
Real-Time Object Detection for Unmanned Aerial Vehicles based on
Cloud-based Convolutional Neural Networks

Jangwon Lee, Jingya Wang, David Crandall, Selma Šabanović and Geoffrey Fox

Abstract— Real-time object detection is crucial for many
applications of Unmanned Aerial Vehicles (UAVs) such as
reconnaissance and surveillance, search-and-rescue, and infras-
tructure inspection. In the last few years, Convolutional Neural
Networks (CNNs) have emerged as a powerful class of models
for recognizing image content, and are widely considered in
the computer vision community to be the de facto standard
approach for most problems. However, object detection based
on CNNs is extremely computationally demanding, typically
requiring high-end Graphics Processing Units (GPUs) that
require too much power and weight, especially for a lightweight
and low-cost drone. In this paper, we propose moving the com-
putation to an off-board computing cloud. We apply Regions
with CNNs (R-CNNs), a state-of-the-art algorithm, to detect not
one or two but hundreds of object types in near real-time.

I. INTRODUCTION

In recent years, there has been increasing interest in
autonomous UAVs and its applications such as reconnais-
sance and surveillance, search-and-rescue, and infrastructure
inspection [1, 2, 3, 4, 5]. Visual object detection is an
important component in such applications of UAVs, and is
critical to develop fully autonomous systems. However, the
task of object detection is very challenging, and is made
even more difficult by the imaging conditions aboard low-
cost consumer UAVs: images are often noisy and blurred
due to UAV motion, onboard cameras often have relatively
low resolution, and targets are usually quite small. The task
is even more difficult because of the need for near real-
time performance in many UAV applications, such as when
objects are used for navigation.

Many UAV studies have tried to detect and track certain
types of objects such as vehicles [6, 7], people including
moving pedestrians [8, 9], and landmarks for autonomous
navigation and landing [10, 11] in real-time. However, there
are only a few that consider detecting multiple objects [12].
despite the fact that detecting multiple target objects is
obviously important for many applications of UAVs. In our
view, the main reasons for this gap between application needs
and technical capabilities are due to two practical but critical
limitations: (1) object recognition algorithms often need to
be hand-tuned to particular object and context types; (2) it is
difficult to build and store a variety of target object models,
especially when the objects are diverse in appearance, and (3)
real-time object detection demands high computing power
even to detect single objects, much less when many target
objects are involved.

School of Informatics and Computing, Indiana University, Bloomington,
IN 47408, USA. {leejang, wang203, djcran}@indiana.edu. This work was
supported in part by The Air Force Office of Scientific Research (AFOSR)
and by NVidia.

Fig. 1. A drone is able to detect hundreds of object categories in near
real-time using Convolutional Neural Networks running on a remote cloud.

However, the first of these problems is eroding due to
new breakthrough techniques in computer vision that work
well on a wide variety of objects. Most of these techniques
are based on “deep learning” with Convolutional Neural
Networks, and have delivered striking performance increases
on a range of recognition problems [13, 15, 16]. The key idea
is to learn the object models from raw pixel data, instead
of using hand-tuned features as in tradition recognition ap-
proaches. Training these deep models typically requires large
training datasets, but this problem has also been overcome
by new large-scale labeled datasets like ImageNet [29]. Un-
fortunately, these new techniques also require unprecedented
amounts of computation; the number of parameters in an
object model is typically in the millions or billions, requiring
gigabytes of memory, and training and recognition using
the object models requires high-end Graphics Processing
Units (GPUs). Using these new techniques on low-cost, light-
weight drones is thus infeasible because of the size, weight,
and power requirements of these devices.

In this paper, we propose moving the computationally-
demanding object recognition to a remote compute cloud,
instead of trying to implement it on the drone itself, letting
us take advantage of these breakthroughs in computer vision
technology without paying the weight and power costs.
Compute clouds, like Amazon Web Services, also have the
advantage of allowing on-demand access to nearly unlim-
ited compute resources. This is especially useful for drone
applications where most of the processing for navigation
and control can be handled onboard, but short bursts of
intense computation are required when an unknown object is
detected or during active object search and tracking. Using
the cloud system, we are able to apply R-CNNs [13], a
state-of-the-art recognition algorithm, to detect not one or
two but hundreds of object types in near real-time (see
Fig. 1). Of course, moving recognition to the cloud intro-
duces unpredictable lag from communication latencies. We

report on experiments measuring accuracy, recognition time,
and latencies using the low-cost Parrot AR Drone 2.0 as a
hardware platform, in the scenario of the drone searching for
target objects in an indoor environment.

