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Abstract 
We describe Peer-to-Peer Grids built around Integration of 
technologies from the peer-to-peer and Grid fields. We 
focus on the role of a powerful event services using uniform 
XML interfaces and application level routing. We describe a 
research system Narada and compare with JXTA (Peer-to-
Peer) and JMS (Java Message Service) giving some initial 
performance results. 

1 e-Science 
Over the last decade or so, there has been dramatic progress 
in the application of computing to scientific and engineering 
research. There were several major initiatives such as the 
HPCC (High Performance Computing and 
Communications) program and the set of NSF Grand 
Challenge projects, which largely focused on this. The 
parallel computing emphasis of the early nineties has shifted 
with newer programs such as ITR (Information Technology 
Research) from NSF. The new centerpiece is research in 

areas like grids [1,2] and distributed computing, which 
overshadows that on classic computational science. Now 
NSF has a new cyberinfrastructure report [3] continuing the 
same emphasis on distributed systems and their broad 
impact on scientific research. Already the United Kingdom 
has a major effort [4] in this area for which the term e-
Science has been coined. 
 How can modern computing (information 
technology) change and support Science.  As one example, 
take the National Virtual Observatory [5], which eloquently 
illustrates the new approach in a way that can be generalized 
from astronomy to other fields. Just a few years ago, 
astronomy largely involved individual groups designing 
new instruments, developing particular observing strategies 
and managing the data taking on some instrument either in 
the space or on the ground – this data was lovingly analyzed 
to discover and publish new scientific insights. This “stove-
pipe” approach to observational (experimental) science is 
typical in many fields. It makes certain that those who build 
the equipment can ensure their data is properly interpreted 
with the usually difficult instrumental corrections properly 
applied. Note that it is usual to compare “reasonably 
corrected experimental data” with hypotheses (models) to 
which other instrumental effects are applied. Often it is not 
possible to remove all instrumental effects from a dataset so 
that it can be compared with a pristine theory. Nevertheless 
we imagine a new astronomy where our investigator has the 
best analysis and visualization capabilities connected to the 
global internet. This analysis will integrate the data from 
multiple instruments spanning multiple wavelengths and 
multiple regions of the sky. This vision stresses the high 
performance networks, data access, management and 
processing enabled by “information technology”. A similar 
story can be told in other fields. Bio-informatics involves 
the integration of gene data banks scattered around the 
Internet; visionaries imagine this extended to include 
massive data associated with individuals and enabling a new 
personalized medicine. High energy and nuclear physics 
experiments will involve thousands of physicists analyzing 
petabytes of data each year coming from a new generation 
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of detectors at high intensity accelerators such as the LHC at 
CERN. Fields such as climate, environment, earthquake and 
weather will also benefit from what has been termed the 
data deluge. Note the gathering of data and its computer-
based analysis is not new – in fact the World Wide Web 
originated in CERN from a tool to support transcontinental 
high energy physics collaborations. Rather the scale 
(amount of data) and breadth (integration of datasets) has 
changed dramatically. 

We can simplistically summarize the situation this 
way. Computational Science was built on the vision that 
computers would represent a virtual laboratory where one 
could explore new concepts from simulations and 
comparison of these with experimental data. The very 
successful agency supercomputers (NSF, DoD, DoE, 
NASA, NIH and others) have supported a growing interest 
in this mode of computational science. We understood that 
Moore’s law would inevitably drive this field with steadily 
increasing simulation, storage and networking performance. 
Now we see that advances in device physics are driving 
both computer and instrument performance. Thus the data 
deluge is re-invigorating and re-shaping observational 
fields. In fact as shown in fig. 1 one can and should 
integrate these themes. Sensors will produce a lot of 
information but so also will simulations. Various 
techniques: visualization, statistical analyses, “datamining” 
will extract knowledge from the information gleaned from 
simulations and raw data sources These will be fed back 
into theoretical science and so the classic collaboration 
between the twin pillars – theory and experiment – will 
advance our scientific fields. 
 Consider the next step from information to 
knowledge. Here one approach is typified by the Semantic 
Web [6] stressing the use of XML based meta-data to 
express a large number of linked “information nuggets” 
from which knowledge comes as an emergent phenomenon. 
Another vision comes from DoE’s ASCI (Accelerated 
Strategic Computing Initiative) program, which asserts that 
high fidelity simulations can produce knowledge with 
modest observational support. More generally we suggest a 
hallmark of the next decade will be the integration of such 
simulations with the data deluge. Here data assimilation 
(common already in weather and other fields) closely 
integrating time dependent simulation and observation can 
be expected to increase in importance.  
 
