
Performance of Data Intensive Supercomputing Runtime Environments

Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox

Department of Computer Science

Indiana University, Bloomington, IN 47404, USA

{jekanaya,spallick,gcf}@indiana.edu

1. Research Problem
Computation and data intensive scientific data

analyses are increasingly prevalent. In the near future,

it is expected that the data volumes processed by

applications will cross the peta-scale threshold, which

would in turn increase the computational requirements.

Two exemplars in the data-intensive domains include

High Energy Physics (HEP) and Astronomy. HEP

experiments such as CMS and Atlas aim to process

data produced by the Large Hadron Collider (LHC).

The LHC is expected to produce tens of Petabytes of

data annually even after trimming the datasets via

multiple layers of filtrations. In astronomy, the Large

Synoptic Survey Telescope produces data at a nightly

rate of about 20 Terabytes.

Data volume is not the only source of compute

intensive operations. Clustering algorithms used for

DNA sequencing are especially compute intensive

even though the datasets are comparably smaller than

the physics and astronomy domains.

Efficient parallel/concurrent algorithms and

implementation techniques are the key to meeting the

scalability and performance requirements entailed in

such scientific data analysis. Most of these analyses

can be thought of as a Single Program Multiple Data

(SPMD) algorithm or a collection thereof. These

SPMDs can be implemented using different techniques

such as threads, message passing, and map-reduce[1].

Additionally, these SPMDs can also be deployed in

various hardware configurations such as compute

clusters, computational grids, and compute clouds.

There are several considerations in selecting an

appropriate implementation strategy for a given data

analysis. These include data volumes, computational

requirements, algorithmic synchronization constraints,

quality of services, easy of programming and the

underlying hardware profile.

The goal of this research is to study the various

parallelization techniques which can be applied to the

SPMD algorithms. It is also important to understand

how these different techniques can be used to improve

the scalability and the performance of the scientific

data analyses. Finally, this research will also make

recommendations about possible improvements to

these parallelization techniques.

2. Current Research
Current research focuses on designing an efficient

map-reduce implementation and using it for scientific

data analyses in different hardware configurations. Our

research prototype –CGL-MapReduce – utilizes

NaradaBrokering [2], a streaming-based content

dissemination network developed by us, for all the

underlying communications. The use of streaming

provides performance improvements over the file-

based communications adopted by the typical map-

reduce implementations such as Hadoop [3].

Additionally, CGL-MapReduce (depicted in figure 1)

supports iterative map-reduce computations while

adding acceptable overheads to the computation task.

Figure 1 Components of the CGL-MapReduce

We have successfully tested CGL-MapReduce with

two scientific data analyses; (i) High Energy Physics

data analysis involving large volumes of data

representing a single phase map-reduce computation

and (ii) Kmeans clustering [4] representing an iterative

map-reduce computation.

3. Results
Here we present the results of benchmarking CGL-

MapReduce with scientific applications. We compare

the performance of CGL-MapReduce with Hadoop for

both HEP and Kmeans. For Kmeans clustering, we

also compare the results with an MPI version of the

same algorithm to show how these techniques

File System

MR

Driver

Content Dissemination Network

 Data Split

Worker Nodes

Data Read/Write

Communication
 R

Map worker

Reduce worker

User

Program

 R R

 M M

 R R

 M M

M

converge in performance for large data sets. Our results

are depicted in figures 2 through 5.

Figure 2 describes the HEP data analysis task and

how it is implemented as a map-reduce computation

while Figure 3 compares the performance of CGL-

MapReduce and Hadoop for this computational task.

Figure 2. Map-reduce implementation of the HEP

data analysis

Figure 3. Hadoop vs. CGL-MapReduce for HEP

Data Analysis.

Figure 4 describes the map-reduce version of the

Kmeans clustering algorithm, which we use to cluster a

large number of 2D data points. In figure 5 we

compare the performance of Hadoop, CGL-

MapReduce, and MPI versions of Kmeans.

Results in Figure 3 indicates that the overhead

associated with Hadoop’s robustness diminishes for

large data sets while the results in Figure 5 shows how

this overhead effect iterative map-reduce

computations. Figure 5 also highlights that the

performance of our stream based map-reduce

implementation is comparable to MPI for large enough

data sets.

Figure 4. Map-reduce implementation of the

Kmeans clustering algorithm

Figure 5. Kmeans clustering using Hadoop, CGL-

MapReduce, and MPI (Both axes are in log scale)

4. Future Research

Future research involves analyzing the different

parallelization techniques under cloud computing

environments and understanding how these (and other

similar) applications can be efficiently implemented

for cloud computing environments.

References

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” OSDI’04: Sixth Symposium on

Operating System Design and Implementation, December 2004.

[2] S. Pallickara, G. Fox, “NaradaBrokering: A Distributed
Middleware Framework and Architecture for Enabling Durable Peer-

to-Peer Grids,” Middleware 2003, pp. 41-61

[3] Hadoop, http://hadoop.apache.org/core/
[4]J. B. MacQueen , "Some Methods for classification and Analysis

of Multivariate Observations”, Proceedings of 5-th Berkeley

Symposium on Mathematical Statistics and Probability, Berkeley,
University of California Press, 1:281-297

Final merging operation
performed by the user

application

HEP Data (Binary

format)

Histogram (Binary

format)

ROOT interpreted

function

Performs a merge

operation for histograms

 map()

 reduce() reduce()

 merge()

 map()

Map() - Compute the
distance to each data
point from each cluster
center and assign points
to the cluster centers

Calculate the partial
cluster centers

Data split – 2D data points

User program - Computes the error and
decide whether to continue iteration

Reduce() - Compute the
new cluster centers from
the partial cluster centers

 reduce()

 User program

 map() map()

