

High Performance, Federated,

Service-Oriented Geographic Information

Systems

Ahmet Sayar

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science,

Indiana University

February 2009

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee ________________________________

Prof. Geoffrey C. Fox (Principal Advisor)

Prof. Randall Bramley

Prof. Kay Connelly

Prof. Yuqing (Melanie) Wu

February 2, 2009

iii

© 2009

AHMET SAYAR

ALL RIGHTS RESERVED

iv

Acknowledgements

This dissertation has been achieved with the encouragement, support, and

assistance I received from many remarkable people. I would like to offer my sincere

gratitude to them.

First of all, I would like to thank my advisor Prof. Geoffrey C. Fox for his

support, guidance and an exceptional research environment provided by him along the

way of this endeavor. I deeply appreciate how much he contributed with his keen insight

and extensive experience. His advice was always invaluable contribution to my academic

life.

I would also like to thank the members of the research committee for generously

offering time, support, guidance and good will throughout the preparation and review of

this dissertation. I am very thankful to Prof. Randall Bramley for his suggestions and

remarkable inspiration, Prof. Kay Connelly and Prof. Yuqing (Melanie) Wu for their

constructive comments, kindnesses and keen intellects.

I want to thank all members of Community Grids Lab for the priceless moments

that we shared together. I have had great pleasure of working with these wonderful

people. I particularly thank Dr. Marlon Pierce for his supports and productive discussions

on various aspects of my research.

Finally, I am especially grateful to my family and friends for their contributions

throughout my graduate studies. I have received wonderful support from my daughter

v

Ayse Nazli, my parents, Mehmet and Semiha, my sisters, Selma, Zeynep and Hatice.

Their constant love and encouragement were invaluable. Their belief and generosity are

most profoundly acknowledged here.

vi

Abstract

Geographic information is critical for many earth related geo-science applications

such as building disaster planning, crisis management, early-warning systems and urban

planning. Decision making in Geographic Information Systems (GIS) increasingly relies

on analyses of spatial data in map-based formats. Maps are complex structures composed

of layers created from distributed heterogeneous data belonging to the separate

organizations. This thesis presents a distributed service architecture for managing the

production of knowledge from distributed collections of archived observations and

simulation data through integrated data-views. Integrated views are defined by a

federation service (“federator”) located on top of the standard service components.

Common GIS standards enable the construction of this system. However, compliance

requirements for interoperability, such as XML-encoded data and domain specific data

characteristics, have costs and performance overhead. We investigate issues of combining

standard compliance with performance. Although our framework is designed for GIS, we

extend the principles and requirements to general science domains and discuss how these

may be applied.

vii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1. Motivation .. 2

1.2. Why Federation .. 4

1.3. Research Issues .. 7

1.4. Organization of Dissertation .. 11

CHAPTER 2 LITERATURE SURVEY .. 13

2.1. Background .. 13

2.1.1. Geographic Information Systems (GIS) ... 13

2.1.2. Open GIS Standards and GIS Web Services .. 16

2.2. Related Works .. 20

2.2.1. Linked Environments for Atmospheric Discovery (LEAD) 20

2.2.2. Geosciences Network (GEON) ... 21

2.2.3. Laboratory for Advanced Information Technology and Standards (LAITS):

 22

CHAPTER 3 GIS WEB SERVICE DATA-GRID COMPONENTS 25

3.1. Geo-data and Common Data Models ... 26

3.2. Web Service Extensions to Standard Service Definitions 29

3.3. System Framework and Web-Service Components ... 32

3.3.1. Web Feature Service ... 33

3.3.2. Web Map Service .. 38

3.3.2.1. GetCapabilities Services... 39

3.3.2.2. GetMap Services .. 41

3.3.2.3. GetFeatureInfo Services ... 47

3.3.3. Browser event-based Interactive Map Client Tools.................................... 53

3.3.3.1. Integration of AJAX approach to GIS Web Service Invocations 59

3.3.3.2. AJAX & Web Services Synchronization Framework 61

3.3.3.3. A Use Case Scenario: Overlaying OGC‟s Maps with Google Maps ... 65

viii

CHAPTER 4 FINE-GRAINED FEDERATION OF GIS WEB-SERVICE

COMPONENTS ... 68

4.1. Geo-Data and integrated data views... 70

4.1.1. Hierarchical Data Definition and Multi-layer Maps .. 74

4.2. Federation Framework ... 75

4.3. Service Federation through Capability Aggregation .. 79

4.3.1. Extending WMS as a Federator Service .. 80

4.3.1.1. Federating through Context Document:.. 81

4.3.1.2. Federating through Aggregated WMS capability 83

CHAPTER 5 APPLICATIONS OF THE FEDERATION FRAMEWORK.............. 88

5.1. The National Infrastructure Simulation and Analysis Center (NISAC) 89

5.2. Pattern Informatics (PI), Earthquake Science .. 96

5.3. Virtual California (VC), Earthquake Science .. 103

CHAPTER 6 HIGH-PERFORMANCE SUPPORT IN INTEROPERABLE GEO-

DATA RENDERING ... 108

6.1. General Performance Issues ... 109

6.1.1. Distributed Nature of Data .. 109

6.1.2. Interoperability Cost – Common Data Model .. 110

6.1.3. Tough Data Characteristics ... 111

6.2. Extending OGC Standards with Streaming Data Transfer Capabilities 112

6.3. Application of Pull Technique for GML Parsing and Rendering 118

6.4. Adaptive load-balancing and Parallel Query Optimization 122

6.4.1. Problem Definition.. 124

6.4.2. Workload Estimation Table for Two-dim Range Queries 125

6.4.3. Utilizing WT for Range Query Optimization ... 130

6.4.4. Performance Evaluation .. 134

6.5. Just-in-time Map Rendering ... 139

6.6. Overall System Evaluation ... 143

6.6.1. Data and Process Flow .. 143

6.6.2. Test Case Scenario .. 145

ix

6.6.3. Base-line System Test ... 147

6.6.4. Performance Enhancement with Federation and Parallel Query

Optimization through WT tables ... 149

CHAPTER 7 ABSTRACTION OF THE FRAMEWORK FOR THE GENERAL

DOMAINS ... 157

7.1. Generalization Framework ... 158

7.2. Standard Service Interfaces and Mediators .. 161

7.3. Components Abstraction – ASFS and ASVS .. 162

CHAPTER 8 CONCLUSION AND FUTURE WORK ... 165

8.1. Summary and Conclusions ... 165

8.2. Summary of Answers to Research Questions .. 168

8.3. Future Research Directions .. 173

APPENDICES

APPENDIX A: Sample Request Instances to standard WMS Service Interfaces 176

i. GetCapability Request Instance ... 176

ii. GetMap Request Instance... 177

iii. GetFeatureInfo Request Instance ... 178

APPENDIX B: A Template Capabilities.xml File for WMS. 179

APPENDIX C: A Sample WMS Capabilities.xml Instance 180

APPENDIX D: A Sample Instance of WFS Capabilities file 183

APPENDIX E: A Simplified WMS Web Services Service Definition file (WSDL) 186

APPENDIX F: A Simplified WFS Web Services Service Definition file (WSDL) . 188

APPENDIX G: Sample GetFeature Request for WFS - for earthquake fault data .. 191

APPENDIX H: Sample Simplified GML Document for Earthquake Fault data. 192

APPENDIX I: Sample GetFeature Response .. 193

REFERENCES 194

Glossary 210

x

LIST OF FIGURES

Figure 1: Layered display – a map is composed of a set of multiple, distributed layers.

Figure is from (Koontz, 2003). ... 16

Figure 2: GIS framework with the proposed Web Service components and data flow. See

also Figure 3. ... 33

Figure 3: Illustration of client (WMS)-WFS interaction steps to get feature data............ 35

Figure 4: GetCapabilities operation steps. See Appendix C for a sample WMS

capabilities file instance .. 40

Figure 5: GetCapabilities Request Schema. See Appendix A for an instance of this

request schema. ... 40

Figure 6: GetMap operation steps. .. 42

Figure 7 : GetMap Request Schema. See Appendix A for an instance of this request

schema... 44

Figure 8: Sample output of the above map images generating code 46

Figure 9: A snapshot of response to getFeatureInfo. It is actually an attribute querying of

earthquake seismic data layer shown on the map image. ... 49

Figure 10: Creating getFeatureInfo reponse by using a stylesheet and XSLT processor.

See Figure 10 for generic stylesheet for GML. ... 49

Figure 11: GetFeatureInfo operation steps ... 50

Figure 12: GetFeatureInfo Request Schema. See Appendix-A for an instance of this

request schema. ... 51

Figure 13: Generic XSL file for HTML creation from the GML in order to create

responses for the getFeatureInfo. .. 53

file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863131
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863131
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863132
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863132

xi

Figure 14: Illustration of major event types .. 56

Figure 15: Event-based interactive map tools capable of interacting with any map server

developed in Open Geographic Standards. ... 57

Figure 16: Standard interactive map tools extended with capabilities of integrating map

images with outputs of Geo-science grid applications. .. 58

Figure 17: (A) Pure AJAX Approach, (B) Web Services Approach, and (C) Hybrid

(AJAX + Web Services) Approach... 62

Figure 18: Integration of Google Maps with OGC WMS by using architecture defined in

Figure 16. .. 65

Figure 19: Data life-cycle and integrated data-view creation. .. 72

Figure 20: Federated GIS framework. .. 76

Figure 21: Federator's aggregated capability metadata. .. 85

Figure 22: Example federated data sets defined in federator‟s metadata. 87

Figure 23: NISAC SOA Demonstration Architectural Diagram and Data Flow. 92

Figure 24: Sample Florida State Electric Power (red lines) and Natural Gas Components

(blue lines) as overlays on a Satellite images provided by NASA WMS. 96

Figure 25: A general GIS Grid orchestration scenario involves the coordination of GIS

services, data filters, and code execution services. These are coordinated by HPSearch . 99

Figure 26: WMS Client or so called event-based interactive map tools. Google Map layer

is superimposed by the plotting of the PI outputs. It shows probability of earthquake

happenings. Red ones show high probabilities. .. 102

Figure 27: Virtual California Operation steps founded over proposed Service-oriented

GIS framework.. 106

file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863141
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863144
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863144
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863145
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863145
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863146
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863147
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863150
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863154
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863154

xii

Figure 28: Event-based interactive user interface extended for Virtual California needs. It

enables creating map movies by playing framework (created from time-series data)

successively. Each framework is actually a map image. .. 107

Figure 29: Problem illustration with two different types of data sets 112

Figure 30: Streaming data transfer using NaradaBrokering publish-subscribe topic based

messaging middleware. ... 114

Figure 31: Comparisons of Streaming vs. Non-Streaming data response timings from

source to federator or WMS. ... 117

Figure 32: Performance comparison of two XML data processors, pull parsing and

Document Object Model by using dom4j. .. 122

Figure 33: Architectural comparisons of parallel fetching with straightforward single

thread fetching .. 123

Figure 34: The recursive binary partitioning routine .. 127

Figure 35: The routine to find out the best partition cut point according to given error rate

... 128

Figure 36: Sample query and corresponding partitions in WT. total query size 32MB and

threshold data size 5MB, and error rate .20 .. 129

Figure 37; Illustration of query decomposition with a sample scenario 130

Figure 38: Example scenario of the partitioning a region into 5 sub-regions 131

Figure 39: A sample “GetFeature‟ query for global hotspot (earthquake seismic data) sent

to WFS for a specific range defined in bbox-i. ... 132

Figure 40: Streaming Data fetching through publish/subscribe based messaging

middleware .. 134

file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863155
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863155
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863155
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863156
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863157
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863157
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863160
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863160
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863161
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863162
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863162
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863163
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863163
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863164
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863165
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863167
file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863167

xiii

Figure 41: Parallel query optimization performance results ... 136

Figure 42: Overhead times coming from parallel query optimization 139

Figure 43: Map rendering process steps ... 140

Figure 44: Average timings for map-image creation steps ... 141

Figure 45: Image conversion timings based-on pixel resolution values 143

Figure 46: Test setup for Federator-oriented enhancement analysis and evaluations 144

Figure 47: Test-case scenario - test setup ... 146

Figure 48: The overall (end-to-end) average response times - straightforward sequential

data access to data sources. ... 148

Figure 49: Average response times - parallel data access through the federator 151

Figure 50: Average response times - parallel data access through the federator and WT

tables ... 154

Figure 51: Comparison of the average response times of the straightforward and

optimized parallel query approaches. ... 156

Figure 52: Application Specific Information System (ASIS) ... 159

file:///C:\Documents%20and%20Settings\asayar\Desktop\Thesis%20Docs\THESIS\drafts\after%20marlon's%20reviews\after%20defense\thesis_asayar16-mep3.docx%23_Toc222863179

xiv

LIST OF TABLES

Table 1: Data access times (from federator or WMS) while using (1) streaming and (2)

non-streaming data transfer techniques. ... 116

Table 2: The performance values of DOM and Pull parsing (Xpp) over GML data.

Dashed-line values imply memory exception. .. 120

Table 3: Standard deviations of average timings for total rendering 121

Table 4: Parallel data access/query times based on (1) changing threshold query size used

for building WT and (2) the #of worker nodes -WFS. ... 135

Table 5: Overhead times based on number of partitions to be applied 138

Table 6: Average timing values for map image processing steps 140

Table 7: Average timings and standard deviation values of object to image/JPEG

conversion ... 142

Table 8: The average response times for straightforward sequential data access 147

Table 9: The standard deviations for the average response times given in Table 8 147

Table 10: Average Response times - parallel data access through the federator. 150

Table 11: Standard deviations for the average values given in Table 10 150

Table 12: Average Response times - parallel data access through the federator and WT

tables ... 153

Table 13: Standard deviations for the values given in Table 12 153

Table 14: Comparison of average response times - optimized parallel data access with

sequential access ... 155

Table 15: Components and common data model matching for generalization of GIS to

ASIS. Two selected domains are Astronomy and Chemistry. .. 164

1

CHAPTER 1

INTRODUCTION

Geospatial information is critical to effective and collaborative decision-making

in earth-related geo-science applications such as disaster planning, crisis management,

early-warning systems and urban planning. Decision making in Geographic Information

Systems (GIS) (Delaney, 2007) increasingly relies on analyses of spatial data in map-

based formats. Maps are complex structures composed of layers created from distributed

heterogeneous data and computational resources belonging to separate virtual

organizations from various expert skill levels.

We propose a Service-oriented Architecture (SOA) (Erl, 2005) for understanding

and managing the production of knowledge from distributed observations, simulations

2

and analysis through integrated data-views in the form of multi-layered map images

(Chapter 4). Our proposed distributed infrastructure is based on a common data model,

standard GIS Web-Service components, and a federator component. The federator

federates standard GIS data services and enables unified data access/query and

display/analysis over integrated data-views through event-based interactive display tools

(Section 3.3.3). Integrated data-views are defined in the federator‟s capability metadata as

composition of layers provided by standard GIS Web-Services. Our grid approach is

based on the WS-I+ Interoperability standards ("WS-I," 2002).

1.1. Motivation

Geographic Information Systems (GIS) are systems for creating, storing, sharing,

analyzing, manipulating and displaying spatial data and associated attributes. The

general purpose of GIS is extracting information/knowledge from the raw geo-data. The

raw data is collected from sensors, satellites or other sources and stored in databases or

file systems. The data goes through the filtering and rendering services and is presented

to the end-users in human recognizable formats such as images, graphs, charts, etc. GIS is

used in a wide variety of tasks such as urban planning, resource management, emergency

response planning in case of disasters, crisis management and rapid responses, to name a

few.

Over the past decade, GIS has evolved from the traditional centralized mainframe

systems to desktop systems to modern collaborative distributed systems. Centralized

systems provide an environment for stand-alone applications in which data sources,

rendering and processing services are all tightly coupled and application specific.

Therefore, they are not capable of allowing seamless interaction with the other data or

3

processing/rendering services. On the other hand, the distributed systems are composed

of geographically distributed and loosely coupled autonomous hosts that are connected

through a computer network. They aim to share data and computation resources

collaborating on large scale applications.

Modern collaborative GIS requires data and computation resources from

distributed virtual organizations to be composed based on application requirements, and

accessed and queried from a single uniform access point over the refined data with

interactive display tools. This requires seamless integration and interaction of data and

computation resources. The resources span over organizational disciplinary and technical

boundaries and use different client-server models, data archiving systems and

heterogeneous message transfer protocols.

Furthermore, GIS is particularly used in emergency early-warning systems like

homeland security and natural disasters (earthquake, floods, etc), and crisis management

applications require quick responses. However, because of the characteristics of geo-data

(large and unevenly distributed data such as the distribution of human population and

earthquake seismic events), time-consuming rendering processes and limited network

bandwidth, the increasing and optimizing performance and responsiveness stand as the

toughest challenges in distributed modern GIS (Peng & Tsou, 2003).

