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Abstract—Increasing data volume and designing low latency
applications with higher efficiency is a very challenging problem.
With the limited storage and limited time to process data, usage
of online algorithms has become an emerging trend in the big-
data community. In the big-data analytics, stream processing is
a well-known area that has been studied for a long time. In
this research, our objective is to use state of the art big-data
analytic engines to design such online algorithms and compare
the strengths and weaknesses in each system. We use a streaming
version of Support Vector Machines and KMeans to do the
analysis. In our research, we use Apache Flink, Apache Storm
and Twister2 to implement the streaming algorithms. Our study
focuses on the efficiency of online training by analyzing the
inherent features in each stream processing engine. And our
experiments show that Twister2 is a streaming engine which can
support developing streaming machine learning algorithms with
less latency compared to other streaming engines discussed in
this paper.

Index Terms—Big-Data, Streaming Machine Learning,
Dataflow

I. INTRODUCTION

In the modern information technology era data collection and
data processing is now ubiquitous, this has resulted in an
explosion of the amount of data that is collected. Which in-
turn means all this collected data needs to be processed to gain
meaningful insight hidden within the data. Data sources may
range from data collected from social media platforms to more
basic signal data collected from small devices such as sensors.
Even a simple data processing step such as a filter which
simply discards data based on some predefined conditions has
become a challenging task because of the amount of data that
is collected and the speed at which such data is collected. In
recent years, stream processing has become one of the most
prominent modes of processing large volumes of data with
less latency. And these stream processing engines are capable
of much more than simple filters. Among the applications
which produce a large volume of data, internet-of-things
related applications, social media data processing applications,
video processing applications, audio processing applications,
etc can be denoted as most prominent cases. In most such
applications the requirements for data processing go beyond
simple filter operations, therefore modern stream processing
engines need to be able to support more complex machine

learning algorithms. While many of the popular stream engines
such as Apache Spark, Apache Flink, Apache Storm provide
the basic building blocks needed to develop streaming machine
learning applications, the approaches that have been taken by
each system vary, resulting in different programming models
and varying performance numbers. The objectives in this paper
are two folds, First is to analyse the application development
styles in each stream processing system to identify subtle
differences in the different programming models adopted by
popular frameworks. Second, to showcase the performance of
each system using streaming machine learning applications.
We believe that applying knowledge ganined from the HPC
domain into big-data systems allows frameworks to harness
the best of both worlds, this is showcased to some extent in the
experiments and results that are shown in this paper comparing
Twiste2, Apache Flink and Apache Storm. In section II we
discuss the role of stream processing in the big-data domain
and its importance. Section III talks about several streaming
machine learning algorithms in more detail and the motivations
behind streaming machine learning algorithms in general.In
section IV the experiments conducted to compare various
streaming engines are discussed and the results are presented,
to this end two algorithms, namely streaming KMeans and
streaming SVM are used. Section V discusses related work
that can be found in the literature. Finally in sections VI and
VII layout the conclusion and future work for this research.

II. STREAM PROCESSING WITH BIG DATA STACK

Stream processing is majorly involved with big-data related
applications rather than traditional high-performance comput-
ing applications. In the big-data domain, the most prominent
and well-known stream processing engines are Apache Flink,
Apache Storm and Apache Spark. These stream processing
engines have been used by many application developers and
researchers to implement streaming applications. Twister2-
Streaming is another framework developed by the authors for
the same purpose, to apply knowledge gained from the HPC
community to provide better performance numbers for stream
processing. In our framework, we also provide most of the
core functionality provided by these state of the art stream
processing systems. The programming model in Apache Storm



is very flexible than most of the other stream processing
frameworks due to the lower-level abstraction in the API.
This was one of the core features in Apache Storm until the
release 2.0.0. But still, the user has the capability of developing
applications and writing custom APIs on top of the core
API. In Apache Spark and Apache Flink, the programming
model has been designed on top of a high-level abstraction.
This allows the user to develop applications much faster.
This also adds a certain level of restriction in application
development, which in turn results in lower efficiencies. In
Apache Spark, the only way to write a dataflow model is
to use a high level API abstraction. In Twister2, adopting
both programming styles, like Apache Storm, we provide both
levels of programming abstractions.

