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We derived and apply the finite energy sum rules in pion photoproduction. We reconstruct the left-
hand-side of the sum rules using several low-energy models. It is shown how the low energy models
and the sum rules can be used to make quantitative predictions for the high-energy observables.
A model, in terms of a Regge-pole expansion, that matches the sum rules and the high-energy
observables is presented.

I. INTRODUCTION

The photoproduction of a single pion was the first mea-
surements performed with the GlueX detector [1] and
will be one of the first measurements performed with
the CLAS12 detector [2] at the Jefferson Lab facility
(JLab). At low energies, this reaction forms an invalu-
able source of information about the baryon excitation
spectrum [3–8]. At high energies it reveals details of the
residual hadron interactions due to cross-channel parti-
cle (Reggeon) exchanges [9]. These two energy regimes
are analytically connected, a feature that can be used to
relate properties of resonances in the direct channel to
Reggeons in the crossed channels. In practice this can
be accomplished through dispersion relations and finite-
energy sum rules (FESR) [10, 11].

There are several models in the literature focusing
on the neutral and charged pion photoproductions in
the high energy region [12–20]. The diversity between
these models essential originates from the unconstrained
residues. Several authors used the FESR to constraint
the residues in neutral [21–23] and charged [24–26] pion
photoproduction independently. To our knowledge only
Worden performed a global fit of both neutral and pion
pion photoproduction constrained with the FESR [27].
However the low energy models used for the left-hand-
side (LHS) of the sum rules were not constraint by
the high energy data. At best, fixed t dispersion rela-
tions were imposed to determine the baryon spectrum
in Ref. [28–31] but, to our knowledge, FESR in photo-
production are not fully exploited for constraining the
low-energy models.

Although a comparative study of FESR in hadro- and
photo-production [32] shed light into the difficulties as-
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sociated with FESR in pion photoproduction, we believe
that these constraints are the ideal tools to improve the
knowledge of the excited baryon spectrum. Indeed, ac-
cording to the Review of Particle Properties [33], the N∗

and ∆ spectra below 2 GeV are “at least fairly well ex-
plored”, while the properties of their resonances above
2 GeV are poorly known. The 2-3 GeV energy range is
the transition between the baryon resonance region and
the Regge regime. Since the number of relevant partial
waves increases with energy, additional tools are required
to constrain the amplitude construction. FESR, which
relate these energy regions, is therefore the ideal tool to
better constrain the baryon resonances above 2 GeV.

With the forthcoming CLAS12 detector who will cover
both the resonance and the high energy regions, there is
a growing interest in the excited baryon spectrum and its
transition to Regge region. The purpose of this paper is
then to bring up to date the FESR framework, point out
the mismatch between both sides of the sum rules and
propose a parametrization of the high energy region that
could be a starting point for a combined fit of both the
low and high energy regions. This study complements
our similar FESR analysis of η photoproduction [34] and
pion-nucleon scattering [35].

Our starting point, in Sec. II, is to decompose the am-
plitudes into form factors (or scalar amplitudes) which
multiply a covariant amplitude base. The singularities of
these scalar amplitudes are only the ones required by uni-
tarity and are therefore suitable for a dispersive analysis.
After reviewing the properties of the scalar amplitudes,
we will use dispersion relations and a standard Regge
parametrization to derive their FESR in Sec. III. We
then evaluate the low-energy side of the sum rules with
various available models in Sec. IV and extract, from this
side for the sum, the effective Regge residues in Sec. V.
We then show in Sec. VI that, assuming the dominance of
a singe Regge pole, the low-energy models provide qual-
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itative predictions for the observables at high energies.
We continue our analysis in Sec. VII by presenting a
combined fit of the parameters in the Regge expansion to
both the FESR and the high-energy observables. Finally
our conclusions are presented in Sec. VIII.

II. FORMALISM: SCALAR AMPLITUDES

The photoproduction of a pion off a nucleon (proton
or neutron) target:

γ(k, λγ) +N(p, λ) −→ π(q) +N ′(p′, λ′) (1)

depends on three helicities and the two Mandelstam vari-
ables: the center-of-mass energy squared s = (k+p)2 and
the momentum transferred squared t = (q − k)2. The
third Mandelstam variable u = (p′ − k)2 is linked by the
relation s + t + u = 2M2

N + µ2 ≡ Σ where MN is the
nucleon mass and µ the pion mass. All other masses will
be denoted by mx for a meson x.

In the reaction (1), we used the s−channel center-of-
mass helicities λγ , λ and λ′. The s−channel frame is, by
convention, the process (1) in its center-of-mass frame.
The t−channel frame refers to the crossed-channel reac-
tion γπ → N̄N ′ in its center-of-mass frame.

The photoproduction of a pseudoscalar is fully de-
scribed by four scalar amplitudes. The standard decom-
position [36] of the s−channel helicity amplitudes reads

Aλ′;λλγ (s, t) = uλ′(p′)

(
4∑
k=1

Ak(s, t)Mk

)
uλ(p) . (2)

The definition of the covariant basis Mk ≡ Mk(s, t, λγ)
and all relevant kinematical quantities is given in the
Appendices of Ref. [20].

In this work, we will assume that isospin is a good
symmetry. Writing explicitly the isospin indices (i, j for
the target and recoil nucleon respectively and a for the
isovector pion), the standard isospin decomposition for
the scalar amplitudes reads

Aaji = A(+)δa3δji +A(−) 1

2
[τa, τ3]ji +A(0)τaji (3)

with τ the Pauli isospin matrices. In this basis,
the isospin indices correspond to good isospin I and
G−parity of γπ. More explicitly, the t−channel (i.e. ex-
change) quantum numbers of the scalar amplitudes are

IG(A(0)) = 1+ IG(A(+)) = 0− IG(A(−)) = 1−. (4)

The charged and neutral pion photoproduction reac-
tions are described by an appropriate combination of the
isospin components of the scalar amplitudes. Schemati-
cally, the contributions of isospin amplitudes to the he-

licity amplitudes are

γp→ π+n :
√

2
(
A(0) +A(−)

)
(5a)

γn→ π−p :
√

2
(
A(0) −A(−)

)
(5b)

γp→ π0p : A(+) +A(0) (5c)

γn→ π0n : A(+) −A(0). (5d)

The u−channel, γN̄ → πN̄ , is obtained from the
s−channel by charge conjugation. Conservation of
charge conjugation implies then a symmetry of the scalar
amplitudes under the transformation s ↔ u. This sym-
metry can be exploited by using the crossing variable

ν =
s− u
4MN

= Elab +
t− µ2

4MN
, (6)

with Elab the photon energy in the laboratory frame (tar-
get rest frame). The scalar amplitudes can be categorized
into crossing-even

A
(0,+)
1,2,4 (−ν − iε, t) = +A

(0,+)
1,2,4 (ν + iε, t)

A
(−)
3 (−ν − iε, t) = +A

(−)
3 (ν + iε, t) (7a)

and crossing-odd

A
(−)
1,2,4(−ν − iε, t) = −A(−)

1,2,4(ν + iε, t),

A
(0,+)
3 (−ν − iε, t) = −A(0,+)

3 (ν + iε, t) (7b)

functions. In Eq. (7), ε is a small and positive quantity
indicating on which side of the unitarity cut the function
is evaluated.

In the Appendix of Ref. [20] (and references therein),
we proved that the scalar amplitudes A1, A3, A4 as well
as the combination A1 + tA2 have good t−channel parity
P and G−parity. For convenience we define

A′2 ≡ A1 + tA2. (8)

Table I summarizes the t−channel quantum numbers of
the scalar amplitudes. In view of the symmetry rela-
tions (7) and Table I, we note that, with these stan-
dard conventions, the crossing-even (crossing-odd) am-
plitudes involve negative (positive) signature τ = (−1)J

exchanges. The exchanges are also divided into two other
categories: the natural exchanges (P (−1)J = +1) and
the unnatural exchanges (P (−1)J = −1). In addition to
the signature and naturality of the exchanges we added
in Table I the lowest spins and the name of the leading
trajectory. We did not indicate the quantum numbers
0++ in the a2 trajectory since the a0(980) meson lies on
the daughter trajectory.