These problems have motivated us to research the application of techniques in

distributed and service oriented computing to Geographic Information Systems. As a

consequence of this research, we have developed a framework that enables sharing and

integration of heterogeneous data and computational resources for the collaborative

decision support applications requiring quick response times.

4

1.2. Why Federation

The compassable nature of the standard GIS data services (Web Map Service and

Web Feature Service) (Chapter 3) inspired us to develope a federated information system

framework enabling both application-based hierarchical data definitions (architectural

features) (Chapter 4) and high performance designs based on load-balancing and parallel

processing (high performance features) (Chapter 6).

Our proposed federated service-oriented information system framework (Chapter

4) must support collaborative decision making over integrated data views, described in a

layer-structured hierarchical data provided by a federator. The users access the system as

though all the data and functions come from one site. The data distribution and

connection paths stay hidden and formulated as hierarchical data defined in federator‟s

capability metadata (see Section 4.1.1). The users access the system through integrated

data-views (maps) with the event-based interactive mapping display tools. Tools create

abstract queries from the users‟ actions through action listeners and communicate with

the system through the federator.

Federation is based on federating service-oriented standard GIS Web Services‟

capabilities metadata and their standard service interfaces describing data access/query

and rendering. Capability (for more information see APPENDIX B and C) is a metadata

about the data and services together. It includes information about the data and

corresponding operations with the attribute-based constraints and acceptable

request/response formats. It also enables developing application-based, standard,

interactive, re-usable client tools for data access/query and display.

5

Creating such a federated design has some advantages in data sharing,

performance and system expansion (interoperability and extensibility). It also removes

the burdens of accessing heterogeneous data sources with resource specific client tools

and enables attribute based unified querying over federated data sources from a single

access point.

Architectural Design Features

A federated, service-oriented GIS framework is composed of two parts. One part

consists of interoperable GIS component services. These services should be compliant

with existing standards such as Open Geospatial Consortium. , The other part is the

federator, which composes the component services according to the application

requirements by providing integrated data-views in its aggregated capability metadata.

We have developed a federator that federates the standard GIS Web Services

components through aggregation of their capabilities metadata. This effectively presents

a single database image to the user defined in its aggregated capability metadata. This

enables application-based data sets to be composed (which is defined in capability

metadata) and unifies data access/query/display from a single access point.

In order to create a complete system from the users‟ point of view, we have

developed event-based interactive map display tools with AJAX technologies integrated

with Web Services. The user‟s interaction with the system is carried over the integrated

data views (map) with event-based interactive map tools (drag and drop, zoom in-out

etc.). Event-based interactive map tools are generic tools enabling seamless interaction

with the system through federator or any other compatible Web Map Service (WMS).

6

A map is an application-based, human-recognizable, integrated data display

composed of layers. A layer is a data rendering of a single homogeneous data source.

Data sources are standard Web Map Services (WMS) and Web Feature Services (WFS)

defined by Open GIS Standards. Layers are created from the structured XML-encoded

common data model (GML) or binary map images (raster data). Heterogeneous data

source are integrated to the system through the WFS in the form of GML and through

WMS in the form of binary map images. WFS and WMS serve these data with standard

service programming interfaces and capability metadata describing their data and

resources to enable clients to make valid queries.

High-performance Design Features

The high-performance design issues addressed in our proposed framework can be

grouped into two types: extending the service specifications of open geographic standards

(Chapter 6.2 and 6.3) and federation (Chapter 6.4).

The first group of design issues is related to the extension and enhancements of

Open Geospatial Consortium (OGC) ("OGC," 1994) standards. We extended the OGC‟s

online service descriptions with the streaming data transfer capabilities. At the service

programming interface level, these services provide standard functionalities and

interfaces, but the data payloads are transferred using topic-based, publish/subscribe

messaging middleware.

The second group of design features is concerned with how to federate multiple

services (including optimized services of the first group) into a more efficient and

capable integrated system. The requirements of such a federation framework have

inspired us to develop novel load balancing and parallel processing techniques. Optimal

7

partitioning of geo-data is difficult to achieve because the data (polygons, line-strings,

points) are neither distributed uniformly nor of similar sizes. The load they impose varies

depending on query range attributes (the geographic location or bounding box of the

query). It is difficult to develop a fair partitioning strategy that is optimal for all range

queries.

Federating services can provide stateful access to stateless GIS Web Services and

also optimize the load balancing and parallel queries by taking the regions of data density

or sparsity into consideration (Chapter 6). The federator‟s aim is to turn OGC compliance

requirements into competitiveness and to provide high-performance responsive services

that still meet the interoperability and extensibility requirements.

Extending the Architecture to other Science Domains

Our experience with GIS systems has shown that our federated, service-oriented

service model can be generalized to apply to other application areas such chemistry and

astronomy. We call this generalized framework Application Specific Information System

(ASIS) and give blueprint architecture in terms of principles and requirements (Chapter

7). Developing such a framework requires first defining a core language (such as GML –

Geographic Markup Language) expressing the primitives of the domain, second, key

service components, service interfaces and message formats defining services

interactions, and third, the capability file requirements (based on core-language) enabling

inter-service communications to link the services for the federation.

1.3. Research Issues

Our proposed service framework will allow us to investigate the following

research issues.

8

Interoperability and extensibility: We first investigate the adoption of open

geographic standards from the OGC to create an interoperable Geographic Information

System with standard data models, service descriptions, service programming interfaces,

and service capability metadata. Second, we investigate the application of Web-Service

and service-oriented Architecture (SOA) principles (Newcomer & Lomow, 2005) to our

GIS data-grid (Chapter 3).

We also propose standard event-based interactive query and display tools

enhanced with “Asynchronous JavaScript and XML” (AJAX) technologies for the users

to interact with the standard GIS Web services seamlessly.

Research Questions:

 How to integrate Web Service principles with features (data and rendering

services) of GIS to enable fine-grained dynamic information presentation?

o Incorporating widely accepted Open GIS Standards with Web Services

 How to merge Asynchronous JavaScript and XML (AJAX) with Web

Services clients for event-driven, browser-based interactive map tools?

o Mediating HTTP-based AJAX tools with Simple Object Access

Protocol (SOAP)-based GIS Web Services

Federation: We propose a framework for federation of standard GIS data services

enabling unified data access/query/display through event-based interactive tools over

integrated data-views (Chapter 4). Federation is achieved by aggregating GIS services‟

capability metadata in to federating service.

We investigate how to use capability federation to develop application-based,

hierarchical data definitions in a federated capability description. We first define GIS

9

Web Services and their service programming interfaces to allow inter-service

communication through capability metadata exchange and then define a aggregating

service that enabling federation through the combined capability metadata of its

constituent services.

We also investigate the principles for generalizing the proposed federated GIS

system for general science domains such as chemistry and astronomy in terms of

components and framework requirements.

Research Questions:

 How to make attribute based federated query over distributed heterogeneous

geo-data sources?

o Capability metadata aggregation of standard GIS Web Services

o Unified data access/query from a single access point (with the help of

federator‟s aggregated capability metadata)

 How to generalize the domain-specific federation framework (proposed for

GIS) to other science domains such as astronomy and chemistry?

o Defining architectural requirements

o Analyzing constraints and limitations

Performance and Responsiveness: We investigated the ways to turn compliance

requirements into competitiveness in Geographic Information Systems built on XML-

encoded common data models. Interoperability requirements bring up some compliance

costs. XML‟s emergence as the de facto standard for encoding tree-oriented, semi-

structured data has brought significant interoperability and standardization benefits to

distributed computing. On the other hand XML representations of data tend to be

10

significantly larger than binary representations of the same data. The larger document

size means that the greater bandwidth is required to transfer the data, as compared to the

equivalent binary representations.

In addition, due to the architectural features (integration of autonomous

resources), the system spends a lot of time on query/response transformations for

relational-database to XML-encoded data model mappings.

We first investigated the performance efficient designs for XML structured data

transfer and processing (parsing and rendering). Second, we research federation-oriented

design features to enable better performance for Geographic Information Systems

(Chapter 4). A federator inherently provides workload sharing by fetching the different

data sets from separate resources to create multi-layered map image. On the other hand, a

layer itself can also be split into smaller bounding box (ranges) tiles and each tile can be

farmed out to a worker feature and map services.

The spatial data is defined in location (range) attribute and is unevenly distributed

and variably sized. Because of these stringent characteristics and dynamic nature of data,

it is not easy to perform efficient load balancing and parallel processing. In order to solve

this, we propose and adaptive workload estimation algorithm to optimize the range

queries (Chapter 6.4).

Research Questions:

 How to make responsive data access/query over the data defined and queried

by range attributes?

o Sharing an unpredictable workload (whose load changes by range

query) to the workers in a most efficient way

11

o Adaptive load balancing and unpredictable workload estimation

o Parallel data access/query via attribute-based query decomposition

 How to apply pull-parsing technique to GML data rendering, and analyzing

the limitations of the other parsing techniques.

1.4. Organization of Dissertation

This introduction consists of an overview of the Geographic Information Systems,

architectural and high-performance design features of the federated services, a summary

of the outstanding issues that relate to the research outlined in this thesis, and a discussion

on the contribution of the thesis. The remaining of the thesis is organized as follows.

Chapter 2 consists of two parts. The first part gives background information about

Geographic Information Systems, Open GIS Standards and Web Services architectures.

The second part reviews of the related projects.

Chapter 3 describes the design principles and components of the federated

information Grid architecture. The components are developed in accordance with Open

GIS Standards and integrated with Web Service principles at both the data and

application level.

Chapter 4 investigates a fine-grained service federation architecture built over the

GIS Web Service components. It enables unified data access/query and display over

integrated data views.

Chapter 5 provides three substantial projects that we have used to validate the

practical applicability of our approach. These projects are Pattern Informatics (PI),

12

Virtual California (VC) and the National Infrastructure Simulation and Analysis Center

(NISAC) projects.

Chapter 6 first introduces common performance issues and then presents general

and federator-oriented performance enhancing techniques. The chapter ends with overall

system evaluations based on applications to a real Geo-science application.

Chapter 7 examines the design principle and requirements of the proposed

framework for the general science domains and gives a blueprint architecture.

Finally, in Chapter 8, we give answers to the research questions identified in

Chapter 1, outline future research directions, and conclude the dissertation.

13

CHAPTER 2

LITERATURE SURVEY

2.1. Background

2.1.1. Geographic Information Systems (GIS)

Geographic Information Systems (GIS) (Peng & Tsou, 2003) are systems for

creating, storing, sharing, analyzing, manipulating and displaying geospatial data and the

associated attributes. GIS introduces methods and environments to visualize, manipulate,

and analyze geospatial data. The nature of the geographical applications requires

seamless integration and sharing of spatial data from a variety of providers ("crisisgrids,"

2006).

14

The general purpose of GIS is modeling, accessing, extracting and representing

information and knowledge from the raw geo-data. The raw data is collected from

sources ranging from sensors to satellites and stored in databases or file systems. The

data goes through the filtering and rendering services and is ultimately presented to the

end-users in human recognizable formats such as images, graphs, and charts. GIS is used

in a wide variety of tasks such as urban planning, resource management, emergency

response planning in case of disasters, crisis management, and rapid response.

Over the past two decades, GIS has evolved from traditional centralized

mainframe and desktop systems to collaborative distributed systems. Centralized

systems provide an environment for stand-alone applications in which data sources,

rendering services, and processing services are all tightly coupled and application

specific. Therefore, they are not capable of allowing seamless interaction with the other

data or processing/rendering services. On the other hand, the distributed systems are

composed of autonomous hosts (or geographically distributed virtual organizations) that

are connected through a computer network. They aim to share data and computation

resources collaborating on large scale applications.

Modern GIS requires data and computation resources from distributed virtual

organizations to be composed based on application requirements and to be queried from a

single uniform access point over the refined data with interactive display tools. This

requires seamless integration and interaction of data and computation resources. The

resources span organizational, disciplinary, and technical boundaries and use different

client-server models, data archiving systems and heterogeneous message transfer

protocols.

15

The primary function of a GIS is to link multiple sets of geospatial data and

graphically display that information as maps with potentially many different layers of

information (see Figure 1). Each layer of a GIS map represents a particular “theme” or

feature, and one layer could be derived from a data source completely different from the

other layers (Koontz, 2003). As long as standard processes and formats have been

arranged to facilitate integration, each of these themes could be based on data originally

collected and maintained by a separate organization. Analyzing this layered information

as an integrated entity (map) can significantly help decision makers in considering

complex choices.

16

Figure 1: Layered display – a map is composed of a set of multiple, distributed layers. Figure is from

(Koontz, 2003).

2.1.2. Open GIS Standards and GIS Web Services

In order to achieve such a layered display (Figure 1) with layers coming from

autonomous, heterogeneous data resources provided by various virtual organizations, the

domain-specific common data models, standard service functionalities and interfaces

need to be described and widely adopted. There are two well-known and accepted

standards bodies in the GIS domain aiming at these goals. These are Open Geospatial

Consortium ("OGC," 1994) and the Technical Committee tasked by the International

17

Standards Organization (ISO/TC211) ("ISO," 2008). The standards bodies‟ aims are to

make the geographic information and services neutral and available across any network,

application, or platform by defining common data models and online service descriptions.

The standards bodies specify methods, tools and services for data management,

accessing, processing, analyzing, presenting and transferring such data in digital form

between different users and systems. ISO/TC211 defines a high-level data model for

public sectors, such as governments, federal agencies, and professional organizations

(Peng & Tsou, 2003). On the other hand, OGC is interested in developing both abstract

definitions of Open GIS frameworks and technical implementation details of data models

and to a lesser extent services. They are compatible with each other. ("JAG," 1999)

OGC‟s standards definition for data model (Geographic Markup Language -

GML) (Cox, Daisey, Lake, Portele, & Whiteside, 2003) and online data services are well-

known and widely adopted. As more GIS vendors are releasing compatible products and

more institutions use OGC standards in their research and implementations, OGC

specifications are becoming de facto standards in GIS community, and GML is rapidly

emerging as the standard XML encoding for geographic information.

The Web Map Service (WMS) (Beaujardiere, 2004; Kolodziej, 2004) and the

Web Feature Service (WFS) (Vretanos, 2002) are two major services defined by OGC for

creating a basic GIS framework enabling information rendering of heterogeneous data

sources as map images. WMS is the key service to the information rendering and

visualization. WMS produces maps from the geographic data in GML that is obtained

from various WFS instances. It also enables attribute and feature-based data querying

over data display by its standard service interfaces. This general approach is similar to the

18

SkyServers (Gray et al., 2002) defined by the National Virtual Observatory community.

OGC‟s WFS implementation specification defines interfaces for data access and

manipulation operations on geographic features. Geographic features are basically earth-

related data definitions such as rivers, lakes, earthquake seismic records etc. Via its

standard service interfaces, a web client can combine, use and manage geo-data from

different sources by invoking several standard operations (Vretanos, 2002). By adopting

interoperable Open GIS Standards (that is, using GML and standard online services

WMS and WFS) for our distributed computing research infrastructure, we open the door

of interoperability to this growing community.

In addition to the domain-level interoperability and extensibility, information

systems need cross-language, operating system, and platform interoperability to enable

data sharing/federating and analysis over autonomous heterogeneous resources provided

by various organizations. Web Service standards (Booth et al., 2004) are a common

implementation of Service Oriented Architectures (SOA) ideas, giving us a means of

interoperability between different software applications running on a variety of platforms.

Grid computing (Foster & Kesselman, 2004; Fox, 2004) (Berman, Fox, & Hey, 2003) has

a converging Web Service-based architecture. By implementing Web Service versions of

GIS services, we can integrate them directly with scientific application Grids (Atkinson

et al., 2005; Aydin et al., 2008).

A Web Service is an interface that describes a collection of operations that are

network accessible through standardized XML messaging (Kreger, 2001). Web Services

collectively are a software framework that is designed to support interoperable machine-

to-machine interactions over a network. A typical service has an interface described in a

19

machine-processable format called the Web Service Description language (WSDL)

(Christensen, Curbera, Meredith, & Weerawarana, 2001). Other systems interact with the

Web Services in a manner prescribed by its description using SOAP-messages (Simple

Object Access Protocol), typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards. Representational State Transfer (REST)

(Fielding & Taylor, 2002; Khare & Taylor, 2004) is a variation of this architecture that

replaces WSDL with standard HTTP operations (GET, POST, PUT, DELETE). REST

can be used to transmit SOAP messages as well as other formatted transmissions such as

RSS (Melamed & Keidar, 2004), ATOM, or JSON (Crockford, 2006).

The major difference between Web Services and other component technologies is

that Web Services are accessed via the ubiquitous Web protocols such as HTTP using

Extensible Markup Language (XML)-encoded messages instead of object-model-specific

protocols such as Distributed Component Object Model (DCOM) (Redmond, 1997),

Remote Method Invocation (RMI) ("RMI," 2004), or Internet Inter-Orb Protocol (IIOP)

(Kirtland, 2001). One typically builds services to be stateless and places the distributed

system state in a single state machine that aggregates clients to services. This simplifies

several well-known problems in distributed object systems (such as fault tolerance),

enabling Web Service-based systems to have better scalability.

