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Abstract 

In order to satisfy qualifying exam requirements adhered to by the School of Informatics 

and Computing, I will provide an overview of related and work in layer identification and 

explain  

Introduction 

Understanding the ice flow dynamics in Greenland and Antarctica poses a significant 

challenge, but the ambiguity can be substantially reduced by more and better 

observations of the polar ice sheets’ internal structure. The Center for Remote Sensing of 

Ice Sheets (CReSIS) has developed a snow radar for operation in NASA’s 2011 

Operation Ice Bridge program in order to image near surface internal layers and to 

produce high-resolution accumulation maps. Identifying snow layers in radar imagery is 

important for studying climate variability, but tracing layers in echograms by hand is 

labor-intensive and subjective. The data growth from past and projected field campaigns 

will require automated techniques in order to provide results to the polar science 

community in a timely manner. However, automatically tracing layers in echograms are 

challenging due to the limited resolution, large degree of noise, faint layer boundaries, 

and complex structures. 

 



Related Literature 

There has been relatively little work on estimating near surface internal layers from 

echograms acquired in either Greenland or Antarctica. Most related work has focused on 

identifying either basal boundaries or other coarse properties of echograms. For example, 

Freeman et al. [1] and Ferro and Bruzzone [2] investigated how shallow ice features can 

be automatically detected in icy regions from echograms of Mars.  In other work, Ferro 

and Bruzzone [3] used echograms of the Martian subsurface to detect basal returns. 

Approaches to identifying surface and bedrock layers in polar radar imagery have been 

addressed in Reid et al. [4], Ilisei et al. [5], and Crandall et al. [6].  

For more relevant solutions to the internal layer identification problem, Fahnestock et al. 

[7] developed an algorithm, which uses cross-correlation and a peak-following routine to 

trace near surface internal layers in northern Greenland. Karlsson and Dahl-Jensen [8] 

present a ramp function-based approach for predicting internal layers. Sime et al. [9] 

developed a technique to obtain layer dip information from two Antarctic datasets: the 

ground-based Fletcher Promontory and the airborne-based Wilkes Subglacial Basin. They 

applied a horizontal averaging technique to reduce layer noise, identified layers, isolated 

individual ‘layer objects,’ measured the orientation and other object properties, and 

collected valid dip information. The authors obtained good results in estimating and 

characterizing dips but do not attempt to trace complete layers, which are useful in other 

applications. We propose a novel approach to trace complete layers by combining ‘off-

the shelf’ computer vision techniques for estimating high intensity near surface internal 

layers from snow radar echograms. 

 



Near Surface Internal Layers 

We used observations about how domain experts detect layer boundaries in order to 

develop a semi-automated algorithm to mimic these behaviors. As shown in Figure 1a 

and as is typical for our experimental images, the surface reflection is very strong and 

near surface layer intensity generally decreases as depth increases. Also, near surface 

layers are approximately parallel, but may have modest changes in slope both to one 

another and to the ice surface. We proposed a technique, which attempts to find the 

prominent surface reflection and searches for similar (but invariably weaker) layer 

structures below the surface. We used each layer as an estimate of the appearance 

for the layer below it and an active contours (“snakes”) model to snap the correct 

layer structure given this estimate. We describe the process of detecting the 

surface, estimating layer location using curve point classification and refining the 

use of snakes in the following sections: 

 
Figure 1: Original Snow Radar Echogram 

Edge Detection 



To find the location of the surface boundary, which is typically the most 

prominent edge in the echogram, we used a Canny edge detector [10] because of 

its performance in detecting strong intensity contrasts for our near surface layer 

dataset (shown in Figure 2). In detecting this initial ice surface, the following fixed 

Canny parameters were used: a sigma of 2 for the standard deviation of the 

Gaussian filter and a low and high thresholds of 0.7 and 1.8, respectively. Since 

the ice surface is symmetrical to subsequent layers, it provides a good starting 

template. 

Figure 2: Canny Edge Detector of Ice Surface 

Curve Point Classification 

While the ice surface can be readily detected by edge detection, using it for near 

surface internal layers is not possible because of the very weak layer boundaries 

and the noise inherent in echograms. As a consequence, we used Steger’s 

approach [11] to identify points in an echogram (shown in Figure 3a), which were 



likely to be part of curvilinear structures. In short, this approach computes 

statistics on gradient structures within local image patches and investigates areas 

with prominent gradients in a coherent direction. We identified peaks for scores 

computed by Steger (shown as blue asterisks in Figure 3b) and used these to 

suggest initial curve positions for estimating near surface internal layers. For the 

first layer, we used the ice surface estimated previously and shifted it down, (in the 

y direction) so it intersected the first maximum point. This process was repeated 

until the number of near surface internal layers specified by the user has been 

found and gave initial estimates of layer positions and shapes, which we refined in 

the next step. 

 
Figure 3a: Curve Point Classification  

 



Figure 3b: Detected Layers (green) and Maximum Curve Points (blue asterisks) 
 

Active Contours 

To refine the curve shape and position estimates from the previous section, we used an 

active contours (snakes) model [12], a procedure for allowing an initial contour to 

gravitate towards an object boundary. Briefly summarized, the snakes model defines an 

energy function, which computes the “cost” of a particular curve (sequence of points). 

The function is defined to encourage the curve to align with high-gradient edge pixels 

but to discourage the curve from having either discontinuities or sharps bends. 

These two goals are often in tension, and the energy minimization function is used 

to find the curve with the best trade-off between them. An iterative gradient 

descent (hill-climbing) algorithm is used to find the curve with the best (local) 

minimum, given an estimate of the correct answer as initialization. In our 

methodology, active contours are used to warp the initial templates from the last 

section into a refined estimate, which better matches the local image data. For this 



to succeed, the initial contour must be close to the actual layer in order for the 

snake to find the correct boundary and not be confused by either noise or other 

edges in the image. A layer is fit when the energy function converges to a either 

minimum or when a maximum number of iterations has reached its threshold. 

Using active contours requires setting several parameters (α, β, and γ values - 

these are weights on the terms in the energy minimization function and control the 

tradeoff between the forces mentioned above). We tuned these parameters 

empirically to find values, which work well on most images and allow the user to 

further tune them on a per-image basis, if needed. 

Results 

Figure 4 shows the result of our approach for Figure 1. We observe it has successfully 

found over a dozen layers correctly, although it misses some of the very faint layers 

towards the bottom of the echogram.  

 
Figure 4: Estimated Near Surface Internal Layers from Echogram in Figure 1 

 
 



Conclusions  

We have developed a semi-automated approach to estimate near surface internal layers in 

snow radar imagery. Our solution utilizes an active contour model in addition to edge 

detection and Steger’s curve classification. Our technique is a step towards the ultimate 

goal of unburdening domain experts from the task of dense hand selection. By providing 

tools to the polar science community, high resolution accumulation maps can be readily 

processed to determine the contribution of global climate change to sea level rise.  
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