Since crossed-channel exchanges control the behavior
of the helicity amplitudes at high-energy [9, 37], the
t−channel quantum numbers of the scalar amplitudes
are essential to determine their relative importance in
the high energy region. Empirically, Regge trajectories
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TABLE I. Invariant amplitudes Ai with corresponding t-
channel exchanges. I is isospin, G is G-parity, J is total spin,
P is parity, C is charge conjugation and τ = (−1)J is the
signature. The spin of the lightest meson on the trajectory is
indicated in the last column.

A
(σ)
i IG P (−1)J τ JPC Lightest meson

A
(0)
1,4 1+ +1 −1 (1, 3, 5, ...)−− ρ(770)

A
(+)
1,4 0− +1 −1 (1, 3, 5, ...)−− ω(782)

A
(−)
1,4 1− +1 +1 (2, 4, 6, ...)++ a2(1320)

A
′(0)
2 1+ −1 −1 (1, 3, 5, ...)+− b1(1235)

A
′(+)
2 0− −1 −1 (1, 3, 5, ...)+− h1(1170)

A
′(−)
2 1− −1 +1 (0, 2, 6, ...)−+ π(140)

A
(0)
3 1+ −1 +1 (2, 4, 6, ...)−− ρ2(−)

A
(+)
3 0− −1 +1 (2, 4, 6, ...)−− ω2(−)

A
(−)
3 1− −1 −1 (1, 2, 5, ...)++ a1(1260)

involving natural exchanges dominate over unnatural tra-
jectories. Table I indicates that the scalar amplitudes A1

and A4 should contain the main contribution to the ob-
servables at high energies. We can obtain further indica-
tions of the high-energy behavior of the scalar amplitudes
from their relation to the helicity amplitudes in the lead-
ing s approximation: (the notation ± = ± 1

2 is used for
the nucleon helicities)

√
−tA4 =

1√
2s

(A+;+1 +A−;−1) (9a)

√
−tA3 =

1√
2s

(A+;+1 −A−;−1) (9b)

A1 =
1√
2s

(A+;−1 −A−;+1) (9c)

A′2 =
−1√

2s
(A+;−1 +A−;+1) . (9d)

These relations show that, at the leading order in the
energy squared, A4 and A3 are helicity non-flip at the
nucleon vertex and, A1 and A′2 are helicity flip at the
nucleon vertex. It is well-known that isoscalar (isovec-
tor) exchanges are predominantly helicity non-flip (helic-

ity flip) at the nucleon vertex [9]. We then expect A
(+)
4

and A
(0,−)
1 to be the largest amplitudes at high energy.

Finally, the factorization of Regge pole residues yields
a simple form for the kinematical singularities in t at high
energy [38]

Aλ′;λλγ (ν, t) ∝
(√
−t
)|λγ |+|λ′−λ|

(10)

From Eqs. (9) and (10), the Regge pole contributions in
A1 and A′2 vanish in the forward direction, i.e. A1 ∝ t

and A′2 ∝ t. Having described the properties of the scalar
form factors, we now turn our attention to their analytic
structure and derive the FESR in the next section.

III. FINITE ENERGY SUM RULES

The starting point of the derivation is the analytic
structure of the scalar amplitudes. The analytic struc-
ture and the associated dispersion relation for pion pho-
toproduction were discussed extensively in the literature
[36, 39–41]. Every scalar function has a nucleon pole and
a left- and right-hand cuts required by unitarity, which
are represented in the complex ν plane in Fig. 1. The
nucleon pole term is written, in our convention, as

A
(σ)
i

∣∣∣
pole

= B
(σ)
i

(
1

ν − νB
+

τ
(σ)
i

ν + νB

)
, (11)

with νB = (t−µ2)/(4MN ) the crossing variable at the nu-

cleon pole and B
(σ)
i ≡ B(σ)

i (t). The nucleon pole residues

B
(σ)
i are tabulated in Table II. According to Table I,

the crossing-even (crossing-odd) scalar amplitudes cor-
respond to Reggeons with negative (positive) signature

τ
(σ)
i = −1 (τ

(σ)
i = +1).

FIG. 1. The complex ν plane. The singularities (nucleon pole
and the two cuts starting at the πN threshold) are in red. The
integration contour is divided into two pieces as in Eq. (12),
the contour surrounding the discontinuities and the circle CΛ

of radius Λ.

Let us now consider the function νkAi(ν, t) (omitting
the isospin index) with k being a positive integer. The
function νkAi(ν, t) has the same analytic structure as
Ai(ν, t). Deriving the sum rules for νkAi(ν, t) instead of
Ai(ν, t) will provide us a set of constraints, or moments.
According to the Cauchy theorem the contour integral in
Fig. 1 vanishes. Equivalently, we can match the discon-
tinuity on the real axis to the integral along the circle of
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TABLE II. Born term in the DR

(σ) (0) (+) (−)

B
(σ)
1 − eg

2MN

1
2

− eg
2MN

1
2

− eg
2MN

1
2

e = 0.303

B
(σ)
2

eg
2MN

1
t−µ2

eg
2MN

1
t−µ2

eg
2MN

1
t−µ2 g = 13.54

B
(σ)
3

eg
2MN

κp+κn
4MN

eg
2MN

κp−κn
4MN

eg
2MN

κp−κn
4MN

κp = 1.78

B
(σ)
4

eg
2MN

κp+κn
4MN

eg
2MN

κp−κn
4MN

eg
2MN

κp−κn
4MN

κn = −1.91

radius Λ (by convention we include the nucleon poles in
the discontinuities as in Fig. 1)∫ Λ

0

[
Di,R(ν, t) + (−1)kDi,L(ν, t)

]
νk
dν

2i

= −
∫
CΛ

Ai(ν, t)ν
k dν

2i
. (12)

For ν > 0 Di,R and Di,L correspond to the discontinuities
along the s-channel (right) and u-channel (left) unitarity
cuts respectively:

Di,R(ν, t) = lim
ε→0

[Ai(+ν + iε, t)−Ai(+ν − iε, t)] (13a)

Di,L(ν, t) = lim
ε→0

[Ai(−ν + iε, t)−Ai(−ν − iε, t)] (13b)

Thanks to the crossing properties of the scalar func-
tion, we can relate the left and right discontinuities
Di,L(ν, t) = τiDi,R(ν, t). The right-hand-side (RHS) of
the sum rules (12) becomes

[
1 + τi(−1)k

] ∫ Λ

0

Di,R(ν, t)νk
dν

2i
.

We then observe that the LHS of Eq. (12) is non zero
only for τi = (−1)k since k is an integer. In other
words, crossing-even (crossing-odd) amplitudes require
odd (even) moments.

In our convention, the discontinuities include the nu-
cleon pole at νB and the unitarity cuts starting at ν0, the
πN threshold:

ν0 = µ+
t+ µ2

4MN
. (14)

If ν0 > 0, the left and right cuts do not overlap and
the amplitude is real on a part of the real axis. In this
case the discontinuities along the cuts are given by the
imaginary part. The contribution of the right hand dis-
continuity to the sum rules reads∫ Λ

0

Di,R(ν, t)νk
dν

2i
= πBiν

k
M +

∫ Λ

ν0

ImAi(ν, t)ν
kdν.

(15)

If ν0 < 0, the left and right cuts do overlap, one can
nevertheless use a contour passing between the cuts and

obtain the same dispersion relation (12). The disconti-
nuity is still given by the imaginary part along the cut
since the function is analytic in t and is real for t > 0
along this cut.