2 Key Technology Concepts for e-Science 
 We can view the structure of our e-Science 
environment as shown in figs. 2 and 3 [7]. There are some 
“real things” (users, computers, instruments), which we 
term external resources – these are the outer band around 
the “middleware egg”. As shown in fig. 3, these are linked 
by a collection of “Web Services”[8]. All entities (external 
resources) are linked by messages whose communication 
forms a distributed system integrating the component parts. 
This architectural vision is not new but features of its 
implementation and its breadth are. This architecture is 

similar to that designed commercially for applications like 
e-commerce and online gaming but is enhanced with many 
capabilities developed by the High Performance Computing 
and Communication community. The architecture at the 
high level of figures 1 2 and 3 is rather trivial but there are 
some new key and profound ideas.  

Peer to Peer Grid

Distributed Object technology is implemented with 
objects defined in a XML-based IDL (Interface Definition 
Language) called WSDL (Web Services Definition 
Language). This allows “traditional approaches” like 
CORBA or Java to be used “under-the-hood” with an XML 
wrapper providing a uniform interface. All major companies 
have endorsed this approach with Microsoft developing 
.NET and IBM, Oracle, Sun and others preferring a Java 
oriented approach. 
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Another key concept – that of the resource – comes 
from the web consortium W3C. Everything – whether an 
external or internal entity – is a resource labeled by a URI 
(Universal Resource Identifier); a typical form being 
escience://myplace/mything/mypropertygroup/leaf. This 
includes not only macroscopic constructs like computer 
programs or sensors but also their detailed properties. One 
can consider the URI as the barcode of the Internet – it 
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labels everything. There are also of course URL’s 
(Universal Resource Locations) which tell you where things 
are. One can equate these concepts (URI and URL) but this 
is in principle inadvisable.  

Finally our e-science environment is built in a 
service model. A service is an entity that accepts one or 
more inputs and gives one or more results. These inputs and 
results are the messages that characterize the system. In 
WSDL, the inputs and outputs are termed ports and WSDL 
defines an overall structure for the messages. The e-Science 
environment is built in terms of the composition of services. 

In summary everything is a resource. The basic 
macroscopic entities exposed directly to users and to other 
services are built as distributed objects that are constructed 
as services so that capabilities and properties are accessed 
by a message-based protocol. Services contain multiple 
properties, which are themselves individual resources. 

The above is a natural generalization of 
conventional approaches. A service corresponds roughly to 
a computer program or process; the ports (interface of a 
communication channel with a Web Service) to subroutine 
calls with input parameters and returned data. The critical 
difference from the past is that one assumes that each 
service runs on a different computer scattered around the 
globe. Typically services can be dynamically migrated 
between computers. Distributed object technology allows us 
to properly encapsulate the services and provide a 
management structure. The use of XML and standard 
interfaces like WSDL give a critical universality that allows 
the interoperability of services from different sources. 

There are several important technology research 
and development areas on which the e-Science 
infrastructure builds 
1) Basic system capabilities packaged as Web Services. 

These include security, access to computers (job 
submittal, status etc.) and access to various forms of 
databases (information services) including relational 
systems, LDAP, and XML databases/files. Network 
wide search techniques about web services or the 
content of web services could be included here. 

2) The messaging sub-system between Web Services and 
external resources addressing functionality, 
performance and fault-tolerance. 

3) Tool-kits to enable applications to be packaged as Web 
Services and construction of “libraries’ or more 
precisely components. Near-term targets include areas 
like image processing used in virtual observatory 
projects or gene searching used in bio-informatics.  

4) Application meta-data needed to describe all stages of 
the scientific endeavor. 

5) Higher-level and value-added system services such as 
network monitoring, collaboration and visualization. 

6) What has been called the Semantic grid or approaches 
to the representation of and discovery of knowledge 
from Grid resources. This was briefly discussed at the 
end of section 1. 

7) Portal technology defining user facing ports on web 
services which accept user control and deliver user 
interfaces. 

Fig. 3 is drawn as a classic 3-tier architecture: 
client (at the bottom), back-end resource (at the top) and 
multiple layers of middleware (constructed as web services). 
This is the natural virtual machine seen by a given user 
accessing a resource. However the implementation could be 
very different. Access to services can be mediated by 
“servers in the core” or alternatively by direct peer-to-peer 
(P2P) interactions between machines “on the edge”. The 
distributed object abstractions with separate service and 
message layers allow either P2P or server-based 
implementations. The relative performance of each 
approach (which could reflect computer/network 
horsepower as well as existence of firewalls) would be used 
in deciding on the implementation to use. P2P approaches 
best support local dynamic interactions; the server approach 
scales best globally but cannot easily manage the rich 
structure of transient services, which would characterize 
complex tasks. We refer to our architecture as a peer-to-peer 
grid with peer groups managed locally arranged into a 
global system supported by core servers. 

