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1. Research Problem 
Computation and data intensive scientific data 

analyses are increasingly prevalent. In the near future, 

it is expected that the data volumes processed by 

applications will cross the peta-scale threshold, which 

would in turn increase the computational requirements. 

Two exemplars in the data-intensive domains include 

High Energy Physics (HEP) and Astronomy. HEP 

experiments such as CMS and Atlas aim to process 

data produced by the Large Hadron Collider (LHC). 

The LHC is expected to produce tens of Petabytes of 

data annually even after trimming the datasets via 

multiple layers of filtrations. In astronomy, the Large 

Synoptic Survey Telescope produces data at a nightly 

rate of about 20 Terabytes. 

Data volume is not the only source of compute 

intensive operations.  Clustering algorithms used for 

DNA sequencing are especially compute intensive 

even though the datasets are comparably smaller than 

the physics and astronomy domains.  

Efficient parallel/concurrent algorithms and 

implementation techniques are the key to meeting the 

scalability and performance requirements entailed in 

such scientific data analysis. Most of these analyses 

can be thought of as a Single Program Multiple Data 

(SPMD) algorithm or a collection thereof. These 

SPMDs can be implemented using different techniques 

such as threads, message passing, and map-reduce[1]. 

Additionally, these SPMDs can also be deployed in 

various hardware configurations such as compute 

clusters, computational grids, and compute clouds. 

There are several considerations in selecting an 

appropriate implementation strategy for a given data 

analysis. These include data volumes, computational 

requirements, algorithmic synchronization constraints, 

quality of services, easy of programming and the 

underlying hardware profile. 

The goal of this research is to study the various 

parallelization techniques which can be applied to the 

SPMD algorithms. It is also important to understand 

how these different techniques can be used to improve 

the scalability and the performance of the scientific 

data analyses. Finally, this research will also make 

recommendations about possible improvements to 

these parallelization techniques. 

 

2. Current Research 
Current research focuses on designing an efficient 

map-reduce implementation and using it for scientific 

data analyses in different hardware configurations. Our 

research prototype –CGL-MapReduce – utilizes 

NaradaBrokering [2], a streaming-based content 

dissemination network developed by us, for all the 

underlying communications. The use of streaming 

provides performance improvements over the file-

based communications adopted by the typical map-

reduce implementations such as Hadoop [3]. 

Additionally, CGL-MapReduce (depicted in figure 1) 

supports iterative map-reduce computations while 

adding acceptable overheads to the computation task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Components of the CGL-MapReduce 

 

We have successfully tested CGL-MapReduce with 

two scientific data analyses; (i) High Energy Physics 

data analysis involving large volumes of data 

representing a single phase map-reduce computation 

and (ii) Kmeans clustering [4] representing an iterative 

map-reduce computation.  

 

3. Results 
Here we present the results of benchmarking CGL-

MapReduce with scientific applications. We compare 

the performance of CGL-MapReduce with Hadoop for 

both HEP and Kmeans. For Kmeans clustering, we 

also compare the results with an MPI version of the 

same algorithm to show how these techniques 
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converge in performance for large data sets. Our results 

are depicted in figures 2 through 5. 

Figure 2 describes the HEP data analysis task and 

how it is implemented as a map-reduce computation 

while Figure 3 compares the performance of CGL-

MapReduce and Hadoop for this computational task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Map-reduce implementation of the HEP 

data analysis 

 
Figure 3. Hadoop vs. CGL-MapReduce for HEP 

Data Analysis.  

 
Figure 4 describes the map-reduce version of the 

Kmeans clustering algorithm, which we use to cluster a 

large number of 2D data points. In figure 5 we 

compare the performance of Hadoop, CGL-

MapReduce, and MPI versions of Kmeans. 

Results in Figure 3 indicates that the overhead 

associated with Hadoop’s robustness diminishes for 

large data sets while the results in Figure 5 shows how 

this overhead effect iterative map-reduce 

computations. Figure 5 also highlights that the 

performance of our stream based map-reduce 

implementation is comparable to MPI for large enough 

data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Map-reduce implementation of the 

Kmeans clustering algorithm 

 
Figure 5. Kmeans clustering using Hadoop, CGL-

MapReduce, and MPI (Both axes are in log scale)  

 

4. Future Research 
 

Future research involves analyzing the different 

parallelization techniques under cloud computing 

environments and understanding how these (and other 

similar) applications can be efficiently implemented 

for cloud computing environments.  
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