Adopting and combining GIS Open Standards and Web Service standards and

implementing Web Service versions of standard GIS services permit applications to span

programming languages, platforms and operating systems. It also enables application

developers to integrate the third party geospatial functionality and data into their custom

20

applications easily. Also, it allows us to potentially leverage the more general Web

Service-based tools such as workflow engines in GIS problems.

2.2. Related Works

2.2.1. Linked Environments for Atmospheric Discovery (LEAD)

Linked Environments for Atmospheric Discovery (LEAD) is a large scale project

funded by an NSF Large Information Technology Research grant. LEAD‟s goal is to

address fundamental IT and meteorology research challenges to create an integrated

framework for analyzing and predicting weather at a finer grained resolution than is

currently possible. The proposed framework helps researchers to identify and access,

prepare, manage, analyze or visualize a broad array of meteorological data and model

output independent of format and physical location (Ramamurthy & Droegemeier, 2008).

LEAD is developing the middleware for adaptive utilization of distributed

resources, sensors and workflows. The LEAD distributed computing infrastructure is

constructed as a service-oriented architecture and decomposes into services which

communicate via well-defined interfaces and protocols (Plale, Gannon et al., 2006).

LEAD provides scientists with necessary tools to build forecast models using

available both observations and model generated data and manages necessary resources

for executing the model. The tools include services for accessing supercomputer

resources and services for automated search, selection and transfer of required data

products between computing resources (Plale, Ramachandran, & Tanner, 2006). One

major feature of LEAD is support for adaptive analysis and prediction of mesoscale

21

meteorological events. To provide such features LEAD data subsystem supports three

important capabilities: automated data discovery by replacing the manual data

management tasks with automated ones; a highly scalable data archiving system which

allows transfer of large scale data products between resources, metadata descriptions of

the available information and protected storage facilities; and easy search and access

interfaces for the data via a search GUI and underlying ontology (Plale, Ramachandran et

al., 2006).

2.2.2. Geosciences Network (GEON)

The Geosciences Network (GEON) (Zaslavsky & Memon, 2004) is a multi-

university project funded by the National Science Foundation (NSF) to develop cyber

infrastructure to enable sharing of data sets and services in a distributed environment for

the Earth Sciences. The GEON Grid is a distributed network of GEON nodes, each of

which runs a GEON software stack that includes Web and Grid services to enable users

to register data sets, register services, issue queries across multiple information sources,

using spatiotemporal search conditions and ontologies, download data into personal

spaces, invoke analysis services, visualize output of queries, and perform analysis. The

architecture includes data mediation services, workflow services, and a portal. Much of

the data is geospatial and spatiotemporal in nature and provides appropriate search

interfaces, and efficient mapping interfaces for such data is an important requirement.

The GEON Grid software stack includes ArcIMS (Esri, 2004) as one of its components to

provide GIS and mapping functionality.

Geosciences Network (GEON) provides ontology enabled applications mostly

based on data registration, discovery, manipulation and display in the GIS domain

22

(Bhata, Menon, Zaslavsky, Seber, & Baru, 2003). They also have the myGEON (Youn et

al., 2007) concept functioning similarly as in the LEAD, and they have data display tools

in a portal implemented by GridSphere (Novotny, Russell, & Wehrens, 2004).

GEON is based on a “Service-Oriented Architecture (SOA)”. Advanced

information technologies are being developed in the project to support “intelligent”

searching, semantic integration, and visualization of multidisciplinary information spaces

as well as four-dimensional scientific datasets and geospatial data. The project also plans

to provide access to high performance computing platforms for data analysis and model

execution. The GEON Portal also provides a Web-based interface to access the various

resources.

2.2.3. Laboratory for Advanced Information Technology and Standards

(LAITS):

The LAITS ("LAITS," 2008) is a project of Center for Spatial Information

Science and Systems (CSISS) in George Mason University. The LAITS project is

primarily working on integrating OGC Web Services with Globus-based Grid technology

(Foster & Kesselman, 1996) for geospatial modeling and applications. The objectives of

the project are enabling the management of geospatial data by Grids, providing OGC

standard compliant access to Grid-managed geospatial data, and enabling geospatial

modeling and the production of virtual geospatial products in the Grid environment (Di,

Chen, Yang, & Zhao, 2003). For the test and demonstration of their architecture, they use

NASA EOS data environment and coverage data provided by OGC Web Coverage

Service (WCS) (Evans, 2003)]. Their goal is to develop a complete suite of Globus-based

23

GIS services using OGC WCS, WMS and WFS. Currently they have WCS services to

demonstrate their work.

They also have a demo to access GIS data kept in the form of coverage in

different databases connected to different WCS instances. These OGC compatible WCS

are implemented and wrapped as Grid services and called GWCS (Grid Web Coverage

Services) (Committee, 2001). LAITS enhanced the WCS to process four dimensional

HDF-EOS data, which is in the network Common Data Format (netCDF) (Rew & Davis,

1990). In their proposed architecture, data providers are deployed as WCS in NASA

Ames, in LLNL and in LAITS hosts. In their GCSW (Grid Catalog Services for Web),

they store and serve information about the available coverage servers. They use OGC‟s

CSW (Catalog Services for Web) services to search for a user-specified data server. Data

transfer is achieved by using GridFTP (Allcock, 2003).

The brain of the system is iGSM (Intelligent Grid Service mediator). iGSM (Chu,

Di, & Thornton, 2006) dispatches user requests from a WCS/WMS portal to the most

appropriate GWCS/GWMS in the Virtual Organization. Portals tasks are implemented at

iGSM. Portals instances and data-service providers meet at the iGSM. iGSM also does

request conversion. Geospatial-data access requests from OGC WCS portal are

transferred to an appropriate format for the Grid enabled WCS (GWCS). Catalog Service

search is also done in iGSM.

Regarding workflow or process pipelining, LAITS use a workflow management

and execution engine called BPELPower. It supports BPEL based web service chain

completely.

24

LAITS‟s grid approach is based on Globus toolkit ("GT4," 2008). In contrast, our

Grid approach is based on WS-I+ interoperability standards and Web Service principles.

The implementation of SOA in the web environment is called Web services and in the

Grid environment the open Grid Services. The web service and grid service have

converged with the introduction of Web Service Resource Framework (WSRF) (Graham,

Karmarkar, Mischkinsky, Robinson, & Sedukhin, 2006).

25

CHAPTER 3

GIS WEB SERVICE DATA-GRID COMPONENTS

A Geographic Information System (GIS) is a primarily a collection of data is

driven by observations, yet a mechanism to share collected data and developed software

tools has not been widely established. The data collected are stored in several different

formats on different platforms. Software developed in the community employs a variety

of mechanisms for accessing such data and conduct analysis on them, with little or no

collaboration and standards.

The heterogeneity of geographic resources may arise for a number of reasons,

including differences in projections, precision, data quality, data structures and indexing

26

schemes, topological organization (or lack of it), and the set of transformation and

analysis services implemented in the source.

Our proposed information system Grid framework is based on common data

models, GIS Web Service components, and a service-oriented architecture implemented

with “WS-I” Web Service principles. In this chapter we first present the requirements for

the common data models and their advantages of usage in such a framework (Chapter

3.1). Next, we present motivations and advantages of extending and enhancing service

components as Web Services to develop a SOA framework for GIS (Chapter 3.2).

Finally, we present the system‟s general architectural features in terms of its components,

interactions and data-flow from the archived data stores to the end users (Chapter 3.3)

3.1. Geo-data and Common Data Models

Geospatial data, in general, refers to a class of data that has a geographic or

spatial nature, e.g., the information that identifies the geographic location and

characteristics of natural or constructed features and boundaries on the earth.

Geospatial data represents real world objects and properties (roads, land use,

elevation) with digital data. Real world objects can be divided into two abstractions:

discrete objects (a house) and continuous fields (rain fall amount or elevation). There are

two broad methods used to store data in a GIS for both abstractions: Raster and Vector.

Raster data is called “coverage data” by OGC. Raster data type consists of rows

and columns of cells where in each cell is stored a single value. Most often, raster data

are images (raster images), but besides just color, the value recorded for each cell may be

a discrete value, such as land use, a continuous value, such as rainfall, or a null value if

27

no data is available. Raster data is stored in various formats ranging from a standard file-

based structure such as TIFF and JPEG to Binary Long Object (BLOB) data stored

directly in a relational database management system.

Common data format for the raster data in our system: In our GIS system we use

image formats such as JPEG or TIFF to represent the raster data provided by third party

OGC compatible Web Map Services or Coverage Portrayal Services (CPS) (Lansing,

2002).

The vector data type uses geometrical constructions such as points, lines (series of

point coordinates), or polygons (shapes bounded by lines), to represent objects on the

Earth‟s surface. Examples include property boundaries for a housing subdivision

(represented as polygons) and water well locations (represented as points). Vector

features can be made to respect spatial integrity through the application of topology rules

such as 'polygons must not overlap'. Vector data can also be used to represent

continuously varying phenomena.

Common data format for the vector data in our system: The data model developed

by OGC is the Geography Markup Language (GML. It is currently widely accepted as

the universal encoding for geo-referenced data. GML is an XML grammar written in

XML Schema for the modeling, transport, and storage of geographic information

including both the spatial and non-spatial properties of geographic features. It provides a

variety of kinds of objects for describing geography including features, coordinate

reference systems, geometry, topology, time, units of measure and generalized values

(see Appendix H).

28

 Just as XML helps the Web by separating content from presentation, GML does

the same thing specifically for geography. GML allows the data providers to deliver

geographic information as distinct features. Using the latest Web technologies, users can

process these features without having to purchase proprietary GIS software. By

leveraging related XML technologies such as XML Schema, XML Data Binding

Frameworks, XSLT (Clark, 1999), XPath (Clark & DeRose, 1999), XQuery (Boag et al.,

2007) etc. a GML dataset becomes easier to process in heterogeneous environments.

By incorporating GML in our systems as common data format we gain several

advantages:

1. It allows us to unify different data formats. For instance, various organizations

offer different formats for position information collected from GPS stations. GML

provides suitable geospatial and temporal types for this information, and by using

these types a common GML schema can be produced. See Appendix H for a

sample GML.

2. As more GIS vendors are releasing compatible products and more institutions use

OGC standards in their research and implementations, OGC specifications are

increasingly becoming de facto standards in GIS community. GML is rapidly

emerging as the standard XML encoding for geographic information. By using

GML we open the door of interoperability to this growing community.

3. GML and related technologies allow us to build general set of tools to access and

manipulate data. Since GML is an XML dialect, many XML related technologies

(such as parsers) can be utilized for application development purposes.

29

4. One approach to achieve machine-to-machine communications and autonomous

computations.

5. It enables separating data‟s representation from the context.

6. Since it is XML based, it can be used in other XML based systems and

communication protocols such as XMLHttpProtocol (in other words AJAX) and

Web Services (Sayar, Pierce, & Fox, 2006).

7. It is an approach to achieving cross-language interoperability.

Due to the numerous advantages of using semi-structured data representation,

other science domains also have adopted similar approaches. For example, chemistry

uses CML (Chemistry Markup Language) (G. L. Holliday, Murray-Rust, & Rzepa,

2006), Astronomy domain uses VOTable (Virtual Observatory Tables) (Williams et al.,

2002) and Mathematic science domain uses MathML (Mathematic Markup Language)

(Buswell et al., 1999).

3.2. Web Service Extensions to Standard Service Definitions

The proposed GIS framework is service-oriented and has components as Web

Services. These Web Services provide standard service interfaces and communicate with

common messages formats defined in standard specifications. By integrating Web

Services with Open Geographic Standards, we support interoperability at both data and

application level and have the common advantages of SOA architectures listed below:

Distribution: It will be easier to distribute geospatial data and applications across

platforms, operating systems, computer languages, etc. They are platform and language

30

neutral. Web services can be used on different platforms than those on which they were

implemented.

Integration: It will be easier for application developers to integrate geospatial

functionality and data into their custom applications. For example, there are many tools

in various programming languages that can create client stubs from WSDL files that can

be used to invoke the services. Web Service-based frameworks are loosely coupled and

component oriented. Because of the standard interfaces and messaging protocols the Web

Services can easily be assembled to solve more complex problems.

Infrastructure: We can take advantage of the huge amount of infrastructure that is

being built to enable the Web Services architecture – including development tools,

application servers, messaging protocols, security infrastructure, workflow definitions,

etc.

The OGC Web Feature Service implementation specification (Vretanos, 2002)

defines HTTP as the only explicitly supported distributed computing platform. This

requires the use of one of the two request methods: GET and POST. Although SOAP

messages are also supported, they must be transported using the HTTP POST method.

However, employing the HTTP protocol and GET or POST introduces significant

limitations for both producers and consumers of a service. As discussed above Web

Services provide us with valuable capabilities such as providing standard interfaces to

access various databases or remote resources, the ability to launch and manage

applications remotely, and the ability to control collaborative sessions. Developments in

the Web Services and Grid areas provide us with significant technologies for exposing

our resources to the outer world using relatively simple yet powerful interfaces and

31

message formats. Furthermore, sometimes we need to access several data sources and run

several services for solving complex problems. This is extremely difficult in HTTP

services, but rapidly developing workflow technologies for Web and Grid Services may

help us combine several services into composite applications. For these reasons we have

based our implementation of standard GIS services on Web Services principals.

Moreover, complex scientific applications require access to various data sources

and run several services consecutively or at the same time. Since this is not in the scope

of HTTP but can be supported using rapidly developing workflow technologies for Web

and Grid Services, we have based our implementations on Web Services principals. Our

goal is to make seamless coupling of GIS Data sources with other applications possible in

a Grid environment.

GIS systems are supposed to provide data access tools to the users as well as

manipulation tools to the administrators. In principle the process of serving data in a

particular format is simple when it is made accessible as files on an HTTP or FTP server.

But additional features like query capabilities on data or real-time, push-style access in a

streaming fashion require more complicated approaches. As the complexity of the

services grows, the client‟s chance of easily accessing data products decreases, because

every proprietary application developed for some type of data require its own specialized

clients. Web Services help us overcome this difficulty by providing standard interfaces to

the tools or applications we develop.

No matter how complex the application itself, its WSDL interface will have

standard elements and attributes, and the clients using this interface can easily generate

32

methods for invoking the service and receiving the results. This method allows providers

to make their applications available to others in a standard way.

Most scientific applications that couple high performance computing, simulation

or visualization codes with databases or real-time data sources require more than

simplistic remote procedure call message patterns. These applications are sometimes

composite systems where some of the components require output from others. If they are

asynchronous, it may take hours or days to complete. Such properties require additional

layers of control and capabilities from Web Services, which introduces the necessity for a

messaging substrate that can provide these extra features.

3.3. System Framework and Web-Service Components

Our proposed Geographic Information System is based on common data models

provided by standard service components and their service interfaces (Sayar, Pierce, &

Fox, 2005a). Service interactions start with a discovery step that involves retrieving the

capabilities document. A capability document is an XML encoded metadata file about

both the service and data. Its formats and schema are defined by Open Geographic

Standards (OGC specifications) ("OGC Schema," 2008). Sample capabilities documents

are given in Appendix-C for WMS and Appendix-D for WFS. All the interactions and

service bindings are done through capability exchange. So, each service keeps its own

capability defining its data providing and available operations on these data. For the

sample interaction steps between WMS and WFS to get feature data from WFS, see

Chapter 3.3.1.

33

The proposed service-oriented GIS is illustrated in Figure 2. It is composed of two

major types of GIS Web Services (see Chapter 3.3.1). These are Web Map Services and

Web Feature Services. Optionally, in order to find and bind services in service-oriented

architecture, system can also be extended with catalog and registry services.

Figure 2: GIS framework with the proposed Web Service components and data flow. See also Figure

3.

In the system there are also two types of common data model. The first one is

provided by WFS in XML-encoded GML data format, and the second one is provided by

WMS in binary map images. For more detail about the common data models and their

usage advantages see Section 3.1.

3.3.1. Web Feature Service

The Web Feature Service is one of the major service standards defined by Open

Geographic Standards (OGC) for creating a GIS framework. The Web Feature Service

implementation specification defines interfaces for data access and manipulation

operations on geographic features using HTTP as the distributed computing protocol. Via

34

these interfaces, a web user or service can combine, use and manage geo-data from

different sources by invoking several standard operations (Vretanos, 2002).

OGC specifications describe the state of a geographic feature by a set of

properties, where each property can be thought of as a [name, type, value] tuple.

Geographic features are those that may have at least one property that is geometry-

valued. This also implies that features can be defined with no geometric properties at all.

According to the Open Geographic Standard‟s definition, WFS must minimally provide

three operations: getCapabilities, describeFeatureType and getFeature. The more

advanced transactional WFS must provide two more service interfaces, transaction and

lockFeature. In our research framework, we assume that the WFS instances are provided.

However, to understand the relationships of the WFS instances to WMS and federataotr

instances, we summarize the WFS standard operations below (Vretanos, 2002):

- GetCapabilities: A Web Feature Service must be able to describe its capabilities.