 
3 Characteristics of e-Science Infrastructure 

We can ask if this new approach to the science 
infrastructure affects key hardware, software infrastructure 
and their performance requirements. First we present some 
general remarks. Servers tend to be highly reliable these 
days. Typically they run in controlled environments but also 
their software can be proactively configured to ensure 
reliable operation. One can expect servers to run for months 
on end and often one can ensure that they are modern 
hardware configured for the job at hand. Clients on the other 
hand can be quite erratic with unexpected crashes and 
network disconnections as well as sporadic connection 
typical of portable devices. Transient material can be stored 
on clients but permanent information repositories must be 
on servers – here we talk about “logical” servers as we may 
implement a session entirely within a local peer group of 
“clients”. Robustness of servers needs to be addressed in a 
dynamic fashion and on a scale greater than in previous 
systems. However traditional techniques – replication and 
careful transaction processing – probably can be extended to 
handle servers and the web services that they host. Clients 
realistically must be assumed to be both unreliable and sort 
of outside our control. Some clients will be “antiques” and 
underpowered and are likely to have many software 
hardware and network instabilities. In the simplest model 
clients “just” act as a vehicle to render information for the 
user with all the action on “reliable” servers. Here 
applications like Microsoft Word “should be” packaged as 
Web services with message based input and output. Of 
course if you have a wonderful robust PC you can run both 
server(s) and thin client on this system. 

Finally we turn to the communication subsystem, 
which has very interesting characteristics of a Jekyll and 



Hyde nature. Examining the growing power of optical 
networks we see the increasing universal bandwidth that in 
fact motivates the thin client and server based application 
model. However the real world also shows slow networks 
(such as dial-ups), links leading to a high fraction of 
dropped packets and firewalls stopping our elegant 
application channels dead in their tracks. We also see some 
chaos today in the telecom industry which is stunting 
somewhat the rapid deployment of modern “wired’ (optical) 
and wireless networks. We suggest that key to future e-
Science infrastructure will be messaging subsystems that 
manage the communication between external resources, web 
services and clients to achieve the highest possible system 
performance and reliability. We suggest this problem is 
sufficiently hard that we only need solve this problem 
“once” i.e. that all communication – whether TCP/IP, UDP, 
RTP, RMI, XML or you-name-it be handled by a single 
messaging or event subsystem. Note this implies we would 
tend to separate control and high volume data transfer 
reserving specialized protocols for the latter and more 
flexible robust approaches for setting up the control 
channels. In the next section we discuss the architecture of 
an e-Science message service and in the final section 5, 
discuss the performance of a particular system Narada that 
we built. 
 
4 Architecture of an Event Service  

Now we examine a possible approach to handling 
the communication infrastructure discussed at the end of the 

last section. As shown in fig. 4, we see the event service as 
linking all parts of the system together and this can be 
simplified further as in fig. 5 – the event service is to 
provide the communication infrastructure needed to link 
resources together. We show this less abstractly in fig. 
6.There are routers or brokers whose function is to distribute 
messages between the raw resources, clients and servers of 
the system. We consider that the servers provide services 
(perhaps defined in the WSDL [8] and related XML 
standards [9]) and do NOT distinguish at this level between 
what is provided (a service) and what is providing it (a 
server). Note that we do not distinguish between events and 
messages; an event is defined by some XML Schema 
including a time-stamp but the latter can of course be absent 
to allow a simple message to be thought of as an event. Note 
an event is itself a resource and might be archived in a 
database raw resource. Routers and brokers actually provide 
a service – the management of (queued events) and so these 
can themselves be considered as the servers corresponding 
to the event or message service. This will be discussed a 
little later as shown in fig. 7. Here we note that we design 
our event systems to support some variant of the publish-
subscribe mechanism. Messages are queued from 
“publishers” and then clients subscribe to them. XML tag 
values are used to define the “topics” or “properties” that 
label the queues.  

