
An Architecture for e-Science and its Implications

Geoffrey Fox1,2,4, Hasan Bulut1,2, Kangseok Kim1,2, Sung-Hoon Ko1, Sangmi Lee5, Sangyoon Oh1,2, Xi Rao1,2, Shrideep
Pallickara1, Quinlin Pei1,2, Marlon Pierce1, Ahmet Uyar1,4, Wenjun Wu1, Choonhan Youn1,3

Dennis Gannon2, and Aleksander Slominski2

1Community Grid Computing Laboratory, Indiana University
501 N Morton Suite 224, Bloomington IN 47404

gcf@indiana.edu, hbulut@indiana.edu, kakim@cs.indiana.edu, shko@grids.ucs.indiana.edu,
ohsangy@cs.indiana.edu, xirao@indiana.edu, spallick@indiana.edu, qpei@indiana.edu,

marpierc@indiana.edu, wewu@indiana.edu,
2Computer Science Department, Indiana University

gannon@cs.indiana.edu, aslom@cs.indiana.edu
3EECS Department, Syracuse University

auyar@syr.edu, cyoun@indiana.edu
4School of Informatics and Physics Department, Indiana University

5Computer Science Department Florida State University
slee@grids.ucs.indiana.edu

Keywords: Web Service, Computational Science, e-
Science, Event Service, JXTA, JMS, Java Message Service,
Peer-to-Peer

Abstract
We describe Peer-to-Peer Grids built around Integration of
technologies from the peer-to-peer and Grid fields. We
focus on the role of a powerful event services using uniform
XML interfaces and application level routing. We describe a
research system Narada and compare with JXTA (Peer-to-
Peer) and JMS (Java Message Service) giving some initial
performance results.

1 e-Science
Over the last decade or so, there has been dramatic progress
in the application of computing to scientific and engineering
research. There were several major initiatives such as the
HPCC (High Performance Computing and
Communications) program and the set of NSF Grand
Challenge projects, which largely focused on this. The
parallel computing emphasis of the early nineties has shifted
with newer programs such as ITR (Information Technology
Research) from NSF. The new centerpiece is research in

areas like grids [1,2] and distributed computing, which
overshadows that on classic computational science. Now
NSF has a new cyberinfrastructure report [3] continuing the
same emphasis on distributed systems and their broad
impact on scientific research. Already the United Kingdom
has a major effort [4] in this area for which the term e-
Science has been coined.
 How can modern computing (information
technology) change and support Science. As one example,
take the National Virtual Observatory [5], which eloquently
illustrates the new approach in a way that can be generalized
from astronomy to other fields. Just a few years ago,
astronomy largely involved individual groups designing
new instruments, developing particular observing strategies
and managing the data taking on some instrument either in
the space or on the ground – this data was lovingly analyzed
to discover and publish new scientific insights. This “stove-
pipe” approach to observational (experimental) science is
typical in many fields. It makes certain that those who build
the equipment can ensure their data is properly interpreted
with the usually difficult instrumental corrections properly
applied. Note that it is usual to compare “reasonably
corrected experimental data” with hypotheses (models) to
which other instrumental effects are applied. Often it is not
possible to remove all instrumental effects from a dataset so
that it can be compared with a pristine theory. Nevertheless
we imagine a new astronomy where our investigator has the
best analysis and visualization capabilities connected to the
global internet. This analysis will integrate the data from
multiple instruments spanning multiple wavelengths and
multiple regions of the sky. This vision stresses the high
performance networks, data access, management and
processing enabled by “information technology”. A similar
story can be told in other fields. Bio-informatics involves
the integration of gene data banks scattered around the
Internet; visionaries imagine this extended to include
massive data associated with individuals and enabling a new
personalized medicine. High energy and nuclear physics
experiments will involve thousands of physicists analyzing
petabytes of data each year coming from a new generation