Specifically, it must indicate which feature types it can service and what operations are

supported on each feature type.

- DescribeFeatureType: A Web Feature Service must be able, upon request, to

describe the structure of any feature type it can serve.

- GetFeature: A Web Feature Service must be able to service a request to retrieve

feature instances. In addition, the client should be able to specify which feature properties

to fetch and should be able to constrain the query spatially and non-spatially. Features

are instances of Feature types.

Illustration of client-server interaction: WFS services‟ clients are mostly Web

Map Services. Client‟s interaction with WFS usually starts with a discovery step, which

35

involves retrieving the capabilities document. A client first sends a getCapabilities

request to the WFS server to learn which feature types are provided and what operations

are supported on each feature type, along with any constraints. Upon receiving the list of

available feature data available with their specific properties (given in capability file of

WFS), client sends a describeFeatureType request to get the structure information of the

interested feature type. Finally, client makes a getFeature request with appropriate

request created based on client‟s purpose and WFS server‟s capability metadata. The

most common queries used are GetFeature requests to retrieve particular features.

Figure 3: Illustration of client (WMS)-WFS interaction steps to get feature data.

36

Figure 3 illustrates three groups of coupled bars representing client and WFS

interactions.

The first group of request/response messages at the top illustrates capability

exchange between client and server. This is done with WFS‟s GetCapabilities service

interface. The clients (Web Map Server or users) start with requesting a capabilities

document from WFS. When a GetCapabilities request arrives, the server may choose to

dynamically create a capabilities document and returns this, or simply return a previously

created XML document.

The second group of request/response messages in the middle explains requesting

structured information (schema) about the interested feature data listed in capability

metadata of WFS. This is achieved by using WFS‟s describeFeatureType service

interface. After the client receives the capabilities document, it can request a more

detailed description for any of the features listed in the WFS capabilities document. Upon

invocation of this service interface, WFS returns an XML Schema that describes the

requested feature as the response.

The third group of request/response messages at the bottom of Figure 3 illustrates

a request for feature data based on user-defined constraints in an appropriate request

format. This is done through WFS‟s getFeature service interface. After the first two steps

are complete, the client may then request the WFS to return a particular portion of any

feature data. getFeature requests contain some property names of the feature and a Filter

element to describe the query. The WFS extracts the query and bounding box from the

filter and queries the related database(s) that holds the actual features. The results

37

obtained from the DB query are converted to that particular feature‟s GML format and

returned to the client as a FeatureCollection object.

A WFS allows clients to access and manipulate the geographic features without

having to consider the underlying data stores. The clients‟ only view of the data is

through the WFS interface, which allows the data providers to integrate various types of

data stores with one WFS instance. Figure 2 displays this instances where the WFS server

is accessed by different types of clients and has access to various types of spatial

databases, file systems and any-type of storages. Clients interact with WFS by submitting

database queries encoded in OGC Filter Encoding Implementation (Vretanos, 2001) and

in compliance with the Common Query Language (Rao, Percivall, & Enloe, 2000). The

query results are returned as GML FeatureCollection documents. In this context, WFS

also behaves as mediator services to provide feature data in a common data model

(Geographic Markup Language) through standard service interfaces. For the technical

details about implementing Web Service based WFS see (Aydin, 2007).

In order to make WFS like services more clear in your mind, we can give an

example from the other well known domain, Astronomy. In Astronomy domain,

SkyServers (Purger, Budav´ari, Szalay, Thakar, & Csabai1, 2004) serve the same purpose

as WFS serve in GIS domain. SkyServer provides a range of interfaces to underlying

Microsoft SQL Server. Clients interact with SkyServers (group, 2005) using ADQL

(Astronomical Data Query Language) based SOAP interface returning VOTable (Virtual

Observatory Table) based results. VOTable is GML like XML structured data format

carrying content and presentation information for the data set. ADQL is an SQL-like

language used by the IVOA to represent astronomy queries posted to VO data services.

38

3.3.2. Web Map Service

Web Map Service (WMS) (Beaujardiere, 2004) (Kolodziej, 2004) is the key

service for information visualization in the GIS domain. WMS produces maps from both

vector-encoded and binary data. The vector data is GML and is obtained from requests

to WFS instances. Binary data can be obtained from Coverage Portrayal Services (CPS)

(Lansing, 2002) and other Web Map Servers.

A map is not the data itself. Maps create information from raw geographic data,

vector data, or coverage data. Maps are generally rendered in pictorial formats such as

JPEG (Joint Photographic Expert Group), GIF (Graphics Interchange Format), or PNG

(Potable Network Graphics) (Adler et al., 2003). WMS also produces maps from vector-

based graphical elements in Scalable Vector Graphics (SVG) (Andersson & others,

2003).

Web Map Service (WMS) enables visualizing, manipulating and analyzing

geospatial data through maps displayed on browser based interactive GUI (see Chapter

3.3.3). Map Servers typically compose maps in the layers. The layers may come from

distributed sources: Web Feature Services provide abstract feature representations that

can be converted to images, and other Map Servers may contribute map images. NASA‟s

OnEarth WMS is an example ("OnEarth," 2007). WMSs can be federated and cascaded

to create more detailed and comprehensible map images. We discuss this in greater depth

in Chapter 4.

WMS provides three main services (Appendix A); these are getCapabilities

(Chapter 3.3.2.1), getMap (Chapter 3.3.2.2) and GetFeatureInfo (Chapter 3.3.2.3).

GetCapabilities and getMap are required services to produce a map but GetFeatureInfo is

39

an optional service. The implementation details and service interfaces are given in the

following two sub-sections.

3.3.2.1. GetCapabilities Services

The purpose of the getCapabilities operation is to obtain service metadata, which

is a machine and human readable description of the server‟s information content and

acceptable request parameter values. Figure 5 presets the getCapabilities request schema.

WMS provide its data in the layer format. The GetCapabilities request and the

corresponding service interface allow the server to advertise its capabilities such as

available layers, supported output projections, supported output formats and general

service information. Before a WMS Client requests a map from WMS, it should know

what layers WMS provides in which bounding boxes. The capability file is kept in the

local file system and sent to clients upon getCapabilities request (see Figure 4). For the

sample capabilities file instances see APENDICES C and D.

40

Figure 4: GetCapabilities operation steps. See Appendix C for a sample WMS capabilities file

instance

Figure 5: GetCapabilities Request Schema. See Appendix A for an instance of this request schema.

41

3.3.2.2. GetMap Services

The getMap service interface allows the retrieval of maps. Maps are provided in

different various formats based on user-defined parameters and layer attributes. All the

supported formats for map-image layers and corresponding layer specific attributes and

constraints are defined in WMS Capabilities document. Before invoking getMap service

interface, clients first obtain capabilities document by invoking getCapabilities service

interfaces (see Chapter 3.3.2.1). The image is returned back to the WMS Client as an

attachment to SOAP message. If the WMS encounters any problem during handling of

the request, it sends an exception message in SOAP back to the WMS Client.

The major operation steps to produce maps are illustrated in Figure 6. GetMap

request schema to create valid requests is given in Figure 7.

42

Figure 6: GetMap operation steps.

WMS first parses the request and gets the parameter values. WMS first

determines what layers are requested, in which bounding box, in which form, and so

forth. After determining all the request parameters, it communicates with WFS services

providing requested feature data by using their getFeature service interfaces and

requested feature data in GML format. If the parameter defining returned image format in

43

getMap request is Scalable Vector Graphics (SVG) (Bowler et al., 2001), then WMS

creates SVG from returned feature data by using its geometry elements. If the requested

image is not in SVG format, we first create the SVG image and then convert it into the

desired image formats (such as PNG, GIF, or JPEG). Apache Batik provides libraries for

this conversion. Batik is a Java(tm) technology based toolkit for applications or applets

that use images in the SVG format for various purposes, such as viewing, generation or

manipulation. By using these schema files we derive geometry elements from the GML

file to visualize the feature data. These geometry elements in GML are basically Point,

Polygon, LineString, LinearRing, MultiPoint, MultiPolygon, MultiGeometry, etc.

To create the images from the features returned from the WFS, we have used Java

Graphics2D and Java AWT libraries. For each layer we create a different graphics object.

If you assign each layer to different graphics object than Java libraries allow you to

overlay these graphic objects in various combinations.

Alternatively, WMS can use SVG conversion to create map-image layers. When

this way is used, WMS uses its internally defined XSL file to convert standard GML files

into SVG by using XSLT machine. We developed standard XSL (see Figure 13) file to

convert XML coded GML feature collections into SVG files. After having SVG, these

image objects then converted into any image format such as JPEG, TIFF, PNG etc.

(Sayar, Pierce, & Fox, 2005b).

44

Figure 7 : GetMap Request Schema. See Appendix A for an instance of this request schema

Below is the sample code fragment showing how to extract geometry elements

from GML and overlay it on a raster map image as a separate layer. In this simple

pseudo-code, the raster data comes from an HTTP Servlet based WMS server (defined in

URL), and the other data represented as features are coming from our implementation of

WFS. Using a layer from some other WMS is defined in OGC specifications and is

45

known as cascading. WMS behaving as a client to another WMS is called cascading

WMS, and the layer used is called cascaded layer. We will exploit and extend cascading

in our federation approach.

URL url = new URL(

 Wmsaddress+”?request=GetMap&width=" +

 width + "&height=" + heigth +

 "&layers="+layername+

”&styles=&srs=EPSG:4326&format=”+format+”&bbox=" +

 bbox);

BufferedImage im = ImageIO.read(url);

Graphics2D g = im.createGraphics();

…

 if(istherePoint)

 String[] points = getPointsFromFeatureData();

if(isthereLineString)

 String [] LineStrings = getLineStringFromFeatureData();

if(isthereLineRing)

 String [] LineRings = getLineRingFromFeatureData();

if(istherePolygon)

 String [] polygons = getPolygonsFromFeatureData();

…

if(polygons!=NULL){

for(int i=0; i<polygons. length; i++){

 int [][] xypoints = wm.getXYpoints(polygons[i]);

 g.setColor(Color.darkGray);

 g.drawPolygon(xypoints[0], xypoints[1], xypoints[0].length);

}

}

if(LineRings!=NULL){

for(int i=0; i< LineStrings. length; i++){

 int [][] xypoints = wm.getLinesInStr(LineStrings[i]);

 g.setColor(Color.darkGray);

 g.drawPolyline(xypoints[0], xypoints[1], xypoints[0].length);

 }

}

…

Check all the
geometry
elements in GML
for a queried
region of the map
.Point, LineString
Polygon etc.

If you find any geometry
data above such as Points,
LineStrings, convert the
numbers in the GML file
for the feature data into
appropriate format to
draw shapes for
representing these
geometry elements and
display them by using
graphics2D object. If you
use the same grpahics2D
data the layers will be
overlaid.

46

g.dispose();

Figure 8: Sample output of the above map images generating code

How to send binary map images with SOAP messages (in JAVA):

1. Server side:

Sample JAVA client code below shows how to attach a map image to SOAP

message in response to getMap request. We assume map image name is maimage.jpeg.

The WMS server first creates a data handler from the image and casts it as an object, and

then returns.

Object map = file2DataHandlerObject (APPLPATH+"/mapimage.jpeg");

public Object file2DataHandlerObject(String filePath) {

 try {

 DataHandler dhSource = new DataHandler(new

 FileDataSource(filePath));

 return (Object) dhSource;

 } catch (Exception ex) {

 ex.printStackTrace();

 return null;

 }

2. Client side:

Client has client stubs for WMS services created earlier from WMS‟s Web

Service Description File (WSDL). It uses its client stubs to get the map as an attachment

47

to SOAP message. It first extracts the attachment and then data handler from the

attachment. It created map images as byte array through data handler.

 java.lang.Object value = null;

 value = binding.getMap(request);

 byte[] bs = null;

 Object[] attachments = binding.getAttachments();

 for (int i = 0; i < attachments.length; i++) {

 AttachmentPart att = (AttachmentPart) attachments[i];

 DataHandler dh = att.getActivationDataHandler();

 BufferedInputStream bis = new BufferedInputStream(dh.getInputStream());

 bs = new byte[bis.available()];

 bis.read(bs, 0, bs.length);

 bis.close();

3.3.2.3. GetFeatureInfo Services

The GetFeatureInfo operation is designed to provide clients of a WMS with more

information about features over the map images that were returned by previous Map

requests. GetFeatureInfo is used when a user needs further information about any feature

data on the map. Its return type is human readable text or HTML, which is defined as

request parameter. See Figure 7 for general schema for creation of getFeatureInfo query

instances.

The GetFeatureInfo works as follows (see also Figure 11):

The user supplies (x, y) Cartesian coordinates and the layers of interest and gets

the information back in the form of HTML, GML or ASCII format.

48

The basic operation provides the ability for a client to specify which pixel is being

asked about, which layer(s) should be investigated, and what format the information

should be returned in. Because the WMS protocol is stateless, the GetFeatureInfo request

indicates to the WMS what map the user is viewing by including most of the original

GetMap request parameters (all but VERSION and REQUEST). From the spatial context

information (BBOX, CRS, WIDTH, HEIGHT) in that GetMap request, along with the x,

y position the user chose, the WMS can (possibly) return additional information about

that position. The actual semantics of how a WMS decides what to return more

information about, or what exactly to return, are left up to the WMS provider.

Figure 11 illustrates the successive process steps done by the WMS to respond to

getFeatureInfo requests. After checking the request parameters with the capability

metadata, WMS creates appropriate getFeature queries to fetch the GML data from

WFSs. After getting the feature collections data from the WFS, WMS extracts all the

non-geometry elements and attributes in the returned GML files and create another text

or HTML file based on request parameter and create the response to getFeatureInfo

query in accordance with the return parameter defined by the client in the query. The

parameter called “INFO_FORMAT” defines the return format whose possible values are

plain text files, HTML and GML.

For the getMap request WMS extracts geometry elements from the returned GML

file but for the getFeatureInfo it extracts non-geometry elements. From the list of non-

geospatial elements, WMS creates a new XML file to be able to transform non-geometry

elements into HTML. This XML file is simply another form of GML, which includes just

non-geometry elements, properties and attributes. After creating new XML file from the

49

non-geo elements, WMS creates HTML file from newly created XML file by using

generic XSL ("XSL," 1999) file and XSLT transformation machine. Figure 10 explains

the general architecture of creating a response from the GML file through generic XSL

stylesheet file given in Figure 13.

Figure 9: A snapshot of response to getFeatureInfo. It is actually an attribute querying of earthquake

seismic data layer shown on the map image.

Figure 10: Creating getFeatureInfo reponse by using a stylesheet and XSLT processor. See Figure 10

for generic stylesheet for GML.

(Figure-13)

Request parameters

for filtering GML

50

Figure 11: GetFeatureInfo operation steps

51

Figure 12: GetFeatureInfo Request Schema. See Appendix-A for an instance of this request

schema.

52

53

Figure 13: Generic XSL file for HTML creation from the GML in order to create responses for the

getFeatureInfo.

3.3.3. Browser event-based Interactive Map Client Tools

Interactive information visualization tools provide researchers with capabilities to

interact with the complex systems seamlessly. We developed these tools for interacting

with standard Web Map Servers developed in Open Geographic Standards providing

OGC compatible online services such as getMap, getFeatureInfo and getCapabilities.

The tools provide structured multi-layered map images display (Figure 15 and Figure 16).

Structured data display is composed of multiple layers, and each layer is defined in the

corresponding WMS service‟s capabilities file. As discussed previously, capabilities files

are metadata defining services and data together. For WMS, the data are defined as layers

54

(see Appendix C). For WFS, the data sets are defined as feature collections (see

Appendix D). Client tools enable users and decision makers to interact with the system

through interactive event-based maps seamlessly and easily by hiding the system

complexity. These tools also enable querying of the vector data in the multi-layered

structured map images shown on the screen (see Figure 9). They do so by using WMS‟s

standard getFeatureInfo service interface.

Several capabilities are implemented for the user to access and display geospatial

data. The client tools enable the user to zoom in, zoom out, measure distance between

two points on the map for different coordinate reference systems, to get further

information by making getFeatureInfo requests for the attributes of the features on the

map, and drag and drop the map to display different bounding boxes. Users can also

request maps for the area of interest by selecting predefined options by clicking the drop-

down list. The user interface also allows the user to change the map sizes from the drop-

down lists. Users can also give specific dimensions for the desired map size. Zoom-in

and zoom-out features let the user change the bounding box values to display the map in

more or less details. Each time a user changes the bounding box values, the user interface

shows the updated bounding box values at the each side of the map.

The proposed client tools are generic and capable of interacting with any other

WMS and WFS developed according to Open Geographic Standards. Our GIS portal is

deployed into Apache Tomcat ("Apache Tomcat Project," 2008). We have implemented

several capabilities for the decision makers to access and interpret geo-data seamlessly.

