoint) and

from vector to rasterized graphics (e.g. PNG).

For simplicity and visual convenience, we use a rectangle graphical object to

illustrate SVG composition. In the canvas area of Batik SVG viewer, one blue rectangle

(with two frame borders to indicate positions) is displayed within “Position A” frame

border in fig F.3.

The visual effect of the above example would be equivalent to the following XML

representation (see fig. F.4), where SVG content is embedded within a well-formed and

Figure F.3 Graphical representation of
 rectangle.svg document

 221

valid XML document. In line 1, XML declaration indicates version 1.0 of XML is being

used. In line 2, the document type declaration (DTD) imposes constraints on logic

structure of containing SVG elements via an external specification “svg-20000802.dtd”.

The outmost 'svg' tag in line 4 marks the beginning of root SVG element with an ending

tag in line 28. A total of five SVG elements are included: five rectangles and two texts,

which are highlighted by arrow markers. The grouping element 'g' (with “content”

identification) provides a container for three embedded subsets: grouping element

“PositionA” and “PositionB”, as well as 'rect' shape element. Each of the grouping

position elements is composed of 'text' and nested border group containing black 'rect'

outline and 'rect' white fill.

As shown by the simple example, SVG entails powerful structuring capabilities of

document by using XML in describing graphical object. Internally, a svg document

fragment is organized with elements grouped and nested in a very flexible manner.

 1
 2

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
"http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">

<svg id="body" width="300" height="350" viewBox="0 0 300 350">

 <g id="content" transform="translate(0,120)">
 <g id="PositionA" transform="translate(0,0)">
 <text class="legend" x="10" y="10" style="font-family: Arial; font-size:22">Position A</text>

 <g id="borderA">
 <rect id="originalPlaceShadowBorder" x="0" y="30" width="120" height="80" style="fill:none; stroke:black" />
 <rect id="origianlInterior" x="1" y="31" width="118" height="78" style="fill:white; stroke:none" />
 </g>
 </g>

 <g id="PositionB" transform="translate(180,0)">
 <text class="legend" x="10" y="10" style="font-family: Arial; font-size:22">Position B</text>

 <g id="borderB">
 <rect id="targetPlaceShadowBorder" x="0" y="30" width="120" height="80" style="fill:none; stroke:black" />
 <rect id="targetInterior" x="1" y="31" width="118" height="78" style="fill:white; stroke:none" />
 </g>
 </g>

 <rect id="targetRect" x="10" y="40" width="100" height="60" style="fill:blue;" />
 </g>

</svg>

Figure F.4 A SVG file rectangle.svg in XML format

 222

Attribute fields of a given element contain miscellaneous commonly-used properties,

such as identification (“id”), coordinate system information (e.g. “width”, “height”, and

“viewBox”), utility methods such as matrix operations (“transform/translate”), and the

ability to control various graphics painting and text styling options (e.g. “style/fill” and

“style/font-family”).

The combination of text-oriented format and URI referencing features of SVG greatly

increase distribution and re-use capabilities of existing graphics object. Particularly,

XML-based object model allows SVG element or SVG document to be embedded inline

as a component for building complex application. Given the gap between visual and

XML-based SVG presentation, in subsequent sections, we explain how it is filled through

DOM, the programmable interface.

DOM feature

SVG is an application of DOM [DOM2CORE] [DOM2EVENT]. The importance of

SVG DOM is two folds: one is a DOM tree like structure with nodes of parsed graphics

objects provides an effective programmable interface for complete access and manipulate

of graphical elements and their properties; the other is inherent DOM event model plus

language binding (e.g. JavaScript) and/or Cascading Style Sheets (CSS) [CSS] enables

sophisticated application including interactivity, scripting and animation, which distinct

SVG as a general-purpose presentational technology.

SVG DOM represents a hierarchical data structure of vector graphics. The static

feature is depicted in fig. F.6. In implementation, the SVG DOM tree can be built upon

parsing corresponding SVG document such as “rectangle.svg”, which has visual and

XML presentations as shown in fig. F.5 and fig. F.6 respectively. The SVG document

 223

fragment ─ 'svg' element (with “body” identification) is a child node of XML document

root node and contains multiple grouping elements whilst the leaf nodes are composed of

basic shape element and text element such as 'rect' and 'text'.

Each SVG element node contains common attributes (e.g. id), element boundaries, as

well as those belonged to a specific type such as styling and processing instructions. The

tree structure makes it convenient for traversal and locating an element by means of

canonical searching algorithms. The binding language provides get and set methods for

applications to retrieve and modify element properties. These high level method calls are

executed through SVG element interfaces (e.g. getAttribute and setAttribute) and generic

DOM node interfaces (e.g. insertBefore, replaceChild, removeChild, and appendChild).

Rendering

The rendering of SVG content is a process of converting text-oriented description of

graphical objects to pixel-based bitmap image for output device. A canvas is regarded as

svg
id = “body”

g
id = “content”

Figure F.5 SVG DOM tree representation of rectangle.svg document

document

g
id = “PositionB”

g
id = “PositionA”

g
id = “borderA”

g
id = “borderB”

rect
id=“originalPlaceShadowBorder”

rect
id=“origianlInterior”

rect
id=“targetPlaceShadowBorder”

rect
id=“targetInterior”

rect
id=“targetRect”

Text
“PositionA”

Text
“PositionB”

 224

an infinite virtual space to draw graphics on. In reality, SVG content is rendered and

viewed in a finite rectangular area of canvas, so called viewport. SVG uses pixel unit in

coordinate systems and top/left corner is defined as the origin of root viewport.

SVG employs “painters model” to render a target graphical object on canvas by

conducting successive operations. Simply put, a graphical element is initially painted

onto a temporary canvas, applied with all filtering and painting operations including

clipping, masking and object opacity (alpha channel) before being merged into the

background as a whole onto the output device.

There’re several issues that complicate SVG rendering process. First, there may be

many coordinate systems and transformations between canvas (viewport) space and user

space; local (current node) and global (root node) coordinates within the user space.

Second, three types of fundamental SVG graphical contents, which embraces shape, text,

and raster image, are rendered differently. Third, graphical elements are commonly

grouped and nested. SVG imposes implicit drawing order (with first parsed element

getting “painted” first on bottom of rendering stack) in absence of a z-order attribute in

SVG 1.0 specification. Of course, graphics rendering consists of many algorithmic,

technical, and optimization details that beyond what is covered here.

F.4 An example of interactive SVG application

We use a simple example rectOnClick.svg to explain the interactive mechanism of

SVG applications. A blue rectangle is located in frame holder A (see fig. F.4a). When a

mouse click occurs over frame hold B, the rectangle toggles to position B (see fig. F.4b).

 225

The example is defined in rectOnClick document shown in fig. F.7. Line 4 to 41

constitutes the main body of SVG document. It defines key elements and actions that can

operate on them. Major graphical elements are defined in group from line 19 to 39, which

consist of subgroups “Position A” and “Position B”, and a blue rectangle. The subgroups

are themselves composite as well, each containing text and border elements. These

elements are parsed as SVG DOM nodes in memory. Note that event listeners are added

to element nodes in border A and border B elements. A user input event (e.g. mouse click)

would invoke call back method that is defined in JavaScript code segment from line 8 to

15 ─ that is, switching the blue rectangle from position A to position B. Graphical

rendering engine produces visual reflection that accommodates to the change.

Figure F.6 A simple interactive SVG application of toggling rectangle

(a) before “mouse click” on (b) after “mouse click” on

 226

F.5 Summary

In summary, SVG provides a rich, structured description of vector and mixed

vector/raster graphics. Different concepts of SVG in terms of vector graphics, XML

conformation, and DOM structure represents important aspects of visual, XML-based

format, URI reference, and hierarchical data structure that promise SVG more than a

rudimentary graphical rich format and comprises the fundamental elements for a

programmable environment. Conversion is needed between different presentations of

SVG: flattened text-oriented XML document, SVG DOM tree, and pixel-based bitmap

image for output device.

Figure F.7 An interactive SVG example with scripting in rectOnClick.svg document

 1
 2

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20000802//EN"
 "http://www.w3.org/TR/2000/CR-SVG-20000802/DTD/svg-20000802.dtd">

<svg id="body" width="300" height="350" viewBox="0 0 300 350">

 <title><rect> x modification in 'onclick'</title>

 <script type="text/ecmascript">
 function moveToX(evt, target, val){
 var r = evt.target;
 var doc = r.ownerDocument;
 var t = doc.getElementById(target);
 t.setAttribute('x', val);
 }
 </script>

 <text x="0" y="60" class="title" style="font-family: Arial; font-size:20"><rect> x modification in 'onclick'</text>

 <g id="content" transform="translate(0,120)">
 <g id="PositionA" transform="translate(0,0)">
 <text class="legend" x="10" y="10" style="font-family: Arial; font-size:22">Position A</text>

 <g id="borderA" onclick="moveToX(evt, 'targetRect', '10')">
 <rect id="originalPlaceShadowBorder" x="0" y="30" width="120" height="80" style="fill:none; stroke:black" />
 <rect id="origianlInterior" x="1" y="31" width="118" height="78" style="fill:white; stroke:none" />
 </g>
 </g>

 <g id="PositionB" transform="translate(180,0)">
 <text class="legend" x="10" y="10" style="font-family: Arial; font-size:22">Position B</text>

 <g id="borderB" onclick="moveToX(evt, 'targetRect', '190')">
 <rect id="targetPlaceShadowBorder" x="0" y="30" width="120" height="80" style="fill:none; stroke:black" />
 <rect id="targetInterior" x="1" y="31" width="118" height="78" style="fill:white; stroke:none" />
 </g>
 </g>

 <rect id="targetRect" x="10" y="40" width="100" height="60" style="fill:blue;" />
 </g>

</svg>

 227

Substantial implementations that based on SVG specification and SVG content have

been developed in support of viewing, generating, transcoding, editing, and drawing

[SVGIMPLEMENTATIONS]. Among SVG viewers that are developed for rendering

SVG format content, Adobe [ADOBESVG] and Corel [CORELSVG] implemented SVG

as a plug-in of a conventional browser; Apache Batik SVG is a stand-alone client

application, which is written in Java apart from a few native classes; there are SVG Tiny

implementations that are customized for handheld devices as well.

Appendix G

Overall architecture of Batik

The following Batik architecture [BATIK] illustrates three levels of modules: low

level, core, and application that support SVG application deployment.

Figure E.1 Batik Architecture

 228

Appendix H

Detailed Analysis of Batik

 229

Figure H.1 JSVGViewerFrame

JSVGViewerFrame
- SVG Browser

Menu Item Action Map JSVGCanvas
- UI Component

Swing (Mouse & Key) Action Map JSVGComponent Interactors

UserAgent JGVTComponent
- a component to display a GVT tree

Abstract Interactors
interface Adapters

JGVTComponent
(JGVTComponent)e.getSource()

AffineTransform ...

addSVGDocumetLoaderListener addGVTTreeBuilderListener

SVGDocumentLoaderListener
interface

GVTTreeBuilderLIstener
interface

addGVTTreeRendererListener

swing Actions

setSVGDocument

GVTTreeBuilder
- builds a GVT tree

GVTBuilder
- Bridge

GraphicsNode
interface BridgeContext

- context for dynamic binding between
DOM elements and GVT nodes

Fire...Event

GVTTreeBuilderEvent

Protected class SVGListener
extends Listener

build buildComposite buildGraphicsNode

GVTTreeRenderer
- renders a GVT tree

JComponrnt

ImageRenderer
interface

Fire … Event

Renderer
interface

Interface class

JDK class

Key SVG class

SVG class

AbstractGraphicsNodeBridge
abstract class

SVGUtilites CSSUtilities BridgeEventSupport

EventQueue

addKeyListener
addMouseListener

addMouseMotionListener
addComponentListener

 230

Figure H.2 Data flow

Public interface org.xml.sax.ext.LexicalHandler
implements EntityResolver, DTDHandler, ContentHandler, ErrorHandler

Org.apache.batik.apps.svgbrowser.Main
implements Application

public run() { frame.showSVGDocument(uri); }

Org.apache.batik.apps.svgbrowser.JSVGViewerFrame extends JFrame
implements ActionMap, SVGDocumentLoaderListener, GVTTreeBuilderListener, SVGLoadEventDispatcherListener, GVTTreeRendererListener, LinkActivationListener, UpdateManagerListener

Org.apache.batik.apps.svgbrowser.LocalHistory

public String back() { frame.showSVGDocument(uritodisplay); }
public String forward() { svgFrame.showSVGDocument(uritodispaly); }

public void reload() { svgFrame.showSVGDocument((String)visitedURIs.get(currentURI+1));}
protected class RadioListeneer implements ActionListener { public void actionPerformed(ActionEvent e) {svgFrame.showSVGDocument(uri); } }

public JSVGViewerFrame(...) {
locationBar.addActionListener(new AbstractAction()

{ showSVGDocument(st); } }

public void CollaborativeOpenAction(String furl) { showSVGDocument(furl); }

public void openLink(String uri, boolean newc)
{ showSVGDocument(uri); }

public class OpenLocationAction extends Abstraction {
public void actionPerformed(ActionEvent e) {

showSVGDocument(s); } } }

public void CollaborativeOpenLocationAction(String url) { showSVGDocument(url); }

Org.apache.batik.apps.svgbrowser.SVGInputHandler implements SquiggleInputHandler

public void handler(ParsedURL prul, JSVGViewerFrame svgViewerFrame) {
svgViewerFrame.getJSVGCanvas().loadSVGDocument(purl.toString()); }

public void showSVGDocument(String uri) {
SquiggleInputHandler handler.handle(purl, JSVGViewerFrame.this);}

Org.apache.batik.util.ParsedURL implements SquiggleInputHandler

public ParsedURL (String basedStr, String urlStr) { }

Org.apache.batik.swing.svg. JSVGComponent extends JGVTComponent

public void loadSVGDocument(String url){ }

final ParsedURL newURI = ParsedURL(oldURI, url); startDocumentLoader()
;

loader = new
DocumentLoader(userAgent);

Private void startDocumentLoader() {
documentLoader = nextDocumentLoader;

nextDocumentLoader = null;
documentLoader.start(); }

Org.apache.batik.swing.svg.SVGDocumentLoader extends Thread

fireEvent(stratedDispatcher,
evt)

fireEvent(completeddDispatcher,
evt);

SVGDcoument svgDocument
= (SVGDocument)

loader.loadDocument(url);

public void run() { }

Org.apache.batik.bridge.DocumentLoader
implements SquiggleInputHandler

documentFactory = new
SAXSVGDocumentFactory(userAgent.getXMLParserClassName(),

true);
This.userAgent = userAgent;

Public Document loadDocument(String uri)

public DocumentLoader(UserAgent userAgent) { }
Document ret = checkCache(uri);