To work out the LHS of Eq. (12), we assume that Λ is
large enough to approximate the amplitudes by a Regge
form along the circle:

Ai(ν, t) = −βi(t)
τi(riν)αi(t)−1 + (−riν)αi(t)−1

sinπαi(t)
. (16)

τi, as for the RHS of Eq. (12), is the signature of the
exchange and ri > 0 is a scale factor. βi(t) and αi(t) are
the residue and the trajectory of the Regge pole. The ri
are scale factors required by dimensional analysis. The
exponent is such that the helicity amplitudes, cf. Eq. (9),
behave as sα(t) at large energies, cf. Eq (9).

Assuming this form, the integral along the circle of
radius Λ can be calculated analytically. The integration
is performed separately for the two terms in Eq. (16) as
they have different cuts, a left-hand cut for the first term
and a right-hand cut for the second. The contribution
of the contour integral in Eq. (12) of the first term, with
the change of variable ν = Λeiφ, reads

τiβi(t)
(riΛ)αi(t)−1

2i sinπαi(t)
Λk+1

∫ π

−π
eiφ(αi(t)+k)idφ

= τi(−1)kβi(t)
(riΛ)αi(t)+k

αi(t) + k
Λk+1 (17)

if αi(t) + k 6= 0. Since the Regge trajectories satisfy
empirically α(t) > −1 for |t| < 4 GeV2 [42, 43], the
moments k ≥ 1 always satisfy this constraint. The other
term yields the contribution to the contour integral:

−βi(t)
(−riΛ)αi(t)−1

2i sinπαi(t)
Λk+1

∫ 2π

0

eiφ(αi(t)+k)idφ

= βi(t)
(riΛ)αi(t)−1

αi(t) + k
Λk+1 (18)

if αi(t) + k 6= 0. As expected the LHS of Eq. (12) also
vanishes unless τi = (−1)k. We can then equal the two
sides of the sum rules and obtain the finite energy sum
rules:

πBi
νkM

Λk+1
+

∫ Λ

ν0

ImAi(ν, t)
νkdν

Λk+1
= βi(t)

(riΛ)αi(t)−1

αi(t) + k
.

(19)

It should be kept in mind that the FESR (19) are valid
only for odd (even) values of k for crossing-even (crossing-
odd) amplitudes. In our derivation, we explicitly as-
sumed a single Regge pole for each definite isospin scalar
amplitude. In general, the RHS of the FESR will involve
as many terms as there are Reggeons contributing to the
amplitude.

The sum rule (19) was derived using the known ana-
lytic structure of the scalar amplitudes at fixed t < 0.
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For large negative values of t singularities coming from
two fixed poles appear (box diagrams with internal pions
and nucleons). They manifest as an additional cut par-
allel to the unitarity cut. They are nevertheless far from
the forward angles region. The closest singularity of the
double spectral representation was shown to be at t =
−1.1 GeV2 and W > 1.6 GeV in Ref. [44]. In this work,
we will focus on the forward region −1 > t/GeV2 > 0 and
we will not have to include such an additional singularity
in the dispersion relations.

IV. THE LOW ENERGY SIDE OF THE SUM
RULES

Baryon spectroscopy has been an active field of in-
vestigations recently. There are five independent groups
determining the baryon spectrum from photoproduction
data: MAID [3], SAID [4], Bonn-Gatchina (BnGa) [5],
Jülich-Bonn (JüBo) [6] and ANL-Osaka (ANL-O) [7]. We
refer to Ref. [8] for a comparison of the different models
developed by these groups. In this section we will evalu-
ate the RHS of the sum rules (19) using the latest partial
waves analysis by the different groups.

The SAID and MAID groups have included pion pho-
toproduction on a neutron target in their analysis. Their

models for the scalar function A
(σ)
i are available for all

isospin configurations σ = 0,+,−. The latest JüBo and
BnGa models were developed for proton targets only.
Consequently we can only perform our analysis for the
neutral pion photoproduction γp → π0p since the LHC
discontinuity of γp → π+n requires the knowledge of
γn → π−p in the physical region by conjugation invari-
ance.

For our purposes, we quote the domain of validity of
the different models and the number of multipoles avail-
able in the models

MAID: Elab ≤ 1.66 GeV and L ≤ 5 (20a)

SAID: Elab ≤ 2.40 GeV and L ≤ 5 (20b)

JüBo: Elab ≤ 2.57 GeV and L ≤ 5 (20c)

BnGa: Elab ≤ 2.50 GeV and L ≤ 9. (20d)

We will now evaluate the RHS of the sum rule at fixed t
defined by1

S
(σ)
i (t, k) = πB

(σ)
i

νkM
Λk+1

+

∫ Λ

ν0

ImA
(σ)
i (ν, t)νk

dν

Λk+1
,

(21)

at 11 equally spaced points in the range t ∈ [−1, 0] GeV2.
The region of integration is indicated in Fig. 2. There is a

1 We will use the notation S
(σ)
2 for the sum rules performed with

A
′(σ)
2 .

region outside the physical region in which the amplitude
requires an extrapolation. In the unphysical region the
cosine of the scattering angle reaches unphysical values
cos θ < −1. But since the partial wave analyses are per-
formed at the level of multipoles, the cos θ dependence is
polynomial and given explicitly by Legendre polynomials.
For high angular momentum in the multipole expansion,
numerical overflow could appear as the expansion goes as
(cos θ)Lmax . We have checked that the SAID and MAID
scalar functions for all isospin components are continu-
ous in the unphysical region when we use the complete
model available online, i.e. Lmax = 5.

z = +1

z = -1

N π N Λ

0.0 0.5 1.0 1.5
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ν (GeV)

t(
G
eV

2
)

FIG. 2. Region under investigation in this work in the t − ν
plane. For fixed value of t, the integration region in ν is
indicated by the red solid line (the π − N threshold) and
the black dashed line (the cutoff). The physical region of
the process γN → πN is indicated by the gray shaded area,
limited by z = cos θ = ±1.
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FIG. 3. First moments of the RHS of the FESR Eq. (21)

for A
(0,+,−)
1,4 with SAID and MAID models. The lowest spin

particle on the corresponding Regge trajectory is indicated
for convenience. The dashed (solid) lines correspond to the
moment k = 1 or k = 2 (k = 3 or k = 4).

The quantity in Eq. (21), corresponding to the LHS
of the FESR, is presented in Figs 3 and 4 for all isospin
components and the first two moments (k = 1, 3 for the
crossing-even amplitudes and k = 2, 4 for the crossing-
odd amplitudes). We choose Emax

lab = 1.66 GeV (W =
2 GeV) corresponding to the end of the domain of the
MAID model. The cut-off in Eq. (21) is then, for fixed



6

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææææ

æ
æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-t HGeV2L

S2
H+LHt,kL

k=1,3 HhL

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æææææææ
æ

æ
æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

ææææææ
æ

0.0 0.2 0.4 0.6 0.8 1.0
-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

-t HGeV2L

SAID
MAID

S2
H0LHt,kL

k=1,3 HbL

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ
æ

æ
æ

ææææ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

ææææ
æ

0.0 0.2 0.4 0.6 0.8 1.0

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

-t HGeV2L

S2
H-LHt,kL

k=2,4 HΠL

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

-t HGeV2L

S3
H+LHt,kL

k=2,4 HΩ2L

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æææ

æ
æ

æ
æ

æ
æ

æ
æ

æææææ

0.0 0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.00

0.05

0.10

-t HGeV2L

S3
H0LHt,kL

k=2,4 HΡ2L
æ

æ

æææ
ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æææ
æ

0.0 0.2 0.4 0.6 0.8 1.0

-0.8

-0.6

-0.4

-0.2

0.0

-t HGeV2L

S3
H-LHt,kL

k=1,3 Ha1L

FIG. 4. First moments of the RHS of the FESR Eq. (21) for

A
(0,+,−)
2,3 with SAID, MAID models. The lowest spin particle

on the corresponding Regge trajectory is indicated for conve-
nience. The dashed (solid) lines correspond to the moment
k = 1 or k = 2 (k = 3 or k = 4).
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FIG. 5. The SAID and MAID invariant amplitude νA
(0,±)
1 at

t = 0. The ∆ resonance is responsible for the non vanishing

S
(0)
1 (t = 0, k).