II. RELATED WORK

A. Deep Learning Approaches in Robotics

We apply object detection based on Convolutional Neural
Networks (CNNs) [13, 14] for detecting a variety of objects
in images captured from a drone. These networks are type of
deep learning approach that are much like traditional multi-
layer, feed-forward perceptron networks, except that they
have a special structure that takes advantage of the unique
properties of image data, including local receptive fields,
since image data within local spatial regions is likely to be
related, and shared weights across receptive fields, since the
absolute position within an image is typically not important
to an object’s identity. Moreover, these networks are typically
much deeper than traditional networks, often with a dozen
or more layers [14]. CNNs have been demonstrated as a
powerful class of models in the computer vision field, beating
state-of-the-art results on many tasks such as object detec-
tion, image segmentation and object recognition [13, 15, 16].
Recent work in robotics has applied these deep learning tech-
niques, such as in object manipulation [17], hand gestures
recognition for Human-Robot Interaction [18], and detecting
robotic grasps [19]. These studies show the potential promise
of applying deep learning approaches to robotics fields. In
many cases, however, there is difficulty in applying recent
computer vision technologies directly to robotics, despite
the state-of-the-art performance. This is because most work
with recognition in the computer vision community does not
consider computation time as an important factor, since most
applications are focused on batch-mode processing of large
image and video collections (e.g. for organizing social media
collections). In our work we explore using cloud computing
to bring near real-time performance to robotics applications,
without having to compromise on accuracy or the number of
object classes that can be detected.

B. Cloud Robotics

Since James Kuffner introduced the term “Cloud
Robotics” in 2010, numerous studies and research have
explored the benefits of this approach [20, 21]. Cloud com-
puting allows on-demand access to nearly unlimited compu-
tational resources, which is especially useful for bursty com-
putational workloads that periodically require huge amounts
of computation. Although the idea of taking advantage of
remote computers in robotics is not new, the unparalleled
scale and accessibility of modern clouds has opened up many
otherwise unrealistic applications for mobile robot systems.
For example, automated self-driving cars can access large-
scale image and map data through the cloud, for accurate
mapping and localization, without having to store or pro-
cess this data locally [20]. Cloud-based infrastructures can
also allow robots to communicate and collaborate with one
another, as in the RoboEarth project [22].

Fig. 2. We use the Parrot AR.Drone2.0 as our hardware platform (top),
adding a mirror to the front-facing camera in order to detect objects on the
ground (bottoms).

However, a key challenge in using remote cloud resources,
and especially commodity cloud facilities like Amazon Web
Services, is that they introduce a number of variables that are
beyond the control of the robot system. Communicating with
a remote cloud typically introduces unpredictable network
delay, and the cloud computation time itself may depend
on which compute resources are available and how many
other jobs are running on the system at any given moment
in time. This means that although the cloud may deliver
near real-time performance in the average case, latencies
may be quite high at times, such that onboard processing
is still needed for critical tasks like stability control. Here
we propose moving target recognition to the cloud, while
allowing keeping short-term navigation and stability control
local. This hybrid approach allows a low-cost quadcopter to
recognize hundreds of objects in near real-time on average,
with limited negative consequences when the real-time target
cannot be met.

III. HARDWARE PLATFORM

We use a Parrot AR.Drone 2.0 as a low-cost hardware
platform [25] to test our cloud-based recognition approach.
The AR.Drone costs about US$300, is small and lightweight
(about 50cm × 50cm and 420g including the battery), and
can be operated both indoors and outdoors.

A. Hardware Specifications

The AR.Drone 2.0 is equipped with two cameras, an
Inertial Measurement Units (IMUs) including a 3-axis gyro-
scope, 3-axis accelerometer, and 3-axis magnetometer, and
pressure- and ultrasound-based altitude sensors. The front-
facing camera has a resolution of 1280 × 720 at 30fps with
a diagonal field of view of 92◦, and the lower-resolution
downward-facing camera has a resolution of 320 × 240 at

60fps with a diagonal field of view of 64◦. We use both
cameras, although we can only capture images from one of
the two cameras at the same time due to firmware limitations.