SVGDcoument document =
documentFactory.createSVGDocument(uri);

bridgeContext.initializedDcoument(document);
desc =

documentFactory.getDocumentDescriptor();
state = new DocumentState(uri, document,

desc);
cacheMap.put(uri, state);

Org.apache.batik.util.
EventDispatcher

public static void fireEvent
(final Dispatcher

dispatcher,
final List listeners,
final Object evt,

final boolean
useEventQueue)

Java.awt.EventQueue
EventQueue.invokeAnd

Wait (r);

Org.apache.batik.dom.svg.
SAXSVGDocumentFactory

extends SAXDocumentFactory
implements SVGDocumentFactory

public SAXSVGDocumentFactory(String parser, boolean dd) {
super (ExtensibleSVGDOMImplementation.getDOMImplementation(), parser, dd): }

Org.apache.batik.dom.util.
SAXDocumentFactory
extends DefaultHandler

implements LexicalHandler, DocumentFactory

public SVGDocument createSVGDocument(String uri) {
return (SVGDocument) createDocument(uri); }

public Document createDocument(String uri) {
ParsedURL prul = new ParsedURL(uri);

InputStream is = purl.openStream(MimeTypeconstants.MIME_TYPE_SVG);
InputSource isrc = new InputSource(is);

Document doc = super.createDocument(SVGDOMImpementation.SVG_NAMESPACE_URI, “svg”, uri, isrc); }

protected Document createDocument(String ns, String root,
String uri, InputSource is) {

Document ret = createDocument(is); }

protected Document createDocument(InputSource is) {
XMLReader parser =

XMLReaderFactory.ceateXMLReader(parserClassName);
parser.parse(is); }

Public interface Org.xml.sax.XMLReader
public void parse(InputSource input)

public SAXDocumentFactory(DOMImplementation impl,
String parser, boolean dd) { }

Public void
startCDATA()

Public interface org.xml.sax.helpers.DefaultHandler
implements EntityResolver, DTDHandler, ContentHandler, ErrorHandler

Public void
startDocument() { } Public void startElement() { }

Public void
startDocument() { }

Public void startElement() {
document = implementation.createDocument(nsURI, rawName, null);

currentNode = e = document.getDocumentElement();
document.insertBefore(n, e); }

Public void
startCDATA()

nextDocumentLoader = new
SVGDocumentLoader(url, loader);

public SVGDocumentLoader(String
u, DocumentLoader l)

Data flow

 231

Figure H.3 openLink

org.apache.batik.swing.svg.JSVGViewerFrame extends JFrame implements ActionMap,
SVGDocumentLoaderListener, GVTTreeBuilderListener, SVGLoadEventDipatcherListener,

GVTTreeRendererListener, LinkActivationListener, UpdataManagerListener
public void openLink(String uri, boolean newc)

 if (newc)

application.openLink(uri) public void showSVGDocument(uri)

org.apache.batik.apps.svgbrowser.Main implements Application
public void openLink(String uri)

JSVGViewerFrame f = createAndShowJSVGViewerFrame()
f.getJSVGCanvas().loadSVGDocument(url)

org.apache.batik.bridge.SVGAElementBridge extends SVGGElementBridge

EventListener l = new AnchorListener(ctx.getUserAgent())
target.addEventListener(SVG_EVENT_CLICK, l, false)

ctx.storeEventListener(target, SVG_EVENT_CLICK, l, false);

Public void buildGraphicsNode(BridgeContext ctx, Element e, GraphicsNode node)

EventTarget target = (EventTarget)e;super.buildGraphicsNode(ctx, e, node);

EventListener l = new CursorMouseOverListener(ctx.getUserAgent())
target.addEventListener(SVG_EVENT_MOUSEOVER, l, false)

ctx.storeEventListener(target, SVG_EVENT_MOUSEOVER, l, false);

EventListener l = new CursorMouseOutListener(ctx.getUserAgent())
target.addEventListener(SVG_EVENT_MOUSEOUT, l, false)

ctx.storeEventListener(target, SVG_EVENT_MOUSEOUT, l, false);

Public static class AnchorListener implements EventListener{
public void handlEvent(Event evt) {

userAgent.openLink(elt); }}

Public static class CursorMouseOverListener implements EventListener{
public void handlEvent(Event evt) {

userAgent.setSVGCursor(CursorManager.ANCHOR_CURSOR); }}

Public static class CursorMouseOutListener
implements EventListener{

public void handlEvent(Event evt)

org.apache.batik.swing.svg.JSVGComponent.extends JGVTComponent

Protected static class BridgeUserAgentWrapper implements UserAgent
public void openLink(final SVGAElement elt)

userAgent,openLink(elt)

 if (EventQueue.isDispatchThread())

EventQueue.invokeLater(new Runnable(){
public void run(){ userAgent.openLink(elt) }}

Protected class BridgeUserAgent implements UserAgent
public void openLink(final SVGAElement elt)

Public void openLink(SVGAElement elt)

String show = XLinkSupport.getXLinkShow(elt) String href = XLinkSupport.getXLinkHref(elt)

 if (show.equals(“new”))

fireLinkActivatedEvent(elt, href)

JSVGComponent.this.loadSVGDocument(href)svgUserAgent.openLink(href, true)

 if (svgUserAgent != null)

Return

ParsedURL newURI = new
ParsedURL(((SVGDocument)elt.get
OwnerDocument()).getURL(), href)

parsedURL oldURI = new
ParsedURL(svgDocument.getURL())

 if (svgDocument != null)

fireLinkActivatedEvent(elt, href)

 if (newURI.sameFile(oldURI)

String s = newURI.getRef()
 if ((fragmentIdentifier !=s)&&

((s==null)||(!s.equals(fragmentIdentifier)))

fragmentIdentifier = s
scheduleGVTRendering()

fireLinkActivatedEvent(elt, href)

Return

svgUserAgent.openLink
(href, false)

 if (svgUserAgent != null)

JSVGComponent.this.
loadSVGDocument(href)

org.apache.batik.bridge.BridgeEventSupport implements SVGConstants

public void dispatchMouseEvent(String eventType, Element
targetElement, Element relatedElement, Point clientXY,

GraphicsNodeMouseEvent evt, Boolean cancelable)

org.apache.batik.dom.events.EventSupport

public static boolean dispatchMouseEven
t(NodeEventTarget tartet, Event e)

org.apache.batik.gvt.event.AWTEventDispatcher implements EventDispatcher, MouseListener, MouseMotionListener, KeyListener

public void processMouseEvent(GraphicsNodeMouseEvent evt)

public void dispatchEvent(EventObject evt)

public void dispatchMouseEvent(MouseEvent evt)

public void mouseClicked(MouseEvent evt) public void mouseEntered(MouseEvent evt)………..

org.apache.batik.swing.gvt.JGVTComponent extends JComponent
public void dispatchMouseClicked(MouseEvent evt)

AWTEventDispatcher eventDispatcher.mouseClicked(e)

org.apache.batik.swing.gvt.JSVGComponent extends
JGVTComponent

public void dispatchMouseClicked(final MouseEvent evt)

 232

Figure H.4 openLink (rendering)

Org.apache.batik.bridge
RepaintManager

This class manages the rendering of a GVT tree.
updateRendering() { render.flush(areas) }

public abstract class org.apache.batik.bridge.
UpdateManager

repaint() { MIN_REPAINT_TIME
updateTracker.getDirtyAreas()

if (dirtyAreas !=null) updateRendering(dirtyAreas) }

Org.apache.batik.gvt.renderer
interface ImageRenderer extends Renderer

Interface for GVT Renderers that render into raster
images.

Org.apache.batik.gvt
UpdateTracker

extends GraphicsNodeChangeAdapter
This class tracks the changes on a GVT tree

Org.apache.batik.gvt.renderer
 interface Renderer

Interface for GVT Renderers.
repaint()

Org.apache.batik.swing.gvt GVTTreeRenderer extends Thread
run() { rendered.repaint() }

org.apache.batik.ext.awt.image.rendered
 TileCacheRed

extends AbstractTiledRed
This implementation of RenderedImage only serves

to put the tiles generated by it's input into the TileCache.
flushCache() { store.setTile() }

org.apache.batik.ext.awt.image.rendered
 TileGrid

implements TileStore
This is a Grid based implementation of the TileStore.

 This makes it pretty quick, but it can use a fair amount
of memory for large tile grids.
setTile(int x, int y, Raster ras)

org.apache.batik.ext.awt.image.rendered
 TileRed

implements TileStore
This filter simply tiles its tile starting from the upper

 left corner of the tiled region.
WritableRaster fillRasterFrom() {

GraphicsUtil.drawImage() }

org.apache.batik.ext.awt.image
 GraphicsUtil

Set of utility methods for Graphics.
 These generally bypass broken methods in Java2D or

provide tweaked implementations.
drawImage() { g2d.drawImage() }

public abstract class java.awt.
Graphics

Public abstract boolean drawImage(Image img,
int x, int y, ImageObserver observer)

Dispay
device

Org.apache.batik.bridge
BaseScriptingEnvironment

This class is the base class for SVG scripting.

Dom tree

dispatchSVGDocEvent
EventTargetdispatchEvent

public interface org.apache.batik.swing.svg JSVGComponent extends JGVTComponent

Protected class BridgeUserAgent implements UserAgent
public void openLink(final SVGAElement elt)

fragmentIdentifier = s
if (computeTransform()){

scheduleGVTRendering()}

Protected boolean computeRenderingTransform()

If
(!!initialTransform.equals(getRenderingTransform())

setRenderingTransform(initialTransform, false)
Boolean ret = updateRenderingTransform()

protected boolean updateRenderingTransform() {
AffineTransform at = viewBox.getViewTransform

(fragmentIdentifier, elt, d.width, d.height);
canvasGraphicsNode cgn = getCanvasGraphicsNode();

setRenderingTransform(rendAT, false)
 cgn.setViewingTransform(at) }

protected void renderGVTTree()

super.renderGVTTree();
return;

updateManager.getUpdateRunnableQueu
e().invokeLater(new Runnable() {

public void run() {
updateManager.updateRendering(renderi
ngTransform, doubleBufferedRendering,

s, d.width, d.height); }}

 if (!isInteractiveDocument ||
updateManager == null ||

pdateManager.isRunning())

Org.apache.batik.gvt.renderer StaticRenderer implements ImageRenderer
//Simple implementation of the Renderer that simply does static rendering in an offscreen buffer image.

flush() { TileCachedRed tcr.flushCache();}

// This method causes the image data
copied to display device (e.g. monitor)

repaint(list areas)

Org.apache.batik.swing.gvt JGVTComponent extends JComponent
renderGVTTree() {

gvtTreeRenderer.start() }
 public void

setRenderingTransform(AffineTran
sform at, boolean performRedraw)

 protected void
scheduleGVTRendering()

openLink (rendering)

 233

Figure H.5 GraphicsNode Event (DOM-Bridge-GVT event flow)

Org.apache.batik.gvt.
 MarkerShapePainter

implememts ShapePainter

setShape(Shape shape)

public abstract class Org.apache.batik.bridge.
SVGTextElementBridge

extends AbstractGrahpicsNodeBridge
implements SVGTextContext

handleCSSEngineEvent(CSSEngineEvent evt)
handleDOMAttrModifiedEvent(MutationEvent evt){

 super.handleDOMAttrModifiedEvent(evt);}
handleDOMCharacterDataModified(MutationEvent evt)

handleDOMChildNodeRemovedEvent(MutationEvent evt)
handleDOMNodeInsertedEvent(MutationEvent evt)

handleDOMNodeRemovedEvent(MutationEvent evt)
handleDOMSubtreeModifiedEvent(MutationEvent evt)

public abstract class Org.apache.batik.bridge.
AbstractGraphicsNodeBridge

extends AbstractSVGBridge implements SVGContext,
BridgeUpdateHandler, GraphicsNodeBtidge, ErrorConstants

handleCSSEngineEvent(CSSEngineEvent evt)
handleDOMAttrModifiedEvent(MutationEvent evt)

handleDOMCharacterDataModified(MutationEvent evt)
handleDOMNodeInsertedEvent(MutationEvent evt)

handleDOMNodeRemovedEvent(MutationEvent evt)
handleCSSPropertyChanged(int property)

handleGeometryChanged() {
 node.setFilter(CSSUtilities.convertFilter(e, node, ctx));
 node.setMask(CSSUtilities.convertMask(e, node, ctx));

 node.setClip(CSSUtilities.convertClipPath(e, node, ctx));}

public abstract class Org.apache.batik.bridge.
SVGImageElementBridge

extends AbstractGrahpicsNodeBridge

handleDOMAttrModifiedEvent(MutationEvent evt){
 super.handleDOMAttrModifiedEvent(evt);

handleCSSPropertyChanged(int property) }

Org.apache.batik.bridge. SVGGElementBridge extends AbstractGraphicsNodebridge

handleElementAdded(CompositeGraphicsNode gn,Node parent,Element childElt)

GVTBuilder builder = ctx.getGVTBuilder();
 GraphicsNode childNode = builder.build(ctx, childElt);

gn.add(0, childNode);
//add to the beginning

gn.add(childNode);
//add to the end

if (n == childElt)

gn.add(index, childNode);
//insert at index

handleDOMNodeInsertedEvent(MutationEvent evt)

public interface org.apache.batik.gvt.GraphicsNode
The base class for all graphics nodes. A GraphicsNode encapsulates
graphical attributes and can perform atomic operations of a complex

rendering.

boolean contains(Point2D p); GraphicsNode nodeHitAt(Point2D p)
Rectangle2D getBounds(); Composite getComposite()

paint(Graphics2D g2d)

AffineTransform getGlobalTransform(); getTransform();
setTransform(AffineTransform newTransform)

setClip(ClipRable newClipper); setVisible(boolean isVisible);
setComposite(Composite newComposite);

setMask(Mask newMask); setFilter(Filter newFilter);

public abstract class org.apache.batik.gvt AbstractGraphicsNode implements GraphicsNode

paint(Graphics2D g2d) {//Paints this node.
org.apache.batik.ext.awt.image.GraphicsU

til.drawImage(g2d, filteredImage);}

fireGraphicsNodeChangeStrated()
fireGraphicsNodeChangeStarted(GraphicsNode changeSrc)
fireGraphicsNodeChangeStarted(GraphicsNodeChangeEve

nt changeStartedEvent) public RootGraphicsNode getRoot()

fireGraphicsNodeChangeCompleted()

setTransform(AffineTransform newTransform)
setComposite(Composite newComposite)

setVisible(boolean isVisible)
setClip(ClipRable newClipper)

setRenderingHint(RenderingHints.Key key, Object value)
setRenderingHints(Map hints)

setRenderingHints(RenderingHints newHints)
setMask(Mask newMask)
setFilter(Filter newFilter)

setParent(CompositeGraphicsNode
newParent)

setRoot(RootGraphicsNode newRoot)