Our GIS portal is built up with the various technologies, including Java, Java Servlets,

55

Java Server Pages (JSP), Java-Script, and Cascading Style Sheets (CSS) (E. A. Meyer,

2006).

Figure 15 shows the portal‟s interactive map tools and user interface enabling

interactive data access, query, and display over integrated data views (map images). The

sample map in the figure shows California earthquake seismic data superimposed over a

Google Map ("Google Map," 2005) image.

Figure 16 shows application-based decision-making tools extended from generic

map tools. Our client interface system is modular and can be updated according to the

application requirements in terms of parameters and output results. The sample project in

the figure superimposes earthquake forecasts generated by the Pattern Informatics

(Nanjo, Holliday, Chen, Rundle, & Turcotte, 2006) application over Google maps.

Map layers (their orders, numbers, attributes, etc.) are manipulated through the

parts A, C and D (Figure 16). Application output is manipulated through part B/E and

utilizes the parameters given in part A. Part C is the output screen and enables interactive

manipulation of the layers and interactive query of the feature data on the map. Part E is

used for animating successive static map images to create map movies from time series

feature data. Part A enables users to set the problem‟s bounding box, map size, specific

regions if zooming in, the layers to be overlaid, and project to work with. Part D consists

of map tools enabling zoom-in, zoom-out, drag and drop, and data query of the map

displayed in Part C. Part B enables users to enter parameters specific to the Geo-Science

application. For example, for the Pattern Informatics application (Nanjo et al., 2006),

users should enter the parameters “bin size” and “time steps”. Users can easily move

from one project to another by using drop-down list at the top-left corner.

56

Here are the listings of the major generic action listeners for the user-map

interactions (see Figure 15).

<event_controller>

<event name="init" class="Path.InitListener" next="map.jsp"/>

<event name="REFRESH" class=" Path.InitListener " next="map.jsp"/>

<event name="ZOOMIN" class=" Path.InitListener " next="map.jsp"/>

<event name="ZOOMOUT" class="Path.InitListener" next="map.jsp"/>

<event name="RECENTER" class="Path.InitListener“next="map.jsp"/>

<event name="RESET" class=" Path.InitListener " next="map.jsp"/>

<event name="PAN" class=" Path.InitListener " next="map.jsp"/>

<event name="INFO" class=" Path.InitListener " next="map.jsp"/>

</event_controller>

Event “init” sets all to initial opening settings. Events "REFRESH", "ZOOMIN",

"ZOOMOUT", "RECENTER", "RESET" and "PAN" causes getMap request to WMS to

get layers in map images. Event “INFO” causes getFeatureInfo request to get further

information about feature data displayed on map images.

Zoom-in

Panning-move

Refresh/recenter

Random select

Zoom-out

Figure 14: Illustration of major event types

57

Figure 15: Event-based interactive map tools capable of interacting with any map server developed

in Open Geographic Standards.

INTERACTIVE SCREEN

-ACTION LISTENERS-

EVENTS

58

B and E parts in Figure 16 are application-based extensions to the standard map

tools given in Figure 15. The figure illustrates Pattern Informatics application. Color bar

and colored squares plotted over the map shows earthquake probability values sent out by

PI application.

Figure 16: Standard interactive map tools extended with capabilities of integrating map images with

outputs of Geo-science grid applications.

Application-based

extensions (Pattern

Informatics extensions)

59

There are many related works in developing such a framework for interacting GIS

systems and enabling end-users to use such systems seamlessly. Our contribution is

developing a framework capable of interacting with service-oriented GIS systems with

AJAX (Serrano & Aroztegi, 2007) techniques. The following section gives more details

about this intermediary framework to synchronize Web Service and AJAX transport

protocols (SOAP over HTTP vs. XMLHttpRequest (Kesteren, 2008)) and corresponding

request/response formats.

3.3.3.1. Integration of AJAX approach to GIS Web Service Invocations

This section discusses the AJAX integration framework that we designed for

browser based web applications using Web Services. Our proposed framework enables

users to utilize AJAX and Web Services advantages together. Our major focus on

developing such a framework is the GIS domain, but the framework can be applied to any

browser event-based interactive user interfaces that communicate with Web Service

components.

As Web technologies continue to mature, we see an increasing number of

technologies that take GIS visualization applications to new levels of power and

usability. By integrating new powerful technologies into GIS systems, we get higher

performance results with additional functionalities. A recent development that has

captured the attention of the browser based application developers is AJAX

(Asynchronous JavaScript and XML). In this section, we present a generic and

performance efficient framework for integrating AJAX models into the browser based

GIS visualization Web Services systems.

60

AJAX is an important development model for the browser-based web

applications. It uses several technologies that come together to create a powerful new

model. Technologies forming the AJAX model (XML, JavaScript, HTTP and XHTML)

are widely used and well known. Google Maps use this new powerful browser based

application model.

On the server side, Web Services are self-contained, self-described, and

composable. Unlike earlier, more tightly coupled distributed object approaches such as

Common Objects Request Brokers (CORBA) (Siegel, 1996), Web Service systems

support an XML message-centric approach, allowing us to build loosely coupled, highly

distributed systems that span organizations. Web Services also generalize many of the

desirable characteristics of GIS systems, such as standards for providing general-purpose

specifications for publishing, locating, and invoking services across the Web. Web

Services also use well-known technologies such as XML and HTTP as AJAX does. Since

AJAX and Web Services are XML based structures they are able to leverage each other‟s

strength.

There are some GIS projects adapting only Web Services or only AJAX

approaches into their GIS systems but not both. That is because of the idea that they are

totally different technologies using different communication protocol and it is impossible

to use them in the same framework. To give examples, ESRI, Cubewerx, Demis and

Intergraph are adapting Web Service technologies and Google Maps, and KA-Map (T.

Mitchell, 2005) are adapting AJAX to their GIS systems.

The project ECMAScript ("ECMA,") (ECMAScript Language, 1999) for XML

(E4X) is the only related work involving AJAX and Web Services together. E4X is a

61

simple extension to JavaScript that makes XML scripting very simple. The European

Computer Manufacturers Association (ECMA) is the standards body where JavaScript is

standardized. E4X is compatible with AJAX technologies without extension.

Via E4X, developers do not have to use XML parsers such as DOM (Apparao et

al., 1998) or SAX (Means & Bodie, 2001). Instead, XML documents become one of the

native types that JavaScript understands. Developers can update XML documents from

the JavaScript very easily. These properties of E4X enable creating calls to Web Services

from the browser, but not all the browsers support it. E4X helps to interact with Web

Services, but again it is just an extended version of JavaScript. Some issues such as how

to put Web Service requests in SOAP messages and how to manipulate the returned

SOAP messages are still complicated.

In our approach, developers don‟t have to extend any technology involved in the

AJAX model. We use all the technologies in AJAX with their original forms. This gives

the developers and users the ability to integrate and customize their applications easily.

We first present the intermediary component to synchronize AJAX and Web

Service protocols in terms of request and responses. Later, we give a sample scenario.

3.3.3.2. AJAX & Web Services Synchronization Framework

AJAX uses HTTP GET/POST requests (through JavaScript‟s XMLHttpRequest)

for the message transfers (see (A) in Figure 17). Web Services use Simple Object Access

Protocol (SOAP) as a communications protocol (see (B) in Figure 17) In order to be able

to integrate these two different message protocols, we must convert the message formats

into a common format or make them interoperable. Since there is no ready-to-use

62

common protocol to handle messages communications between AJAX and Web

Services, we implemented a simple message conversion technique (see (C) in Figure 17).

This essentially works by having the XMLHttpRequest communicate with a Servlet,

which in turn acts as a client to a remote Web service. This allows us to easily convert

between SOAP invocations and HTTP POSTS. It also has the benefit of avoiding

JavaScript sandbox limitations: normally the XMLHttpRequest object in the browser can

only interact with its originating Web server.

Figure 17: (A) Pure AJAX Approach, (B) Web Services Approach, and (C) Hybrid (AJAX + Web

Services) Approach.

63

The client browser makes a request to the server broker (via a JSP page), which in

turn makes a request to the Web Service by using previously prepared Web Service client

stubs. The response from the Web Service is then transformed by the service broker, and

presented to the client browser. Below we go in more detail to explain all these steps.

Accessing Web Services from AJAX Using an Intermediary Server

The client first creates an XMLHttpRequest object to make a remote scripting

call.

 - var http = new XMLHttpRequest();

Then, define the end-point as an URL to make a call. The URL address should be

local. This an intermediary proxy service to make appropriate requests for the GIS Web

Service.

 - var url = “proxy.jsp”;

Then, make a call to the local proxy service end point defined above by the user

given parameters.

 - http.open (“GET”, url + ”?bbox = “ + bbox +…[parameter-value pairs]……)

proxy.jsp is an intermediary server page to capture request (HttpServletRequest)

and response (HttpServletResponse) objects. Proxy JSP includes just one line of code to

forward the HttpServletRequest and HttpServletResponse parameters coming from the

first page via XMLHttpRequest protocol.

64

- jb.doTask(request,response)

“request” and “response” parameters come from the user interface page. This first

page includes some JavaScript, XHTML, CSS and JSP to capture the user given

parameters and to display the returned result on the screen.

“jb” is a Java class object which handles creating appropriate requests by using its

request-response handlers and Web Service client stubs. Request-response handler also

handles receiving and parsing response object coming from GIS Web Services interacted

with.

After having received response from the GIS Web Service, “jb” object sends the

returned result to XMLHttpRequest object in the first page.

- PrintWriter pw = response.getWriter();

 - pw.write(response);

XMLHttpRequest object at the user interface page captures this value by making

a call as below

 - http.onreadystatechange = handleHttpResponse

This generic integration architecture can be applied to any kind of Web services.

Since return types of each Web services are different and they provide different service

API, you need to handle application specific implementations and requirements in

browser based client side.

65

In the following section, we prove the applicability and efficiency of the proposed

integration framework by giving a usage scenario.

3.3.3.3. A Use Case Scenario: Overlaying OGC’s Maps with Google Maps

Integration is accomplished by coupling AJAX actions with Web Services

invocations and by synchronizing the actions and returned objects from the point of end

users. The usage scenarios explained below use the generic integration architecture

illustrated in Figure 17-C. In the usage scenarios there will be minor difference in the

form of extensions. Differences come from the service specific requests created

according to the service provider‟s service API (published as WSDL), or handling

returned data to display on the screen. But these are all implementation differences.

Figure 18: Integration of Google Maps with OGC WMS by using architecture defined in Figure 16.

66

Web Map Service returns maps in the form of images such as JPEG, GIF and

PNG. Web Map Service clients get the maps in image formats and overlays them.

Ordinary Web Map Service clients cannot use maps coming from Google Map Servers.

To solve this problem and use interactive Google maps in our Web Map Service

applications, we created an intermediary Google Mapping Server. This approach will also

support overlaying different map layers coming from the common Web Map Service with

the Google Maps ("Google Map," 2005). The intermediary server takes Web Map

Service compatible requests from the Web Map Service clients, converts these requests

into a new form that real Google Map Server can understand. In contrast to Open

Geospatial Consortium compatible getMap requests, Google Map server uses requests

with different parameters such as zoom level, tile numbers and tile width.

Evaluation of the approach: If the GIS visualization client uses Web Services

from the desktop browser application and Web Services are capable of responding fast

enough, then using the AJAX model for calling Web Services gives high performance

increases. Since both AJAX and Web Services use XML based protocols for the request

and responses, they leverage their advantages. This framework enables application

developers to easily integrate AJAX based browser applications into Web Services.

AJAX and Web Services make use of XML message structures. This property

allows developers to utilize their advantages together. Our proposed system enables

AJAX based high performance web application approaches to utilize web services. If

Web Service based applications have web based user interface for end users, then using

this framework makes displays interactive. Users do not need to wait for the whole data

to be received to render and display the results. Partial displaying is possible without

67

refreshing the whole page. Instead of making request for whole page, only the interested

part will be requested. This also reduces the workload of the network traffic.

In addition to its advantages, the proposed system has a couple of disadvantages.

The proposed integration framework introduces some extra work for web application

developers. This extra work mostly comes from the conversion of parameters to be able

to make compatible requests to remote Web Services. In order to make valid requests, the

proxy server should be deployed locally, and client stubs for Web Service invocations

should be created before running the application. Compared to a pure AJAX based web

application, the performance of the application is reduced by the intermediary proxy

server during its conversion and message handling jobs, but the gains (from our

experiences) are much higher than the overhead times coming from the proposed

intermediary service. This is not demonstrated in this thesis.

68

CHAPTER 4

FINE-GRAINED FEDERATION OF GIS WEB-

SERVICE COMPONENTS

 Our federation framework provides an infrastructure for understanding and

managing the production of information from distributed observation, simulation and

analysis through integrated data-views in the form of multi-layered map images. Our

infrastructure is based on a common data model, OGC compatible standard GIS Web-

Service components and an extension of the Web Map Server, the federator service. The

federator aggregates GIS services and enables unified data access/query and display over

integrated data-views.

In the current context, the term “federation” means providing one global view of

several data sources that are processed as one source. There are three general issues here.

69

The first is the data modeling (how to integrate different source schemas). The second is

their querying (how to answer the queries posed on the global schema). The third is the

common presentation model of data sources, i.e. mapping of common data model to a

display model enabling integration and overlaying with other data sets to create an

integrated data view. The first two research issues are related to lower level (database and

files) data format, query, and access heterogeneities that may be summarized as semantic

heterogeneity. In our research framework, Open Geographic Standards specifications for

data models (GML) and online services (WMS and WFS) solve the first two issues, but

we must address the third.

Our extended standard GIS Web Service components are integrated into the

system through the federator service, which is actually a WMS that is extended with

capability-aggregating and stateful service capabilities. These enable

definition/organization of distributed data sources into shared collections, and high

performance support for the responsive unified queries.

The proposed federation architecture is similar to Integrated Rule-Oriented Data

System (IRODS) (Cao & Wan, 2008; Hedges, Hasan, & Blanke, 2007) in terms of

research concerns. IRODS is a federated data system developed at San Diego Super

Computing Center (SDSC). It is based on expertise gained through nearly a decade of

applying the SRB (Doherty, Blanshard, & Manandhar, 2003; Rajasekar, Wan, & Moore,

2002) technology in support of data Grids, digital libraries, persistent archives, and real-

time data systems. IRODS management policies (sets of assertions these communities

make about their digital collections) are characterized in IRODS rules and state

information. At the IRODS core, a rule engine interprets the rules to decide how the

70

system is to respond to various requests and conditions. In contrast, in our framework we

don‟t need such rules, we use standard data components and their standard service

interfaces defined with distributed capability metadata. Moreover, IRODS and SRB use

central metadata catalog services - ICAT (or MCAT) ("MCAT," 1998) – for discovering

data and services. MCAT is based on database relation tables. On the other hand, our

proposed framework is based on aggregation of standard capability metadata files of the

distributed data components. These metadata files can be accessed and queried remotely

through the standard service interfaces. Different from the SRB and IROD, we also

enable view-level federation and unified access/query over the integrated data view as a

representation of shared data collections.

This section describes the implementation of view-level information presentation

through federation of standard GIS Web Service components. The framework is designed

for GIS domain; however we present the generalization architecture in terms of principles

and requirements in Section 7.

4.1. Geo-Data and integrated data views

Geo-data is provided by geographically distributed services from many different

vendors in different formats, stored in various different storage systems and served

through heterogeneous service API and transport protocols. The heterogeneity of

geographic resources may arise for a number of reasons, including differences in

projections, precision, data quality, data structures and indexing schemes, topological

organization (or lack of it), set of transformation and analysis services implemented in the

source.

71

The OGC and ISO/TC-211 have tried to address these issues. The specifications

for data models and online service descriptions define compliance requirements at data

and service API level. In brief, according to the standard specifications there are three

general groups of data services: Web Map Services, Web Feature Services, and Web

Coverage Services (Evans, 2003). WMS provides rendered data in maps in MIME/image

formats; WFS provides annotated feature-vector data in XML-encoded GML, and WCS

provides coverage data as objects or images. Since they have standard service

programming interfaces and capability metadata about their services and data, they can

be composed, or chained, by capability exchange and aggregation through their common

service method called getCapability.

This idea has inspired us to develop an infrastructure for creating and managing

the production of knowledge from distributed observation, simulation and analysis

through integrated data views in the form of multi-layered map images (see Figure 19).

This approach enables unified data access, query, and display from a single access point.

As shown in the figure, the geo-data is accessed through a federator service, and data is

always kept in its originating resources. They are integrated into the system with user‟s

on-demand querying (just-in-time federation). This enables easy data maintenance and

autonomy.

There is a three-level hierarchy of data. At the top layer, the federator service

provides human comprehensible data display in multi-layered map images. The

federators compose the data from the standard data services located at the middle level

(WMS and WFS). The bottom levels consist of heterogeneous data sources integrated

into the system through standard data services at the middle level. WMS instances are

72

rendering and displaying services, and WFS instances are mediator/adaptor services.

These provide heterogeneous data in common data model as well as resource and data

specific query and response conversions.