III. STREAMING MACHINE LEARNING ALGORITHMS

In our research, we use the online versions of two machine
learning algorithms, namely SVM and KMeans. In our analy-
sis, we portray how the streaming model is being implemented
with Apache Flink, Apache Storm and Twister2 stream pro-
cessing engines. Here we use the window processing API in
each framework to discretize the continuous stream of data.
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Receive Computed Data
Do Evaluation on Models

Hyperparameters

Window Length
Sliding Length

Window Type

Iterations

Data
Source

Fig. 1. Workflow of a Streaming ML Application

A standard streaming machine learning algorithm takes the
task architecture as shown in figure 1. The data source can
be from a file, HDFS or a message broker like Apache Kafka
[1]. In our experiments in all three frameworks, a source task
read data from the file system and do the data pre-processing.
This source task creates a stream of data. Down the stream, a
window task is being designed with some hyper-parameters.
The main hyper-parameters involved for a streaming machine
learning algorithm includes the number of iterations. I case
KMeans this value was unity and in SVM this is a finite
value set by the user. Window length, sliding window length
a implicit parameters for windowing. Windowing type can be
determined as count-based or time-based. In the experiments
we conducted, we only used the notion of count. Within the
window task, a mini-batch is being generated from stream
discretization. This mini-batch is being processed by the
streaming model of the machine learning algorithm. Here

each algorithm provides a sub-optimial solution with respect
to the corresponding batch algorithm. This will be further
discussed in III-A. Once the streaming algorithm is executed
on the windowed elements, the weights or the models that
is being computed in a distributed manner must be globally
synchronized. The sink task gets such a globally reduced
input. Within the sink task, the model evaluation is being done
using test data sets. Within the sink function, the application
developer can decide when to releasing a stable model for
production. This is not a section discussed in this research,
but the applications have been developed in each framework
to support this.

A. Motivation for Streaming Machine Learning

With access to a large amount of data, processing and re-
sponding with less latency is one of the challenges. Streaming
version of a known batch mode machine learning algorithm
always enables the capability to run a model much faster rather
than collecting all the data and processing them as a batch.
But the main challenge is that all these streaming versions of
machine learning algorithms provide a sub-optimal solution.
An optimal solution would be the answer we obtain from
extensive experiments on a data set with a large number of
iterations on the complete batch of data. Most of the machine
learning algorithms are in an iterative mode as they are trying
to optimize a set of parameters. In the streaming setting, the
model is being designed by accepting the nature of having
a sub-optimal solution. This can be identified as one of the
challenges in obtaining a better solution with streaming ML
setting. In this research, we focus our work on the evaluation
of the state of the art stream processing engines on static
conditions to see how each framework is performing.

B. Streaming SVM

Support Vector Machine is one of the most prominent clas-
sification algorithm used in the machine learning domain.
In an online version of this algorithm, we first discretize a
stream of data points into a mini-batch or a window and do
an iterative computation on each window. Here a variable
number of iterations can be used in tuning the application
towards expected accuracy in the training period. The core of
the algorithm adopted is a stochastic-gradient-descent based
model. For each window, the weight vector is updated and
it is being synchronized to a global value by doing a model
aggregation over the distributed setting. Once a model is being
globally synchronized over all the processes, the model is
being tested for accuracy. This implementation was followed
by an idea related to a batch model developed to evaluate
batch-size based performance on SGD-SVM. We adopted
the same approach to calculate the weight vector or the
gradient in the discretized stream (windowed elements) and
globally synchronized the calculated weight vector once the
computation per window is completed.



S = {xi, yi}
where i = [1, 2, 3, ..., n], xi ∈ Rd, yi ∈ [+1,−1] (1)

α ∈ (0, 1) (2)
g(w; (x, y)) = max(0, 1− y〈w|x〉) (3)

J t = min
w∈Rd

1

2
‖w‖2 + C

∑
x,y∈S

g(w; (x, y)) (4)

Equations 1,2,3 and 4 denotes the configurations of the sample
space, helper functions for gradient calculation and the loss
function.

Algorithm 1 Iterative SGD SVM
1: INPUT: [x, y] ∈ S,w ∈ Rd, t ∈ R+

2: OUTPUT: w ∈ Rd

3: procedure ISGDSVM(S,w, t)
4: for i = 0 to n do
5: if (g(w; (x, y)) == 0) then
6: ∇J t = w
7: else
8: ∇J t = w − Cxiyi
9: w = w − α∇J t

return w

In algorithm 1, the stochastic gradient descent based step
to update the weights is described as a pseudo-code. This
algorithm shows the computation done per a data point.