Because the front-facing camera has a higher resolution
and wider field of view than the downward-facing one, we
use the front-facing camera for object detection. To allow
the drone to see objects on the ground, which is needed for
most UAV applications like search and rescue, we mounted
a mirror at a 45◦ angle to the front camera (see Fig. 2).

B. Embedded Software

The AR.Drone 2.0 comes equipped with a 1 GHz ARM
Cortex-A8 as the CPU and an embedded version of Linux
as its operating system. The embedded software on the
board measures horizontal velocity of the drone using its
downward-facing camera and estimates the state of the drone
such as roll, pitch, yaw and altitude using available sensor
information. The horizontal velocity is measured based on
two complementary computer vision features, one based on
optical flow and the other based on tracking image features
(like corners), with the quality of the speed estimates highly
dependent on the texture in the input video streams [26]. All
sensor measurements are updated at 200Hz. The AR.Drone
2.0 can communicate with other devices like smartphones or
laptops over a standard WiFi network.

IV. APPROACH

A. System Overview

Our approach consists of three main components as shown
in Fig. 3. Each component is implemented as a node within
the Robot Operating System (ROS) framework, allowing
each component to communicate the others using the ROS
transport protocol [27].

Two components, the position estimator and PID con-
troller, are run on a laptop (with an Intel Core i7 Processor
running at 2.4 GHz), connected to the drone through the
AR.Drone device driver package of ROS, over a WiFi link.
The drone is controlled by the control commands with
four parameters, the roll Φ, the pitch Θ, the vertical speed
z, and the yaw Ψ. The most computationally demanding
component, the CNN-based object detection node, runs on
a remote cloud computing server that the laptop connects to
via the open Internet.

B. Position Estimation with Extended Kalman Filter

We employ an Extended Kalman Filter (EKF) to estimate
the current position of the drone from all available sensing
data. Here, the height and horizontal velocity measurements
are often inaccurate due to the fast motion of the drone, and
the low-cost sensors and actuators of our hardware platform,
which together create a high degree of noise. We therefore
use a visual marker detection library, ArtoolkitPlus, in our
update step in order to get accurate and robust absolution
position estimation results within the test environment [28].
(It would be more realistic if the drone estimated its cur-
rent position without these artificial markers, but position
estimation is not the focus of this paper so we made this

Fig. 3. System Overview: Our approach consists of three main components:
a position estimation for localization, PID control for navigation, and R-
CNN-based object detection. All components are implemented under the
ROS framework, so each component can communicate with every other via
the ROS network protocol.

simplification here.) We place 25 markers in a 5 × 5 grid
on the ground of the test environment, covering an area of
2m × 2m.

Furthermore, since our test environment is free of ob-
structions, we assume that the drone can move without
changing altitude while it is exploring the environment to
look for target objects. This is a strong assumption but again
is reasonable for the purposes of this paper, and it makes
the position estimation problem much easier because this
assumption reduces the state space from 3D to 2D. Note that
this assumption does not mean that the drone never changes
its altitude — in fact, it can and does change altitude to
get a closer view of objects, when needed, but it does so
in hovering mode and returns back to the canonical altitude
before flying elsewhere in the environment.

The state space of the drone is given by,

xt = (xt, yt,Ψt)
T ∈ R3, (1)

where xt and yt are position of the drone along axes parallel
to the ground plane at time t, and Ψt is the yaw angle of the
drone at time t. Then, the prediction function g(ut,xt−1)
and update function h(xt) of the EKF are,

g(ut,xt−1) =

xt−1 + (cos(Ψt−1)xo − sin(Ψt−1)yo)∆t

yt−1 + (sin(Ψt−1)xo + cos(Ψt−1)yo)∆t

Ψt−1 + Ψo∆t

 ,

(2)

h(xt) =

 cos(Ψt)(xt − xm) + sin(Ψt)(yt − ym)
− sin(Ψt)(xt − xm) + cos(Ψt)(yt − ym)

Ψt −Ψm

 ,

(3)
where ut = (xo, yo,Ψo)T denotes odometry information,
measured by the horizontal velocity and yaw rotation speed
of the drone, (xm, ym,Ψm) represents the position of visual
marker, and ∆t indicates time intervals.