Org.apache.batik.bridge.SVGSVGElementBridge
extends SVGGElementBridge

buildGraphicsNode(BridgeContext ctx,Element
e,GraphicsNode node)

GraphicsNode createGraphicsNode(BridgeContext
ctx, Element e)

handleDOMAttrModifiedEvent(MutationEvent evt) {
handleElementAdded(gn, e.getParentNode(), e);}

public abstract class Org.apache.batik.dom.AbstractNode extends ExtendedNode, Serializable

public boolean dispatchEvent(Event evt) { eventSupport.dispatchEvent(this, evt);}

fireDOMNodeInsertedIntoDocumentEvent()
fireDOMNodeRemovedFromDocumentEvent()

fireDOMCharacterDataModifiedEvent(String oldv,String newv)

fireDOMNodeInsertedIntoDocumentEvent()
fireDOMNodeRemovedFromDocumentEvent()

Org.apache.batik.gvt.RasterImageNode extends AbstractGraphicsNode

setImage(Filter newImage)

fireGrpahicsNodeChangeCompleted()

this.image = newImage;

fireGraphicsNodeChangeStarted();

Org.apache.batik.gvt.ShapeNode extends AbstractGraphicsNode
setShape(Shape newShape)

fireGraphicsNodeChangeCompleted()
;

this.shapePainter.setShape(newShape);

fireGraphicsNodeChangeStarted();

Org.apache.batik.gvt.ImageNode extends CompositeGraphicsNode

setImage(GraphicsNode newImage)

fireGraphicsNodeChangeCompleted()
;((AbstractGraphicsNode)newImage).setParent(this);

((AbstractGraphicsNode)newImage).setRoot(getRoot());

fireGraphicsNodeChangeStarted();

Org.apache.batik.gvt.TextNode extends AbstractGraphicsNode implements Selectable
setLocation(Point2D newLocation)

fireGraphicsNodeChangeCompleted()
;

this.location = newLocation;

fireGraphicsNodeChangeStarted();

public abstract class
Org.apache.batik.dom.AbstractText extends

AbstractCharacterData implemets Text

splitText(int offset)

Org.apache.batik.dom.util.SAXDocumentFactory
extends DefaultHandler implemets LexicalHandler,

DocumentFactory

startElement(uri, localName, rawName, Attributes)

Org.apache.batik.dom.util.DOMUtilities
extends XMLUtilities

deepCloneDocument(Document doc,
DOMImplementation impl)

Org.apache.batik.svggen.SVGGraphics2D
extends AbstractGraphics2D

stream(Element svgRoot, Writer writer,
boolean useCss)

Org.apache.batik.svggen.
DOMTreeManager

getTopLevelGroup(boole
an includeDefinitionSet)

Org.apache.batik.bridge.BridgeContext
extends SVGGElementBridge

protected class DOMNodeInsertedEventListener
implements EventListener {

public void handleEvent(Event evt) {
h.handleDOMNodeInsertedEvent(me); }}

Org.apache.batik.dom.events.EventSupport

private static void fireEventListeners(NodeEventTarget node,Event evt, boolean useCapture)
{ listeners[i].handleEvent(evt); }

public static boolean dispatchEvent(NodeEventTarget target, Event e)

public abstract class Org.apache.batik.dom.AbstractElement
extends AbstractParentChildNode implements Element

public void fireDOMAttrModifiedEvent(String name, Attr node, String oldv, String newv, short change)

MutationEvent ev = (MutationEvent)de.createEvent("MutationEvents");
dispatchEvent(ev);

Org.apache.batik.gvt
CompositeGrahpicsNode

extends AbstractGraphicsNode implements List
A CompositeGraphicsNode is a graphics node that can contain graphics nodes.

public void add(int index, Object o)
public void add(Object o){

fireGraphicsNodeChangeStarted(node);
((AbstractGraphicsNode) node).setParent(this);

((AbstractGraphicsNode) node).setRoot(this.getRoot());
fireGraphicsNodeChangeCompleted();}

public boolean contains(Object node)
Returns if the compoisite graphics node
contains the specified graphics node.

public boolean contains(Point p)
Returns if the specified Pont2D is insde

the boundary of this node.

public Rectangle2D getGeometryBounds()
public Recgangle2D getTransformedGeometryBounds(AffineTransorm txf)

public List getChildren()

public Object remove(int index)
public boolean remove(Object o)

public abstract class Org.apache.batik.dom.AbstractParentNode extends AbstractNode

fireDOMSubtreeModifiedEvent(); fireDOMNodeInsertedEvent(Node node); fireDOMNodeRemovedEvent(Node node)

insertBefore(Node newChild, Node refChild); replaceChild(Node newChild, Node oldChild); appendChild(Node newChild); removeChild(Node oldChild)

 234

Figure H.6 EventDispatcher

Org.apache.batik.bridge.GVTBuilder
implements SVGConstants

public GraphicsNode build(BridgeContext
ctx, Document document)

Org.apache.batik.swing.gvt.GVTTreeRenderer extends Thread

run()

fireEvent(prepare
Dispatcher, ev)

renderer.repaint
(areaOfInterest) fireEvent(completed

Dispatcher, ev)

EventDispatcher.fireEvent(dispatcher, listeners, event, true)

fireEvent(started
Dispatcher, ev)

Org.apache.batik.gvt.renderer.StaticRenderer
implements ImageRenderer

repaint(Shape area)

repaint(List areas)

Org.apache.batik.swing.svg.GVTTreeBuilder extends Thread

run()

fireEvent(started
Dispatcher, ev)

 GraphicsNode gvtRoot =
builder.build(bridgeContext,

svgDocument)
fireEvent(completed

Dispatcher, ev)

EventDispatcher.fireEvent(dispatcher, listeners, event, true)

Org.apache.batik.bridge.BaseScriptingEnvironment
implements RunnableQueue.RunHandler

dispatchSVGLoadEvent()

dispatchSVGLoad(Element elt,
boolean checkCanRun, String lang)

EventTarget t.dispatchEvent(ev)
// dispatch event to DOM

Org.apache.batik.swing.svg.SVGDocumentLoader extends Thread
run()

fireEvent(started
Dispatcher, evt)

SVGDocument svgDocument =
(SVGDocument)loader.loadDocumen

t(url, is)

fireEvent(completed
Dispatcher, evt)

EventDispatcher.fireEvent(dispatcher, listeners, event, true)

org.apache.batik.util.EventDispatcher
public static void fireEvent(final Dispatcher dispatcher,final List

listeners,final Object evt,final boolean useEventQueue)

Runnable r = new Runnable() { public void run() {
fireEvent(dispatcher, listeners, evt, useEventQueue); }

EventQueue.invokeAndWait(r)

 protected static void dispatchEvent(final Dispatcher
dispatcher,final Object [] ll,final Object evt)

dispatcher.dispatch(l, evt)

Org.apache.batik.util.RunnableQueue implements
Runnable

protected synchronized void
runnableInvoked(Runnable rable)

{runHandler.runnableInvoked(this, rable)}

Run(){runnableInvoked(rable)}

Org.apache.batik.swing.svg.JSVGComponent
extends JGVTComponent

protected void stopThenRun(final Runnable r)
{r.run()}

public void
loadSVGDocument(String url)

public void
setSVGDocument(String url)

public void setDocument(Document docl)
{setSVGDocument((SVGDocument)doc)}

 protected class SVGListener
 extends Listener implements

SVGDocumentLoaderListener,
 GVTTreeBuilderListener,
SVGLoadEventDispatcherListener,

 UpdateManagerListener {
documentLoadingCompleted(SVGDocument

LoaderEvent e) {
setSVGDocument(e.getSVGDocument())}}

Org.apache.batik.bridge.ScriptingEnvironment
extends BaseScriptingEnvironment

public Object setTimeout(final
Runnable r, long timeout) { … r.run() }

 protected class EvaluateRunnableRunnable
implements Runnable { public void run() {

runnable.run()}}}

public Object setInterval(final
String script, long interval)

Org.apache.batik.swing.svg.SVGLoadEventDispatcher extends Thread

run()

fireEvent(started
Dispatcher, evt)

updateManager.dispatchSVG
LoadEvent() fireEvent(completed

Dispatcher, evt)

EventDispatcher.fireEvent(dispatcher, listeners, event, true) public void OpenLink
(SVGAElement elt)

Org.apache.batik.bridge.UpdateManager implements RunnableQueue.RunHandler

 scriptingEnvironment.loadScripts();
 scriptingEnvironment.dispatchSVGLoadEvent();

manageUpdates(final ImageRenderer r)
{ fireEvent(startedDispatcher, new

UpdateManagerEvent(this, null, null) }

fireEvent(Dispatcher dispatcher, Object event)
{ EventDispatcher.fireEvent(dispatcher, listeners, event, false) }

dispatchSVGUnLoadEvent()
 { fireEvent(stoppedDispatcher, new

UpdateManagerEvent(this, null, null)) }

updateRendering(List areas)

fireEvent(updateStartedDispatcher,n
ew UpdateManagerEvent(this,

repaintManager.getOffScreen(), null))

fireEvent(updateCompletedDispatche
r,new UpdateManagerEvent(this,

repaintManager.getOffScreen(), l))

List l =
repaintManager.updat

eRendering(areas)

executionSuspended(RunnableQueue rq)
{fireEvent(suspendedDispatcher, new
dateManagerEvent(this, null, null) }

executionResumed(RunnableQueue rq)
{fireEvent(resumedDispatcher, new

UpdateManagerEvent(this, null, null)) }

updateRendering(AffineTransform u2d,
boolean dbr, Shape aoi, int width,int height)

{ updateRendering(l) }

 public void repaint()
{ if (updateTracker.hasChanged())

updateRendering(dirtyAreas) }

runnableInvoked(RunnableQue
ue rq, Runnable r) { repaint() }

 235

Figure H.7 Handling of DOM Event

Org.apache.batik.bridge.BridgeContext extends SVGGElementBridge
protected class DOMNodeInsertedEventListener implements EventListener {

public void handleEvent(Event evt) {
h.handleDOMAttrModifiedEvent(me); }}

Org.apache.batik.gvt.UpdateTracker
extends GraphicsNodeChangeAdapter

//add it to dirty region list
if (doPut) dirtyNodes.put(gnWRef, at)

fromBounjds.put(gnWRef, r2d)

Org.apache.batik.gvt.CompositeGraphicsNode
extends AbstractGraphicsNode implements List

protected void invalidateGeometryCache() {
super.invalidateGeometryCache()}

public abstract class org.apache.batik.gvt AbstractGraphicsNode implements GraphicsNode

paint(Graphics2D g2d) {//Paints this node.
org.apache.batik.ext.awt.image.GraphicsU

til.drawImage(g2d, filteredImage);}

fireGraphicsNodeChangeStrated()
fireGraphicsNodeChangeStarted(GraphicsNode changeSrc)
fireGraphicsNodeChangeStarted(GraphicsNodeChangeEve

nt changeStartedEvent)

public RootGraphicsNode getRoot()
List l = rootGN.getTreeGraphicsNodeChangeListeners();

while(i.hasNext()){
gncl = (GraphicsNodeListener)i.next();

gncl.changeStarted(changeStartedEvent); }

fireGraphicsNodeChangeCompleted()

setTransform(AffineTransform newTransform)
setComposite(Composite newComposite)

setVisible(boolean isVisible)
setClip(ClipRable newClipper)

setRenderingHint(RenderingHints.Key key, Object value)
setRenderingHints(Map hints)

setRenderingHints(RenderingHints newHints)
setMask(Mask newMask)
setFilter(Filter newFilter)

setParent(CompositeGraphicsNode
newParent)

setRoot(RootGraphicsNode newRoot)

Protected void
invalidateGrometryCache() {

((AbstractGraphicsNode)
parent).invalidateGeometryCache(); }

public abstract class
Org.apache.batik.bridge.UnitProcessor

extends org.apahce.batik.parser.UnitProcessor

public static Context
createContext(BridgeContext ctx, Element e) {

return new DefaultContext(ctx, e) }

public abstract class
Org.apache.batik.bridge.CSSUtilities

implements CSSConstants, ErrorConstants,
XMLConstants

public static Filter convertFilter(Element
filteredElement, GraphicsNode filteredNode,

BridgeContext ctx)

Org.apache.batik.gvt.ShapeNode extends SVGGElementBridge

public void setShape(Shape newShape)

fireGraphicsNodeChangeStarted();

fireGraphicsNodeChangeCompleted();

invalidateGeometryCache()

This.shapePainter.setShape(newShape)

public abstract class Org.apache.batik.bridge.AbstractGraphicsNodeBridge
extends AbstractSVGBridge implements SVGContext, BridgeUpdateHandler,

GraphicsNodeBridge, ErrorConstants

Protected void handleGeometryChanged()

Node.setFilter(CSSUtilities.convertFilter(e, node, ctx))
Node.setMask(CSSUtilities.convertMask(e, node, ctx));
node.setClip(CSSUtilites.convertClipPath(e, node, ctx));

Public void handleDOMAttrModifiedEvent(MutationEvent evt)

Node.setTransform(at);
handleGeometryChanged();

Org.apache.batik.dom.events.EventSupport

private static void fireEventListeners(NodeEventTarget node, Event evt, boolean useCapture) {
listeners[i].handleEvent(Event evt) }

Public static boolean dispatchEvent(NodeEventTarget node, Event e) throws EventException {
NodeEventTarget node = ancestors[i];

evt.setCurrentTarget(node);
fireEventListeners(node, evt, true); }

public abstract class Org.apache.batik.dom.AbstractNode implements ExtendedNode, Serializable
public boolean dispatchEvent(Event evt) throws EventException {

return EventSupport.dispatchEvent(this, evt) }

public abstract class Org.apache.batik.dom.AbstractElement extends AbstractParentChildNode implements Element

public abstract class
Org.apache.batik.bridge.SVGShapeElementBridge

extends AbstractGraphicsNodeBridge
Protected void handleGeometryChanged()

super.handletGeometryChanged();
ShapeNode shapeNode = (ShapeNode)node;

shapeNode.setShapePainter(createShapePainter(ctx,
e, shapeNode));

public abstract class Org.apache.batik.dom.AbstractAttr extends AbstractParentNode implements Attr

public void setNodeValue(String nodeValue) throws DOMException {
removeChild(n); appendChild(n);

ownerElement.fireDOMAttrModifiedEvent(nodeNalme, this, s, val, MutationEvent.MODIFICATION); }

public void setValue(String value) throws DOMException { setNodeValue(value); }

public void fireDOMAttrModifiedEvent(String name, Attr node, Strin goldv, Strin gnewv, short change) {
dispatchEvent(ev) }

public void setAttribute(String name, String value) throws DOMException { attr.setValue(value); }