valued of t,

Λ ≡ Λ(t) = Emax
lab +

t− µ2

4MN
. (22)

According to Eq. (19), the quantity S
(σ)
i (t, k) is pro-

portional to the residue β
(σ)
i (t) in the hypothesis of a sin-

gle Regge pole contribution. It is therefore instructive to
compare the prediction for these residues from the low
energy models and the expectation from Regge theory.
For Figs 3 and 4 we observe the following features:

1. The FESR for A
(0,−)
1 satisfy in good approximation

the factorization theorem of Regge pole residues,
i.e. they are to be proportional to t near the for-
ward direction. However, we observe significant a

deviation from factorization in A
(+)
1 . The same de-

viation appears for the same amplitude in η pho-
toproduction [34]. In Fig. 5, we observe that the
strong ∆ peak is responsible for the main contribu-

tion of A
(0)
1 at t = 0. In the other isospin ampli-

tudes A
(+)
1 and A

(−)
1 the baryon resonances cancel

to yield S
(±)
1 (t = 0, k) ≈ 0.

2. The quantities S
(0,−)
i (t, k) present a zero at t ∼

−0.8 GeV2, significantly away from the expected
position of the zero of the trajectory t ∼ −0.5

GeV2. A zero in the residue β
(−)
1 (t) is indeed

expected to cancel the unwanted pole at α(t ∼
−0.5 GeV2) = 0. Such a zero is called a non-
sense wrong signature zero (NWSZ) [37]. This zero
might be shifted by the addition of another contri-
bution (a daughter trajectory or a Regge cut) in
the sum rules. A non linear trajectory with a zero
at t ∼ −0.8 GeV2 would also explain this observa-

tion. The zero in S
(0)
i (t, k) can be explained by in-

voking the degeneracy between the ρ and a2 Regge
poles. The absence of resonances in pp scattering is
responsible for the degeneracy of the ρ and a2 tra-
jectories and nucleon couplings (while their photo-
couplings are a priori unrelated). A zero in the a2

nucleon coupling would be therefore also present in
the ρ nucleon coupling.

3. There are zeros in S
(0,−)
4 (t, k) at smaller values

t ∼ −0.3 GeV2. The natural explanation is iden-

tical to the one in S
(0,−)
1 (t, k): a NWSZ in the a2

nucleon coupling reflected in the ρ coupling by de-
generacy. However, in this case, the zero appears
shifted toward smaller t values. The comparison

between S
(0,−)
4 (t, k) and S

(0,−)
1 (t, k) then rules out

the explanation invoking a non linear trajectory as
their zeros appear at different t. We note also that
the MAID models do not produce a zero. It would
be interesting to investigate the cancellation be-
tween resonances producing (or not) this zero in
the MAID and SAID approaches.

4. At high energies, the dominant amplitude is A
(+)
4 .

The non-flip nucleon couplings of isoscalar trajec-
tories are known to be greater than for isovector
exchanges. Moreover in photoproduction there is
an additional relative factor of 3 at the photon ver-
tex between isoscalar and isovector exchanges. It

is therefore not surprising to observe that S
(0)
4 is

an order of magnitude larger than the other am-
plitudes. It comes from to the dominant ∆ peak.

Interestingly enough, S
(0)
4 presents a zero at large

|t|. The zero is around t = −0.75 GeV2 for the low-
est moment and moves to t = −0.6 GeV2 for k = 3.
This zero is certainly related to the dip in the dif-
ferential cross section for the neutral pion photo-
production. It is usually interpreted as NWSZ al-
though it is not necessary in odd signature Regge
poles, i.e. there is no ghost pole at α = 0 thanks
to the signature factor.

5. The factorization of Regge residues appears to be

satisfied in good approximation also in S
(0)
2 . How-

ever, for S
(+)
1 and S

(+)
2 it deviates significantly from

the expectation S
(+)
2 ∝ t, since A′2 = A1 + tA2 and

the ∆ peak in A
(0)
1 is also responsible for the non

zero S
′(+)
2 at t = 0. We note also that the pion

exchange amplitudes S
′(−)
2 do not vanish in the for-

ward direction as expected from the forward peak
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in the photoproduction of a charged pion.

6. The exchanges ω2 and ρ2 contributing to the am-

plitudes A
(0,+)
3 are poorly known and generally as-

sumed to be small. This is consistent with the high
energy data, as we will see, that do not favor a large
A3 contribution. This is in contrast with the sig-

nificantly non zero S
(0,+)
3 . It would be interesting

to find the origin of the large S
(0,+)
3 in the baryon

spectrum.

The LHS of the sum rules S
(σ)
i computed with the

SAID and MAID models are generally in agreement in
both magnitude and t−dependence. We note however
significant difference between SAID and MAID models

in magnitude and/or t−dependence in S
(−)
4 , S

(−)
2 and

S
(0)
3 . These moments are quite small compared to the

other amplitudes. It is then interesting to note that the
small differences between models are magnified in these
sum rules. For instance the differences in the moment
S

(0)
3 (t, k) come from the overall shift between the A

(0)
3

computed with the two models. This is illustrated in
Fig. 6.
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— t = -0.6 GeV2
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MAID

FIG. 6. Imaginary part of the scalar amplitudes A
(0)
3 (W, t) at

t = −0.1 GeV2 and t = −0.6 GeV2 computed with the SAID
and MAID models.

The advantage of the CGLN basis is the simple re-
lation between the scalar functions Ai and the leading
s−channel helicity amplitudes in Eq. (9). The t factor
from the factorization properties of Regge poles are read-
ily checked thanks to Eq. (10). Since the scalar func-
tions have also good t−channel quantum numbers and
the magnitudes of the s−channel nucleon couplings are
known for all exchanges [9] we could deduce the expected

relative strength of the S
(σ)
i . The pattern of zeros dis-

played in S
(σ)
i is instructive as, in the single Regge pole

approximation, it connects directly to the zeros in the
high energy s−channel amplitudes and hence in the high
energy observables. The properties of Reggeons are also
best described in their rest-frame, the t−channel. For
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FIG. 7. t−channel invariant amplitudes F
(0,+)
1 and F

(0,+)
3 ,

Eq. (23), with the MAID and SAID models. The solid
(dashed) lines are k = 3 (k = 1).
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FIG. 8. Lowest moments of the RHS of the FESR Eq. (21) for

A
(π0)
i = A

(0)
i + A

(+)
i with SAID, MAID and JüBo (Lmax = 5

is used) solutions for the process γp → π0p. The lowest spin
particle on the corresponding Regge trajectories are indicated
for convenience. The dashed (solid) lines correspond to the
moment k = 1 or k = 2 (k = 3 or k = 4).

natural exchanges the relevant combinations are

F1 = −A1 + 2MNA4, (23a)

F3 = 2MNA1 − tA4. (23b)

F1 (F3) is nucleon helicity non-flip (flip) in the
t−channel [20]. We now wish to compare the features
of the ρ and ω Regge poles obtained by the FESR in
other reactions. For this purpose we perform the appro-

priate combination of S
(σ)
i , from Eq. (23), and compare
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to the same quantities in γp → ηp, Fig. 8 of Ref. [34],
and πp→ πp, Fig. 2 of Ref. [35]. Our result is presented
in Fig. 7. We note a striking similarity between the pion
and eta meson photoproduction for the ω exchange. The
sum rules for the (t−channel) nucleon non-flip combina-
tion F1 displays in both cases a zero for t ∼ −0.6 GeV2.
The sum rules for (t−channel) nucleon flip combination
F3 displays in both cases a violation of factorization and
a zero for t ∼ −0.5 GeV2. The factorization of the ρ
pole residues is observed in both pion and eta meson
photoproduction for the nucleon flip combination but a
zero appears for the moment k = 3 only in pion photo-
production. This zero is a bit shifted compared to the
nucleon flip amplitudes for pion-nucleon scattering. The
zero appears at t ∼ −0.8 GeV2 for pion photoproduc-
tion and at t ∼ −0.5 GeV2 for pion-nucleon scattering.
In the ρ nucleon non-flip combination, the zero appears
at the same location t ∼ −0.15 GeV2 in both reactions.
This zero was responsible for the cross-over between π−p
and π+p elastic scatterings [35]. All these observations
suggest that the zeros in the Regge residues would come
from the nucleon vertex, as it is the common piece in all
these reactions.