C. PID Controller for Navigation

We employ a simple PID controller to generate the control
commands that drive the drone towards its desired goal
locations. We compute the error values of each degrees-of-

freedom as,

xerror =

ex
ey
eΨ

 = xgoal − xcurrent, (4)

where xgoal and xcurrent denote goal and current state of
the drone respectively. Then, we apply the error values to
the discrete form of PID controller,

ut = Kpet + Kiei,t + Kded,t, (5)

where Kp, Ki, and Kd, denote the gains for the propor-
tional, integral, and derivative terms respectively, and et are
computed error values at time t. Then, ei,t, and ed,t are
computed as follows

ei,t = et∆t + ei,t−1, (6)

ed,t =
et − et−1

∆t
, (7)

where ∆t denotes time intervals, but it is a constant value
since we control the drone with same frequency.

Thus, the PID controller generates the control commands
to drive the drone with fast velocity when the error values
are large, and reduces the drone speed in proportion to de-
creasing error values when the drone approaches the desired
goal location correctly. Finally, we change operation mode of
the drone to hovering mode when the drone reaches within
a small distance of the desired goal position.

D. Cloud-based R-CNNs for Object Detection

After the drone captures an image of a candidate object,
we apply the R-CNN algorithm for object detection [13].
R-CNNs are a leading approach for object detection, that
combines a fast object proposal mechanism with CNN-based
classifiers. Very briefly, the technique runs a lightweight,
unsupervised hierarchical segmentation algorithm on an im-
age, breaking the image into many (hundreds or thousands
of) overlapping windows that seem to contain “interesting”
image content that may correspond to an object, and then
each of these windows is classified separately using a CNN.
R-CNNs have shown leading performance in several datasets
for object detection challenges, but these images are usually
collected from social media (e.g. Flickr), and to our knowl-
edge, have not been applied to robotic applications. The
main reason for this is probably that CNNs demand very
high computational power, typically in the form of high-
end GPUs. We therefore move the R-CNNs based object
detection part to a cloud system.

Besides the computational cost, another major challenge
with using CNNs is their need for very large-scale training
datasets, typically in the hundreds of thousands or millions
of images. Because it is unrealistic for us to capture this
scale dataset for our application, we used R-CNN models
trained for the 200 object types of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC13) dataset [29]. A
disadvantage of this approach is that the training images were
mostly collected from sources like Google Images and Flickr,

Fig. 4. An example of R-CNN-based object detection with an image taken
by our drone.

and thus are largely consumer images and not the aerial-
type images seen by our drone. We could likely achieve
much better recognition accuracies by training on a more
representative dataset; one option for future work is to take
a hybrid approach that uses the ILSVRC13 data to bootstrap
a classifier fine-tuned for our aerial images. Nevertheless, our
approach has the advantage of giving our robot the ability
to detect several hundred types of objects “for free,” without
much additional investment in dataset collection. We use the
R-CNN implementation in Caffe [30], a C++ deep learning
framework library.

An example of our detection results with an image taken
by the drone is shown in Fig. 4. Here, the numbers above the
box are the confidence scores of detected object, with greater
score meaning greater confidence. The drone detected four
different types of objects correctly, even though one object, a
computer mouse, has a relatively low confidence. However,
an advantage of robotic applications is that when such
uncertainty is detected, the drone can choose to approach
the computer mouse and take more pictures from different
angles and distances, in order to confirm the detection. For
example, if a detection score decreases while approaching the
object and falls under some threshold, the drone can decide
that the object is not the target.

V. EXPERIMENT RESULTS

We conducted three sets of experiments to demonstrate
that our approach performs successfully in a realistic but
controlled environment. In the first set of experiments, we
focus on testing the accuracy of object recognition using R-
CNNs, and specifically the viability of our idea of applying
object models trained on consumer images (from ImageNet)
to a robot application. In the second set of experiments,
we evaluate the speed of R-CNNs for object recognition,
comparing running times on a local laptop versus a compute
cloud, where communication time is much less predictable
but computational resources are much greater. Finally, we
verify our approach with the scenario of a drone searching
for a target object in an indoor environment, as a simple
simulation of a search-and-rescue or surveillance application.

All experiments were conducted in an indoor room of
about 3m×3m. We did not make any attempt to control for
illumination or background clutter, although the illumination
was fixed (overhead fluorescent lighting) and the background
was largely composed of the navigation markers mentioned
above.