Algorithm 2 Iterative Streaming SVM
1: INPUT: X∞, Y∞ ∈ S∞, w ∈ Rd, l ∈ R+, s ∈ R+,m <
K,m ∈ R+

2: OUTPUT: w ∈ Rd

3: procedure ISSVM(S̄i, w, T, l, s)
4: In Parallel K Machines [S̄1, ..., S̄b] ⊂ S∞
5: procedure WINDOW(S̄m, w, l, s)
6: for t = 0 to T do
7: procedure ISGDSVM(S̄m, w, t)
8: All Reduce(w)

return w

Algorithm 2 shows the complete iterative algorithm with
windowing configurations. The l symbol in the algorithm
refers to the window length and s symbol in the algorithm
refers to the sliding length. The algorithm encapsulates both
tumbling and sliding window based computations.

C. Streaming KMeans

KMeans is another highly used clustering algorithm in the
machine learning domain. In this research, we use an online
version of this algorithm. In the streaming setting, we use
the stream discretization by using a window operation. In the

algorithm 3 we have implemented a basic version of online-
KMeans algorithm. In this algorithm one data point is observed
just once and the closest centroid is located by means of
calculating the euclidean distance. And the new centroid is
calculated as shown in the algorithm. But in the initialization
step the centroids can be either hand picked from the data set
or randomly selected. In here we select it as shown in the
algorithm. Our objective is to see how each framework works
on global model synchronization when working with machine
learning models.
But an iterative computation is not conducted. In implementing
this algorithm we followed the state of the art time-notion
based window-less streaming KMeans implemented in Apache
Spark. Once the computation related to a window is being
completed, a global model synchronization is done. Unlike in
a classification algorithm, there is no cross-validation involved
during the model generation step.

Algorithm 3 Online KMeans
1: INPUT:X = {x1, ..., xm}, xi ∈ Rm

2: V = {v1, ..., vk}vi ∈ Rm, k ≤ n
3: OUTPUT: V
4: procedure STREAMING-KMEANS(X,V )
5: procedure WINDOW(X̄, V̄ )
6: for xjinX̄ do
7: if j ≤ k then
8: vi = xj
9: ki = 1

10: i = i+ 1
11: else
12: vi = argmini||xj − vi
13: vi = vi +

1

ni + 1
[xj − vi]

14: ni = ni + 1

15: All Reduce(V)
return V

IV. EXPERIMENTS

For the experiments, we use a distributed cluster with 8
physical nodes. We schedule 16 tasks per each node to run the
experiments. Each node consists of Intel(R) Xeon(R) Platinum
8160 CPU @ 2.10GHz with 250GB of RAM capacity. For
running an experiment for a finite period, a stream of 49,000
records for training and a stream of 90,000 records for testing
is used. For the experiments, we only use a finite stream to
evaluate training accuracy and performance. In a real-world
setting, application training termination criteria have to be set
by considering the objectives of the application use-case. To
discretize the stream, we use windowing in all frameworks
mentioned in this paper. The windowing with the notion of the
count of elements is being used to test the performance in each
system. In each framework, the data is being loaded from a
file source and processing is done in a distributed manner with
overall parallelism of 128. All the experiments were carried
out considering tumbling and sliding windowing. Tumbling
windowing refers to non-overlapping elements and sliding



windows refers to windowing with overlapping elements. In
the experiments, we are adopting a count-based windowing
mechanism to conduct a stress test on each framework. For
the conducted experiments, Apache Storm 1.2.8, Apache Flink
1.9.0 and Twister 0.3.0 releases have been used. Each frame-
work was tested under different internal configurations and
we selected configurations that minimize any performance lag.
The experiments have been conducted for 10-20 rounds and
average results have been taken to design the plots.

A. Model Synchronization

In the distributed setting, generating a synchronized model
for all parallel processes is vital. In implementing the online
versions of algorithms, we adopted the strategies specific for
each framework. In Apache Flink, the reduce function is used
for synchronizing the models. This is the only possible way to
do a similar operation to all-reduce in Apache Flink. Apache
Flink doesn’t support an all-reduce like communication for
synchronizing models globally. In Apache Spark, reduce func-
tion and RDD broadcast is used to synchronize the model. In
Apache Storm, all-grouping is used to generate a synchronized
model. Twister2-HPC model uses MPI-AllReduce collective
communication to synchronize the models. Twister2-Dataflow
model uses a variation of all-reduce communication with a
tree-like communication model. The global model synchro-
nization is thus carried out in Twister2.