Heterogeneous data sources, which form the bottom layer of the hierarchy, are

integrated into the system through mediators. Mediators provide an interface for the local

data sources and play the roles of connectors between the local source and the global one.

Mapping rules that express the correspondence between the global schema (GML) and

the data source ones are essential. The problem of answering queries is another point of

the mediation integration – a user poses a query in terms of a mediated schema (such as

Figure 19: Data life-cycle and integrated data-view creation.

73

getFeature to WFS), and the data integration system needs to reformulate the query to

refer to the sources. Therefore, an information integration architecture emerges based on

a common intermediate data model (GML) providing an abstraction layer between legacy

storage structures and exposed interfaces. In our system, we use OGC standards to enable

these interfaces.

There are several advantages in adopting the approach shown in Figure 19. The

mediators not only enable data sources integrated into the system conform to the global

data model, but also enable the data sources to maintain their internal structure. In the

end, the whole mediator system provides autonomy. The integration process does not

affect the individual data sources‟ functionality. These data sources can continue working

independently to satisfy the requests of their local users. Local administrators maintain

control over their systems and yet provide access to their data by global users at the

federation level.

The remainder of the chapter focuses on upper levels (view-level) of dataflow and

query refinements illustrated in Figure 19. Since we have developed OGC‟s standard

services as Web Service components, they can be chained and orchestrated with Web

Service workflow tools, such as Kepler (Ludäscher et al., 2006) and Taverna (Turi,

Missier, Goble, Roure, & Oinn, 2007). We do not attempt to delve into those issues in

this chapter. We instead focus on the definition of service compositions and integrated

data views as presented in the following sections. Workflow execution abstraction is a

higher-level abstraction than the capability metadata federation that we investigate.

74

4.1.1. Hierarchical Data Definition and Multi-layer Maps

Hierarchical data is defined as an integrated data-view in the federator‟s

capability metadata. It actually defines a static workflow starting from the federator and

ending at the original data sources (WFS serving GML or WMS serving map layer

images). The services are linked through the reference-tags defined in their capability

metadata. Users‟ interactions with the system are carried over the integrated data views

through event-based interactive map tools. Integrated data-views are defined in the

hierarchical data format as explained below:

Map -> Layer -> Data (GML / binary images) ->Raw data (any type).

A map is an application-based, human-recognizable, integrated data display and is

composed of layers. A layer is a data rendering of a single homogeneous data source.

Layers are created from the structured XML-encoded common data model (GML) or

binary map images (raster data). Heterogeneous data sources (raw data) are integrated

into the system as GML or binary map images through the resource specific mediators.

The mediators have resource specific adaptors for request and response conversions and

appropriate capability metadata describing the data and resources.

Different applications need different maps that are composed of different data

layers in different numbers and combinations (Figure 20). Maps are multi-layered,

complex structures whose layers come from distributed heterogeneous resources and are

rendered from many different types of geospatial data. This type of multi-layered map

image is defined and managed in the federator with utilization of its cascading WMS

properties and inter-service communication between the components.

75

4.2. Federation Framework

Our federation framework is built over a service-oriented GIS framework and its

components (WMS and WFS). Federation is based on federating capabilities metadata

from the GIS Web Services components. Capabilities are aggregated through inter-

service communication using standard service interfaces. We do not define common data

models, online standard service components and their capability metadata definitions in

GIS. These are already defined by Open Geographic Standards (OGC). We instead have

developed the components according to the open standard specifications, and applied

them to our proposed information system framework by defining required extensions at

implementation and application levels in compliance with WS-I Web Service standards

(Sayar et al., 2005b). They also serve as a test bed for implementing and testing general

concepts in service architectures.

This section presents a federation framework based on common data models

(GML), standard Web Service components, federator and event-based interactive

decision making tools over integrated data views in the form of multi-layered map

images. The general architecture is illustrated in Figure 20. This figure presents the

proposed federation framework with a sample application using earthquake seismic data

(from WFS) and NASA satellite map images (from WMS). WMS is the NASA OnEarth

server located at the NASA Jet Propulsion Laboratory (JPL) ("OnEarth," 2007) and WFS

is located at Community Grids Labs (CGL) at Indiana University.

76

The framework enables users (i.e., decision-makers) to access the system as

though all the data and functions come from one site. The data distribution and

connection paths stay hidden and formulated as hierarchical data defined in federator‟s

capability metadata. The users access the system through integrated data-views (maps)

with the event-based interactive mapping display tools (Sayar et al., 2006). These tools

transform the users‟ actions into abstract queries through action listeners and enable

client interaction with the system via the federator.

As shown in Figure 20, the federator is actually a WMS (Kolodziej, 2004) with

extended capabilities and functionalities (see Chapters 4.3.1.1 and 4.3.1.2). These can be

summarized as aggregating capability metadata from distributed standard GIS services

Figure 20: Federated GIS framework.

77

and orchestrating/synchronizing requests and responses over the composition of data

services referenced in aggregated capability metadata. The federator enables stateful

service access over the stateless GIS Web Service components, and results in a better

performance for responsive GIS systems. These issues are addressed in Chapter 6.

Interactive information visualization tools provide researchers with capabilities to

support discovery. We developed these tools for interacting with standard WMS

providing OGC compatible online services such as getMap, getFeatureInfo and

getCapabilities. Since the federator is also a WMS, clients still use getMap service

interface to display multi-layered map images and/or query it through getFeatureInfo

service interface. The system removes the burden of accessing each data source with ad-

hoc query languages such as SQL for MySQL source, and enables interactive feature

based querying besides displaying the data. It also enables easy data-maintenance and

high degree of autonomy.

The federation framework is based on a two-stage process. The first stage is the

setup (or initialization) stage. The second stage is the application run-time stage. In the

setup stage, an integrated data-view (in the form of multi-layered map image) is defined

in the federator‟s aggregated capability metadata. The federator searches for standard GIS

Web Service components (WMS or WFS) providing required data layers and organize

them into one aggregated capability file (see the following section). This is shown as

dotted lines in the Figure 20. There is no client/user interaction with the system in this

first stage. In the second stage (run-time stage), a user/client interacts with the system

through a browser that provides event-based interactive display and query tools over the

integrated data-view. The second stage is illustrated with solid arrows in the figure.

78

How Federation runs:

1. Set-up stage –dotted lines, there is no client/user interaction yet

a. Creation of application specific hierarchical data definitions

i. Service compositions in federator‟s aggregated capability

metadata through getCapability standard service interfaces.

ii. Federator searches for standard GIS Web Service components

(WMS or WFS) providing required data layers and organize

them in one aggregated capability file.

iii. Aggregated capability is basically a WMS capability created by

utilizing cascading definition of OGC standards (see Chapter

4.3).

b. Federator provides that aggregated capability metadata to its clients

through its getCapability service interface.

2. Application Run-time (green lines, actual user interactions with the system):

Users access/query and display data sources from a single access point

(federator) over integrated data-views (multi-layered map images) defined in

federator‟s aggregated capability metadata.

a. Clients/user interacts with the system through event-based interactive

map tools associated with the federator with the help of its aggregated

capability metadata.

b. Since federator is also a WMS, clients still use getMap service

 interface to display multi-layered map images and/or query it

through getFeatureInfo service interface.

79

c. On Demand Data Access: There is no copying of the data at any

intermediary places. Data are kept at their originating sources.

Consistency and autonomy.

The issues regarding creation of aggregated capability metadata and multi-layered

map images definitions are presented in Chapter 4.3.

4.3. Service Federation through Capability Aggregation

 Capabilities are metadata about the data and services and have an XML schema

that is defined by Open Geospatial Consortium (OGC). Capability descriptions include

information about data and its corresponding operations with the attribute-based

constraints and acceptable request/response formats. It supplements the Web Service

Description Language (WSDL) (Christensen et al., 2001), which specifies key low-level

message formats but does not define information or data architecture. These are left to

domain specific capabilities metadata and data description languages (such as GML).

Capabilities also provide machine and human readable information that enables

integration and federation of data/information. Capabilities also aid the development of

interactive, re-usable client tools for data access/query and display. We use the open

standard specifications‟ definitions and present the required extensions for the federation

through hierarchical data creation by service chaining.

The integrated data-view in multi-layered map images is defined in the federator‟s

aggregated capability metadata. There are two major issues here: a) definition of

aggregated capability metadata and b) definition of multi-layered map images.

80

As mentioned earlier, the federation framework is built over the standard GIS

Web Service components, and the federator concept is inspired from OGC‟s cascading

WMS definition (Beaujardiere, 2004). In this respect, the federator is actually a cascading

WMS with extended capabilities. In the following sections, we describe how we apply

OGC‟s ideas related to the service chaining and aggregation, and define multi-layered

map images in the aggregated capability metadata.

 4.3.1. Extending WMS as a Federator Service

The federator is actually a cascading Web Map Server. A cascading Web Map

Server is a WMS that behaves like a client to other WMSs and like a WMS to other

clients. It can receive input from other WMS (and WFS) and display layers from them.

For example, a cascading Web Map Server can aggregate the contents of several distinct

map servers into one service. Furthermore, it even perform additional functions such as

output format conversion or coordinate transformation on behalf of other servers.

There are two possible ways to chain the services to be able to create a federator

framework and application specific hierarchical data in integrated data-view. One is

extending the WMS capability file by giving the reference to the service access points

providing the required layer (WMS) and/or feature data (WFS). Another way is using

Web Map Context‟s standards defining chaining in a context document (described

below). In any case, we utilize the cascading WMS definitions to develop a federator

providing information/knowledge in multi-layered map images.

81

4.3.1.1. Federating through Context Document:

OGC‟s WMS and WFS services are inherently capable of being cascaded and

chained in order to create more complex data/information. In order to standardize these

issues, OGC has introduced the Web Map Context (WMC) (Sonnet, 2005) standard

specifications. Before that, OGC recommended application developers to extend their

services‟ capabilities for cascading. WMC is a companion specification to WMS.

The present context specification states how a particular grouping of one or more

maps from one or more map servers can be described in a portable, platform-independent

format for storage in a repository or for transmission between clients. This description is

known as a "Web Map Context Document," or simply a "context." Presently, context

documents are primarily designed for WMS bindings. However, extensibility is

envisioned for binding to other services.

A context document is structured using XML, and its standard schema is defined

in the WMC specifications (Sonnet, 2005). A context document includes information

about the server(s) providing layer(s) in the overall map, the bounding box and map

projection shared by all the maps, sufficient operational metadata for client software to

reproduce the map, and additional metadata used to annotate or describe the maps and

their provenance for the benefit of end-users.

There are several possible uses for context documents besides providing chaining

and binding of services. The context document can provide default startup views for

particular classes of users. For example, specific applications require a specific list of

layers. The context document can store not only the current settings but also additional

information about each layer (e.g., available styles, formats, spatial reference system,

82

etc.) to avoid having to query the map server again once the user has selected a layer.

Finally, the context document could be saved from one client session and transferred to a

different client application to start up with the same context. In this document, we just

focus on its binding functionalities.

<ViewContext version="1.0.0" id="OGCContext"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <General>
 <Window width="500" height="400" />
 <BoundingBox srs="EPSG:4326" minx="-180.00" miny="-90.00" maxx="180.00" maxy="83.62" />
 <Title>Maps for Pattern Informatics Application</Title>
 <Abstract />
 </General>
 ….
 <LayerList>
 <Layer queryable="1" hidden="0">
 <Extension infoFormat="text/xml" ID="4e4b-83e" editable="0" local="1" />
 <Server service="WFS" version="1.1.0" title="CGL_WFS">
 <OnlineResource xlink:href="http://cgl/wfs/services" />
 </Server>
 <Name>World Seismic</Name>
 <Title>Earthquake Seismic Data</Title>
 <Abstract>Sample WMS to WFS layer cascading</Abstract>
 <DataURL format="text/xml">
 <OnlineResource xlink:href="http://cgl/wfs/services" />
 </DataURL>
 <SRS>EPSG:4326</SRS>
 <FormatList>
 <Format current="1">image/png</Format>
 </FormatList>
 …..
 </Layer>
 <Layer hidden="0">
 <Extension infoFormat="text/html" ID="1fc-4e4b-83e" editable="0" local="1" />
 <Server service="WMS" version="1.1.1" title="CGL_WMS">
 <OnlineResource xlink:href="http://nasawmsserver/wms/services " />
 </Server>
 <Name>Nasa Satellite</Name>
 <Title>Nasa Satellite Data</Title>
 <Abstract>Sample WMS to WMS layer cascading</Abstract>
 <DataURL format="text/xml">
 <OnlineResource xlink:href="http://nasawmsserver/wms/services" />
 </DataURL>
 <SRS>EPSG:4326</SRS>
 </Layer>

WMS to WFS cascading

WMS to WMS cascading

83

 …..
 </LayerList>
 …
</ViewContext>

The unnecessary details at the above context file are truncated. We just use related

elements and tags for the data cascading and service binding.

4.3.1.2. Federating through Aggregated WMS capability

This is another alternative approach to extend the WMS as a federator. It is based

on extending the standard WMS capabilities file (Figure 21). For the standard schema file

of the WMS capabilities see ("OGC Schema," 2008)

WMS defines its provided data sets as layers of images under the XML tag named

“layer” with the attributes and features according to the standard WMS capability schema

(Beaujardiere, 2004). Service chaining is accomplished through the cascaded layer

definition. A layer has been "cascaded" if it was obtained from an originating server and

then included in the capabilities metadata of a different server. The second server may

simply offer an additional access point for the layer, or may add value by offering

additional output formats or spatial reference systems.

If a WMS cascades the content of another WMS, then it must increment the value

of the attribute “cascaded” of the corresponding layer by 1. If that attribute is missing

from the originating WMS's capabilities metadata (that is, the layer has not been

cascaded before), then the Cascading WMS inserts the “cascade” attribute to the layer tag

and set it to 1. The default value of cascading is 0 (Kolodziej, 2004).

84

In order to illustrate service federation, we give a practical Geo-science

application as an example. In the Pattern Informatics (PI) application (Tiampo, Rundle,

Mcginnis, & Klein, 2002), decision makers need to see earthquake forecast values and

seismic data records plotted on satellite map images (see Chapter 5.2). Satellite map

images are provided by NASA OnEarth project‟s WMS at the NASA Jet Propulsions

Laboratory, and earthquake seismic data records are provided from WFS at the

Community Grids Labs (CGL) at Indiana University. The federator aggregates these

services‟ standard capability metadata and creates an aggregated one as if those data sets

are its own. The users access the system as though all the data and functions come from

that federator. The data distribution and connection paths stay hidden and formulated in

federator‟s aggregated capability metadata.

The federator lists the references to federated data and services in a specific WMS

tag element (called “Layers”). The federator publishes these data sets as if they were its

own. References are defined as bindings to the federated standard data services. In order

to federate GML data from WFS, the federator needs web service invocation address and

path to query schema for the corresponding data sets. In order to federate map images

from other WMS, the federator needs only the Web Service invocation address of the

corresponding WMS. This information is extracted from the federated WMS and WMS‟s

capabilities metadata accessed remotely through the standard service interface called

getCapability.

85

Figure 21: Federator's aggregated capability metadata.

The federator‟s capability metadata (Figure 21) consists of two main parts. These

are “Service” and “Capability”, defined under the corresponding tag names. The service

metadata provides general information for the service as a whole. It shall include a name,

title, and URL address of the online resource. Optional service metadata include abstract,

keyword list (to be searched in catalog/registry services), contact information to service

admin, access constraints, and limits on the number of layers in a request or the output

size of maps.

86

The tag <Capability> element of the service metadata names the actual operations

that are supported by the server, the output formats offered for those operations, and the

URL prefix for each operation. It is consists of two parts. The first part is related to

interface level request/response definitions (under tag element <Request>), and the

second part is related provided data sets described as layers (under the tag element

<Layers>).

 The tag <Request> names the actual operations that are supported. It also has

some sub-tags about offered output formats and URL prefixes for each operations. The

tag <Layers> lists and defines the provided data/information sets. The geographic

information content offered by a WMS server is organized into "layers": metadata about

the content is subdivided into descriptions of each layer, and a request for a map specifies

one or more layers.

The tags briefly given in Figure 21 and have also more detailed domain specific

sub-tags and attributes such as available bounding boxes (bbox), Spatial Reference

Systems (SRS), output formats, etc. formed according to the standard schema ("OGC

Schema," 2008). Please also see APPENDIX-C for more detail on the layer attribute

settings mentioned above for chaining/cascading of services and their descriptions in

federator‟s capability metadata.

Figure 22 shows an instance of a list of federated WMS and WFS data services

under the tag “Layers” for the Pattern Informatics Geo-science application also given in

Chapter 5.2.

87

Figure 22: Example federated data sets defined in federator’s metadata.