Js.jar Org.mozilla.javascript.ScriptRuntime.class

public static Object call(Context p0, Scriptable p1, Scriptable
p2, Object[] p3, Scriptable p4) throws JavaScriptException { }

Org.apache.batik.script.rhino.ScriptingEnvironment extends
BaseScriptingEnvironment

public void runEventHandler(String script, Event evt, String lang) {
interpreter.evaluate(script); }

public void handleEvent(Event evt) {
runEventHandler(script, evt, lang); }

Org.apache.batik.dom.events.EventSupport

private static void fireEventListeners(NodeEventTarget node, Event
evt, boolean useCapture) {

listeners[i].handleEvent(Event evt) }

Public static boolean dispatchEvent(NodeEventTarget node, Event
e) throws EventException {

NodeEventTarget node = ancestors[i];
evt.setCurrentTarget(node);

fireEventListeners(node, evt, true); }

Js.jar
Org.mozilla.javascript.NativeJavaMethod.NativeJavaMethod.c

lass extends NativeFunction implements Function

public Object call(Context p0, Scriptable p1, Scriptable p2,
Object[] p3) throws JavaScriptException { }

Org.apache.batik.script.rhino.RhinoInterpreter
implements Interpreter

public Object evaluate(final String scriptstr) {
rv = script.exec(ctx, globalObject); }

collaborativesvgviewer.eventsrepository.EventProcessor extends
Thread
Case

ColalborativeEvent.DOLLABORATIVE_JAVASCRIPT_MOUSE_
CLICK_ACTION:

updateManager.getUpdateRunnableQueue().invokeLater(new
Runnable() …

org.apache.batik.dom.events.EventSupport.dispatchEvent((Nod
eEventTarget)target, mEvt); }

Org.apache.batik.bridge.SVGRectElementBridge extends SVGShapeElementBridge

//if (attrName.equals(SVG_X_ATTRIBUTE) || ...

super.handleDOMNodeInsertedEvent(evt);

public void handleDOMAttrModifiedEvent(MutationEvent evt)

buildShape(ctx, e, (ShapeNode)node)

UnitProcessor.Context uctx =
UnitProcessor.createCotnext(ctx, e);

Shape = new Rectangle2D.Float(x, y, w, h)

ShapeNode.setShape(shape);

handleGeometryChanged();

Handling of DOM Event

 236

Figure H.8 Batik component paint1

org.apache.batik.swing.gvt.
AbstractZoomInteractor
extends InteractorAdapter

c.setRenderingTransform(at)

public void mouseReleased(MouseEvent e)

org.apache.batik.swing.gvt.
JGVTComponent

extends JComponent

if (doubleBufferedRendering)

setPaintingTransform
(AffineTransform at)gvtRenderingCompleted(GVTTreeRendererEvent e)gvtRenderingPrepare(GVTTreeRendererEvent e)

Public void immediateRepaint() {...}

paintImmediately(0, 0, dim.width, dim.height); repaint(0, 0, dim.width, dim.height);

No

renderingStopped()

gvtRenderingFailed(GV
TTreeRendererEvent e)

gvtRenderingCancelled(G
VTTreeRendererEvent e)

Public void paintComponent(Graphics g) {... }

((Overlay)it.next()).paint(g); super.paintComponent(g);

Org.apache.batik.gvt.render
er.StaticRenderer

implements ImageRenderer
repaint(List areas)

repaint(Shape area)

org.apache.batik.swing.gvt.GVTTreeRenderer extends Thread

((GVTTreeRendererListener)listener)
.gvtRenderingCancelled

((GVTTreeRendererEvent)event);

static Dispatcher cancelledDispatcher
= new Dispatcher()

((GVTTreeRendererListener)listener).
gvtRenderingFailed

((GVTTreeRendererEvent)event);

static Dispatcher failedDispatcher
= new Dispatcher()

((GVTTreeRendererListener)listener).
gvtRenderingCompleted

((GVTTreeRendererEvent)event);

static Dispatcher completedDispatcher
= new Dispatcher()

((GVTTreeRendererListener)listener).
gvtRenderingPrepare

((GVTTreeRendererEvent)event);

static Dispatcher prepareDispatcher
= new Dispatcher()

 public void run()

fireEvent(prepareDispatcher, ev) fireEvent(cancelledDispatcher, ev)renderer.repaint(areaOfInterest)

public abstract class Java.awt..Component
implements ImageObserver,
MenuContainer,Serializable

Public void repaint(int x, int y, int width, int height)
Repaints the specified rectangle of this component.

Call paint or update method of this component.

org.apache.batik.swing.svg.JSVGViewerFrame extends JFrame implements ActionMap, SVGDocumentLoaderListener, GVTTreeBuilderListener,
SVGLoadEventDipatcherListener, GVTTreeRendererListener, LinkActivationListener, UpdataManagerListener

setSVGDocument(e.getSVGDocument(),
e.getSVGDocument().getURL(), e.getSVGDocument().getTitle())

{ stopAction.update(false);}

documentLoadingCompleted(SVGDocumentLoaderEvent e)

public void update(boolean enabled)
{((JComponent)it.next()).setEnabled(enabled);}

org.apache.batik.swing.svg.JSVGComponent extends JGVTComponent

 startGVTTreeBuilder()
startDocumentLoader()

gvtRenderingCompleted(G
VTTreeRendererEvent e)

super.gvtRendering
Completed(e)

 startGVTTreeBuilder()
startDocumentLoader()

gvtRenderingCompleted(G
VTTreeRendererEvent e)

super.gvtRendering
Completed(e)

 startGVTTreeBuilder()
startDocumentLoader()

gvtRenderingFailed(GV
TTreeRendererEvent e)

super.gvtRendering
Failed(e)

 startGVTTreeBuilder()
startDocumentLoader()

gvtRenderingCancelled(G
VTTreeRendererEvent e)

super.gvtRendering
Cancelled(e)

installSVGDocument(SVGDocument doc)

repaint(0, 0, d.width, d.height)

setRenderingTransform(initialTransform, false)

 if (doc == null)

startGVTTreeBuilder()
{ gvtTreeBuilder.start() }

Org.apache.batik.swing.svg.GVTTreeBuilder extends Thread
run()

if (bridgeContext.isDynamic()) fireEvent(complet
edDispatcher, ev)

fireEvent(startedD
ispatcher, ev)

builder = new
DynamicGVTBuilder()

builder = new
GVTBuilder()

GraphicsNode gvtRoot =
builder.build(bridgeContext, svgDocument)

public abstract class
javax.swing.JComponent

extends Container implements Serializable
Public void setEnabled(boolean

enabled) {
java.awt.Component.repaint() }

 237

Figure H.9 Batik component paint2

public abstract class Javax.swing.plaf.
ComponentUI

public void update(Graphics g, JComponent c) {
paint(g, c); }

public void paint(Graphics g, JComponent c)
This method is invoked from update method
when c is being painted. Subclasses should

override this method and use the specified g to
render the content of the component.

public interface Javax.swing.border.Border
paintBorder(Component c, Graphics g, int x, int y,

int width, int height)

public abstract class javax.swing.border.AbstractBorder
implements Border, Serializable

paintBorder(Component c, Graphics g, int x, int y, int
width, int height)

javax.swing.border.
CompoundBorder

extends
AbstractBorder
paintBorder(...)

javax.swing.border.
EmptyBorder

extends
AbstractBorder
paintBorder(...)

public abstract class Java.awt.
Component

implements ImageObserver, MenuContainer,Serializable

Public void repaint(int x, int y, int width, int height)
Repaints the specified rectangle of this component.

Call paint or update method of this component.

paint(Graphics g);
paintAll(Graphics g)
print(Graphics g);

printAll(Graphics g);

org.apache.batik.swing.gvt.GVTTreeRenderer extends Thread

((GVTTreeRendererListener)listener)
.gvtRenderingCancelled

((GVTTreeRendererEvent)event);

static Dispatcher cancelledDispatcher
= new Dispatcher()

((GVTTreeRendererListener)listener).
gvtRenderingFailed

((GVTTreeRendererEvent)event);

static Dispatcher failedDispatcher
= new Dispatcher()

((GVTTreeRendererListener)listener).
gvtRenderingCompleted

((GVTTreeRendererEvent)event);

static Dispatcher completedDispatcher
= new Dispatcher()

((GVTTreeRendererListener)listener).
gvtRenderingPrepare

((GVTTreeRendererEvent)event);

static Dispatcher prepareDispatcher
= new Dispatcher()

org.apache.batik.swing.gvt.
AbstractZoomInteractor
extends InteractorAdapter

c.setRenderingTransform(at)

public void mouseReleased(MouseEvent e)

org.apache.batik.swing.svg.JSVGComponent extends JGVTComponent

 startGVTTreeBuilder()
startDocumentLoader()

gvtRenderingCompleted(G
VTTreeRendererEvent e)

super.gvtRendering
Completed(e)

 startGVTTreeBuilder()
startDocumentLoader()

gvtRenderingCompleted(G
VTTreeRendererEvent e)

super.gvtRendering
Completed(e)

 startGVTTreeBuilder()
startDocumentLoader()

gvtRenderingFailed(GV
TTreeRendererEvent e)

super.gvtRendering
Failed(e)

 startGVTTreeBuilder()
startDocumentLoader()

gvtRenderingCancelled(G
VTTreeRendererEvent e)

super.gvtRendering
Cancelled(e)

org.apache.batik.swing.gvt.
JGVTComponent

 extends JComponent

if (doubleBufferedRendering)

setPaintingTransform
(AffineTransform at)gvtRenderingCompleted(GVTTreeRendererEvent e)gvtRenderingPrepare(GVTTreeRendererEvent e)

Public void immediateRepaint() {...}

paintImmediately(0, 0, dim.width, dim.height); repaint(0, 0, dim.width, dim.height);

No

renderingStopped()

gvtRenderingFailed(GV
TTreeRendererEvent e)

gvtRenderingCancelled(G
VTTreeRendererEvent e)

Public void paintComponent(Graphics g) {... }

((Overlay)it.next()).paint(g); super.paintComponent(g);

org.apache.batik.swing.svg.JSVGViewerFrame extends JFrame implements ActionMap,
SVGDocumentLoaderListener, GVTTreeBuilderListener, SVGLoadEventDipatcherListener,

GVTTreeRendererListener, LinkActivationListener, UpdataManagerListener

public abstract class java.awt.Graphics2D
public abstract void draw(Shape s)

org.apache.batik.apps.svgbrowser.ThumbnailDialog extends JDialog

Public void paint(Graphics g)
{ g2d.draw(s); }

Protected class AreaOfInterestOverlay implements Overlay

setSVGDocument(e.getSVGDocument(),
e.getSVGDocument().getURL(), e.getSVGDocument().getTitle())

{ stopAction.update(false);}

documentLoadingCompleted(SVGDocumentLoaderEvent e)

public void update(boolean enabled)
{((JComponent)it.next()).setEnabled(enabled);}

 public void run()

fireEvent(prepareDispatcher, ev) fireEvent(cancelledDispatcher, ev)renderer.repaint(areaOfInterest)

org.apache.batik.swing.gvt.
AbstractZoomInteractor
extends InteractorAdapter

c.setRenderingTransform(at)

public void mouseReleased(MouseEvent e)

Org.apache.batik.gvt.render
er.StaticRenderer

implements ImageRenderer
repaint(List areas)

repaint(Shape area)

public abstract class Javax.swing.JComponent extends Container implements Serializable

Protected void paintComponent(Graphics g) {
ui.update(scratchGraphics, this); }

((JComponent)c)._paintImmediately(x,y,w,h); c.repaint(x,y,w,h);

 if(c instanceof JComponent)

Yes
Public void paintImmediately(int x,int y,int w, int h)

Paints the specified region in this component and all
its descendants that overlap the region immediately.

paintCompleted = paintDoubleBuffered(paintingComponent,
bufferedComponent, g, paintImmediatelyClip.x, paintImmediatelyClip.y,

paintImmediatelyClip.width, paintImmediatelyClip.height);

if (hasBuffer)

private void paintWithOffscreenBuffer(JComponent paintingComponent,
Graphics g, int clipX, int clipY, int clipW, int clipH, Image offscreen)

public void paint(Graphics g)

No

paintComponent(co) paint(Border(co) paintChildren(co)

No

protected void paintBorder(Graphics g)
{ border.paintBorder(this, g, 0, 0,

getWidth(), getHeight()) }

public abstract class
javax.swing.JComponent

extends Container implements Serializable

Public void setEnabled(boolean
enabled) {

java.awt.Component.repaint() }

 238

Figure H.10 Batik Component Paint

org.apache.batik.apps.svgbrowser
ThumbnailDialog
extends JDialog

Public void paint(Graphics g)
{ g2d.draw(s); }

Protected class AreaOfInterestOverlay implements Overlay

public abstract class Java.awt.
Component

implements ImageObserver, MenuContainer,Serializable

Public void repaint(int x, int y, int width, int height)
Repaints the specified rectangle of this component.

Call paint or update method of this component.

org.apache.batik.swing.gvt.
JGVTComponent

extends JComponent

Public void paintComponent(Graphics g) {... }

Protected class AreaOfInterestOverlay implements Overlay

super.paintComponent(g); ((Overlay)it.next()).paint(g);

Public void immediateRepaint() {...}

paintImmediately(0, 0, dim.width, dim.height); repaint(0, 0, dim.width, dim.height);

if (doubleBufferedRendering)Yes

public abstract class Javax.swing.plaf.
ComponentUI

public void update(Graphics g, JComponent c) {
paint(g, c); }

public void paint(Graphics g, JComponent c)
This method is invoked from update method
when c is being painted. Subclasses should

override this method and use the specified g to
render the content of the component.

public abstract class Javax.swing.
JComponent

extends Container
implements Serializable

Protected void paintComponent(Graphics g) {
ui.update(scratchGraphics, this); }

((JComponent)c)._paintImmediately(x,y,w,h); c.repaint(x,y,w,h);

 if(c instanceof JComponent)

Yes
Public void paintImmediately(int x,int y,int w, int h)

Paints the specified region in this component and all
its descendants that overlap the region immediately.

paintCompleted = paintDoubleBuffered(paintingComponent,
bufferedComponent, g, paintImmediatelyClip.x, paintImmediatelyClip.y,

paintImmediatelyClip.width, paintImmediatelyClip.height);

if (hasBuffer)

private void paintWithOffscreenBuffer(JComponent paintingComponent,
Graphics g, int clipX, int clipY, int clipW, int clipH, Image offscreen)

public void paint(Graphics g)

No

paintComponent(co) paint(Border(co) paintChildren(co)

No

public abstract class java.awt.Graphics2D
public abstract void draw(Shape s)

 239

Figure H.11 Graphics Node

org.apache.batik.ext.awt.image
GraphicsUtil

extends CompositeGraphicsNode
The top-level graphics node of the GVT tree.