A. Object Recognition Accuracy

We first tested the ability of the CNNs trained on ImageNet
data to recognize different objects appearing in our test
environment. We collected 18 different objects, scattered
them around the room, and used the drone to collect 90 aerial
images of them from random orientations and perspectives.
The objects consisted of typical household items, including:
a helmet, cocktail shaker, hammer, hair spray, pitcher, tennis
ball, dumbbell, wine bottle, face powder, computer keyboard,
banana, coffee mug, screwdriver, water bottle, perfume,
binder, tennis racket, and backpack. Of the 90 images, about
half (41) were blank or blurry beyond human recognition, so
we excluded them for the remainder of the tests. We passed
the remaining images to the recognition module, which
used R-CNNs to classify the object according to its 200
object models. The result of this process is 200 confidence
scores per image, indicating the classifier’s estimate of the
likelihood that each object is in each image.

Of the 49 images, the CNN identified the correct object
as the highest confidence category about 35% of the time
(N=17), compared to a random baseline of 0.5%. For about
88% of images (N=43), its top 10 most confident categories
included the target object, relative to a baseline of 5%.
Fig. 8 presents some samples of our test images. A few
interesting patterns emerged in the results across object
categories. For example, dumbbells, computer keyboards,
bananas and screwdrivers were consistently detected reliably.
Helmets, on the other hand, were confused with soccer balls
and neck braces, presumably because of the similar texture
patterns on these objects. Water bottles and hair spray bottles
were also frequently confused, again because of similar
visual appearance. The ImageNet-trained models sometimes
hallucinated false positives in background clutter; hammers
and filing cabinets were sometimes incorrectly found because
of the similarity of their appearance to some of the fiducial
markers we use for navigation.

As discussed above, we took the approach of using CNNs
trained on ImageNet consumer images and applying them
to our drone scenario, even though the aerial drone images
look nothing like most consumer images, because we did
not have the large-scale dataset needed to train a CNN
from scratch. This can be thought of as a simple case of
transfer learning, and likely suffers from the usual mismatch
problem when training sets and testing sets are sampled
from different distributions. We found that besides differ-
ent backgrounds and object appearances, a key difference
between the two datasets is that drone-based images have
much more variation in object orientation: many objects have
a canonical orientation when photographed from the ground,
but can appear in a wider range of orientations from an aerial

Fig. 5. Accuracy of object recognition with R-CNNs.

perspective. To investigate this further, we conducted another
experiment in which we carefully aligned objects to appear
upright, on another set of 53 images. On this set, the top-
1 recognition rate increases to 43% (N=23), suggesting that
rotation variation could be a significant factor. For the top-
10 results, the recognition rate fell to about 70% (N=37),
suggesting that most of the errors caused by orientation
variation may be mostly contributing to confusion among
the few most confident objects (see Fig. 5).

In future work, we plan to investigate using the parameters
trained from ImageNet to bootstrap new models fine-tuned
on smaller scale training datasets from our drone.

B. Recognition Speed on Cloud System

Our second set of experiments evaluated the running time
performance of the CNN-based object recognition, testing
the extent to which cloud computing could improve recog-
nition times, and the variability of cloud-based recognition
times due to unpredictable communication times. For these
experiments we used the same set of images and objects
collected in the previous section, and compared the speed
of CNNs running on a local laptop versus those running
on a remote server as a simulated cloud. A comparison of
these compute facilities are shown in Table I. The cloud
machine has more powerful CPUs as well as two high-end
Graphical Processing Units (GPUs) that the CNN software
takes advantage of.

Fig. 6 shows the running time of object recognition on

TABLE I
HARDWARE COMPARISON BETWEEN LOCAL AND CLOUD MACHINE

local computer cloud computer

CPUs one Intel Core
i7-4700HQ @ 2.4GHz

two Intel Xeon
E5-2680 v3 @ 2.5GHz

GPUs one Nvidia
GeForce GTX 770M two Nvidia Tesla K40

RAM 16 GB 128 GB

Fig. 6. Running time of object recognition on each machine.

the two machines, for each of the 97 images in our dataset.
The cloud running times included latencies for sending each
image to the cloud computer (which averaged about 600ms),
and for exchanging detected results and other command
messages (which averaged 0.41ms). The average time on the
cloud machine for running all 200 models on an image was
18.07 seconds, including the latencies, in contrast to the local
machine which took an average of 133.14 seconds. Thus
the cloud-based recognition performed about 7.4 times faster
on average. The average running time on our single-server
simulated cloud is not fast enough to be considered real time,
but is still fast enough to be useful in many applications.
Moreover, recognition could be easily made faster by paral-
lelizing object model evaluations across different machines.