88

CHAPTER 5

APPLICATIONS OF THE FEDERATION

FRAMEWORK

Our proposed service-oriented federated GIS framework architecture, its

components WMS Web Services and browser event-based interactive decision making

tools have been used in several GIS projects. This chapter discusses three of them. One is

Los Alamos National Laboratory project ("LANL," 2007) (Chapter 5.1) and other two are

Solid Earth Virtual Observatory Grid (SERVOGrid) projects (Chen et al., 2003) (Aydin

et al., 2005) (Chapter 5.2 and Chapter 5.3).

89

5.1. The National Infrastructure Simulation and Analysis

Center (NISAC)

The National Infrastructure Simulation and Analysis Center (NISAC) at Los

Alamos National Laboratory (LANL) develop advanced modeling and simulation tools

for analysis of the critical infrastructure. These tools allow authorities to understand

interdependencies, vulnerabilities, and complexities of the infrastructure and help

develop policies, investment plans, education and training etc for crisis situations (T. W.

Meyer et al., 2003).

The Interdependent Energy Infrastructure Simulation System (IEISS) (Bush &

others, 2003) embodies analysis software tools developed at Los Alamos National

Laboratory with the collaboration of Argonne National Laboratory ("ANL," 2008).

IEISS aims to develope a comprehensive simulation study of the nation‟s interdependent

energy infrastructures to address wide variety of intra-and inter-infrastructure

dependency questions. The IEISS analysis tool has physical, logical, or functional entities

that have variety of attributes and behaviors that mimic its real-world counterpart.

Traditionally IEISS runs as a desktop application with local input data supplied as

XML files collected from various sources, and the result is locally generated. The data

are either kept in databases such as Environmental System Research Institute ("ESRI,"

2007) spatial database or in proprietary XML files. The user who runs the application

collects the data to local machine and runs the simulation. The results are usually shared

with e-mails. However, this approach has several limitations. Every time the simulation is

to be run, the data have to be copied to the local file system. There is no way of running

the simulations and getting the results remotely.

90

We have worked with IEISS developers at LANL and applied our GIS Grids

ideas to create a service-oriented Architecture for Los Alamos National Laboratory

(LANL), National Infrastructure Simulation and Analysis Center (NISAC). We have

integrated several Web Services including Web Map Service and interactive event-based

decision making and map-data display tools with IEISS (Interdependent Energy

Infrastructure Simulation System) (Bush, 2004). In our sample service-oriented

architecture demonstration, we were able to invoke IEISS to simulate interdependencies

between electrical and natural gas infrastructure components using a provided sample

data set. The data do not actually correspond to real-world infrastructure maps. However

it allowed us to demonstrate that the normally desktop-based simulation applications

could be integrated into a Grid architecture using Web Services approach.

In summary, we have created an architecture consisting of several Web Services

that expose IEISS as a Web Service and show the analysis results on an interactive online

mapping application.

The major data flow in IEISS is in accordance with the general flow as expressed

in Figure 2. The overall proposed architecture for IEISS is shown in Figure 23. Figure 24

shows a snapshot of system client interaction GUI and a sample output. Output image

shows overlays of feature data layers on a satellite picture provided by the NASA

OnEarth WMS Server ("OnEarth," 2007). Feature data in that application are electric and

natural gas infrastructure components provided by WFS in GML common data model.

The components of the architecture (Figure 23):

Feature Database: This is our MySQL spatial database, which holds various

geospatial features such as California faults and earthquake data, US state borders, global

91

seismic hotspots etc. For the NISAC SOA demonstration we have acquired a sample

XML file which contains natural gas and electric power components for the State of

Florida. This sample data is inserted into feature database as two distinct feature types.

This allows us to make geospatial queries on feature data as GML components.

Web Feature Service: Provides interfaces to access and query the Feature

Database. The features are provided as GML Feature collections, which then can be used

as map overlays or for geo-processing etc. We have created lightweight WFS in this

project (WFS-L), which receives the new model XML created by IEISS, converts to

GML and publishes to NB. This is actually a WFS server and developed by Galip Aydin.

UDDI Registry: This service provides an API for publishing and discovery of

geospatial and visualization services. It extends existing Universal Description,

Discovery and Integration (UDDI) (Clement, Hately, Riegen, & Rogers, 2004)

Information Model to provide GIS domain specific Information Services.

Web Map Client: It provides a user interface that displays the map overlays and

allows client interaction with the maps. It also synchronizes and controls all the user

interactions with the system.

Web Map Server: Relays the client requests to the WFS, and receives the response

as GML documents. WMS then converts GML to map images (JPG, TIFF, SVG etc.) and

forwards these to the Web Map Client.

92

Figure 23: NISAC SOA Demonstration Architectural Diagram and Data Flow.

93

NaradaBrokering (Pallickara & Fox, 2003): This is a standalone

publish/subscribe service. Allows providers to publish their data products to topics and

forwards this data to the subscribers of a particular topic. We use NaradaBrokering as the

messaging substrate of the system. All GML and XML data transport is done through this

service.

Context Service (Little, Newcomer, & Pavlik, 2007): The Context Service

provides a dynamic, fault tolerant metadata hosting environment to enable services to

share information within a workflow session to correlate their activities. This service is

developed by Mehmet Aktas at CGL Labs ("CGL," 2001).

Context Respondent Handler: The Context Response Handler is used to

communicate with the Context Service. It allows Context Service to inform its consumers

about results of the operations.

gml2model Tool: Geospatial data exchange format for the system is GML.

According to the user‟s selection WFS encodes requested geospatial feature data in GML

and publishes to a certain NaradaBrokering topic. A NaradaBrokering Subscriber tool is

used to save GML FeatureCollection published by WFS into a file. IEISS requires input

data to be in a certain format called XML Model. We wrote a tool called gml2model to

convert GML FeatureCollection documents to IEISS XML Model format.

shp2gml Tool: One type of the IEISS outputs is ESRI Shape files which show

calculated outage areas etc. We use an open source tool called shp2gml by open source

deegree project ("Deegree," 2001) to convert these shape files to GML, which are sent to

WMS Client by the lightweight WFS.

94

The data flow in this architecture:

0. WFS and WMS publish their WSDL URL to the UDDI Registry

1. User starts the WMS Client on a web browser; the WMS Client displays the

available features. User submits a request to the WMS Server by selecting desired

features and an area on the map. WMS Client is actually the event-based

interactive map tools.

2. WMS Server dynamically discovers available WFS that provide requested

features through UDDI Registry and obtains their physical locations (WSDL

address).

3. WMS Server forwards user‟s request to the WFS.

4. WFS decodes the request, queries the database for the features and receives the

response.

5. WFS creates a GML FeatureCollection document from the database response and

publishes this document to NaradaBrokering topic ‘/NISAC/WFS’; WMS Server

and IEISS receive this GML document.

WMS Server creates a map overlay from the received GML document and sends

it to WMS Client which in turn displays it to the user. After receiving the GML

document IEISS NB Subscriber invokes gml2model tool; this tool converts GML

to XML Model format to be processed by IEISS.

6. User invokes IEISS through WMS Client interface for the obtained geospatial

features, and WMS Client starts a workflow session in the Context Service. On

receiving invocation message, IEISS updates the shared state data for the

workflow session to be “IEISS_IS_IN_PROGRES” on the Context Service. Both

95

IEISS and WMS Client communicate with Context Service via asynchronous

function calls by utilizing Context Respond Handler Service. IEISS runs and

produces an ESRI Shape file that has the outage areas for the given region.

7. IEISS invokes shp2gml tool to convert produced Shape file to GML format. After

the conversion IEISS updates shared session state to be “IEISS_COMPLETED”.

As the state changes, the Context Service notifies all interested workflow entities

such as WMS Client. To notify WMS-Client, the Context Service publishes the

updates to a NaradaBrokering topic (/NISAC/Context://IEISS/SessionStatus) from

which the WMS-Client receives notifications.

8. WMS makes a request to the WFS-L for the IEISS output

9. WFS-L publishes the IEISS output as a GML Feature collection document to NB

topic ‘NISAC/WFS-L’. WMS Server is subscribed to this topic and receives the

GML file then converts it to map overlays

10. WMS Client displays the new model on the map

96

Figure 24: Sample Florida State Electric Power (red lines) and Natural Gas Components (blue lines)

as overlays on a Satellite images provided by NASA WMS.

Figure 24 shows a sample IEISS output; the blue region depicts the affected

outage area. This image is generated by the Web Map Service. The blue region is the

affected area calculated by IEISS because of a possible problem with the energy

infrastructure.

5.2. Pattern Informatics (PI), Earthquake Science

The Pattern Informatics (PI) (Tiampo, Rundle, Mcginnis, & Klein, 2002)

(Tiampo, Rundle, Mcginnis, Gross, & Klein, 2002) method uses observational data to

97

identify the existence of correlated regions of seismicity. The method does not predict

earthquakes, rather forecasts the regions or so-called hotspots where earthquakes are most

likely to occur in the relatively near future.

The PI algorithm is developed at the University of California-Davis by Prof. John

Rundle and his group. PI analyzes earthquake seismic records to forecast regions with

high future seismic activity. It also identifies the characteristic patterns associated with

the shifting of small earthquakes from one location to another over time prior to the

occurrence of large earthquakes.

There have been two major types of approaches for forecasting earthquakes. The

first approach is based on empirical observation of precursory changes such as seismic

activity, ground motions and others. The second approach is statistical patterns of

Seismicity (J. R. Holliday et al., 2005). The hypothesis behind these approaches is that

the earthquakes will occur in regions where typically large earthquakes have occurred in

the past. The Pattern Informatics (PI) approach suggests that a more promising approach

to this hypothesis is that the rate of the occurrence of small earthquakes in a particular

region can be analyzed to assess the probability of much larger earthquakes (Rundle,

Turcotte, Shcherbakov, Klein, & Sammis, 2003).

PI tries to discover patterns given past data to predict probability of future events.

The process of analysis involves data mining, which is made using results obtained from

a Web Feature Service. The Web Map Service is responsible for collecting parameters for

invoking the PI code. These parameters are then sent to an HPSearch (Gadgil, Fox, &

Pallickara, 2005) engine which invokes the various services to start the flow.

Additional components of the architecture

98

In addition to the components mentioned for IEISS in Chapter 5.1, there is one

more component called HPSearch. It is a scripting technique for managing distributed

workflows. Different Geo-Science applications require different set of parameters for the

users to utilize the system. This set of parameters and their order are defined earlier by

the job manager, and the user portal knows how to invoke it. Users provide required

parameters through the project‟s user interface. After the application finish the task, job

manager send the output link to the user.

The services and data flows are illustrated in Figure 25 and the steps are

summarized as below. This is the basic scenario that we use for integrating Pattern

Informatics, Regularized Deterministic Annealing Hidden Markov Model (RDAHMM)

(Rabiner, 1989) (Granat, 2003), and other applications.

99

Figure 25: A general GIS Grid orchestration scenario involves the coordination of GIS services, data

filters, and code execution services. These are coordinated by HPSearch

100

Flow in this architecture is explained here (Figure 25):

0. WFS and WMS publish their WSDL URLs to the UDDI Registry.

1. User starts the WMS Client on a web browser; the WMS Client displays the

available features. User submits a request to the WMS Server by selecting desired

features and an area on the map. WMS Client is actually event-based interactive

map tools.

2. WMS Server dynamically discovers available WFSs that provide requested

features through UDDI and obtains their physical locations (WSDL address).

3. WMS Server forwards user's request to the WFS.

4. WFS decode request, query the database for features and receives the response.

5. WFS creates a GML FeatureCollection document from the database response and

publishes this document to a specific NaradaBrokering topic.

6. WMS receives the streaming feature data through NaradaBrokering's agreed upon

topic. WMS Server creates a map overlay from the received GML document and

sends it to WMS Client which in turn displays it to the user.

7. WMS submits flows for execution by invoking the HPSearch. This request also

includes all parameters required for execution of the script. The HPSearch system

works in tandem with a context service for communicating with WMS.

8. Initially, the context corresponding to the script execution is marked "Executing".

9. Once submitted, the HPSearch engine invokes and initializes (a) the various

services, namely the Data Filter service, that filters incoming data and reformats it

to the proper input format as required by the data analysis code, and the Code

Runner service that actually runs the analysis program on the mined data. After

101

these services are ready, the HPSearch engine then proceeds to execute (b) the

WFS Web Service with the appropriate GML query as input.

10. The WFS then outputs the result of the query onto a predefined topic. This stream

of data is filtered as it passes through the Data Filter service and the result is

accumulated by the code runner service.

11. The code runner service then executes the analysis code on the data and the

resulting output can either be streamed onto a topic, or stored on a publicly

accessible Web server. The URL of the output is then written to the context

service by HPSearch (Gadgil, Fox, Pierce, & Pallickara, 2005).

12. The WMS constantly polls the context service to see if the execution has finished.

13. The execution completes and the context is updated.

14. The WMS downloads the result file from the web server and displays the output.

In short, we run Pattern Informatics (PI) code through the proposed

browser/event-based interactive user interface and plot the possibilities of the earthquake

happenings in color-coded grid over the previously created seismic and earth map (see

Figure 26). Seismic data are kept in WFS and accessed/queried based on the user

provided attribute based search criteria.

102

Figure 26: WMS Client or so called event-based interactive map tools. Google Map layer is

superimposed by the plotting of the PI outputs. It shows probability of earthquake happenings. Red

ones show high probabilities.

We have used NASA OnEarth Map server as cascaded WMS and get earth

satellite image.

103

5.3. Virtual California (VC), Earthquake Science

VC (Rundle et al., 2002) is earthquake simulation model for the California. The

simulation takes into account the gradual movement of faults and their interaction with

each other. It includes 650 segments representing the major fault systems in California,

including the San Andreas Fault responsible for the 1906 San Francisco earthquake

(Donnellan, 2004).

VC is a program to simulate interactions between vertical strike slip faults using

an elastic layer over a viscoelastic half-space. It relies on fault and fault friction models.

At the application, or simulation level, VC has a two-phase run. In the first phase, the

user runs the application by giving required parameters and gets the result for the best

cost. The definition of cost and it‟s calculation are application specific and defined at

(Rundle et al., 2003). If the user likes the returned cost, he runs the second-phase with the

returned cost and some other parameters given through VC GUI to get the forecast values

(Donnellan et al., 2003). The result forecast values are played in a movie streams (see the

below sample run with JMF -Java Media Framework- client) ("JMF," 2008). Each frame

in the stream is actually a three-layer structured static map.

There is no additional component needed besides the components explained

before.

Flow in this architecture is explained here (Figure 27)

104

a. GIS users interact with the system through the user interface provided by WMS

Client and/or GIS Portal. GIS user enters the parameters to get specific region of

the world as a map from the WMS server.

b. WMS Client makes a request to the WMS on behalf of the user. It submits a

request to the WMS Server by selecting desired features and an area on the map.

WMS returns a map in the form of an image or an exception in case of an error.

c. In order to create user specific maps, WMS Server forwards user‟s request to the

WFS to get requested feature data. WFS decodes the request, queries the database

for the features and receives the response. Feature data is returned to the WMS

server as a set of feature collections.

The above three steps are common to any application to create a display in

the form of maps. Below, we list VC specific process flow to overlay VC output

as another layer on top of the map image created through the processes listed

above.

1. After receiving and displaying the maps returned from the WMS server, the user

starts running VC simulation code through GIS Portal. The GIS Portal provides

the user with the ability to setup the experiment and the parameters associated

with each set of run.

2. The user sets application specific parameters such as bounding box and the time

frame of the experiment‟s data. These values are bundled as script execution

parameters and sent to the HPSearch engine.

105

3. The HPSearch engine then runs the script with the specified parameters. For each

run, the service selects an instance of the VC runner service and initializes it.

4. Once all initialization is done, the HPsearch engine invokes the streaming WFS

service.

5. The WFS sends the requested seismic records to the VC Runner service. The VC

Runner service filters the input data. This step also converts date to float format.

Once all the data has been accumulated, the VC Runner service runs the VC code

on the input data using the input parameters. Usually each instance of the VC

Runner service will work with different set of parameters.

6. The output of the VC runs is stored in output files.

7. On completion the VC runner stores the best cost that was computed per run in

the context service. The best cost is the smallest value and will be used for

determining the set of input parameters that needs investigated further.

8. The services then notify the HPSearch engine of the completion

9. HPSearch engine queries the context service to retrieve the best cost and then

again writes to the context service the location of the output file that corresponds

to the best cost.

10. The WMS constantly monitors the context service to see if the computation was

completed. Once the computation is complete, it retrieves the location of the

output file that corresponds to the best cost.

11. Finally the output file is retrieved (via FTP) and the output is used for

visualization purposes.

106

12. Depending on the data and the geophysics application GIS Portal superimpose

returned data as a new layer or makes some animated map or movie streams. In

case of VC application, returned output data is multi-casted to a specific IP and

port as movie streams.

Outcomes from the VC demo are map movies like animations. Links to a sample

movie for Virtual California is listed below.