Data

Information

Ideas

Simulation

Model

Assimilation

Reasoning

Datamining

Computational
Science

Information
Technology

Fig. 1: A Paradigm for Computational Science and
Information Technology

mailto:gcf@indiana.edu
mailto:hbulut@indiana.edu
mailto:kakim@cs.indiana.edu
mailto:shko@grids.ucs.indiana.edu
mailto:ohsangy@cs.indiana.edu
mailto:xirao@indiana.edu
mailto:spallick@indiana.edu
mailto:qpei@indiana.edu
mailto:marpierc@indiana.edu
mailto:wewu@indiana.edu
mailto:gannon@cs.indiana.edu
mailto:aslom@cs.indiana.edu
mailto:auyar@syr.edu
mailto:cyoun@indiana.edu
mailto:slee@grids.ucs.indiana.edu

of detectors at high intensity accelerators such as the LHC at
CERN. Fields such as climate, environment, earthquake and
weather will also benefit from what has been termed the
data deluge. Note the gathering of data and its computer-
based analysis is not new – in fact the World Wide Web
originated in CERN from a tool to support transcontinental
high energy physics collaborations. Rather the scale
(amount of data) and breadth (integration of datasets) has
changed dramatically.

We can simplistically summarize the situation this
way. Computational Science was built on the vision that
computers would represent a virtual laboratory where one
could explore new concepts from simulations and
comparison of these with experimental data. The very
successful agency supercomputers (NSF, DoD, DoE,
NASA, NIH and others) have supported a growing interest
in this mode of computational science. We understood that
Moore’s law would inevitably drive this field with steadily
increasing simulation, storage and networking performance.
Now we see that advances in device physics are driving
both computer and instrument performance. Thus the data
deluge is re-invigorating and re-shaping observational
fields. In fact as shown in fig. 1 one can and should
integrate these themes. Sensors will produce a lot of
information but so also will simulations. Various
techniques: visualization, statistical analyses, “datamining”
will extract knowledge from the information gleaned from
simulations and raw data sources These will be fed back
into theoretical science and so the classic collaboration
between the twin pillars – theory and experiment – will
advance our scientific fields.
 Consider the next step from information to
knowledge. Here one approach is typified by the Semantic
Web [6] stressing the use of XML based meta-data to
express a large number of linked “information nuggets”
from which knowledge comes as an emergent phenomenon.
Another vision comes from DoE’s ASCI (Accelerated
Strategic Computing Initiative) program, which asserts that
high fidelity simulations can produce knowledge with
modest observational support. More generally we suggest a
hallmark of the next decade will be the integration of such
simulations with the data deluge. Here data assimilation
(common already in weather and other fields) closely
integrating time dependent simulation and observation can
be expected to increase in importance.

2 Key Technology Concepts for e-Science
 We can view the structure of our e-Science
environment as shown in figs. 2 and 3 [7]. There are some
“real things” (users, computers, instruments), which we
term external resources – these are the outer band around
the “middleware egg”. As shown in fig. 3, these are linked
by a collection of “Web Services”[8]. All entities (external
resources) are linked by messages whose communication
forms a distributed system integrating the component parts.
This architectural vision is not new but features of its
implementation and its breadth are. This architecture is

similar to that designed commercially for applications like
e-commerce and online gaming but is enhanced with many
capabilities developed by the High Performance Computing
and Communication community. The architecture at the
high level of figures 1 2 and 3 is rather trivial but there are
some new key and profound ideas.

Peer to Peer Grid

Distributed Object technology is implemented with
objects defined in a XML-based IDL (Interface Definition
Language) called WSDL (Web Services Definition
Language). This allows “traditional approaches” like
CORBA or Java to be used “under-the-hood” with an XML
wrapper providing a uniform interface. All major companies
have endorsed this approach with Microsoft developing
.NET and IBM, Oracle, Sun and others preferring a Java
oriented approach.