Fig. 5: Simplest View of System Components showing 
routers/brokers of event service supporting queues 

Note that in fig. 3, we call the XML Interfaces 
“virtual”. This signifies that the interface is logically defined 
by an XML Schema but could in fact be implemented 
differently. As a trivial example, one might use a different 
syntax with say <sender>meoryou</sender> replaced by 
sender:meoryou which is an easier to parse but less 
powerful notation. Such simpler syntax seems a good idea 
for “flat” Schemas that can be mapped into it. Less trivially, 
we could define a linear algebra web service in WSDL but 
compile it into method calls to a Scalapack routine for high 
performance implementation. This compilation step would 
replace the XML SOAP based messaging [9] with serialized 
method arguments of the default remote invocation of this 
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service by the natural in memory stack based use of pointers 
to binary representations of the arguments. 

We build on several interesting recent 
developments in the messaging area and we quote three 
examples: there is SOAP messaging [9]; the JXTA peer-to-
peer protocols [10]; the commercial JMS message service 
[11]. All these approaches define messaging principles but 
not always at the same level of the OSI stack; further they 
have features that sometimes can be compared but often 
they make implicit architecture and implementation 
assumptions that hamper interoperability and functionality. 
We suggest breaking such frameworks into subsystem 
capabilities describing common core primitives. This will 
allow us to compose them into flexible systems, which 
support a range of functionality without major change in 
application interfaces. Here SOAP defines a message 
structure and is already a “core primitive” as described 
above; it is “only” XML but as discussed above, a message 
specified in XML could be “compiled to other forms such as 
RMI either for higher performance or “just” because the 
message was linking two Java programs. Note that we like 
publish-subscribe messaging mechanisms but this is 
sometimes unnecessary and indeed occurs unacceptable 
overhead. We term the message queues in figs. 5 and 7 
virtual to indicate that the implicit publish-subscribe 
mechanism can be bypassed if this agreed in initial 
negotiation of communication channel. 

However it does appears useful to define an event 
architecture such as that of fig. 7, allowing communication 
channels between Web services which can either be direct 
or pass through some mechanism allowing various services 
on the events. These could be low-level such as routing 
between known source and destination or the higher-level 
publish-subscribe mechanism that identifies the destinations 
for a given published event. Some routing mechanisms in 
peer-to-peer systems in fact use dynamic strategies that 
merge these high and low level approaches to 
communication. Note that the messages must support 
multiple interfaces: as a “physical” message it should 
support SOAP; above this it support added services such as 
filtering, publish-subscribe, collaboration, workflow which 
correspond to changing message content or delivery. Above 
this there are application and service standards. All of these 

are defined in XML, which can be virtualized. As an 
example, consider an audio-video conferencing web service 
[13]. It could use a simple publish/subscribe mechanism to 
advertise the availability of some video feed. A client 
interested in receiving the video would negotiate (using the 
SIP protocol perhaps) the transmission details. The video 
could either be sent directly from publisher to subscriber; 
alternatively from publisher to web service and then from 
web service to subscriber; as a third option, we could send 
from the web service to the client but passing through a 
filter that converted one codec into another if required. In 
the last case, the location of the filter would be negotiated 
based on computer/network performance issues – it might 
also involve proprietary software only available at special 
locations. The choice and details of these three different 
video transport and filtering strategies would be chosen at 
the initial negotiation and one would at this stage “compile” 
a generic interface to its chosen form. One could of course 
allow dynamic “run-time compilation” when the event 
processing strategy needs to change during a particular 
stream. This scenario is not meant to be innovative but 
rather to illustrate the purpose of our architecture building 
blocks in a homely example. Web services are particularly 
attractive due to their support of interoperability, which 
allows the choices described.  

We have designed and implemented a system 
Narada supporting the described here with a dynamic 
collection of brokers supporting a generalized publish-
subscribe mechanism. As described elsewhere [14-16] this 
can operate either in a client-server mode like JMS or in a 
completely distributed JXTA-like peer-to-peer mode. By 
combining these two disparate models, Narada can allow 
optimized performance-functionality trade-offs for different 
scenarios. Note that typical overheads for broker processing 
are around a millisecond. This is unacceptable for 
applications like MPI for parallel processing, which needs 
microsecond latency but acceptable for real-time 
collaboration [7,17] and even audio-video conferencing 
where each frame takes around 30 milliseconds. In the 
following section, we discuss our initial performance results 
with Narada, 
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5 Performance of the Narada System 
5.1 Comparison of Narada and SonicMQ: 
To gather performance data, we run an instance of the 
SonicMQ [18] (version 3.0) JMS broker and Narada broker 
on the same dual CPU (Pentium-3, 1 GHz, 256MB) 
machine. We then setup 100 subscribers over 10 different 
JMS Topic Connections on another dual CPU (Pentium-3, 
866MHz, 256MB) machine. In addition there is a measuring 
subscriber and a publisher that are set up on a third dual 
CPU (Pentium 3, 866MHz, 256MB RAM) machine. Since 
we will be computing communication delays setting up the 
measuring subscriber and publisher on the same machine 
enables us to obviate the need for clock synchronizations 
and differing clock drifts. The three machines involved in 
the benchmarking process have Linux (version 2.2.16) as 