Public static void drawImage(Graphics2D g2d, RenderableImage filter)

public static void drawImage(Graphics2D g2d, CachableRed cr) {
g2d.drawImage(bicr.getBufferedImage(), bicr.getMinX(), bicr.getMinY(),

null);}

public interface org.apache.batik.gvt.
GraphicsNode

The base class for all graphics nodes. A GraphicsNode encapsulates
graphical attributes and can perform atomic operations of a complex rendering.

boolean contains(Point2D p)
GraphicsNode nodeHitAt(Point2D p)

Rectangle2D getBounds()
Composite getComposite()

paint(Graphics2D g2d) AffineTransform getGlobalTransform();
getTransform();

setTransform(AffineTransform newTransform)

public abstract class org.apache.batik.gvt
AbstractGraphicsNode

implements GraphicsNode
A partial implementation of the GraphicsNode interface.

paint(Graphics2D g2d) {//Paints this node.
org.apache.batik.ext.awt.image.GraphicsUtil.drawImage(g2d, filteredImage);}

fireGraphicsNodeChangeStrated()
fireGraphicsNodeChangeStarted(GraphicsNode changeSrc)
fireGraphicsNodeChangeStarted(GraphicsNodeChangeEve

nt changeStartedEvent)public RootGraphicsNode getRoot()

public RootGraphicsNode getRoot()

Org.apache.batik.swing.gvt
CompositeGrahpicsNode

extends AbstractGraphicsNode implements List
A CompositeGraphicsNode is a graphics node that can contain graphics nodes.

public void add(Object o)
public void add(int index, Object o)

public boolean contains(Object node)
Returns if the compoisite graphics node
contains the specified graphics node.

public boolean contains(Point p)
Returns if the specified Pont2D is insde

the boundary of this node.

public Rectangle2D getGeometryBounds()
public Recgangle2D getTransformedGeometryBounds(AffineTransorm txf)

public List getChildren()

public Object remove(int index)
public boolean remove(Object o)

public boolean contains(Point p)
Returns if the specified Pont2D is insde

the boundary of this node.
public void primitivePaint(Graphics2D g2d)

Paint this node.
node.paint(g2d)

public abstract class java.awt.
Graphics

Public abstract boolean drawImage(Image img, int x,
int y, ImageObserver observer)

org.apache.batik.ext.awt.image.GraphicsUtil.java==>>public static
Graphics2D createGraphics(BufferedImage bi, RenderingHints

hints)

 240

Figure H.12 Graphics Node Paint

Public abstract class
Org.apache.batik.gvt.render.

BasicTextPainter

Org.apache.batik.swing.gvt.Text.GlyphLayout
implements TextSpanLayout

draw(Graphics2D g2d)
{gv.draw(g2d, aci) }

public abstract class java.awt.Graphics2D

public abstract void drawGlyphVector(GlyphVector g, float x, float y)
public abstract void draw(Shape s)

Org.apache.batik.swing.gvt.font.AWTGVTGlyphVector implements
GVTGlyphVector

draw(Graphics2D graphics2D, AttributedCharacterIterator aci)
{graphics2D.drawGlyphVector(awtGlyphVector, 0, 0);

graphics2D.draw(outline);}

org.apache.batik.ext.awt.image.GraphicsUtil
Public static void drawImage(Graphics2D g2d, RenderableImage filter)

public static void drawImage(Graphics2D g2d, CachableRed cr)

Org.apache.batik.swing.gvt.ImageNode
extends CompositeGraphicsNode

paint(Graphics2D g2d)

public abstract class org.apache.batik.gvt.AbstractGraphicsNode implements
GraphicsNode

paint(Graphics2D g2d) {//Paints this node.
org.apache.batik.ext.awt.image.GraphicsUtil.drawImage(g2d, filteredImage);}

Org.apache.batik.swing.gvt.ShapeNode
extends AbstractGraphicsNode

primitivePaint(Graphics2D g2d) {
shapePainter.paint(g2d); }

paint(Graphics2D g2d) {
super.paint(g2d); }

public interface org.apache.batik.gvt.
GraphicsNode

paint(Graphics2D g2d)

primitivePaint(Graphics2D g2d);
//without Filter, Mask, Composite, and clip

Org.apache.batik.swing.gvt.
ProxyGrahpicsNode

extends AbstractGraphicsNode

primitivePaint(Graphics2D g2d)
{ source.paint(g2d); }

Org.apache.batik.extension.svg.
MultiResGraphicsNode

extends AbstractGraphicsNode
implements SVGConstants

primitivePaint(Graphics2D g2d)
{ gn.paint(g2d); }

Org.apache.batik.gvt.
CanvasGraphicsNode

extends CompositeGraphicsNode
primitivePaint(Graphics2D g2d)

{super.primitivePaint(g2d);}

Org.apache.batik.swing.gvt.TextNode
extends AbstractGraphicsNode implements Selectable

primitivePaint(Graphics2D g2d)
{ testPainter.paint(this.g2d); }

paint(Graphics2D g2d) {
super.paint(g2d); }

Org.apache.batik.swing.gvt.
RasterImageNode

extends AbstractGraphicsNode
primitivePaint(Graphics2D g2d) {

GraphicsUtil.drawImage(g2d, image); }

Org.apache.batik.swing.gvt.
CompositeGrahpicsNode

extends AbstractGraphicsNode
implements List

primitivePaint(Graphics2D g2d)
{ node.paint(g2d); }

public abstract class java.awt.Graphics

Public abstract boolean drawImage(Image img, int x,
int y, ImageObserver observer)

Org.apache.batik.swing.gvt.render.StrokingTextPainter
 extends BasicTextPainter

paint(TextNode node, Graphics2D g2d)

paintTextRuns(textRuns, g2d);
paintDecorations(textRuns, g2d,
TextSpanLayout.DECORATION_

STRIKETHROUGH);}

 241

Figure H.13 UpdateManager

Org.apache.batik.bridge
RepaintManager

This class manages the rendering of a GVT tree.
updateRenderig() { render.flush(areas) }

public abstract class org.apache.batik.bridge.
UpdateManager

implements RunnableQueue.RunHandler
This class is provides features to manage the update of an

SVG document.
repaint() { MIN_REPAINT_TIME
updateTracker.getDirtyAreas()
updateRendering(dirtyAreas)

}

Org.apache.batik.gvt.renderer
 interface ImageRenderer

extends Renderer
Interface for GVT Renderers that render into raster images.

Org.apache.batik.gvt
UpdateTracker

extends GraphicsNodeChangeAdapter
This class tracks the changes on a GVT tree

Org.apache.batik.gvt.renderer
 interface Renderer

Interface for GVT Renderers.
repaint()

Org.apache.batik.bridge
BaseScriptingEnvironment

This class is the base class for SVG scripting.

Org.apache.batik.swing.gvt
JGVTComponent

extends JComponent
This class represents a component which can display

a GVT tree.
renderGVTTree() { gvtTreeRenderer.start() }

public interface org.apache.batik.swing.svg
JSVGComponent

extends JGVTComponent
This class represents a swing compoennt that can display SVG doucments -
the fundamental class for rendering SVG documents in a swing application.

updateManager dispatchResizedEvent()

Org.apache.batik.swing.gvt
GVTTreeRenderer

extends Thread
This class represents an object which renders asynchroneaously a GVT tree.

run() { rendered.repaint() }

Org.apache.batik.gvt.renderer
 StaticRenderer

implements ImageRenderer
//Simple implementation of the Renderer that simply does static rendering in an offscreen buffer image.

Dom tree

dispatchSVGDocEvent
EventTargetdispatchEvent

org.apache.batik.ext.awt.image.rendered
 TileCacheRed

extends AbstractTiledRed
This implementation of RenderedImage only serves

to put the tiles generated by it's input into the TileCache.
flushCache() { store.setTile() }

org.apache.batik.ext.awt.image.rendered
 TileGrid

implements TileStore
This is a Grid based implementation of the TileStore.

 This makes it pretty quick, but it can use a fair amount
of memory for large tile grids.
setTile(int x, int y, Raster ras)

org.apache.batik.ext.awt.image.rendered
 TileRed

implements TileStore
This filter simply tiles its tile starting from the upper

 left corner of the tiled region.
WritableRaster fillRasterFrom() {

GraphicsUtil.drawImage() }

org.apache.batik.ext.awt.image
 GraphicsUtil

Set of utility methods for Graphics.
 These generally bypass broken methods in Java2D or

provide tweaked implementations.
drawImage() { g2d.drawImage() }

public abstract class java.awt.
Graphics

Public abstract boolean drawImage(Image img,
int x, int y, ImageObserver observer)

flush() { TileCachedRed tcr.flushCache();}

// This method causes the image data
copied to display device (e.g. monitor)

repaint(list areas)

Dispay
device

 242

Appendix I
JavaScript event vs. AWT event

Table I.1 JavaScript event vs. AWT event

JavaScript Event AWT Event
onclick MOUSE_CLICKED
onmousedown MOUSE_PRESSED
onmouseup MOUSE_RELEASED
onmousemove MOUSE_MOVED
onmouseover MOUSE_ENTERED
onmouseout MOUSE_EXITED

 243

Bibliography

[A. EINSTEIN] Albert Einstein, “Everything should be made as simple as possible, but

not simpler” in Reader's Digest. Oct. 1977.

[Abdullah+Gay] Abdul Hanan Abdullah and Brian Gay. Implementing an Interface to

Networked Services. Proceedings of the 12th annual international conference on

Systems documentation: technical communications at the greate divide. October 1994.

http://delivery.acm.org/10.1145/200000/192532/p25-

abdullah.pdf?key1=192532&key2=7906545011&coll=Portal&dl=ACM&CFID=362

21945&CFTOKEN=19327503

[A.CHUANG] Alfred Chuang is CEO of EBA, a leading enterprise infrastructure

software company. His remarks were made in a keynote address on the future of

software at the Harvard University Business School and cited by The Age of

Convergence, in BEA Features, March 2003.

http://www.bea.com/framework.jsp?CNT=fea00006.htm&FP=/content/news_events/f

eatures_news/features

 [ACTIONSCRIPT] Macromedia ActionScript Dictionary at

http://www.macromedia.com/support/flash/action_scripts/actionscript_dictionary/acti

onscript_dictionary000.html

 244

[ACTIVEX] ActiveX introduced in early 1996 based on Internet OLE components.

http://msdn.microsoft.com/library/default.asp?url=/workshop/components/activex/act

ivex_node_entry.asp

[ADCOCK2004] Vincent T. Adcock, Implementing an integrated SVG application for

real time dynamically generated Internet mapping, Proceedings of SVGOpen 2004,

Tokyo, Japan. http://www.svgopen.org/2004/papers/SVG_Open_Abstract/

[ADOBEVIEWER] Adobe SVG Zone at http://www.adobe.com/svg/ featuring the

version 3 viewer 2004

[ADOBESVG] Adobe Systems Incorporated, SVG Viewer 3.0.

http://www.adobe.com/svg/main.html

[A. Huk] Alex Huk. Seeing Motion: Lecture Notes. The material comes from course text

book: Sensation and Perception (5th Edition) by E. Bruce Goldstein. http://www-

psych.stanford.edu/~lera/psych115s/notes/lecture7/

[ALGOL60] ALGOL is a computer programming language originally developed in 1958

and released as ALGOL 60 in 1960.

[ANABAS] Anabas, Inc. provides the next-generation of collaboration software

platforms enabling a new class of interactive, rich-media capable collaborative

applications. http://www.anabas.com/

[ANSI SMALLTALK] National Committee of Information Technology Standard

(NCITS). ANSI Smalltalk Standard version 1.9. NCITS J20 Draft. December 1997.

http://www.smalltalk.org/versions/ANSIStandardSmalltalk.html

[APACHE] Apache Software Foundation at http://www.apache.org/

 245

[ARPANET] The ARPANET from the US Defense Department Advanced Research

Projects Agency (ARPA) initiated in 1969

http://www.funet.fi/index/FUNET/history/internet/en/arpanet.html

[ASP] Active Server Pages (ASP) is Microsoft's server-side technology for dynamically-

generated web pages that is marketed as an adjunct to Internet Information Server

(IIS). It has evolved to ASP.NET and competes with technologies like PHP, Python,

CGI. http://en.wikipedia.org/wiki/Active_Server_Pages

[Atkinson et. al.] Malcolm Atkinson, David DeRoure, Alistair Dunlop, Geoffrey Fox,

Peter Henderson, Tony Hey, Norman Paton, Steven Newhouse, Savas Parastatidis,

Anne Trefethen and Paul Watson. Web Service Grids: An Evolutionary Approach.

UK e-Science Technical Report. July 13, 2004. To be published in a special issue of

Concurrency & Computation: Practive & Expereince Magazine 2005.

[A. Uyar] Ahmet Uyar. Scalable Grid Architecture for Video/Audio Conferencing. Ph.D.

thesis. EECS Department of Syracuse University. Spring 2005.

[AWT] John Zukowski. Java AWT Reference. 1997. O’Relly. ISBN: 1-56592-240-9.

[AXIS] Axis is an Apache project that implements SOAP protocol by W3C.

http://ws.apache.org/index.html

[BAKKEN] David E. Bakken. Middleware. Encyclopedia of Distributed Computing.

Kluwer Academic Press, 2003.

[BATIK] Batik Scalable Vector Graphics SVG browser (version 1.5 release) at

http://xml.apache.org/batik/index.html

[BCW1986] Francois Bodin, Francois Charot, and Charles Wagner, Overview of a high-

performance programmable pipeline structure, Proceedings of the 3rd international

 246

conference on Supercomputing Crete 1986 at

http://delivery.acm.org/10.1145/320000/318868/p398-

bodin.pdf?key1=318868&key2=3930276801&coll=portal&dl=ACM&CFID=222510

36&CFTOKEN=35504884

[BFF2003] Luca Piazza Bonati , Luciano Fortunati, and Giuseppe Fresta, SVG Explorer

of GML Data, Proceedings of SVGOpen 2003, Vancouver, Canada.

http://www.svgopen.org/2003/papers/SvgExplorerOfGmlData/index.html

[BLOG] Blog is a shared online journal or frequently updated personal web page.

http://www.blogger.com/start

[BOOTH] David Booth et al. Web Services Architecture. W3C Working Group Note 11

February 2004. http://www.w3.org/TR/ws-arch/

[C] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second

Edition. 1988. Prentice Hall. ISBN 0-13-110362-8. C Programming Language was

created in 1971-1972 when Dennis Ritchie and Ken Thompson worked together to

design the UNIX operating system at Bell Labs.

[C++] Bjarne Stroustrup. The C++ Programming Language. (Third Edition and Special

Edition). June 1997. Addison-Wesley, ISBN 0-201-88954-4. The first version was

published in 1985.