B. Streaming SVM

For streaming SVM model, we use a dataset with two classes
with 22 elements per data point. For the experiments, we
used an iterative computation on windowed elements which
is supported by Apache Flink, Apache Storm and Twister2.
We tried this model using Apache Spark streaming engine.
With the provided APIs and system constraints, we were able
to design an approximate model to that of design with the
aforementioned frameworks. The main constraint is that it
only provides windowing considering the notion of time. This
makes it hard to do a stress test on the steam engine. Because
by time, the minimum number of elements that can be set per
batch is in millisecond level. With the approximate model,
the accuracy obtained was comparatively very low concerning
the other frameworks. The major reasoning was we couldn’t
implement an iterative computation on windowed data points.
This feature is not directly supported with DStream in Apache
Spark streaming engine. But there is a workaround for this
using structured streaming in Apache Spark streaming. This
implementation works on the SQL engine of Spark, and it
considers the notion of time. We didn’t implement that model
in this research as it is a very different implementation con-
cerning the other implementations. In the conclusion section,
this will be explained in detail. Figure 2 shows the experiment
results for tumbling window is shown. From these results,
it is clear that the Twister2 models outperform both Apache
Storm and Apache Flink implementations. Figure 3 shows the
sliding window related experiments. Twister2 implementations
outperform Apache Flink and Apache Storm implementations.

Twister2 with a faster stream processing capability through a
strong MPI-based backend provides a scalable solution for
an iterative stream processing on a window. With Apache
Flink, the main bottleneck is the reduce task doing the model
synchronization. In Twister2 and Apache Storm, the all-reduce
and all-grouping mechanisms involve in providing all-to-
all model synchronization capability. But in Apache Flink,
this process becomes all-to-one and makes a bottleneck in
processing the data. In this case, both Twister2 and Apache
Storm outperforms Apache Flink.

Fig. 2. Streaming SVM with Linear Kernel based experiments for tumbling
window is recorded for both HPC and Dataflow programming models. The
time recorded is the streaming training time until expected convergence.

Fig. 3. Streaming SVM with Linear Kernel based experiments for sliding
window is recorded for HPC model and Dataflow programming models. The
time recorded is the streaming training time until expected convergence. The
x axis in right figure labelled with the pair of (window length,sliding length).

From all implementations in Apache Flink, Apache Storm
and Twister2, 90.49% of test accuracy was obtained after a
finite length of the stream was processed. With Apache Storm
implementation, we were able to get an average accuracy
of 40%-50% with the same number of iterations. We didn’t
include the graphs here, because the number of iterations
required to get the same accuracy is much higher.



C. Streaming KMeans

For streaming KMeans model, the dataset we used contains
23 elements per a data point. Here a non-iterative computation
is done. Apache Flink, Apache Storm and Twister2 support
the windowing functions to implement an algorithm like this.
With Apache Spark streaming, a non-iterative application can
be developed but the count-based notion is not available in
the API. In this research, we have only conducted windowed
streaming with the notion of the number of elements per
window. In achieving the current goal we have used the
streaming systems which provide this functionality.

Figure 4 shows the tumbling window-based experiments
carried out on streaming KMeans model. And in figure 3
shows the sliding window-based experiments carried out on
streaming KMeans model. Similar to streaming SVM results,
Twister2 models outperform both Apache Spark and Apache
Flink. Twister2 model synchronization with an all-reduce
mechanism provides faster execution than that of regular all-
to-all communication in Apache Storm. In Apache Flink, there
is no all-to-all communication, the model synchronization
happens in an all-to-one setting. This is the same bottleneck
as observed in streaming SVM application. But Apache Flink
outperforms Apache Storm. This model is a non-iterative
model and the pressure exerted on communication is lesser.
This leads to quite faster data progress from the windowing
task to reduce task. Experiments were conducted to formulate
1000 cluster centers.

Fig. 4. Streaming KMeans Results for 1000 clusters-based experiments
for tumbling window is recorded for both HPC and Dataflow programming
models. The time recorded is the streaming training time until expected
convergence.