Database
Database

P2P

P2P

Web Service Interfaces

Web Service Interfaces

Event/
Message
Brokers

Integrate P2P
and Grid/WS

Event/
Message
Brokers

Fig. 2: A Peer-to-Peer Grid

etc.XML WS to WS Interfaces

Another key concept – that of the resource – comes
from the web consortium W3C. Everything – whether an
external or internal entity – is a resource labeled by a URI
(Universal Resource Identifier); a typical form being
escience://myplace/mything/mypropertygroup/leaf. This
includes not only macroscopic constructs like computer
programs or sensors but also their detailed properties. One
can consider the URI as the barcode of the Internet – it

(Virtual) XML Knowledge (User) Interface

Clients

(Virtual) XML Data Interface

Raw DataRaw
Resources

Raw Data

WSWS

Web Service (WS)

WS

WSWS WS WSWS

Render to XML Display Format

(Virtual) XML
Rendering Interface

Fig. 3: Role of Web Services (WS) and XML in linkage
of clients and raw resources

labels everything. There are also of course URL’s
(Universal Resource Locations) which tell you where things
are. One can equate these concepts (URI and URL) but this
is in principle inadvisable.

Finally our e-science environment is built in a
service model. A service is an entity that accepts one or
more inputs and gives one or more results. These inputs and
results are the messages that characterize the system. In
WSDL, the inputs and outputs are termed ports and WSDL
defines an overall structure for the messages. The e-Science
environment is built in terms of the composition of services.

In summary everything is a resource. The basic
macroscopic entities exposed directly to users and to other
services are built as distributed objects that are constructed
as services so that capabilities and properties are accessed
by a message-based protocol. Services contain multiple
properties, which are themselves individual resources.

The above is a natural generalization of
conventional approaches. A service corresponds roughly to
a computer program or process; the ports (interface of a
communication channel with a Web Service) to subroutine
calls with input parameters and returned data. The critical
difference from the past is that one assumes that each
service runs on a different computer scattered around the
globe. Typically services can be dynamically migrated
between computers. Distributed object technology allows us
to properly encapsulate the services and provide a
management structure. The use of XML and standard
interfaces like WSDL give a critical universality that allows
the interoperability of services from different sources.

There are several important technology research
and development areas on which the e-Science
infrastructure builds
1) Basic system capabilities packaged as Web Services.

These include security, access to computers (job
submittal, status etc.) and access to various forms of
databases (information services) including relational
systems, LDAP, and XML databases/files. Network
wide search techniques about web services or the
content of web services could be included here.

2) The messaging sub-system between Web Services and
external resources addressing functionality,
performance and fault-tolerance.

3) Tool-kits to enable applications to be packaged as Web
Services and construction of “libraries’ or more
precisely components. Near-term targets include areas
like image processing used in virtual observatory
projects or gene searching used in bio-informatics.

4) Application meta-data needed to describe all stages of
the scientific endeavor.

5) Higher-level and value-added system services such as
network monitoring, collaboration and visualization.

6) What has been called the Semantic grid or approaches
to the representation of and discovery of knowledge
from Grid resources. This was briefly discussed at the
end of section 1.

7) Portal technology defining user facing ports on web
services which accept user control and deliver user
interfaces.

Fig. 3 is drawn as a classic 3-tier architecture:
client (at the bottom), back-end resource (at the top) and
multiple layers of middleware (constructed as web services).
This is the natural virtual machine seen by a given user
accessing a resource. However the implementation could be
very different. Access to services can be mediated by
“servers in the core” or alternatively by direct peer-to-peer
(P2P) interactions between machines “on the edge”. The
distributed object abstractions with separate service and
message layers allow either P2P or server-based
implementations. The relative performance of each
approach (which could reflect computer/network
horsepower as well as existence of firewalls) would be used
in deciding on the implementation to use. P2P approaches
best support local dynamic interactions; the server approach
scales best globally but cannot easily manage the rich
structure of transient services, which would characterize
complex tasks. We refer to our architecture as a peer-to-peer
grid with peer groups managed locally arranged into a
global system supported by core servers.