[CARROLL] J.M. Carroll (Ed.) Interfacing Thought: Cognitive Aspects of Human-

Computer Interaction. The MIT Press, Cambridge, MA, pp. 80-111.

[CGI] Common Gateway Interface or CGI was an early World Wide Web technology

that specified how a client web browser passed data to and from a program executed

on a Web server. http://en.wikipedia.org/wiki/Common_Gateway_Interface

 247

[CGL] Community Grids Lab (CGL) of Indiana University. CGL publications Web site

at http://grids.ucs.indiana.edu/ptliupages/publications/.

[CKB] Luis Felipe Cabrera, Christopher Kurt, and Don Box. An introduction to the Web

Services Architecture and Its Specifications. Microsoft Technical White Paper

archived in MSDN library.

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnwebsrv/html/introwsa.asp

[COBOL] Common Business Oriented Language (COBOL) was the first standardized

business computer programming language. The initial specifications for COBOL

were presented in 1960.

[COM] Component Object Model (COM) is a platform-independent, distributed, object-

oriented system for creating binary software components that can interact.

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/com/htm/comportal_3qn9.asp

[COM+] In 1993, Microsoft released OLE 2, and created COM as the underlying object

model for OLE 2 ; in 1996 DCOM was introduced in response to challenge of

CORBA. Finally with Windows 2000, a significant extension to COM named COM+

was introduced. At the same time, Microsoft de-emphasized DCOM as a separate

entity. .NET is replacing all these technologies.

http://en.wikipedia.org/wiki/Component_object_model

[CORELSVG] Corel Corporation, Corel SVG Viewer.

http://www.smartgraphics.com/Viewer_prod_info.shtml

 248

[CORBA] Common Object Request Broker Architecture or CORBA, is a standard for

software components created and controlled by the Object Management Group

(OMG). I http://en.wikipedia.org/wiki/CORBA

[CORBAEVENTSERVICE] Object Management Group Inc., Event Service

Specification (version 1.1), Object Management Group Inc., available at

http://www.omg.org/docs/formal/01-03-01.pdf

[CORBAEVENT] OGM CORBA Event Service Specification. October 2004. Version

1.2. Formal/04-10-02. http://www.omg.org/docs/formal/04-10-02.pdf.

[CORBANOTIFICATIONERVICE] Object Management Group Inc., Notification

Service Specification, Object Management Group Inc., available at

http://www.omg.org/docs/formal/00-06-20.pdf

[CORELDRAW] Corel Draw at

http://www.corel.com/servlet/Satellite?pagename=Corel2/Products/AllProducts

[Cox+Novobilski] Brad J. Cox and Andrew J. Novobilski. Object-Oriented

Programming, An Evolutionary Approach. Second Edition, May 1991. ISBN:

0201548348.

[CSS] W3C. Cascading Style Sheets. Level 1. http://www.w3.org/TR/CSS1

[C. Yu] Colin Yu. Migrating a Struts application to Webshpere Portal. IBM WebSphere

Developer Technical Journal. March, 2004. http://www-

900.ibm.com/developerworks/cn/wsdd/techjournal/0403_yu/0403_yu_eng.shtml

[DCE] Distributed Computing Environment or DCE was produced by the Open Software

Foundation OSF and was an early suite of distributed computing technologies such as

 249

RPC, DNS, Kerberos Security and the Andrew file system.

http://www.linktionary.com/d/dce.html

[DCOM] See [COM+]

[DHTML] Dynamic HTML in Netscape Navigator at

http://developer.netscape.com/docs/manuals/communicator/dynhtml/index.htm

[DNS] The Domain Name System or DNS, first invented in 1983 by Paul Mockapetris, is

a distributed database that maps between host names and the numerical IP address.

http://www.yourencyclopedia.net/DNS.html

[DOM] W3C, Document Object Model (DOM) at

http://www.w3.org/DOM/Activity.html

[DOM1] W3C, Document Object Model (DOM) Level 1 Specification at

http://www.w3.org/TR/REC-DOM-Level-1/

[DOM2CORE] Document Object Model (DOM) Level 2 Core Specification at

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/Overview.html

[DOM3CORE] Document Object Model (DOM) Level 3 Core Specification at

http://www.w3.org/TR/2002/WD-DOM-Level-3-Core-20021022/Overview.html

[DOM2EVENT] Document Object Model (DOM) Level 2 Events Specification at

http://www.w3.org/TR/DOM-Level-2-Events/Overview.html

[DOM3EVENT] Document Object Model (DOM) Level 3 Events Specification at

http://www.w3.org/TR/DOM-Level-3-Events/Overview.html

[DOTNET] Microsoft’s distributed software and Web Service platform introduced in

2002 and replacing COM http://en.wikipedia.org/wiki/Microsoft_.NET

 250

[EBXML] Paul Levine et al. ebXML Business Process Specification Schema (version

1.01). http://www.ebxml.org/specs/ebBPSS.pdf

[EJB] Java Server side Component Technology with support for transactions

http://java.sun.com/products/ejb/

[EMAIL] Electronic mail specification at http://www.faqs.org/rfcs/rfc733.html

[ENIAC] ENIAC or the Electronic Numerical Integrator And Computer, was the earliest

programmable electronic computer and was unveiled on February 14, 1946 at the

University of Pennsylvania and was transferred to the US Army Aberdeen Proving

Grounds, Maryland in 1947. http://www.seas.upenn.edu/~museum/

[ETHERNET] Dominant Data Link Protocol introduced in 1973

http://en.wikipedia.org/wiki/Ethernet

[FDDI] Fiber Distributed Data Interface (FDDI) is a token ring based data link layer

transmission protocol originally aimed at fiber but generalized to other media. It

featured 100 mbits/sec performance and has been largely made obsolete by

fast(gigabit) Ethernet http://en.wikipedia.org/wiki/Fiber_distributed_data_interface

[FLASH] Macromedia Flash at http://www.macromedia.com/

[FLASH5] Macromedia FLASH5 Using Flash.

[FLASHWHITEPAPER] Flash Player for Developers and Publishers, Macromedia

FLASH white paper 2003.

http://www.macromedia.com/software/flash/survey/whitepaper_jul03.pdf

[FLYNN] Flynn’s taxonomy is a classification of computer architectures based on the

number of streams of instructions and data. It is proposed by Flynn in 1972.

http://en.wikipedia.org/wiki/Flynn%27s_taxonomy

 251

[FORTRAN] FORTRAN, which originally stood for IBM Mathematical FORmula

TRANslation System, was one of the few high level programming languages with a

high level of portability between different computer systems before the C language

became popular. http://en.wikibooks.org/wiki/Programming:Fortran_History

[Fox03] Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko, Sangmi Lee, Shrideep Pallickara,

Marlon Pierce, Xiaohong Qiu, Xi Rao, Ahmet Uyar, Minjun Wang, and Wenjun Wu,

Peer-to-Peer Grids, Chapter 18 of Grid Computing: Making the Global Infrastructure

a Reality, edited by Fran Berman, Geoffrey Fox and Tony Hey, John Wiley & Sons,

Chicester, England, ISBN 0-470-85319-0, March 2003.

[Fox04] Geoffrey Fox, The rule of the millisecond, CISE magazine

(http://www.computer.org/cise/), March/April 2004. Available at

http://grids.ucs.indiana.edu/ptliupages/publications/cisejano4.pdf

[Fox94] G. Fox, R. Williams, and P. Messina. Parallel Computing Works. Morgan

Kaufmann Publishers Inc., 1994. Section 3.4.

http://www.npac.syr.edu/copywrite/pcw/

[Fox98] Fox, G., Scavo, T., Bernholdt, D., Markowski, R., McCracken, N., Podgorny, M.,

Mitra, D., and Malluhi, Q., Synchronous Learning at a Distance: Experiences with

TANGO Interactive. Supercomputing 98 Conference, November

1998. http://www.old-npac.org/projects/training/Papers/sc98/

[FREENET] Freenet at http://freenet.sourceforge.net/

[FTP] The File Transfer Protocol (FTP) is a protocol for file transfer between HOSTs

(including terminal IMPs), on the ARPA Computer Network (ARPANET). RFC 354

(July 1972) is available at http://www.faqs.org/rfcs/rfc354.html

 252

[FWUBP] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut, Shrideep Pallickara.

Global Multimedia Collaboration System. Proceedings of the 1st International

Workshop on Middleware for Grid Comoputing co-located with Middleware 2003.

June 17, 2003. Rio de Janeiro, Brazil.

[Gao+Yuen] Yaoqing Gao and Chungkwong Yuen. A Survey of Implementations of

Concurrent, Parallel and Distributed Smalltalk. ACM SIGPLAN Notices. Pages: 29-

35. Volume 23, Issue 9. September, 1993. ACM Press, New York. ISSN: 0362-1340

[GENERATOR] Architecture and Technical Discussion, Macromedia GENERATOR

White Paper February 2000,

http://itpapers.zdnet.com/abstract.aspx?&scid=193&x=40&docid=28324

[GENERATOR2] Macromedia GENERATOR2 (Developer Edition) Using Generator

[G. Fox] Geoffrey Fox. Grids of Grids of Simple Services. CISE Magazine. July/August

2004.

[GILDER] Gilder’s law is an assertion by George Gilder, visionary author of the book

Telecosm: The World After Bandwidth Abundance, Free Press, 07 May, 2002, which

states that "network bandwidth grows at least three times faster than computer

power." http://www.netlingo.com/pocketdictionary.cfm?term=Gilder's%20Law

[Girow+Mitgartz] Andrew Girow and Edik Mitgartz. SVG Tiny Cartoons on Java

Devices. Proceedings of SVG Open Conference, Tokyo Japan September 2004.

http://www.svgopen.org/2004/papers/SVGTinyCartoonsOnJavaDevices/

[G. Krasner] Glenn E. Krasner. Smalltalk-80, Bits of History, Words of Advice. Addision-

Wesley, Boston, MA, 1983. ISBN:0-201-11669-3.

 253

[GNUTELLA] Gnutella is a simple effective peer-to-peer technology developed in 2000

– originally at AOL http://en.wikipedia.org/wiki/Gnutella

[GOOGLE] GOOGLE is search engine that focuses exclusively on organizing the

world’s information on the World Wide Web and making it universally accessible

and useful. http://www.google.com/about.html

[GOODMAN] Danny Goodman, Dueling Event Models – A Cross-Platform Look,

column The JavaScript Apostle, View Source online magazine.

http://developer.netscape.com/viewsource/goodman_events2/goodman_events2.html

[Goldberg+Robson] Aele Goldberg and David Robson. Smalltalk-80: The Language and

its Implementation. Addison Wesley, Reading, MA, 1983. ISBN: 0-201-11371-6.

Smalltalk, generally released as Smalltalk-80, is a dynamically typed object oriented

programming language designed at Xerox Palo Alto Research Center during the

1970s.

[G. Seshadri] Govind Seshadri. Understanding JavaServer Pages Model 2 architecture:

Exploring the MVC design pattern. JavaWorld.

http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html

 [GOTTSCHALK] Karl Gottschalk et al. Web Services Architecture Overview. Archived

article of IBM Web Services Architecture Team. September, 2000. http://www-

106.ibm.com/developerworks/webservices/library/w-ovr/#author1

[GRIDS] See review The Grid: Past, Present, Future Fran Berman Geoffrey Fox Tony

Hey 2002 at http://www.grid2002.org/grid2002sample/chapter1.pdf , Chapter 1 of

Grid Computing: Making the Global Infrastructure a Reality, edited by Fran Berman,

 254

Geoffrey Fox and Tony Hey, John Wiley & Sons, Chicester, England, ISBN 0-470-

85319-0, March 2003.

[GRYPHON] IBM, GRYPNON is a messaging middleware system using

publish/subscribe paradigm for supporting complex distributed applications. Home

page is at http://www.research.ibm.com/gryphon/. A brief version of White paper is

available at http://www.research.ibm.com/gryphon/papers/Gryphon-Overview.pdf

[HCI] Hewett, Baecker, Card, Carey, Gasen, Mantei, Perlman, Strong and Verplank.

ACM SIGCHI Curricula for Human-Computer Interaction. SIGCHI.

http://sigchi.org/cdg/cdg2.html#2_1

[H. Lieberman] Henry Lieberman. Using Prototypical Objects to Implement Shared

Behavior in Object Oriented System. Proceedings of the First ACM Conference on

Object-Oriented Programming Systems, Languages, and Applications. Pages 214-223.

Portland, Oregon. October 1986.

[HPSTREAMING] Geoffrey Fox. 2004. Unpublished archive.

[HTTP] Hypertext Transfer Protocol at

http://www.w3.org/Protocols/HTTP/AsImplemented.html

[HTML] W3C, HyperText Markup Language (HTML) verison 4.0 specification at

http://www.w3.org/TR/1998/REC-html40-19980424/

[HYPERCUBE] The hypercube work at Caltech originated in May 1981. It was the most

significant and influential parallel computer system of the early 1980s that developed

by Charles Seitz and Geoffrey Fox. These inspired commercial hypercubes that

included Intel, nCUBE, Ametek, and Floating Point Systems Corporation.

http://www.netlib.org/utk/lsi/pcwLSI/text/node13.html

 255

[IE] Microsoft Internet Explorer at http://www.microsoft.com/windows/ie/default.asp

[IKMWK] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back

to the Future: The Story of Squeak, A Practical Smalltalk Written in Itself.

Proceedings of the 12th ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications. Volume 32 Issue 10. October 1997.

http://delivery.acm.org/10.1145/270000/263754/p318-

ingalls.pdf?key1=263754&key2=5855545011&coll=Portal&dl=ACM&CFID=36221

945&CFTOKEN=19327503

[ILLUSTRATOR] Adobe Illustrator at

http://www.adobe.com/products/illustrator/overview.html

[IM] International Engineering Consortium, Instant Messaging ─ Definition and

Overview, International Engineering Consortium, 2004. Instant messaging (IM) is an

Internet protocol (IP)–based application that provides communication services. An

IM platform can offers a portal interface to an integrated real time messaging services

like text chat and Voice-over-IP. http://www.iec.org/online/tutorials/instant_msg/

[INTEROPERABILITY] EBA, Reality Check: Java + .NET -- Interoperability Matters,

in BEA Features, April 2003.

http://www.bea.com/framework.jsp?CNT=fea00007.htm&FP=/content/news_events/f

eatures_news/features

[INTERNETWORLDSTATS] Internet World Stats, Internet Usage Statistics − The Big

Picture, updated on September 1, 2004, http://www.internetworldstats.com/stats.htm

[INTERNET 1969] All About the Internet at http://www.isoc.org/internet/history/

 256

[IP] Internet Protocol is the network layer protocol used by the internet

http://en.wikipedia.org/wiki/Internet_protocol

[J2EE] The Server Side Java 2 Enterprise Edition http://java.sun.com/j2ee/

[JAVA] Sun Microsystems. Java technology, launched in 1995, has become the language,

and the platform, and the architecture for computing on the network over

heterogeneous environments. http://java.sun.com/features/1998/05/birthday.html

[JAVA AWT] Java Abstract Windowing Toolkit interfacing to machine native user

interface technology for client side Java.

http://en.wikipedia.org/wiki/Java_2_Platform,_Standard_Edition

[JAVA EVENT] Sun Microsystems Inc., Java AWT: Delegation Event Model, Sun

Microsystems Inc., 1997.

http://java.sun.com/j2se/1.3/docs/guide/awt/designspec/events.html

[JAVASCRIPT 1995] JavaScript Web scripting language at

http://devedge.netscape.com/central/javascript/

[JAVA SWING] Java graphical user interface technology largely replacing the AWT

http://en.wikipedia.org/wiki/Swing_(Java)

[J. Bennett] John K. Bennett. The design and implementation of distributed Smalltalk.