It is worth mentioning that we do not possess any in-
formation about the error of the models presented. The
neutron target data set being smaller than the proton
target one, it would be interesting to observe the effect
of the recent data from CLAS on neutron target [45],
currently under investigation by the different groups, on

the isospin amplitudes A
(σ)
i .

For completeness we wish to compare the FESR ob-
tained with the JüBo and BnGa models2 with the SAID
and MAID models. The JüBo and BnGa model is only
available for reactions on a proton target. We can only
present the results for the process γp → π0p since the
process γp → π+n does not have good properties under
crossing symmetry (its u−channel discontinuity is given
by the s−channel discontinuity of γn→ π−p). The com-
parison between JüBo, BnGa, SAID and MAID models is
presented in Fig. 8. The cutoff Elab = 1.66 GeV (

√
s = 2

GeV) is used in the FESR and only the moment k = 2 or
k = 3 is presented. The Jübo and BnGa models compare
very well with the SAID and MAID solutions except for

S
(π0)
1 = S

(0)
1 + S

(+)
1 .

We can identify the cause of this difference by look-
ing at the invariant amplitudes at fixed t. We compare
in Fig. 9, the four scalar functions for the neutral pion
photoproduction reconstructed from the SAID, MAID,
BnGa and JüBo multipoles, as a function of the energy
at t = −0.2 GeV2. We note that all models compare
well, except for the A1 amplitude in the unphysical re-
gion (marked by the dashed line in the figure). Again it is

2 We use the latest version of the BnGa to be published soon. We
thank A. Sarantsev for providing us with their new multipoles
prior to their publication.

interesting to note that the FESR can amplify the small
differences between the various analysis. Here a word on
ANL-O when I’ll receive multipoles from Toru Sato.
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FIG. 9. The invariant amplitudes Ai with SAID, MAID,
BnGa (Lmax = 5 is used) and JüBo solutions for the process
γp → π0p at t = −0.2 GeV2. The beginning of the physical
region is indicated by the vertical black dashed line.

V. REGGE RESIDUES FROM FESR

From the FESR, Eq. (19), we can test if the amplitudes
are dominated by only one single Regge pole. Indeed, if
the LHS of the FESR in Eq. (19) involves only one Regge
pole, the combination (with Λ expressed in GeV)

β̂
(σ)
i (t) = S

(σ)
i (t, k)

α
(σ)
i (t) + k

Λα
(σ)
i (t)−1

, (24)

should be independent of the moment k (the Λ depen-
dence in the effective residue is understood). The calcula-
tion of the Regge residues form the low energy model re-

quires the knowledge of the trajectories α
(σ)
i (t). We shall

assume that the natural exchanges trajectories ρ, ω, a2

are exchange degenerate (EXD) [46]. We shall assume
also EXD between the unnatural exchanges π, b, h, a1 tra-
jectories:

α
(σ)
1,4 ≡ αN (t) = 0.9(t−m2

ρ) + 1 σ = {0,+,−} (25a)

α
(σ)
2,3 ≡ αU (t) = 0.7(t−m2

π) + 0 σ = {0,+,−}. (25b)

The trajectories Eq. (25) are compared to the meson
masses in Fig. 10. All masses are taken from the Review
of Particle Physics (RPP) [33], except for the ρ2 and
ρ4. There is no experimental evidence for the ρ2 and ω2

mesons. However, one could take the quark model pre-
dictions to estimate their masses. In Fig. 10 we take the
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FIG. 10. Chew-Frautchi plot for natural and unnatural parity
mesons. The solid lines indicate the two Regge trajectories
αN and αU in Eq. (25) used in this work.

mass of the ω2/ρ2 and ω4/ρ4 from the quark model pre-
dictions of Godfrey and Isgur [47] (the isoscalar mesons
are degenerated with the isovector in this model). In the
production region t > 0, all natural mesons are aligned
with the trajectory αN (t). The same degeneracy appears
for the unnatural mesons and αU (t), including the quark
model predictions for the 2−− and 4−− mesons. Accord-
ingly, we shall use αU (t) for the trajectory to extract

β̂
(0,+)
3 .

In Figs 11 and 12 we show the effective residues β̂
(σ)
i

computed with Eq. (24) using the cutoff Elab = 2 GeV
and the SAID model. To test the dominance of a single
Regge pole we show the first four moments. In all 12
amplitudes, the extracted residues are almost indepen-
dent of k. We note however that the moment k = 1 is
sometimes different from the other moments. This might
be due to the stronger influence of the unphysical region
in the lowest moment. We have checked that the effec-
tive residues are also approximatively independent of the
moment (except for the lowest one) also with the MAID
models. The effective residues extracted with the MAID
model are presented in Figs 13 and 14.

The dominance of one single Regge pole in each am-
plitude, with the trajectories (25), is then satisfied in a
very good approximation. In the absence of errors in the
SAID and MAID models, we cannot make a statement on
the origin of the slight differences between different mo-
ments. They could lie within the uncertainty of the low
energy model or come from the sensibility to the unphys-
ical region and/or originate from corrections (Regge cut
and daughter trajectories) beyond the single pole approx-
imation. These latter two effects are indeed suppressed
by taking higher moments.

As we mentioned above the ghost pole in the a2 (even
signature) amplitude should be cancelled by a zero in the
residue. This zero is expected around t = −0.5 GeV2.

This zero does not appear, except in β̂
(−)
4 with the SAID

model. The absence of a zero in β̂
(−)
1 suggests a strong

correction to the Regge pole approximation. However
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FIG. 11. Residue extracted from the RHS of the FESR
Eq. (24) for A

(0,+,−)
1,4 with the SAID model calculated with

Emax
lab = 2.0 GeV. The lowest spin particle on the correspond-

ing Regge trajectory is indicated for convenience.
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FIG. 12. Residue extracted from the RHS of the FESR
Eq. (24) for A

(0,+,−)
2,3 with the SAID model calculated with

Emax
lab = 2.0 GeV. The lowest spin particle on the correspond-

ing Regge trajectory is indicated for convenience.

the almost k independence of the effective residues sug-
gests that the RHS of the sum rules is saturated by only
one term. We do not have a solution for this apparent
paradox.

Since the Regge trajectories are fairly well given em-
pirically by Eq. (25), we have not studied the dependence
of the effective residues in the trajectories αN and αU .
The validity of the SAID model extends to Elab = 2.4
GeV. In our analysis of πN scatterings [35], we found a
good agreement between both sides of the sum rules for
Emax

lab > 2.0 GeV. Using the SAID model we can study

the evolution of the residues β̂
(σ)
i as the cutoff varies. We

display β̂
(σ)
i for k = 3 (or k = 2 for odd amplitudes) for

Emax
lab = 1.7, 2.0 and 2.3 GeV in Fig. 15. We observe a

cutoff dependence in the effective residues but the main
features remain the same in the range Emax

lab = 1.7 − 2.3
GeV.