3 Characteristics of e-Science Infrastructure

We can ask if this new approach to the science
infrastructure affects key hardware, software infrastructure
and their performance requirements. First we present some
general remarks. Servers tend to be highly reliable these
days. Typically they run in controlled environments but also
their software can be proactively configured to ensure
reliable operation. One can expect servers to run for months
on end and often one can ensure that they are modern
hardware configured for the job at hand. Clients on the other
hand can be quite erratic with unexpected crashes and
network disconnections as well as sporadic connection
typical of portable devices. Transient material can be stored
on clients but permanent information repositories must be
on servers – here we talk about “logical” servers as we may
implement a session entirely within a local peer group of
“clients”. Robustness of servers needs to be addressed in a
dynamic fashion and on a scale greater than in previous
systems. However traditional techniques – replication and
careful transaction processing – probably can be extended to
handle servers and the web services that they host. Clients
realistically must be assumed to be both unreliable and sort
of outside our control. Some clients will be “antiques” and
underpowered and are likely to have many software
hardware and network instabilities. In the simplest model
clients “just” act as a vehicle to render information for the
user with all the action on “reliable” servers. Here
applications like Microsoft Word “should be” packaged as
Web services with message based input and output. Of
course if you have a wonderful robust PC you can run both
server(s) and thin client on this system.

Finally we turn to the communication subsystem,
which has very interesting characteristics of a Jekyll and

Hyde nature. Examining the growing power of optical
networks we see the increasing universal bandwidth that in
fact motivates the thin client and server based application
model. However the real world also shows slow networks
(such as dial-ups), links leading to a high fraction of
dropped packets and firewalls stopping our elegant
application channels dead in their tracks. We also see some
chaos today in the telecom industry which is stunting
somewhat the rapid deployment of modern “wired’ (optical)
and wireless networks. We suggest that key to future e-
Science infrastructure will be messaging subsystems that
manage the communication between external resources, web
services and clients to achieve the highest possible system
performance and reliability. We suggest this problem is
sufficiently hard that we only need solve this problem
“once” i.e. that all communication – whether TCP/IP, UDP,
RTP, RMI, XML or you-name-it be handled by a single
messaging or event subsystem. Note this implies we would
tend to separate control and high volume data transfer
reserving specialized protocols for the latter and more
flexible robust approaches for setting up the control
channels. In the next section we discuss the architecture of
an e-Science message service and in the final section 5,
discuss the performance of a particular system Narada that
we built.

4 Architecture of an Event Service

Now we examine a possible approach to handling
the communication infrastructure discussed at the end of the

last section. As shown in fig. 4, we see the event service as
linking all parts of the system together and this can be
simplified further as in fig. 5 – the event service is to
provide the communication infrastructure needed to link
resources together. We show this less abstractly in fig.
6.There are routers or brokers whose function is to distribute
messages between the raw resources, clients and servers of
the system. We consider that the servers provide services
(perhaps defined in the WSDL [8] and related XML
standards [9]) and do NOT distinguish at this level between
what is provided (a service) and what is providing it (a
server). Note that we do not distinguish between events and
messages; an event is defined by some XML Schema
including a time-stamp but the latter can of course be absent
to allow a simple message to be thought of as an event. Note
an event is itself a resource and might be archived in a
database raw resource. Routers and brokers actually provide
a service – the management of (queued events) and so these
can themselves be considered as the servers corresponding
to the event or message service. This will be discussed a
little later as shown in fig. 7. Here we note that we design
our event systems to support some variant of the publish-
subscribe mechanism. Messages are queued from
“publishers” and then clients subscribe to them. XML tag
values are used to define the “topics” or “properties” that
label the queues.