C. Target Search with a Drone

Object recognition is useful in a variety of potential
applications of UAVs, including search-and-rescue and re-
connaissance. In this section, we demonstrate our approach
with a simple scenario of the drone searching for a target
object in an indoor environment. We assume that a drone
is supposed to find a single target object in a room in a
building. There are several different types of objects in the
room, but fortunately there are no obstacles. The drone has a
knowledge about possible locations of the target object, but
does not know which one it is in.

In the test scenario, we put four different objects on the
floor in the indoor test room, then assumed that the drone
knows the four possible locations of the target object. We
designed the four possible locations as the four corner points
of a square in order to make the trajectory more clearly, but
the objects could be put anywhere in the room. The drone
approaches each possible location, using the downward-
facing, lower-resolution camera for navigation and control.
It then switches to hovering mode and switches to capturing
images from the front-facing camera in order to capture
at higher resolution and with a wider angle. The drone
then takes a picture of the candidate area and sends it

Fig. 7. Trajectory of the drone in test scenario: The drone searching for a
target object in an indoor environment.

to the cloud system. Then, the drone switches the camera
back to the downward-facing camera for localization and
stability control, and proceeds to the other candidates. In the
meantime, the cloud system performs recognition and sends
results to the drone. The position with the highest confidence
score for the target object is then declared to be the estimated
location.

Fig. 7 shows the trajectory of the drone in our test scenario.
The location where the drone stayed longer marked as black.
It shows that the drone reached the four candidate area, then
stayed some time to take a picture, then moved back to the
center of the room according to our test scenario.

VI. CONCLUSION

In this paper, we proposed to use Convolutional Neural
Networks to allow UAVs to detect hundreds of object cat-
egories. CNNs are computationally expensive, however, so
we explore the approach of moving the recognition to a
remote computing cloud. Our approach enables the UAVs,
especially lightweight, low-cost consumer UAVs, to use
state-of-the-art object detection algorithms, despite their very
large computational demands. The (nearly) unlimited cloud-
based computation resources, however, come at the cost of
potentially high and unpredictable communication lag and
highly variable system load. We tested our approach with a
Parrot AR.Drone 2.0 as a low-cost hardware platform in a
real indoor environment. The results suggest that the cloud-
based approach could allow speed-ups of nearly an order of
magnitude, approaching real-time performance even when
detecting hundreds of object categories, despite these addi-
tional communication lags. We demonstrated our approach
in terms of recognition accuracy and speed, and in a simple
target searching scenario.

VII. ACKNOWLEDGMENTS

The authors wish to thank Matt Francisco for helping to
design and fabricate the forward-facing camera mirror, Supun
Kamburugamuve for helping with the software interface to
the cloud infrastructure, and Bruce Shei for configuring the
cloud servers.

Fig. 8. Sample images collected by our drone. R-CNNs based object recognition are able to detect a wide variety of different types of objects.

REFERENCES

[1] M. Bhaskaranand, and J. D. Gibson, “Low-complexity video encoding
for UAV reconnaissance and surveillance,” in Proc. IEEE Military
Communications Conference (MILCOM), pp. 1633-1638, 2011.

[2] P. Doherty and P. Rudol, “A UAV search and rescue scenario with
human body detection and geolocalization,” in AI 2007: Advances in
Artificial Intelligence, pp. 1-13, 2007.

[3] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair,
I. L. Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward a fully
autonomous UAV: Research platform for indoor and outdoor urban
search and rescue,” in Robotics & Automation Magazine, IEEE, vol.
19, no. 3, pp. 46-56, 2012.

[4] L. Merino, F. Caballero, J. R. Martinez-de Dios, J. Ferruz, and
A. Ollero, “A cooperative perception system for multiple UAVs:
Application to automatic detection of forest fires,” in Journal of Field
Robotics 23, no. 3.4 pp. 165-184, 2006.

[5] I. Sa, S. Hrabar, and P. Corke, “Outdoor flight testing of a pole
inspection UAV incorporating high-speed vision,” in Springer Tracts
in Advanced Robotics, pp. 107-121, 2015.