10

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æææ

æ

æ

æ

æ

æ

æ

æ

æ
æææ

æ

æ

æ

æ

æ

æ
æ

æ
æææ

æ
æ

æ

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-t HGeV2L

k=1
k=3
k=5
k=7

Β
`

1
H0LHΡL

MAID

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-t HGeV2L

k=1
k=3
k=5
k=7

Β
`

1
H+LHΩL

MAID

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-t HGeV2L

k=2
k=4
k=6
k=8

Β
`

1
H-LHa2LMAID

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ
æ

ææææ
æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0

-0.1

0.0

0.1

0.2

-t HGeV2L

k=1
k=3
k=5
k=7Β

`
4
H0LHΡL

MAID

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

-t HGeV2L

k=1
k=3
k=5
k=7

Β
`

4
H+LHΩL

MAID
æææææ

æ
æ

æ
æ

æ

æ

æ

æ
æææ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

-t HGeV2L

k=2
k=4
k=6
k=8Β

`
4
H-LHa2L

MAID

FIG. 13. Residue extracted from the RHS of the FESR
Eq. (24) for A

(0,+,−)
1,4 with the MAID model. The lowest spin

particle on the corresponding Regge trajectory is indicated
for convenience.
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FIG. 14. Residue extracted from the RHS of the FESR
Eq. (24) for A

(0,+,−)
2,3 with the MAID model. The lowest spin

particle on the corresponding Regge trajectory is indicated
for convenience.

VI. HIGH ENERGY PREDICTIONS FROM
FESR

With the SAID model displaying nearly moment in-
dependence of the extracted residues, it is interesting to
investigate the predictions of the SAID model for the
observables in the Regge region. With this aim, we re-
construct the invariant amplitudes from the extracted

residues β̂i(t):

Â
(σ)
i = −β̂(σ)

i (t)
τ

(σ)
i + e−iπα

(σ)
i (t)

sinπα
(σ)
i (t)

να
(σ)
i (t)−1. (26)

The trajectories α
(σ)
i (t) are given by Eq. (25) and the

residues β̂
(σ)
i (t) by Eq. (24). Note that ν has to be ex-

pressed in GeV since in the calculation of the residues
with Eq. (24), Λ was expressed in GeV.

We have seen in the previous section that the a2 pole

residues β̂
(−)
1,4 do not incorporate the expected zero at

αN (t) = 0, i.e. t ∼ −0.5 GeV2. Thus the amplitudes

Â
(−)
1,4 reconstructed in this way will have an unwanted

pole at t ∼ −0.5 GeV2. This prevents us from making
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FIG. 15. Cutoff dependence of the LHS of the FESR with the
SAID models. Only the moments k = 4 (odd amplitudes) or
k = 5 (even amplitudes) are displayed. The chosen maximal
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√
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any reliable predictions involving these scalar amplitudes.
We then focus only on the prediction for neutral pion
photoproduction.
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FIG. 16. Prediction for differential cross section and beam
asymmetry for γp → π0p using the reconstructed scalar am-
plitudes from Eq. (26).

Fig. 16 shows the comparison between the data from
Ref. [48] and the prediction

dσ̂

dt
=

(~c)2

32π

[∣∣∣Âπ0

1

∣∣∣2 − t ∣∣∣Âπ0

4

∣∣∣2 +
∣∣∣Â′π0

2

∣∣∣2 − t ∣∣∣Âπ0

3

∣∣∣2] ,
(27)

where Âπ
0

i = Â
(+)
i + Â

(0)
i . According to the discussion

in the previous section, we discard the effective residues
with k = 1. We have calculated the prediction using the

k = 3 moment for the residues β̂
(σ)
i (t). Other moments



11

yield similar results since the effective residues are almost
k−independent for k > 1.

The overall magnitude of the differential cross sec-
tion is driven by the dominant ω exchange amplitudes

A
(+)
4 . For a better comparison with the data, we changed

slightly the intercept of the natural exchange trajectories
and used αN (t)− 0.15 = 0.31 + 0.9t in the Fig. 16. This
changes amounts to reduce the residues by 65%. When
we will perform a global fit, it will be therefore not sur-
prising to obtain a intercept for the ω trajectory some-
what lower than expected.

With this little change, the prediction is in very good
agreement with the data in the forward region −t ≤ 0.4
GeV. The energy dependence is, of course, coming from
the trajectories that are inserted by hand, i.e. not coming
from the LHS of the sum rules but the overall agreement
in shape is very nice in the forward direction. The dis-
crepancy at larger −t is not surprising since Regge cuts,
not considered in this prediction, are needed to describe
properly the data [20] for |t| > 0.5 GeV2. It is never-
theless impressive to see that a model in the low energy
region can actually make a reliable prediction for the high
energy and forward angles!

The overall normalization, important for the differen-
tial cross section, should play a less significant role in the
beam asymmetry Σ. The latter, expressed by the ratio

Σ̂ =

∣∣∣Âπ0

1

∣∣∣2 − t ∣∣∣Âπ0

4

∣∣∣2 − ∣∣∣Â′π0

2

∣∣∣2 + t
∣∣∣Âπ0

3

∣∣∣2∣∣∣Âπ0

1

∣∣∣2 − t ∣∣∣Âπ0

4

∣∣∣2 +
∣∣∣Â′π0

2

∣∣∣2 − t ∣∣∣Âπ0

3

∣∣∣2 , (28)

is sensitive to the ratio of unnatural and natural ex-
changes. Since the differential cross section, dominated
by the natural exchange, proved that the natural ex-
change has the correct t−dependence, the beam asym-
metry provides indication about the t−dependence of the
unnatural exchange amplitudes A′2 and A3.

The prediction for the beam asymmetry is essentially
flat and close to 1 at forward angles. The strong dip at
−t ∼ 0.6 GeV2 is of course related to the zero of the
dominant residue β̂

(0)
4 . As we mentioned the Regge cuts

traditionally invoked to fill this dip are not considered in
this prediction. In view of the beautiful agreement for
the differential cross section, we expected a better agree-
ment in the forward direction |t| < 0.4 GeV2 for the beam
asymmetry. This shows that the t−dependence of FESR
for the unnatural amplitudes might need improvement.
It would be interesting to investigate which resonances
influence more the t−dependence of the unnatural am-
plitudes.

We do not present the prediction for the target and re-
coil polarization as they are zero in the single Regge pole
approximation. As is well known the non-zero target and
recoil asymmetries at high energies suggest corrections to
the leading Regge pole approximation.

VII. COMBINED FIT OF THE FESR AND
OBSERVABLES
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FIG. 17. Comparison between the model given by Eq. (29)
and Tables III and IV and the observables.
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FIG. 18. Comparison between the model given by Eq. (29)
and Tables III and IV and the FESR using the SAID model.
The band is a the uncertainty used in the fit and equal to
60% of the maximum value.

In the previous section we showed that the LHS of

the sum rules, S
(σ)
i (t, k), suggested the dominance of a

leading Regge pole in each of the 12 isospin scalar am-
plitudes. The extraction of an effective residue for these
leading trajectories yielded reasonable predictions for the
high energy observables but nevertheless suggested cor-
rections to the leading Regge pole approximation. In
this section we continue our analysis by fitting jointly

the FESR S
(σ)
i (t, k) and the high energy observables.

For the high energy observables we restrict the data
set to the kinematical region Elab ≥ 3 GeV and −t ≥ 1
GeV2. In this region we have the following data sets:

• Differential cross section for γp → π0p from
Refs [48–51].
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• Ratio of differential cross section γn → π0n over
proton target from Refs [52] and [53].

• γp → π0p beam [54], target [55] and recoil asym-
metry [56].

• Differential cross section for γp → π+n from
Refs [57], [58], [59] and [60].

• Ratio of differential cross sections γn → π−p over
γp→ π+n from Ref. [61].

• γp→ π+p beam asymmetry from [62].

In order to enhance the small t region, where the pion
exchange dominates the γp→ π+n differential cross sec-
tion all the figures in this section are plotted with respect
to
√
−t.

Since we do not have any information about the un-
certainty of the LHS of the sum rules, we generated the

errors artificially. We used the S
(σ)
i (t, k) derived from the

SAID model with the cutoff Emax
lab = 1.66 GeV (W = 2.0

GeV) for the k = 2 or k = 3 moments. The uncertainty,
used in the fit, is taken as 60% of the maximal values (for
each scalar amplitude) and taken constant for all t. Note
that since A′2 = A1 + tA2, the uncertainty on A′2 grows
linearly with t.