Fig. 5: Simplest View of System Components showing
routers/brokers of event service supporting queues

Note that in fig. 3, we call the XML Interfaces
“virtual”. This signifies that the interface is logically defined
by an XML Schema but could in fact be implemented
differently. As a trivial example, one might use a different
syntax with say <sender>meoryou</sender> replaced by
sender:meoryou which is an easier to parse but less
powerful notation. Such simpler syntax seems a good idea
for “flat” Schemas that can be mapped into it. Less trivially,
we could define a linear algebra web service in WSDL but
compile it into method calls to a Scalapack routine for high
performance implementation. This compilation step would
replace the XML SOAP based messaging [9] with serialized
method arguments of the default remote invocation of this

Data
base

Resource

Broker

Broker

Broker

Broker

Broker

Broker

Software multicast

(P2P) Community

(P2P) Community

(P2P) Community

(P2P) Community

Fig. 6: Distributed Brokers Implementing Event Service

Fig. 4: One View of System Components with event
service represented by central mesh

service by the natural in memory stack based use of pointers
to binary representations of the arguments.

We build on several interesting recent
developments in the messaging area and we quote three
examples: there is SOAP messaging [9]; the JXTA peer-to-
peer protocols [10]; the commercial JMS message service
[11]. All these approaches define messaging principles but
not always at the same level of the OSI stack; further they
have features that sometimes can be compared but often
they make implicit architecture and implementation
assumptions that hamper interoperability and functionality.
We suggest breaking such frameworks into subsystem
capabilities describing common core primitives. This will
allow us to compose them into flexible systems, which
support a range of functionality without major change in
application interfaces. Here SOAP defines a message
structure and is already a “core primitive” as described
above; it is “only” XML but as discussed above, a message
specified in XML could be “compiled to other forms such as
RMI either for higher performance or “just” because the
message was linking two Java programs. Note that we like
publish-subscribe messaging mechanisms but this is
sometimes unnecessary and indeed occurs unacceptable
overhead. We term the message queues in figs. 5 and 7
virtual to indicate that the implicit publish-subscribe
mechanism can be bypassed if this agreed in initial
negotiation of communication channel.

However it does appears useful to define an event
architecture such as that of fig. 7, allowing communication
channels between Web services which can either be direct
or pass through some mechanism allowing various services
on the events. These could be low-level such as routing
between known source and destination or the higher-level
publish-subscribe mechanism that identifies the destinations
for a given published event. Some routing mechanisms in
peer-to-peer systems in fact use dynamic strategies that
merge these high and low level approaches to
communication. Note that the messages must support
multiple interfaces: as a “physical” message it should
support SOAP; above this it support added services such as
filtering, publish-subscribe, collaboration, workflow which
correspond to changing message content or delivery. Above
this there are application and service standards. All of these

are defined in XML, which can be virtualized. As an
example, consider an audio-video conferencing web service
[13]. It could use a simple publish/subscribe mechanism to
advertise the availability of some video feed. A client
interested in receiving the video would negotiate (using the
SIP protocol perhaps) the transmission details. The video
could either be sent directly from publisher to subscriber;
alternatively from publisher to web service and then from
web service to subscriber; as a third option, we could send
from the web service to the client but passing through a
filter that converted one codec into another if required. In
the last case, the location of the filter would be negotiated
based on computer/network performance issues – it might
also involve proprietary software only available at special
locations. The choice and details of these three different
video transport and filtering strategies would be chosen at
the initial negotiation and one would at this stage “compile”
a generic interface to its chosen form. One could of course
allow dynamic “run-time compilation” when the event
processing strategy needs to change during a particular
stream. This scenario is not meant to be innovative but
rather to illustrate the purpose of our architecture building
blocks in a homely example. Web services are particularly
attractive due to their support of interoperability, which
allows the choices described.