Proceedings on Object-oriented programming systems, languages and applications.

Pages: 318-330. 1987. ACM Press, New York. ISSN: 0362-1340.

http://delivery.acm.org/10.1145/40000/38836/p318-

bennett.pdf?key1=38836&key2=0394735011&coll=Portal&dl=ACM&CFID=36221

945&CFTOKEN=19327503

 257

[J.COOPER] James W. Cooper. The Design Patterns ─ Java Companion. Addison-

Wesley Design Patterns Series, MA. 1998

[Jordan+Hendersion] B. Jordan and A. Henderson. Interaction Analysis: Foundations

and Practice. The Journal of Learning Sciences. Lawrence Erlbaum Associates, Inc.,

Vol. 4, No. 1, pp.39-103.

[JDBC] The Java Database Connectivity JDBC allows Java programs to query and

update relational databases http://encyclopedia.thefreedictionary.com/JDBC

[JETSPEED] Apache open source portal http://portals.apache.org/jetspeed-2/

[J. Josephraj] Jerome Josephraj. Architect Struts applications for Web Services: Bring the

power of the MVC pattern to the Web services domain. IBM technical article. April,

2003. http://www-106.ibm.com/developerworks/webservices/library/ws-arcstruts

[JLHB] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-Grained

Mobility in the Emerald System. ACM Trans. on Computer Systems 6(1), February

1988.

http://citeseer.ist.psu.edu/cache/papers/cs/1041/http:zSzzSzwww.cs.washington.eduz

SzhomeszSzlevyzSzopalzSzemerald.pdf/jul88finegrained.pdf

[JMS] Sun Microsystems Inc., Java Message Service, Sun Microsystems Inc., 1999

http://java.sun.com/products/jms/docs.html

[JMSTUTORAL] Kim Haase, Java Message Service Tutorial, Sun Microsystem Inc.,

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html

[JSF] Sun Microsystems, Java Server Faces Technology, Sun Microsystems.

http://java.sun.com/j2ee/javaserverfaces/overview.html

 258

[JSP] Java Server Pages JSP for producing Java based dynamic web content

http://java.sun.com/products/jsp/

[JSR168] Sun Microsystems. Introduction to JSR 168 ─ The Java Portlet Specification.

Sun Microsystems.

http://developers.sun.com/prodtech/portalserver/reference/techart/jsr168/pb_whitepap

er.pdf

[JXTA] SUN JXTA peer-to-peer project at http://people.jxta.org/servlets/ProjectHome

[KALLIO] Kiia Kallio, Using SVG for graphically rich 2D content in mobile 3D games,

Proceedings of SVGOpen 2003, Vancouver, Canada.

http://www.svgopen.org/2003/papers/UsingSVGFor2DContentInMobile3DGames/in

dex.html

[KLEINDIENST] Jan Kleindienst, BeanChannel: Java Distributed Event Model, Ph.D.

Thesis, Charles University Prague, 1998.

http://nenya.ms.mff.cuni.cz/publications/pds98.pdf

[Kojarski+Lorenz] Sergei Kojarski and David H. Lorenz. Domain Driven Web

Development With WebJinn. The 18th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications. October 2003.

http://delivery.acm.org/10.1145/950000/949351/p53-

kojarski.pdf?key1=949351&key2=6453115011&coll=portal&dl=ACM&CFID=3536

6781&CFTOKEN=1129766

[Krasner+Pope] Glenn E. Krasner and Stephen T. Pope. A Description of the Model-

View-Controller User Interface Paradigm in the Smalltalk-80 System. Journal of

Object Oriented Programming. Volumn 1, Issue 3. Pages: 26-49. Aug/Sept 1998.

 259

[LAN] Local Area Network describes a computer network supporting a “small” localized

area http://en.wikipedia.org/wiki/LAN

[LDAP] Lightweight Directory Access Protocol (LDAP) is an IETF protocol for

accessing on-line directory services. http://en.wikipedia.org/wiki/LDAP

[LEE94] Lee G., Object oriented GUI application development, Prentice Hall 1994,

ISBN: 0-13-363086-2.

[LFKWQ] Sangmi Lee, Geoffrey Fox, Sunghoon Ko, Minjun Wang, Xiaohong Qiu.

Ubiquitous Access for Collaborative Information System Using SVG. Proceedings of

SVG Open Conference 2002. July 2002. Zurich, Switzerland.

[LWLH] Guanchun Luo, Yanhua Wang, Xianliang Lu, and Hong Han. A Novel Web

Application Frame Developed by MVC. ACM SIGSOFT. Software Engineering Notes

Vol. 28. No.2. March, 2004. http://delivery.acm.org/10.1145/640000/638779/p7-

chun.pdf?key1=638779&key2=9833494011&coll=Portal&dl=ACM&CFID=351458

09&CFTOKEN=34172557

[M. A. Malik] Masud Ahmad Malik. Evolution of the High Level Programming

Languages: A Critical Perspective. ACM SIGPLAN Notices. Volume 33 Issue 12.

December 1998.

[MEIER+CAHILL] René Meier, Vinny Cahill, Taxonomy of Distributed Event-Based

Programming Systems, 22nd International Conference on Distributed Computing

Systems Workshops (ICDCSW’02).

[MESSENGER] Microsoft, Instant Messaging Overview, Microsoft,

http://www.microsoft.com/windowsxp/using/helpandsupport/learnmore/remoteassist/

viaim.mspx

 260

[MIMD] Multiple Instruction stream Multiple Data stream (MIMD) is the

architecture of parallel machines that have a number of processors that

function asynchronously and independently.

http://carbon.cudenver.edu/~galaghba/mimd.html#introductiontosimd

[MIPS] Microprocessor without interlocked pipeline stages at

http://en.wikipedia.org/wiki/MIPS_architecture

[MML] M. Keith Mortensen, Rob McGovern and Charles Liptaak. ASP.NET and Struts:

Web Application Architectures. Microsoft technical article. December 2003.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/aspnet-

aspnet-j2ee-struts.asp

[MOORE] Moore’s law on computer performance increasing exponentially in time at

http://en.wikipedia.org/wiki/Moore's_Law

[MOSAIC] Mosaic was the first multimedia browser with a good graphical user interface

produced by NCSA in 1993 http://en.wikipedia.org/wiki/Mosaic_browser

[MOZILLA] Mozilla Web browser at http://www.mozilla.org/

[MOZILLALAYOUT] Mozilla Layout Engine at http://www.mozilla.org/newlayout/

[MPI] The University of Tennessee. MPI: A Message-Passing Interface Standard.

Version 1.1. June 1995. http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html.

[MQSeries] Messaging middleware from IBM –WebSphereMQ formerly called

MQSeries -- http://www.ibm.com/software/integration/wmq/

[MSMQ] Microsoft Message Queuing (MSMQ) technology

http://www.microsoft.com/windows2000/technologies/communications/msmq/default

.asp

 261

[MÜHL] Gero Müuhl, Large-Scale Content-based Publish/Subscribe Systems, Ph.D.

thesis, 2002. http://elib.tu-darmstadt.de/diss/000274/dissFinal.pdf

[MVC] G. Lee, Object oriented GUI application development. Prentice Hall, 1994. ISBN:

0-13-363086-2. Model-View-Controller (MVC) is an object oriented architecture that

separate presentation from system data structure into triads of Model, View, and

Controller.

[MYERSON] Judith M. Myerson. Web Services Architectures ─ How they stack up. Web

Service Architect at

http://www.webservicesarchitect.com/content/articles/myerson01.asp

[NAPSTER] Original application that popularized peer-to-peer file sharing and recently

restarted in “legal fashion” http://www.napster.com/

[NARADABROKERING] Open Source Messaging Internet System from the

Community Grids Laboratory at http://www.naradabrokering.org

[NETSCAPE] Netscape at http://channels.netscape.com/ns/browsers/

[NFS1989] Network File System Protocol at

http://www.ietf.org/rfc/rfc1094.txt?number=1094

[NIELSEN] Nielsen//NetRatings, Three Out of Four Americans Have Access to the

Internet, report on March 18, 2004, http://www.netratings.com/pr/pr_040318.pdf

[ODBC] Open Database Connectivity or ODBC is a standard software API for

connecting to database management systems (DBMS).

http://en.wikipedia.org/wiki/ODBC

[OGCE] Open Grid Computing Environments Collaboratory. http://www.collab-ogce.org.

 262

[OGM IDL] OMG IDL Syntax and Semantics defined in

http://www.omg.org/technology/documents/formal/corba_2.htm

[OLE] Object Linking and Embedding (OLE) is a Microsoft technology used primarily

for copying and pasting data between different applications. It later evolved to

become an architecture for software components known as the component object

model (COM). http://en.wikipedia.org/wiki/Object_linking_and_embedding

[OMG] Object Management Group, organization website at http://www.omg.org/

[OMG-MESSAGING] OMG, Data Distribution Services for Real-Time Systems

Specification. OMG. http://www.omg.org/docs/ptc/03-07-07.pdf

[OPENDOC] OpenDoc, introduced by Apple Computer in 1992, was a software

component framework standard for compound documents, similar to Microsoft’s

OLE. http://en.wikipedia.org/wiki/OpenDoc

[OPENINVENTER] Open Inventor, originally IRIS Inventor, is a C++ object oriented

3D graphics API designed by SGI to provide a high level programming abstraction

for OpenGL. http://encyclopedia.worldsearch.com/open_inventor.htm

[OPENOFFICE] Open Source cross platform Office Suite http://www.openoffice.org/

[OSI] OSI at

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/introint.htm#xtocid5

[OVERLAYNETWORK] Diego Doval and Donal O’Mahony. Overlay Networks - A

Scalable Alternative for P2P. Proceedings of IEEE Internet Computing Conference.

July 2003. pp. 79-82. Overlay networks create a structured virtual topology above the

basic transport protocol level that facilitates deterministic search and guarantees

convergence. http://www.dynamicobjects.com/papers/w4spot.pdf

 263

[PALLICKARA-06-04] Shrideep Pallickara and Geoffrey Fox, Efficient Matching of

Events in Distributed Middleware Systems, Journal of Digital Information

Management. Volume 2, Issue 2. pp 79-87. June 2004. Special Issue of selected

papers from the IEEE ITCC 2004 Track on Modern Grid and Web Systems.

http://grids.ucs.indiana.edu/ptliupages/publications/jdim-vol2-num2.pdf

[PARALLELCOMPUTING] Linkage of multiple computers together in a closely

coupled fashion to solve a single problem. See The Sourcebook of Parallel

Computing edited by Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken

Kennedy, Linda Torczon, and Andy White, Morgan Kaufmann, November 2004.

[P2P] A peer-to-peer (or P2P) computer network refers to any network that does not have

fixed clients and servers, but a number of peer nodes that function as both clients and

servers. http://en.wikipedia.org/wiki/Peer-to-peer

[PERL] Perl, also Practical Extraction and Report Language is a programming language

released by Larry Wall on December 18, 1987 that borrows features from C, sed, awk,

and the UNIX Shell. http://en.wikipedia.org/wiki/Perl_programming_language

[PC 1981] he IBM PC (Personal Computer) was introduced in August 1981 and is

forerunner of current personal computers.

[PHOTOSHOP] Adobe PhotoShop at

http://www.adobe.com/products/photoshop/overview.html

[P. McCullough] Paul L. McCullough. Transparent Forwarding: First Steps.

Proceedings on Object-oriented programming systems, languages and applications.

Volume 22, Issue12. December 1987. ACM Press, New York.

 264

[POWERPOINT] Microsoft PowerPoint at

http://office.microsoft.com/home/office.aspx?assetid=FX01085797&CTT=6&Origin

=ES790020011033

[PUB/SUBNOTIFICATION] IBM, Publish-Subscribe Notification for Web Services,

IBM. http://www-106.ibm.com/developerworks/library/ws-pubsub/WS-PubSub.pdf

[PVM] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and

Vaidy Sunderam. PVM: Parallel Virtual Machine ─ A User’s Guide and Tutorial for

Networked Parallel Computing. 1994. MIT Press.

[QIU-10-2000] Xiaohong Qiu, a demo of research presentation web site using Flash 5.0

at http://aspen.ucs.indiana.edu/project/research/

[QIU-01-2001] Xiaohong Qiu, Macromedia Flash 5.0 and Generator 2.0, technical

report available at http://grids.ucs.indiana.edu/ptliupages/publications/flashjan01.html

[QCF-06-03]Xiaohong Qiu, Bryan Carpenter and Geoffrey C. Fox, Internet

Collaboration using the W3C Document Object Model in Proceedings of the 2003

International Conference on Internet Computing, Las Vegas June 2003.

http://grids.ucs.indiana.edu/ptliupages/publications/collaborative_dom_conference_2

003_Int_IC_font10_without_title_page.pdf

[QCF-07-03] Xiaohong Qiu, Bryan Carpenter and Geoffrey C. Fox, Collaborative SVG

as a Web Service in Proceedings of SVG Open Conference, Vancouver July 2003.

http://www.svgopen.org/2003/papers/CollaborativeSVGasAWebService/#S.Bibliogra

phy

[Qiu+Jooloor]Xiaohong Qiu and Anumit Jooloor, Web Service Architecture for e-

Learning, EISTA 2004 International Conference on Education and Information

 265

Systems: Technologies and Applications, July 21-25 2004 Orlando.

http://grids.ucs.indiana.edu/ptliupages/publications/E388NH.pdf

[QPU]Xiaohong Qiu, Shrideep Pallickara, and Ahmet Uyar, Making SVG a Web Service

in a Message-based MVC Architecture, in Proceedings of SVG Open Conference,

September 2004, Tokyo, Japan.

http://www.svgopen.org/2004/papers/MakingSVGaWebServiceinaMessageBasedMV

CArchitecture/

[QOS] Quality of Service usually referencing communication or network

http://www.encyclopedia4u.com/q/quality-of-service.html

[R. Fielding] Roy Thmoas Fielding. Architectural Styles and the Design of Network-

based Software Architecture. Ph.D. thesis. 2000. University of California, Irvine.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[RISC] Reduced Instruction Set Computer at http://en.wikipedia.org/wiki/RISC

[RMI] Sun Microsystems, Java Remote Method Invocation Technology, Sun

Microsystems, http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html. RMI

implementing RPC style connection between distributed Java objects

[S. Burbeck] Steve Burbeck, Application Programming in SmallTalk-80: How to use

Model-View-Controller (MVC). Smalltalk-80 Archive. at http://st-

www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

[SCHMIDT] Douglas C. Schmidt, An Overview of OMG CORBA Event Services,

available at http://www.cs.wustl.edu/~schmidt/PDF/coss4.pdf

 266

[SERVLET] Sun Microsystems, Java Servlet Technology, Sun Microsystems,

http://java.sun.com/products/servlet/index.jsp. Servlets allow dynamic updating of

Java Servers.