In order to properly describe the observables and the

LHS of the sum rules S
(σ)
i (t, k), our models for the imag-

inary part of the scalar amplitudes involve a summation
of Regge poles-like terms:

ImA
(σ)
i (ν, t) =

∑
j

β
(σ)
ij (t)ναj(t)−1. (29)

Equaling the left and right hand sides of the sum rules,
this form yields, with Λ = Emax

lab + (t− µ2)/(4MN ),

S
(σ)
i (t, k) =

∑
j

β
(σ)
ij (t)

Λαj(t)−1

αj(t) + k
. (30)

Note that we use the expression (29) to fit A
′(σ)
2 , i.e. in

the formula (29) the index i = 2 stand for the amplitudes

A
′(σ)
2 . In each amplitude the summation involves at least

one term representing the leading Regge pole contribu-
tion. The parameters of the trajectories αj(t) = α0

j +α1
j t

of these first terms are constrained to lie in the interval
around the expected values in Eq. (25). When necessary
to describe the data and the LHS of the sum rules, we
add a second term. These corrections are parametrized
as a pole contribution but the parameters of their trajec-
tories are unconstrained. The trajectory parameters and
interpretation are summarized in Table III.

Since all S
(σ)
i (t, k) have only one extremum, we

parametrize the residues with a second order polynomial
and an exponential fall-off. The residues are (omitting
the indices (σ) and ij)

β(t) = ακ(t) tδ × β0e
bt(1− γ1t)(1− γ2t). (31)

TABLE III. Solution of the fit for the trajectories.

j α0
j α1

j (GeV−2) role

1 0.541 0.711 ρ pole
2 0.316 0.897 ω pole
3 0.699 1.100 a2 pole
4 0.401 0.661 ρ/ω pole/cut
5 -0.010 1.00 a2 cut
6 -0.007 0.615 π, b, h, a1 pole
7 1.031 1.770 ρ2, ω2 pole
8 0.197 0.330 ω cut

The first factor ακj (t) is need only in the A
(−)
1,4 and A

(0,+)
3

amplitudes. Since they involve the the even trajectories
a2, ρ2 and ω2. This factor cancels the unwanted ghost
pole at αj(t) = 0 that might appear in the physical re-

gion. Indeed the even signature amplitudes A
(−)
1,2,4 and

A
(0,+)
3 have the form

A
(σ)
i (ν, t) =

∑
j

β
(σ)
ij (t)ναj(t)−1

[
i− cot

π

2
αj(t)

]
(32)

and have a pole at αj(t) = 0. Note that we did not need

this factor in the π exchange amplitudes A
(−)
2 since we

expect the point απ(t = m2
π) = 0 to lie outside the fitting

region t < 0. Our fit, cf. Table III, led to α6(t) = 0 at√
t = 0.107 GeV close to the pion mass (and outside

the fitting region). For completeness we quote the full

expression for the odd signature amplitudes, A
(0,+)
1,2,4 and

A
(−)
3 :

A
(σ)
i (ν, t) =

∑
j

β
(σ)
ij (t)ναj(t)−1

[
i+ tan

π

2
αj(t)

]
. (33)

The second factor tδ in Eq. (31) imposes factorization
in the A1 and A′2 amplitudes. As can be seen in Table III,
the poles in these amplitudes are forced to have a factoris-
able form, except for the pion pole. It is necessary to have
a finite residue for the pion pole in order to describe the
forward peak in the charged pion photoproduction. The

h pole in A
′(+)
2 does not have the t factor either as the

FESR suggests a significant deviation from factorization.

The deviation from factorization in the A
(+)
1 amplitude

is modeled by a cut correction j = 8. The ω pole j = 1
in this amplitude has the factor t imposed.

Using the model for the residues described above we
now fit both the FESR and the observables. The 12
S

(σ)
i (t, k) provide independent and linear constraints on

the imaginary part of the scalar amplitudes. They are
computed at 11 equally spaced t in the region −1 >
t/GeV2 > 0. The observables are non independent and
quadratic constraints on the scalar amplitudes. We wish
to isolate subsets of observables sensitive only to subsets
of exchanges. The fit is therefore performed step by step.
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TABLE IV. Results of the fit for the residues Eq. (31).

κ δ β0 b γ1 γ2

ρ β
(0)
11 0 1 0.787 1.933 5.131 4.008

β
(0)
14 0 1 −3.418 1.942 2.47 0.928

ω β
(+)
12 0 1 6.657 3.655 0.023 -0.37

β
(+)
18 0 0 1.068 2.029 −0.842 5.401

a2 β
(−)
13 1 1 −2.361 1.437 −0.936 3.939

β
(−)
15 1 1 80.783 7.902 −0.059 0.001

b β
(0)
26 0 1 −0.678 0.431 2.975 −0.975

h β
(+)
26 0 0 0.517 1.680 −2.692 −0.834

π β
(−)
26 0 0 0.035 3.89 -22.95 9.01

ρ2 β
(0)
37 1 0 −0.222 11.366 −2.311 −3.538

ω2 β
(+)
37 1 0 −0.325 0.000 0.491 0.507

a1 β
(−)
36 0 0 −0.186 2.421 37.472 −1.130

ρ β
(0)
41 0 0 −0.507 2.184 5.810 −0.623

β
(0)
44 0 0 1.595 4.639 0.763 −0.033

ω β
(+)
42 0 0 1.911 1.518 0.181 1.459

β
(+)
44 0 0 3.627 2.223 −2.950 1.805

a2 β
(−)
43 1 0 0.726 3.171 −6.418 1.429

β
(−)
45 1 0 −47.357 27.854 1.550 −1.513

The results of our model are compared to the high en-
ergy data in Fig. 17 and both sides of the sum rules are
displayed in Fig. 18.

We start by fitting the differential cross sections (on
proton target and the ratio neutron over proton target)
and the target and recoil asymmetries for neutral pion

photoproduction with only A
(0,+)
1,4 . They are all sensi-

tive to the ω and ρ exchanges. The trajectories of the

poles j = 1 in A
(0)
1,4 and j = 2 in A

(0)
1,4, i.e. the ω and

ρ poles, are constrained around αN (t) = 0.9(t−m2
ρ). A

unconstrained cut is added in all these amplitudes. In
order to limit the number of parameters, we have tried
to use the same cut j = 4 in all four amplitudes. How-

ever the A
(0)
1 FESR needed a different cut to describe

properly the violation of factorization at t = 0. The cut
added to these amplitudes is needed to describe the tar-
get and recoil asymmetries (they would vanish with only
a ρ and an ω pole) but also to reproduce the FESR. We

then turn to the unnatural exchanges amplitudes A
(0,+)
2,3 ,

keeping A
(0,+)
1,4 fixed, and fit the neutral pion beam asym-

metry (as well as the FESR for A
(0,+)
2,3 ). The A

(0,+)
2 con-

tains only the b and the h poles and we impose degener-
acy of their trajectories, i.e. the only non zero residues

are β
(0,+)
2j with j = 6. As we mentioned above the pa-

rameters of the trajectory α6(t) are constrained around
αU (t) = 0.7(t−m2

π).