We have designed and implemented a system
Narada supporting the described here with a dynamic
collection of brokers supporting a generalized publish-
subscribe mechanism. As described elsewhere [14-16] this
can operate either in a client-server mode like JMS or in a
completely distributed JXTA-like peer-to-peer mode. By
combining these two disparate models, Narada can allow
optimized performance-functionality trade-offs for different
scenarios. Note that typical overheads for broker processing
are around a millisecond. This is unacceptable for
applications like MPI for parallel processing, which needs
microsecond latency but acceptable for real-time
collaboration [7,17] and even audio-video conferencing
where each frame takes around 30 milliseconds. In the
following section, we discuss our initial performance results
with Narada,

Web
Service 1

(Virtual)
Queue

Web
Service 2

Destination
Source Matching FilterRouting workflow

WSDL
Ports

Abstract
Application

Interface

Message
or Event
Broker

WSDL
Ports
Abstract
Application
Interface

Message
System

Interface

Fig 7: Communication Model showing
Sub-services of Event Service

5 Performance of the Narada System
5.1 Comparison of Narada and SonicMQ:
To gather performance data, we run an instance of the
SonicMQ [18] (version 3.0) JMS broker and Narada broker
on the same dual CPU (Pentium-3, 1 GHz, 256MB)
machine. We then setup 100 subscribers over 10 different
JMS Topic Connections on another dual CPU (Pentium-3,
866MHz, 256MB) machine. In addition there is a measuring
subscriber and a publisher that are set up on a third dual
CPU (Pentium 3, 866MHz, 256MB RAM) machine. Since
we will be computing communication delays setting up the
measuring subscriber and publisher on the same machine
enables us to obviate the need for clock synchronizations
and differing clock drifts. The three machines involved in
the benchmarking process have Linux (version 2.2.16) as

their operating system. The runtime environment for the
broker, publisher and subscriber processes is Java 2 JRE
(Java-1.3.1, Blackdown-FCS, mixed mode).
Subscribers subscribe to a certain topic and the publisher
publishes to the same topic. Once the publisher starts
issuing messages the factor that we are most interested in is
the transit delay in the receipt of these messages at the
subscribers. This delay corresponds to the response times
experienced at each of the subscribers. We measure this
delay at the measuring subscriber while varying the publish
rates and message sizes of the messages being published.
We control the publish rates by varying the time interval
between the publishing of two consecutive messages. We
vary the message size by changing the payload contained in

the message. For a sample of messages received at the
measuring subscriber we calculate the mean transit delay.

Figures 8-10 depict the transit delays for JMS
clients under Narada and SonicMQ for varying publish rates
and payload sizes. As can be seen from the results Narada
compares very well with SonicMQ while also
outperforming SonicMQ in several cases. Furthermore, the
standard deviation associated with the message samples (for
individual test cases) received at clients in Narada were, for
the most part, lower than those at clients in SonicMQ for the
cases that were benchmarked.

For comparing JXTA performance in Narada we have the
setup depicted in fig. 11. We compare the performance of a
pure JXTA environment with the integrated Narada-JXTA
system. To compute delays while obviating need for clock
synchronizations and the need to account for clock drifts,
the two peers were setup on the same machine. The
benchmark environment for the pure JXTA case in depicted
in fig. 11(a), the two rendezvous peers are connected to each
other. The environment for the Narada-JXTA system, fig.
11(b), includes a Narada broker hosted on another machine,
the proxies are not connected to each other and are instead
connected to the Narada broker. There is another case that
we measure and that is the JXTA Direct-P2P case where
two peers communicate directly with each other. In all three
cases messages published by one of the peers are received at
the second peer and the delay is computed. For a given
message payload this is done for a sample of messages and
we compute the mean delay and the standard deviation
associated with the sample. This repeated for different
payload sizes.

Fig. 8: Transit Delays - Lower publish rates and
smaller payloads

Transit Delays for Message Samples in Narada and SonicMQ

Narada

SonicMQ

0
5

10
15

20
25 Publish Rate

 (Messages/sec) 100 150 200 250 300 350 400450500550

Payload Size
 (Bytes)

0 2 4 6 8 10 12 14

Mean
 Transit Delay
 (MilliSeconds)

Transit Delays for Message Samples in Narada and SonicMQ

SonicMQ

5
10
15
20
25
30

Mean
 Transit Delay
 (MilliSeconds)

Transit Delays for Message Samples in Narada and SonicMQ

SonicMQ

5
10
15
20
25
30

Mean
 Transit Delay
 (MilliSeconds)