V. RELATED WORK

Apache Spark [2] considers stream processing as a related
event of small-batch computations. It collects the records
from the stream in a buffer which is called mini-batch. The
main advantage of this technique to provide effortless fault
tolerance. However, the main disadvantage of this technique is
higher latency due to the micro-batch scheduling mechanism.
Apache Flink [3] processes the streaming events using the

Fig. 5. Streaming KMeans for 1000 clusters-based experiments for sliding
window is recorded for both HPC and Dataflow programming models. The
time recorded is the streaming training time until expected convergence. The
x axis in right figure labelled with the pair of (window length,sliding length).

dataflow runtime model other than processing as micro-batches
which provides lower processing latency. However, the main
disadvantage of this model is implementing the fault tolerance
mechanism. Apache Storm [4] is a real-time distributed stream
processing engine which provides a fault-tolerant and scalable
system to process the streaming data. It is implemented with
two important processing semantics namely ”at least once”
and ”at most once” that provide the guarantee of the data
which processes it. Twister: Net [5] is a standalone highly
optimized dataflow library that defines the dataflow model
for big data to process streaming and batch data. Based on
the evaluation, it is acknowledged that the communication
requirements of big data have been written in a separate library
without the integration of any big data framework. Using this
library, the user may be able to design a highly efficient big
data applications. TSet [6] is the highest level of abstraction
provided in Twister2 [7] framework which is similar to RDD’s
in Apache Spark and DataSets in Apache Flink. S4 (Simple
Scalable Streaming System) [8] is a distributed model for
processing streaming which has been designed to solve the
data mining and machine learning algorithms. It is designed
with a simple programming interface along with decentralized
and symmetric architecture in which nodes share the same
functionalities and responsibilities and there is no overhead
to a single node. They have demonstrated the performance of
the results for tuning an online search advertising system. Qian
et.al [9] designed a distributed system known as TimeStream
which is specific to process low latency and continuous big
stream data. It has provided a powerful abstraction called re-
silient substitution which is responsible for handling the failure
recovery and dynamic reconfiguration corresponding to the
load. It is implemented with a fine-grained data dependency
mechanism to enable a re-computation based failure recovery
mechanism that achieves ”at least once” semantics. Derek G.
Murray et. al [10] designed a timely dataflow system that
executes the data-parallel and cyclic dataflow program in a dis-



tributed manner. It achieves high throughput batch processing
and low latency stream processing using the Timely Dataflow
model. It also enhances the dataflow computation and provides
the base for an efficient, light-weight coordination mechanism.
Online classfication on large scale data sets has been also
discussed by Street et. al [11] in the early stage of the
streaming machine learning research. Hazan et.al [12] describe
two ways of designing an online SGD algorithm. An adaptive
algorithm with a better convergence rate and standard online
algorithm with a descent convergence rate. Zhong et.al [13]
propose an online version of K-means clustering by observing
a data-point once in the model generation step and assigning
it to the closest centroid. Yahoo [14] provides a state of the art
stream processing related benchmark showing the capabilities
in each stream processing engine. It uses Apache Storm,
Apache Spark and Apache Flink as the streaming engines used
to draw the comparisons. Krimov et.al [14] provides another
benchmark on analyzing the capabilities in Apache Storm,
Apache Flink and Apache Spark.

VI. CONCLUSION

Twister2 streaming engine provides a state of the art stream-
ing performance for streaming machine learning algorithms.
The idea of processing a high throughput data with less time
is one of the key features expected in a stream processing
system. Here we showcase how this is evident with two of
the major machine learning algorithms. In both algorithms
with tumbling and sliding window settings, both Twister2
models outperform Apache Storm and Apache Flink. With
Apache Spark streaming engine, we were only able to design a
streaming model based on time notion. This was not the area of
focus in our research. A time-based windowing makes it much
harder to run a stress test on the streaming engine. Besides,
we observed the importance of windowing functions available
in Apache Storm, Flink and Twister2 for implementing ad-
vanced algorithms in the streaming setting. In Apache Spark
streaming, we were not able to use the notion of a windowing
function. When it comes to do an iterative computation the
notion of a window-function is highly essential. All though
Apache Spark provides a solution for this based on the SQL
engine. The structured streaming with Apache Spark SQL
provides a possible avenue to develop such applications. This
involves channelling the capabilities in the SQL engine and
this can add an overhead to the application. In this research,
we paid more attention to the very basic components in a
stream engine itself and evaluate the performance for different
experiment settings.

VII. FUTURE WORK

As future work, we are expecting to design time-notion
based experiments. The idea is to analyze event-time and
process-time based stream discretization on state of the art
stream processing engines.
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