[SIMD] Single Instruction stream Multiple Data stream (SIMD) is the

architecture of parallel machines that a single control unit dispatches

instructions to each processing unit.

http://carbon.cudenver.edu/~galaghba/simd.html

[SIMULA67] Graham M. Birtwistle, Ole-Johan Dahl, Bjoern Myhrhaug, and Kristen

Nygaard, SIMULA BEGIN, Studentlitteratur, Lund, Sweden, 1973. ISBN 91-44-

06211-7. Simula67 was the first object-oriented programming language and a

predecessor of Smalltalk and C++.

[SMIL2.0] W3C. Synchronized Multimedia Integration Language (SMIL2.0)

Specification. http://www.w3.org/TR/2000/WD-smil20-20000921/

[SOA] Service Oriented Architecture or SOA is a loosely coupled linkage of distributed

software. See D. DeRoure, A. Dunlop, G. Fox, P. Henderson, A. Hey, N. Paton, S.

Newhouse, S. Parastatidis, A. Tefethen, and P. Watson, Web Service Grids: an

Evolutionary Approach, UK e-Science Core Programme Directorate Position Paper,

July 2004.

[SOAP] W3C. Simple Object Access Protocol (SOAP) version 1.2.

http://www.w3.org/TR/soap12-part1/

[SONICMQ] Sonic Software Corp., Technical Overview: SonicMQ Featuers & Benefits,

Sonic Software Corp.,

http://www.sonicsoftware.com/products/sonicmq/technical_overview/index.ssp

 267

[SQL] Structured Query Language (SQL) is the most popular query language used with

databases. http://en.wikipedia.org/wiki/SQL

[S. Shi] Sherlia Shi. Design of Overlay Networks for Internet Multicast. Page 6-7. Ph.D.

Thesis. August, 2002. Washington University in St. Louis.

[SSJ] Inderjeet Singh, Beth Steans, and Mark Johnson. Designing Enterprise

Applciations with the J2EE Platform, Second Edition. Sun technical article. 2002.

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/web-

tier/web-tier5.html

[STRUTS] Apache. Struts is an open source project that provides a standard MVC

framework to address flow control issues for Java-based Web applications. It is based

on JSP model 2 and MVC design.

http://struts.apache.org/userGuide/introduction.html

[SVG] W3C Scalable Vector Graphics (SVG) version 1.0 Specification

http://www.w3.org/TR/2001/PR-SVG-20010719/

[SVGIMPLEMENTATIONS] The official W3C list of a variety of SVG implementations

or applications. http://www.w3.org/Graphics/SVG/SVG-Implementations

[SVGMOBILE] W3C, Mobile SVG Profiles: SVG Tiny and SVG Basic, W3C.

http://www.w3.org/TR/SVGMobile/

[SWING] Sun Microsystems. The Java Tutorial. Creating a GUI with JFC/Swing.

http://java.sun.com/docs/books/tutorial/uiswing/index.html

[SYMBIAN] Symbian Ltd., Symbian OS Technology, Symbian Ltd., Symbian OS is an

operating system for data-enabled mobile phones.

http://www.symbian.com/technology/technology.html

 268

[TCL] Tcl ("Tool Command Language” pronounced “tickle”) is a scripting language

created by John Ousterhout that is commonly used for rapid prototyping, scripted

applications, GUIs and testing. http://en.wikipedia.org/wiki/Tcl

[TCP] Transportation Control Protocol or TCP is a connection-oriented, reliable delivery

byte-stream transport layer protocol currently documented in IETF RFC 793.

http://en.wikipedia.org/wiki/Transmission_Control_Protocol

[TCP/IP] TCP/IP refers to the two most important protocols in the Internet protocol suite

with transport layer TCP and Network layer IP: http://en.wikipedia.org/wiki/TCP/IP

[T. DeWeese] Thomas DeWeese. Java Applications with Apache Batik. ApacheCon U.S.

2003.

[TELNET1972] Telnet protocol at http://www.faqs.org/rfcs/rfc318.html

[Tim B.L.] Tim Berners-Lee, comments on new idea which will revolutionize computing,

available at http://www.w3.org/People/Berners-Lee/FAQ.html

[TOKENRING] Token ring is a local area network protocol which resides at the data link

layer (DLL) of the OSI model. http://en.wikipedia.org/wiki/Token_ring

[UDDI] OASIS. Universal Description, Discovery, and Integration (UDDI).

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

[UPORTAL] uPortal is an open-standard effort using Java, XML, JSP and J2EE for a

free, sharable institutional portal as an abridged and customized version of the

institutional Web presence. http://www.uportal.org/

[UWBF] Ahmet Uyar, Wenjun Wu, Hasan Bulut, Geoffrey Fox. An Integrated

Videoconferencing System for Heterogeneous Multimedia Collaboration. 7th

 269

IASTED International Conference on INTERNET AND MULTIMEDIA SYSTEMS

AND APPLICATIONS ~IMSA 2003~ August 13-15, 2003 Honolulu, Hawaii, USA.

[UDP] The User Datagram Protocol (UDP) is a minimal message-oriented transport layer

protocol that is currently documented in IETF RFC 768.

http://www.ietf.org/rfc/rfc0768.txt

[UNIX] UNIX is a portable, multi-task and multi-user computer operating system

originally developed by AT&T Bell Labs. http://en.wikipedia.org/wiki/Unix

[URL] Uniform Resources Locator is a type of URI at http://www.ietf.org/rfc/rfc2396.txt

[USENET] Usenet or UNIX User Network was an early (1979) Newsgroup system that

initially used UUCP as a communication mechanism.

http://en.wikipedia.org/wiki/Usenet

[UUCP 1976] UUCP or UNIX to UNIX Copy Protocol, was an early (developed at

AT&T Bell Labs in 1976 and released a year later) UNIX suite of Shell commands

and a protocol allowing remote execution of commands and transfer of data between

UNIX computers. http://en.wikipedia.org/wiki/UUCP

[VB] Visual Basic (VB) is an event driven programming language derived from BASIC

and supporting ActiveX. VBScript, Visual Basic for Applications and

VisualBasic.NET were built on VB. http://msdn.microsoft.com/vbasic/

[Veit+Herrmann] Matthias Veit and Stephan Herrmann. Model-View-Controller and

Object Teams: A Perfect Match of Paradigms. Proceedings of the 2nd international

conference on Aspect-oriented software development. 2003. Pages: 140-149. ACM

Press, New York. ISBN: 1-58113-660-9.

 270

[Viller+Sommerville] S. Viller and I. Sommerville. Social analysis in the requirements

engineering process: from ethnography to method. Proceedings of International

Symposium on Requirements Engineering. Limerick 1999, IEEE Computer Soc.

Press, pp. 6-13.

[VIRGILLITO] Antonino Virgillito, Publish/Subscribe Communication Systems: from

Models to Applications, Ph.D. thesis, University of Rome, 2003.

http://www.dis.uniroma1.it/~virgi/virgillito-thesis.pdf

[VONNEUMANN] Von Neumman Computer at

http://encyclopedia.thefreedictionary.com/Von%20Neumann%20computer

[VPN] A Virtual Private Network, or VPN, is a private communications network used

within an enterprise built as an overlay network on the public internet

http://en.wikipedia.org/wiki/Virtual_private_network

[W3C] World Wide Web Consortium at http://www.w3c.org/

[WAN] Wide Area Network covering a broad geographical region

http://encyclopedia.thefreedictionary.com/WAN

[Wang+Fox] Minjun Wang and Geoffrey Fox. Design of a Collaborative System for

Open Office. Proceedings of IASTED KSCE Conference Virgin Islands. November

2004.

[WBUF] Wenjun Wu, Hasan Bulut, Ahmet Uyar, Geoffrey C. Fox. A Web-Services

Based Conference Control Framework For Heterogenous A/V Collaboration. 7th

IASTED International Conference on Internet and Multimedia Systems and

Applications ~ IMSA 2003. August 13-15, 2003. Honolulu, Hawaii, USA.

 271

[WEBSERVICE] A web service is a collection of interoperable protocols and standards

used for exchanging data between applications running on heterogeneous platforms

that have been accepted by essentially the entire computer community. According to

W3C, Web services provide “a standard means of interoperating between different

software applications, running on a variety of platforms and/or frameworks.”

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[WEBSITEINFLASH] Research Presentation Web site using Macromedia Flash at

http://aspen.ucs.indiana.edu/project/research/

[WEBSPHEREMQ] IBM, WebSphere MQ, IBM, http://www-

306.ibm.com/software/integration/wmq/v521/

[WIRELESS] IEEE 802.11 at http://grouper.ieee.org/groups/802/11/

[WFP+04] Minjun Wang, Geoffrey Fox and Shrideep Pallickara. Demonstrations of

Collaborative Web Services and Peer-to-Peer Grids. Journal of Digital Information

Management. Volume 2, Issue 2. June 2004. Special Issue of selected papers from the

IEEE ITCC 2004 Track on Mordern Grid and Web Systems.

[WFP+05] Minjun Wang, Geoffrey Fox and Marlon Pierce. Grid-based Collaboration in

Interactive Data Language Applications. To appear in Proceedings of IEEE

International Conference on Information Technology April 11-13, 2005, Las Vegas.

[WSCA] Heather Kreger et al. Web Services Conceptual Architecture (WSCA 1.0). IBM

Technical White Paper. May 2001. http://www-

306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

[WSEVENT] Box et al., Web Services Eventing (WS-Eventing) is a standard that

enables Web Services to be interoperable through publish/subscribe for event

 272

notification messages.

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-

us/dnglobspec/html/ws-eventing.asp

[WSDL] W3C. Web Services Description Language (WSDL 1.1). W3C.

http://www.w3.org/TR/wsdl

[WS-MANAGEMENT] Sun Microsystems. Web Services Management (WS-

Management). It is a Web Services specification for systems management. October

2004. Sun Microsystems.

http://developers.sun.com/techtopics/webservices/management/WS-Management.pdf

[WSNOTIFICATION] IBM, Publish-Subscribe Notification for Web Services, IBM,

available at http://www-106.ibm.com/developerworks/library/ws-pubsub/WS-

PubSub.pdf

[WSRF] OASIS, Web Services Resource Framework (WSRF) TC is open standard for

modeling and accessing stateful resources using Web services. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrf

[WSRP] Web Services for Remote Portlets (WSRP) is an OASIS standard for Portals to

access and display portlets that are hosted on a remote server. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrp [WSFL] Frank Leymann et al.

Web Services Flow Language (WSFL 1.0). IBM Technical White Paper. May 2001.

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[WUBF] Wenjun Wu, Ahmet Uyar, Hasan Bulut, Geoffrey Fox. Integration of SIP VoIP

and Messaging with the AccessGrid and H.323 Systems. Proceedings of 1st

International Conference on Web Services. Las Vegas, June 2003.

 273

[WWW 1991] A Little History About World Wide Web at

http://www.w3.org/History.html or http://www.w3.org/WWW/

[XLINK] W3C, XML Link Language (XLink) Version 1.0 uses XML syntax to create

and define generic links to indicate internal or external resources.

http://www.w3.org/TR/xlink/

[XML] W3C, XML (Extensible Markup Language) version 1.0 is a W3C

Recommendation for creating special-purpose markup languages. It has become the

standard way to define interoperable data structures. http://www.w3.org/TR/REC-

xml/

[XPOINTER] W3C. XML Pointer Language (XPointer) Version 1.0.

http://www.W3.org/TR/2001/WD-xptr-20010108

[X.Qiu] Xiaohong Qiu, Building Desktop Application with Web Services in a Message-

based MVC Paradigm, IEEE 2nd International Conference on Web Services (ICWS

2004). San Diego. July 2004.

http://grids.ucs.indiana.edu/ptliupages/publications/ICWS04_BuildingDesktopApplicaito

nwithWebServicesinaMessageBasedMVCParadigm.pdf

[YBSJRRM] Naveen Yajaman, Josh Brown, Shanmugam Subramaniam, Tony John,

Narsimha Reddy, Venkataraman R and Andrew Mason. Web Service Façade for

Legacy Applications. June 2003. Microsoft technical article.

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnpag/html/wsfacadelegacyapp.asp

[Yokote+Tokoro] Yasuhiko Yokote and Mario Tokoro. The design and implementation

of Concurrent Smalltalk. ACM SIGPLAN Notices, Conference proceedings on

 274

Object-oriented programming systems, languages and applications. Volume 21 Issue

11. June 1986.

[Y. Shan] Yen-Ping Shan. MoDE: AUIMS for Smalltalk. ACM SIGPLAN Notices,

Proceedings of the European conference on object-oriented programming systems,

languages, and applications. Volume 25, Issue 10.

[Zaslavsky+Memon] IIya Zaslavsky and Ashraf Memon. Web services for generating

SVG-Tiny maps on mobile phones. Proceedings of SVG Open Conference, Tokyo

Japan September 2004.

http://www.svgopen.org/2004/papers/WebServicesForSVGTinyMapsOnMobile/

[ZM04] Iiya Zaslavsky and Ashraf Memon, Web Services for Generating SVG Tiny Maps

on Mobile Phones, Proceedings of SVGOpen 2004, Tokyo, Japan.

http://www.svgopen.org/2004/papers/WebServicesForSVGTinyMapsOnMobile/

 275

VITA

NAME OF AUTHOR: Xiaohong Qiu

PLACE OF BIRTH: Beijing, P.R. China

DATE OF BIRTH: April 10, 1969

DEGREES AWARDED:

M.S. in Computer and Information Science, May 2000, Syracuse University

M.S. in Computer Science and Engineering, March 1998, BeiHang University

B.S. in Computer Science and Engineering, July 1991, BeiHang University

AWARDS AND HONORS:

Fellowship, 1998 – 2001 academic years, Syracuse University