Narada 0
5

10
15

20
25

Publish Rate
 (Messages/sec) 1000 2000 3000

4000
5000

6000

Payload Size
 (Bytes)

0

Fig. 9: Transit Delays - Lower publish rates
and bigger payloads

Narada
0 50100150200250300350400

Publish Rate
 (Messages/sec) 100 150 200 250 300350400450500550

Payload Size
 (Bytes)

0

Figure 10: Transit Delays - Higher publish
rates and smaller payloads

5.2 Comparison of Narada-JXTA and Pure JXTA:

Rendezvous peer

Peer

Narada-JXTA
Proxy

(a) (b)

Fig 11: JXTA Narada Benchmark Set-up

JXTA
Narada
Broker

Figures 12 and 13 depict the results of our
measurements. As can been seen the integrated Narada-
JXTA system compares very well with the JXTA system
despite the additional hop that is required in the Narada-
JXTA case. The Narada-JXTA system also compares quite
well with the Direct-P2P case, which involves direct
communications between the two peers. Peers however have
a restricted set of active connections that they can initiate
after which communication delays can add up significantly.
Our tests are in our local laboratory environment and do not
exploit the advantage of Narada of supporting long distance
hops. It is our conjecture that the integrated Narada system
will systematically outperform JMS, the Direct-P2P and
Pure–JXTA in the cases that mix local and long distance
communication. We are currently setting up these
performance measurements.

Finally we illustrate role of filtering service of our
event system. This is used to customize output produced in
a collaborative environment involving both conventional
desktop clients and PDA’s (personal digital assistants)
which have limited display characteristics [19], We have

developed an optimized message passing service GMSME
(Grid Message Service Micro Edition using our HHMP –
the hand-held message protocol) for PDA’s shown in fig.
14. Our initial comparison with the SonicMQ (termed GMS
in figs 14 and 15) implementation of our collaborative
environment is shown in fig. 15. The PDA is a Compaq
iPAQ using 802.11 wireless connection but our results will
be extended to other systems. Figure 15 shows the average
message throughput per second for different message sizes.
It is clear that GMSME is significantly slower than GMS

messages. This is due to low bandwidth of wireless
network, synchronization overhead and the slower
processing of PDA. In our benchmark, GMSME reaches
maximum throughput when message size is 4K and we
discuss the implications of this in [19].

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

50 100 150 200 250 300 350 400 450 500

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size (Bytes)

Pure JXTA
Narada-JXTA

JXTA Direct P2P

Fig. 12: Comparing Pure JXTA, Narada-JXTA and
Direct P2P for lower payload sizes

Fig. 14 Event service (GMS) supporting collaboration
between PDA’s and desktops

0.1

1

10

100

1000

10000

1 4 16 64 25
6 1K 4K

16

K
64

K
25

6K 1M

Message Size (bytes)

M
es

sa
ge

/S
ec

on
d

GMS(Subscriber) GMSME

Fig. 15 Comparison of GMSME and GMS for real-time
collaboration for events defining collaboration

synchronization

9

9.5
10

nd
s)

Pure JXTA
Narada-JXTA
JXTA Direct P2P

5
5.5

6
6.5

7
7.5

8
8.5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Tr
an

si
t D

el
ay

 (
M

ill
is

ec
o

Message Payload Size (Bytes)

Fig. 13: Comparing Pure JXTA, Narada-JXTA and
Direct P2P for higher payload sizes

References
[1] The Grid Forum http://www.gridforum.org
[2] Globus Grid Project http://www.globus.org
[3] NSF Advisory Committee for Cyberinfrastructure

http://www.cise.nsf.gov/b_ribbon/
[4] United Kingdom e-Science Activity

http://www.escience-grid.org.uk/
[5] National Virtual Observatory http://www.us-vo.org/
[6] W3C Semantic Web http://www.w3.org/2001/sw/
[7] Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara,

Ahmet Uyar, Dennis Gannon, and Aleksander
Slominski, "Community Grids" invited talk at The 2002
International Conference on Computational Science,
April 21 -- 24, 2002 Amsterdam, The Netherlands

[8] Web Services Description Language(WSDL) version
1.1 http://www.w3.org/TR/wsdl

[9] XML based messaging and protocol specifications SOAP.
http://www.w3.org/2000/xp/.