For the charged pion observables, we fit simultaneously
the differential cross sections (on proton target and the
ratio neutron over proton target), the beam asymmetry

and the A
(0,−)
1,2,3,4 FESR. Since the pion is responsible for

the forward peak in the differential cross section, we can-
not separate unnatural and natural exchanges easily as
we did for the neutral pion fit. For this fit, the initial
values for all the parameters related to the ρ amplitudes

A
(−)
1,4 are the results obtained for the neutral pion fit. We

also impose the initial condition γ1 = −30 in the π ex-

change amplitude A
′()
2 . Indeed the dominance of the pion

exchange in the forward direction and the charged pion
beam asymmetry Σ(

√
−t ∼ 0.1− 0.2) = 1 suggest a zero

in the pion amplitude around t ∼ 0.01 − 0.04 = −1/γ1.
We have used the same pole j = 6 in the π and a1 ampli-
tudes (as well as in the b and h amplitudes) according to
the discussion on the degeneracies between trajectories
in Sec. V. We have tried to impose the same j = 6 pole

for the ρ2 and ω2 amplitudes A
(0,−)
3 but we needed more

flexibility in the parametrization to describe their FESR

and the observables. The A
(0,−)
3 display significant FESR

but the neutral and charged pion beam asymmetries con-
strain the amount of unnatural exchanges. In order to
reproduce these asymmetries, we needed to suppressed
one of the unnatural amplitudes, which we choose to be

the A
(0)
3 . The ρ2 amplitudes influence both neutral and

charged asymmetries. By suggesting a large exponen-
tial suppression parameter b in the initial condition we
could obtain a good description of the asymmetries and
the other unnatural FESR. The cut term j = 5 in the

A
(−)
1,4 amplitudes is necessary to reproduce the shape of

the LHS of the FESR. Indeed the pole term needs to
vanish at the zero of the trajectory to remove the ghost

pole. With only one common pole, S
(−)
1 and S

(−)
4 would

have a zero at the same place. Since the zero in S
(−)
1 ,

around −t = 0.9 GeV2 is shifted from the zero in S
(−)
4 ,

around −t = 0.4− 0.8GeV2, we needed the cut j = 5 to

add flexibility in the fit and describe both S
(−)
1 and S

(−)
4

properly.

We then performed a global fit of all neutral and
charged pion observables and FESR, keeping the param-
eters of the isoscalar (ω, ω2 and h) and isovector negative
G-parity (a2, a1 and π) parameters fixed but fitting the
parameters of the isovector positive G-parity (ρ, ρ2 and
b). The final parameters are listed in Table IV.

As expected from our discussion in Sec. VI, the ω pole
trajectory α2(t) = 0.316 + 0.897t is very close to the val-
ues we used to match the predictions from the sum rules
and the data. The second contribution to the ρ pole,
j = 4 is difficult to interpret as daughter or a cut as its
intercept is similar to a pole. The terms j = 1 and j = 4
have similar trajectory and are interpreted together as
the ρ pole. The origin of the second term j = 4 is to
provide enough freedom to describe the FESR and the
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recoil and target asymmetry in neutral pion photopro-
duction. The second contributions j = 5 and j = 8 to
the a2 and ω amplitudes have an intercept of the order of
the unnatural pole j = 6 intercept. The natural and un-
natural amplitudes are then expanded to the same level
of approximation O(s0).

The number of points in each Si(σ) is arbitrary. We
have chosen 11 points equally spaced in the region 0 <
−t/GeV2 < 1. Although we haven’t played with the
number of points in the sum rules (nor with their error),
this choice led to a good balance between the FESR and
the observables. The FESR represent a third of the total
data point in the fit, 132 points, and contributes to a
little bit more that a third of the chi-squared per degree
of freedom, χ2/d.o.f.|FESR = 1.26. There are 258 exper-
imental data points, providing χ2/d.o.f.|exp. = 2.10.

We hope that our solution presented in Tables III
and IV will be a good starting point for a global fit of
the experimental data in the whole energy range (from
the resonance region to the Regge region) together with
the analyticity constraints. Of course, once the low en-
ergy part of the model is varying, the LHS of the sum
rules is no longer fixed. But once a cut-off Emax

lab , mo-
ments k and t values haves been chosen, it should be
straightforward to penalize, in the fit, the difference be-
tween the two side of the sum rules. Another possibil-
ity would be to parametrize only the imaginary part of
the amplitudes and to reconstruct the real part from the
dispersion relation. This procedure is however more in-
volved as it imposes to reconstruct the real part before
building the observables. One thus needs to perform the
integral in each t values of the experimental data points.
The first method requires to perform the integral only
at predefined t values and is certainly more suitable for
large database.

VIII. CONCLUSION

In this paper we analyzed the structure of the pion pho-
toproduction amplitudes using the Finite Energy Sum
Rules (FESR). In Sec. IV we compared the LHS of the
FESR obtained from various models used in baryon anal-
ysis. Although some differences exist between the differ-
ent models, we found that they all lead to the same qual-
itative results. The LHS of the FESR for all 12 isospin
amplitudes present at most one extremum and at most
one zero for |t| < 1 GeV2. We discussed the possible in-
terpretation of this zero in Regge theory. We also found
that in all models, isoscalar amplitudes violate the fac-
torization of Regge poles.

In Sec. V we tested the hypothesis of a single Regge
pole in each amplitude. The almost moment indepen-
dence of the effective residue indicated that indeed the
RHS of the FESR could be approximated by a single

Regge pole at leading approximation. We used these
residues extracted from the FESR to predict the observ-
ables at high energy. We saw that the t−dependence of
the differential cross section is well predicted by the low-
energy models. The prediction for the asymmetry, sen-
sitive to unnatural exchanges and next-to-leading Regge
contributions, however is less reliable. There is then room
for improvement in the unnatural amplitudes. With this
perspective, the sum rules and the high-energy data could
certainly improve the baryon analysis.

Finally in Sec. VII we built a flexible model allowing
us to fit the FESR and the high-energy observables. Our
solution involves the minimum Regge content in each am-
plitude: a leading Regge pole, whose trajectory is con-
strained around the expected values and, in the natural
exchange amplitude, a additional cut/daughter-like term.
The latter allowed us to match the zero pattern in the
LHS of the FESR and to describe the high-energy ob-
servables.

When extracting the properties of baryon resonances
in the 2-3 GeV region, the number of relevant partial
waves grows and, with them, the number of parameters
in the model. The technique we developed in this paper
will certainly help to constrain this growing number of
parameters. The solution we presented would be a good
starting point to perform a joint fit of the low and high-
energy data via the FESR, and eventually lead to a better
understanding of the excited baryon spectrum. To this
purpose, we made available our solution online on the
JPAC website [63]. The user also has the possibility to
upload his multipoles and display the resulting FESR.

Beyond baryon spectroscopy, the constraints provided
by analyticity will be essential in the search of ex-
otic mesons. We are therefore currently extending the
method presented in this paper to beam fragmentation
reactions [64].
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F́ısica en Altas Enerǵıas (Red FAE, Mexico).



15

[1] H. Al Ghoul et al. (GlueX), Phys. Rev. C95, 042201
(2017), arXiv:1701.08123 [nucl-ex].

[2] M. Battaglieri et al. (CLAS), “Jlab ap-
proved experiment e12-11-005,” (2011),
https://www.jlab.org/exp prog/proposals/11/PR12-
11-005.pdf.

[3] L. Tiator, D. Drechsel, S. S. Kamalov, and M. Van-
derhaeghen, Eur. Phys. J. ST 198, 141 (2011),
arXiv:1109.6745 [nucl-th].

[4] W. J. Briscoe, A. E. Kudryavtsev, P. Pedroni, I. I.
Strakovsky, V. E. Tarasov, and R. L. Workman, Phys.
Rev. C86, 065207 (2012), arXiv:1209.0024 [nucl-th].

[5] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov,
A. V. Sarantsev, and U. Thoma, Eur. Phys. J. A48, 15
(2012), arXiv:1112.4937 [hep-ph].
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P. Schmueser, H. J. Skronn, H. Wahl, and K. Wegener,
Phys. Lett. B29, 41 (1969).

[63] V. Mathieu, Proceedings, 16th International Conference
on Hadron Spectroscopy (Hadron 2015): Newport News,
Virginia, USA, September 13-18, 2015, AIP Conf. Proc.
1735, 070004 (2016), arXiv:1601.01751 [hep-ph].

[64] V. P. et al. (JPAC), “in preparation,” (2017).