their operating system. The runtime environment for the 
broker, publisher and subscriber processes is Java 2 JRE 
(Java-1.3.1, Blackdown-FCS, mixed mode). 
Subscribers subscribe to a certain topic and the publisher 
publishes to the same topic. Once the publisher starts 
issuing messages the factor that we are most interested in is 
the transit delay in the receipt of these messages at the 
subscribers. This delay corresponds to the response times 
experienced at each of the subscribers. We measure this 
delay at the measuring subscriber while varying the publish 
rates and message sizes of the messages being published. 
We control the publish rates by varying the time interval 
between the publishing of two consecutive messages. We 
vary the message size by changing the payload contained in 

the message. For a sample of messages received at the 
measuring subscriber we calculate the mean transit delay. 

Figures 8-10 depict the transit delays for JMS 
clients under Narada and SonicMQ for varying publish rates 
and payload sizes. As can be seen from the results Narada 
compares very well with SonicMQ while also 
outperforming SonicMQ in several cases. Furthermore, the 
standard deviation associated with the message samples (for 
individual test cases) received at clients in Narada were, for 
the most part, lower than those at clients in SonicMQ for the 
cases that were benchmarked.  

For comparing JXTA performance in Narada we have the 
setup depicted in fig. 11. We compare the performance of a 
pure JXTA environment with the integrated Narada-JXTA 
system. To compute delays while obviating need for clock 
synchronizations and the need to account for clock drifts, 
the two peers were setup on the same machine. The 
benchmark environment for the pure JXTA case in depicted 
in fig. 11(a), the two rendezvous peers are connected to each 
other. The environment for the Narada-JXTA system, fig. 
11(b), includes a Narada broker hosted on another machine, 
the proxies are not connected to each other and are instead 
connected to the Narada broker.  There is another case that 
we measure and that is the JXTA Direct-P2P case where 
two peers communicate directly with each other. In all three 
cases messages published by one of the peers are received at 
the second peer and the delay is computed. For a given 
message payload this is done for a sample of messages and 
we compute the mean delay and the standard deviation 
associated with the sample. This repeated for different 
payload sizes.   

Fig. 8: Transit Delays - Lower publish rates and 
smaller payloads 
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5.2 Comparison of Narada-JXTA and Pure JXTA: 
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Figures 12 and 13 depict the results of our 
measurements. As can been seen the integrated Narada-
JXTA system compares very well with the JXTA system 
despite the additional hop that is required in the Narada-
JXTA case. The Narada-JXTA system also compares quite 
well with the Direct-P2P case, which involves direct 
communications between the two peers. Peers however have 
a restricted set of active connections that they can initiate 
after which communication delays can add up significantly. 
Our tests are in our local laboratory environment and do not 
exploit the advantage of Narada of supporting long distance 
hops. It is our conjecture that the integrated Narada system 
will systematically outperform JMS, the Direct-P2P and 
Pure–JXTA in the cases that mix local and long distance 
communication. We are currently setting up these 
performance measurements. 

Finally we illustrate role of filtering service of our 
event system. This is used to customize output produced in 
a collaborative environment involving both conventional 
desktop clients and PDA’s (personal digital assistants) 
which have limited display characteristics [19], We have 

developed an optimized message passing service GMSME 
(Grid Message Service Micro Edition using our HHMP – 
the hand-held message protocol) for PDA’s shown in fig. 
14. Our initial comparison with the SonicMQ (termed GMS 
in figs 14 and 15) implementation of our collaborative 
environment is shown in fig. 15. The PDA is a Compaq 
iPAQ using 802.11 wireless connection but our results will 
be extended to other systems. Figure 15 shows the average 
message throughput per second for different message sizes. 
It is clear that GMSME is significantly slower than GMS 

messages. This is due to low bandwidth of wireless 
network, synchronization overhead and the slower 
processing of PDA. In our benchmark, GMSME reaches 
maximum throughput when message size is 4K and we 
discuss the implications of this in [19]. 
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