[10] Sun Microsystems JXTA Peer to Peer technology.
http://www.jxta.org.

[11] Sun Microsystems. Java Message Service.
http://java.sun.com/products/jms.

[12] “Peer-To-Peer: Harnessing the Benefits of a Disruptive
Technology”, edited by Andy Oram, O’Reilly Press
March 2001.

[13] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut
"A Web Services Framework for Collaboration and
Audio/Videoconferencing", to be published in 2002
International Conference on Internet Computing IC'02:
Las Vegas, USA, June 24-27, 2002.

[14] Geoffrey Fox and Shrideep Pallickara “The Narada
Event Brokering System: Overview and Extensions” to
appear in the proceedings of the 2002 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'02).
http://grids.ucs.indiana.edu/ptliupages/projects/narada/p
apers/NaradaBrokeringSystem.pdf

[15] Geoffrey Fox and Shrideep Pallickara “JMS
Compliance in the Narada Event Brokering System” to
appear in the proceedings of the 2002 International
Conference on Internet Computing (IC-
02). http://grids.ucs.indiana.edu/ptliupages/projects/nar
ada/papers/JMSSupportInNarada.pdf

[16] Geoffrey Fox and Shrideep Pallickara “Support for
Peer-to-Peer Interactions in Web Brokering Systems” to
appear in ACM Ubiquity.
http://grids.ucs.indiana.edu/ptliupages/projects/narada/p
apers/P2PSystems.pdf

[17] Geoffrey Fox, Marlon Pierce et al., Grid Services for
Earthquake Science, to be published in Concurrency and
Computation: Practice and Experience in ACES Special Issue,
Spring 2002.
http://aspen.ucs.indiana.edu/gemmauisummer2001/resources/
gemandit7.doc

[18] Sonic MQ JMS Broker http://www.sonicsoftware.com/

[19] Geoffrey Fox, Sung-Hoon Ko,Kangseok Kim,
Sangyoon Oh, Sangmi Lee, "Integration of Hand-Held
Devices into Collaborative Environments" to appear in
the proceedings of the 2002 International Conference
on Internet Computing (IC-02). June 24-27 Las Vegas.

http://www.gridforum.org/
http://www.globus.org/
http://www.cise.nsf.gov/b_ribbon/
http://www.escience-grid.org.uk/
http://www.us-vo.org/
http:///www.w3c.org
http://www.w3.org/TR/wsdl
http://www.w3.org/2000/xp/
http://www.jxta.org/
http://java.sun.com/products/jms
http://grids.ucs.indiana.edu/ptliupages/projects/narada/papers/NaradaBrokeringSystem.pdf
http://grids.ucs.indiana.edu/ptliupages/projects/narada/papers/NaradaBrokeringSystem.pdf
http://grids.ucs.indiana.edu/ptliupages/projects/narada/papers/JMSSupportInNarada.pdf
http://grids.ucs.indiana.edu/ptliupages/projects/narada/papers/JMSSupportInNarada.pdf
http://grids.ucs.indiana.edu/ptliupages/projects/narada/papers/P2PSystems.pdf
http://grids.ucs.indiana.edu/ptliupages/projects/narada/papers/P2PSystems.pdf
http://aspen.ucs.indiana.edu/gemmauisummer2001/resources/gemandit7.doc
http://aspen.ucs.indiana.edu/gemmauisummer2001/resources/gemandit7.doc
http://www.sonicsoftware.com/

	2 Key Technology Concepts for e-Science
	3 Characteristics of e-Science Infrastructure
	4 Architecture of an Event Service
	References