[6] T. P. Breckon, S. E. Barnes, M. L. Eichner, and K. Wahren, “Au-
tonomous real-time vehicle detection from a medium-level UAV,”
in Proc. 24th International Conference on Unmanned Air Vehicle
Systems, pp. 29.1-29.9, 2009.

[7] J. Gleason, A.V. Nefian, X. Bouyssounousse, T. Fong, and G. Bebis,
“Vehicle detection from aerial imagery,” in Proc. IEEE International
Conference on Robotics and Automation (ICRA), pp. 2065-2070, 2011.

[8] A. Gaszczak, T. P. Breckon, and J. Han, “Real-time people and vehicle
detection from UAV imagery,” in Proc SPIE Conference Intelligent
Robots and Computer Vision XXVIII: Algorithms and Techniques, vol.
7878, 2011.

[9] H. Lim, and S. N. Sinha, “Monocular Localization of a moving person
onboard a Quadrotor MAV,” in Proc. IEEE International Conference
on Robotics and Automation (ICRA), pp. 2182-2189, 2015.

[10] J. Engel, J. Sturm, and D. Cremers, “Scale-aware navigation of
a low-cost quadrocopter with a monocular camera,” Robotics and
Autonomous Systems, vol. 62, no. 11, pp. 1646-1656, 2014.

[11] C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scaramuzza,
“Continuous on-board monocular-vision-based elevation mapping ap-
plied to autonomous landing of micro aerial vehicles,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA), pp.
111-118, 2015.

[12] F. S. Leira, T. A. Johansen, and T. I. Fossen, “Automatic detection,
classification and tracking of objects in the ocean surface from UAVs
using a thermal camera,” in Proc. IEEE Aerospace Conference, pp.
1-10, 2015.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proc IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 580-587, 2014.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” in Proceedings of the IEEE
86, no. 11, pp. 2278-2324, 1998.

[15] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S.
Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent con-
volutional networks for visual recognition and description,” in arXiv
preprint arXiv:1411.4389, 2014.

[16] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy
images,” in Advances in neural information processing systems, pp.
2843-2851, 2012.

[17] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training
of Deep Visuomotor Policies,” in arXiv preprint arXiv:1504.00702,
2015.

[18] J. Nagi, A. Giusti, F. Nagi, L. M. Gambardella, and G. D. Caro,
“Online feature extraction for the incremental learning of gestures in
human-swarm interaction,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA), pp. 3331-3338, 2014.

[19] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” in The International Journal of Robotics Research 34, no.
4-5, pp. 705-724, 2015.

[20] K. Goldberg and B. Kehoe, “Cloud robotics and automation:
A survey of related work,” in EECS Department, University
of California, Berkeley,Tech. Rep. UCB/EECS-2013-5, [Online]
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-
2013-5.html, 2013.

[21] B. Kehoe, S.Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” in Automation Science and Engi-
neering, IEEE Transactions on 12, no. 2, pp. 398-409, 2015.

[22] RoboEarth, [online] Available: http://roboearth.org/
[23] K. Ok, D. Gamage, T. Drummond, F. Dellaert, and N. Roy, “Monocu-

lar Image Space Tracking on a Computationally Limited MAV,” in
Proc. IEEE International Conference on Robotics and Automation
(ICRA), pp. 6415-6422, 2015.

[24] K. Schauwecker and A. Zell, “On-board dual-stereo-vision for the
navigation of an autonomous MAV,” in Journal of Intelligent &
Robotic Systems 74, no. 1-2, pp. 1-16, 2014.

[25] AR.Drone 2.0, [online] Available: http://ardrone2.parrot.com/
[26] P. J. Bristeau, F. Callou, D. Vissiere, and N. Petit, “The navigation

and control technology inside the ar.drone micro UAV,” in 18th IFAC
World Congress, vol. 18, no. 1, pp. 1477-1484, 2011.

[27] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A.Y. Ng, “ROS: An open-source robot operating
system,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA), Open-Source Software Workshop, 2009.

[28] D. and D. Schmalstieg, “ARToolKitPlus for Pose Tracking on Mobile
Devices,” in Proc. 12th Computer Vision Winter Workshop (CVWW),
2007.

[29] Large Scale Visual Recognition Challenge 2013 (ILSVRC2013), [on-
line] Available: http://image-net.org/challenges/LSVRC/2013/

[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proc. ACM International Conference on
Multimedia, pp. 675-678, 2014.