For this sample case, there are 1144 records in the output file returned by VC

Runner Service shown in Figure 27.

http://complexity.ucs.indiana.edu/~asayar/gisgrids/docs/VCDemo_03.swf (Flash version)

a b

2

1

7
9

1

0

11

8

6

5

4

3

WSContext

Service

HPSearch

Engine

VC Runner

Service

VC Runner

Service

VC Runner

Service

VC Runner

Service

Output

File
Output

File
Output

File
Output

File

WMS Client

/
GIS Portal

WMS

c

D

B

WFS

DB

User

Browser

Figure 27: Virtual California Operation steps founded over proposed Service-oriented GIS framework

http://complexity.ucs.indiana.edu/~asayar/gisgrids/docs/VCDemo_03.swf

107

http://complexity.ucs.indiana.edu/~asayar/gisgrids/html/work/VC_01.avi (Avi format)

VC Runner Services

See them in Figure 27

VC Map-Movie
creation interface.
Choose periodicity
of time series data
framework play

Figure 28: Event-based interactive user interface extended for Virtual California needs. It enables

creating map movies by playing framework (created from time-series data) successively. Each

framework is actually a map image.

http://complexity.ucs.indiana.edu/~asayar/gisgrids/html/work/VC_01.avi

108

CHAPTER 6

HIGH-PERFORMANCE SUPPORT IN

INTEROPERABLE GEO-DATA RENDERING

This chapter addresses general performance issues in distributed, interoperable

and service oriented geo-data rendering, and presents performance enhancing approaches.

We present adaptive parallel query optimization technique (which is applicable to

any other domain) (Chapter 6.4), streaming data transfer extension to Open GIS

Standards by adopting publish/subscribe messaging middleware (NaradaBrokering),

(Chapter 6.2) and scalable large XML-data rendering with application of a pull-parsing

technique (Chapter 6.3). The last chapter presents overall evaluations of the

enhancements over the proposed federated GIS framework (Chapter 6.6).

109

6.1. General Performance Issues

Distributed GIS systems typically handle a large volume of datasets and are

commonly used in early warning system and crisis management, where performance is

important. Therefore the transmission, processing and visualization/rendering techniques

need to be responsive to provide quick, interactive feedback. There are some

characteristics of GIS services and data that make it difficult to design distributed GIS

with satisfactory performance. Those characteristics can also be generalized to any other

domain.

In order to provide interoperable and extensible framework, we have adopted

domain-specific standard specifications for data model (GML) and online services from

OGC, and Web Services specifications from WS-I ("WS-I," 2002). However, these

adoptions degrade the performance even more for large-scale applications because using

XML-encoded data models and Web Services‟ XML-based SOAP protocol introduces

significant processing overhead. These issues and proposed enhancement approaches are

presented in the following sections. The aim is to combine compliance requirements with

competitiveness and to create a responsive information system framework providing map

images for interactive decision-making tools.

6.1.1. Distributed Nature of Data

The data ownership issues (that is, various data provided by geographically

distributed various virtual public/private organizations) and large data volumes make it

infeasible to put all geospatial data into one large data center. In addition, the

computational resources associated with those data centers are naturally distributed.

110

Furthermore, decision making requires these distributed heterogeneous data sources to be

shared, and represented, or rendered, to extract useful knowledge giving sense to

anybody joining the decision making process. Although we concentrate on the

performance issues related to compliance requirements such as using XML-encoded data

model GML and Open GIS compatible Web Service components, throughout the section

we touch upon the general issues briefly mentioned above

Geographic Information Systems are large scale data intensive scientific

applications requiring creation of knowledge from distributed data sources provided by

autonomous heterogeneous data and computation resources.

6.1.2. Interoperability Cost – Common Data Model

Using semi-structured common data model enables interoperability and inter-

service communication. XML‟s emergence as the de facto standard for encoding tree-

oriented, semi-structured data has brought significant interoperability and standardization

benefits to distributed computing. On the other hand, performance has been still a

persistent concern for large scale applications, because of the size issues and processing

overheads (Lu, Chiu, & Pan, 2006). The processing is detailed as parsing and

differentiating (separating) the core-data from the attributes and other tags to create

required application specific data formats.

GML is the data modeling language for OGC specifications. GML carries content

and the presentation tags together with the core data. This enables the data sources to be

queried and displayed together (i.e., map images interactively query-able through

interactive map tools). Querying and displaying data in the GML format requires parsing

111

and rendering tools to extract requested tag elements such as geometry elements to draw

map features or non-geometry elements to answer content-related queries.

Structured data representations enable adding some attributes and additional

information (annotations) to the data. Those resulting XML representations of data tend

to be significantly larger than binary representations of the same data. The larger

document size means that the greater bandwidth is required to transfer the data, as

compared to the equivalent binary representations.

In addition, due to the architectural features (integration of autonomous

resources), the system spends a lot of time on query/response transformations for

relational database-to-GML mappings. WFS enable mediation of autonomous databases

and serving the data in common data model through the standard service interfaces and

message formats. However, it is often time consuming because of the requirements for

query and response conversions (getFeature to SQL and relational tables to GML). In

summary, the advantages of using structured, annotated data come with its costs.

6.1.3. Tough Data Characteristics

Geo-data is described and queried with its location attribute. A location in a 2-

dimensional plain/surface is formulated as (x, y) coordinates. Based on the location

attribute, geo-data is unevenly distributed (consider human populations, earthquakes, and

temperature distributions) and variably sized. In addition, geo-data collected from sensors

are dynamically changed and/or updated over time.

Because of these stringent characteristics and dynamic nature of data, it is not

easy to perform efficient load balancing and parallel processing over the unpredictable

112

workload. Figure 29 illustrates this problem. The work is decomposed into independent

work pieces, and the work pieces are of highly variable-sized.

6.2. Extending OGC Standards with Streaming Data Transfer

Capabilities

NaradaBrokering is a message oriented middleware (Tran, Greenfield, & Gorton,

2002) system that facilitates communications between entities through the exchange of

messages. This also allows us to receive individual results and publish them to the

messaging substrate instead of waiting for the whole result set to be returned. In case of

using streaming, the standard Web Service interfaces are used for handshaking, and the

actual data transfer is done between subscriber and publisher deployed in proposed GIS

Web Service components respectively. Besides giving better performance in general, the

streaming data transfer technique enables data rendering and processing even on partially

returned data. It can even be applied to the real-time data rendering.

The OGC‟s initial standard WMS and WFS specifications are based on HTTP

GET/POST methods, but this type of services have several limitations such as the amount

of data that can be transported, the rate of the data transportation, and the difficulty of

R3

R2 R1

R4

(c,d)

(a,b)
((a+c)/2, b)

(a,b)

(c,d)

(c, (b+d)/2) (c, (b+d)/2)

((a+c)/2, b)

(b)Point
data

(a) LineStrings/polygons
data

Figure 29: Problem illustration with two different types of data sets

113

orchestrating multiple services for more complex tasks. Web Services help us overcome

some of these problems by providing standard interfaces to the tools and applications we

develop.

Our experience shows that although we can easily integrate several GIS services

into complex tasks by using Web Services, providing high-rate transportation capabilities

for large amounts of data remains a problem because the pure Web Services

implementations rely on SOAP (Gudgin et al., 2007) messages exchanged over HTTP.

This conclusion has led us to an investigation of topic-based publish-subscribe messaging

systems for exchanging SOAP messages and data payload between Web Services. We

have used NaradaBrokering (Pallickara & Fox, 2003), which provides several useful

features such as streaming data transport, reliable delivery, ability to choose alternate

transport protocols, security and recovery from network failures. This allows us to

provide higher level qualities of service in GIS services.

NaradaBrokering is a message oriented middleware (MoM) (Tran et al., 2002)

system that facilitates communications between entities through the exchange of

messages. This also allows us to receive individual results and publish them to the

messaging substrate instead of waiting for whole result set to be returned.

Transferring the GML data in the form of an XML String type causes some

problems related to the performance when the GML is larger than some amount of size.

Since the WFS returns the resulting XML document as an <xsd:string>, this has to be

constructed in memory and the size will depend on several parameters such as the system

configuration and memory allocated to the Java Virtual Machine etc. Consequently there

will be a limit on the size of the returned XML documents. For these reasons we have

114

investigated alternative ways for data transport and researched the use of topic based

publish-subscribe messaging systems for streaming the data. Our research on

NaradaBrokering shows that it can be used to stream large amount of data between nodes

without significant overhead. Additional capabilities such as reliable messaging and

support for different transport protocols already inherent in NaradaBrokering show that it

is a powerful yet easy to integrate messaging infrastructure. For these reasons we have

developed a novel Web Map Service and Web Feature Service (developed by Galip -

(Aydin, 2007)) that integrate OGC specifications with Web Service-SOAP (Gudgin et al.,

2007) calls and NaradaBrokering messaging system. Architecture is shown in Figure 30.

Figure 30: Streaming data transfer using NaradaBrokering publish-subscribe topic

based messaging middleware.

topic-ip-port

(A)WMS

Server
WFS Server

Narada

Brokering

Server

UDDI

client server

registry

 GML GML

3

2 1

getFeature

(topic, IP, port) Publisher Subscriber

w
s
d
l

w s d l

DB

Web Services‟

publish-find-bind

triangle

115

Connection lines 1 and 2, and UDDI (Universal Description, Discovery and

Integration) (Clement et al., 2004) service are displayed in the figure for showing classic

publish-find-bind triangle of the Web Service based Service Oriented architecture. We do

not go into details of these interactions and UDDI registry service in this document but

these can be summarized as following. WFS services publish their existence and service

providing with their WSDL service description files (line-1). Clients (such as WMS) find

appropriate WFS by searching UDDI registries (line-2). After finding appropriate service,

clients are bind to that service by creating their client stubs. In case of that client knows

what WFS provides the requested data, client can directly communicate with the services

without need for UDDI registry service.

After finding a WFS capable of providing the requested data, WMS (as a client)

make the getFeature request (wrapped in SOAP envelope) to WFS‟s standard service

interface (line-3). As a response, WMS gets the topic (publish-subscribe for a specific

data), IP and port to which WFS streams requested data. The standard Web Service

interface is used for handshaking actual data transfer is done between subscriber and

publisher deployed in WMS and WFS respectively.

Streaming data transfer through publish-subscribe based messaging middleware

enable map rendering even in the case of partially returned data. This depends on the

WMS‟s internal implementation.

Table 1 gives a comparison of the streaming and non-streaming data access

approaches for the different data sizes. These values are obtained by applying the

proposed framework on Pattern Informatics (PI) (Tiampo, Rundle, Mcginnis, & Klein,

2002) Geo-science application using earthquake seismic data records. These are GML

116

data access times including query conversion at WFS, result set conversion from database

to GML and transfer times from WFS to federator or WMS.

As the test setup Figure 30 is used. The performance response times are shown in

Table 1 and Figure 31. The values are measured end-to-end times in which one end is DB

and the other end is WMS. NaradaBrokering agent, WMS and WFS are deployed in

Local Area Network (LAN) in Indiana University Community Grids Labs. In local area

network we have used the lab‟s “gridfarm” machines from gf12.ucs.indiana.edu to

gf19.ucs.indiana.edu. These machines have 2 Quad-core Intel Xeon processors running at

2.33 GHz with 8 GB of memory and operating Red Hat Enterprise Linux ES release.

Table 1: Data access times (from federator or WMS) while using (1) streaming and (2) non-streaming

data transfer techniques.

 Streaming Non-Streaming

Data

Size

(KB)

Average Time

for Streaming

Transfer

Average

Response

Time

Standard

deviation

Average

Time Non-

Streaming

Average

Response

Time

Standard

deviation

10 31.3 2425 38 1518.8 3912.5 77

30 100 2661 27 1356.1 3917.1 38

100 320.1 2945 50 1473.8 4098.7 71

300 826.7 3405 48 1835.7 4414 39

1000 2414.2 4570 360 3506.8 5662.6 31

117

Figure 31: Comparisons of Streaming vs. Non-Streaming data response timings from source to

federator or WMS.

We can deduce from the table that for the larger data sets when using streaming

our gain is about 25%. But for the smaller data sets this gain becomes about 40%, which

is mainly because in the traditional Web Services the SOAP message has to be created,

transported and decoded the same way for all message sizes which introduces significant

overhead.

Besides giving better performance in general, streaming data transfer technique

enables data rendering and processing even on partially returned data. It can even be

applied to the real-time data rendering.

0

1,000

2,000

3,000

4,000

5,000

6,000

0 200 400 600 800 1000 1200

Ti
m

e
-

m
se

cs

GML Data Size -KB

Average Response Times
Streaming vs. Non-Streaming GML Data Capturing

Streaming

Non-Streaming

118

6.3. Application of Pull Technique for GML Parsing and

Rendering

There are two well-known and commonly used paradigms for processing XML

data, the Document Object Model (DOM) and the Simple API for XML (SAX). DOM

builds a complete object representation of the XML document in memory. This can be

memory intensive for large documents and entails making at least two passes through the

data. SAX operates at one level lower. Rather than actually constructing a model in

memory, it informs the application of elements through callbacks. This also requires at

least two passes through the data. These are all expensive and resource (such as CPU and

memory) consuming processes and they don‟t provide enough performance for the large-

scale applications.

Proposed system includes data rendering and filtering tasks assigned to Web-

based Map Services to create comprehensible data representations derived from the semi-

structured common data (GML). These comprehensible representations are called maps.

Regarding the rendering of large GML data and creating map images we use parsers.

There are three general parsing techniques proposed for processing XML

structured data. These are document model, push model and pull model. There are also

other hybrid alternatives built on these main approaches. In order to process data in XML

structured common data model we use the pull-parsing technique.

Pull parsing, as exemplified by the XML Pull Parser (Slominski, 2005), is an

efficient paradigm similar to SAX in that it does not build a complete object model in

memory. It differs in that the tags and content are returned directly to the application

from calls to the parser, rather than indirectly in the form of callbacks. The pull approach

119

of this parsing model results in a very small memory footprint (no document state

maintenance required, in contrast to DOM) and very fast processing (fewer unnecessary

event callbacks - compared to SAX).

A pull parser only parses what is asked for by the application rather than passing

all events up to the client application as SAX parsing does. For a comparison of pull

parsing with other leading Java based XML parsing implementations, see (Sosnoski,

2001).

Pull parsing does not provide any support for validation. This is the main reason

that it is faster than its competitors. Since all the services are OGC compatible and

created in Web Service principles, validation is not necessarily needed. In OGC, services

describe themselves by capability document and servers know each other by exchanging

these document. If one has external validation mechanisms, or if the validation errors are

not catastrophic to the system, or one can trust validity of the capabilities document of the

contacted server, then using XML Pull Parsing gives the highest performance results. For

example in communication between WFS and WMS, since it is known that WFS

provides feature data in OGC‟s GML format (Cox et al., 2003), it is very advantageous

skipping validation and using pull parsing.

For the application specific comparison of Pull parsing and DOM see Table 2 and

Figure 32. The performance values are measured in milliseconds, and data sizes are in

MBs. Performance test is done with a 1GB allocated JAVA Virtual Machine. The Figure

32 illustrates the timing values for the data size less than 100MB of GML data. Above

this threshold value for the Virtual Machine allocated 1GB memory, DOM become

useless.

120

Test case: For the XML data we use earthquake seismic data records encoded in

GML. Each earthquake seismic record has some attributes and some geometry elements.

In our tests we will parse the GML data in XML documents and extract the geometry

elements. In case of DOM, parsing and extraction are done separate as it is shown in two

columns in Table 2. In case of pull parsing, geometry data is extracted from GML with

parsing and extraction applied all together.

Results for the DOM and pull approach are obtained by using dom4j and xpp

respectively. Xpp is developed in Indiana University Extreme Labs. The experiment

performed in a single computer, utilizing Pentium 4 CPU operating at 3.4GHz with 1.00

GB of memory.

Table 2: The performance values of DOM and Pull parsing (Xpp) over GML data. Dashed-line

values imply memory exception.

 Average Timings

 DOM (dom4j) Pull (Xpp)

Data Parsing + Data Total Data Data Total

(KB) Validation Plotting Rendering Extraction Plotting Rendering

1 469.22 0.00 469.22 15.59 0.00 15.59

10 494.06 3.00 497.06 72.81 3.00 75.81

100 625.54 15.33 640.87 183.06 15.33 198.39

1,000 760.20 83.11 843.31 270.47 83.11 353.58

5,000 1,422.91 153.67 1,576.58 671.74 153.67 825.41

10,000 3,557.44 828.50 4,385.94 1,025.67 828.50 1,854.17

121

100,000 ---- ---- ---- 7,059.72 3738.25 10,797.97

The dashed lines in Table 2 represent insufficient memory exceptions. It means

the system does not have enough memory for completing its work with 1GB of allocated

virtual memory in JAVA virtual machine. Since there is extreme performance difference

between using DOM and pull parsing techniques, we plot their values in Figure 32 for

less than 10MB of GML data.

Table 3: Standard deviations of average timings for total rendering

Data Size Total Rendering

(KB) DOM-dom4j Pull-(Xpp)

1 21.32 0.87

10 20.87 7.41

100 28.04 23.25

1,000 41.58 65.09

5,000 72.66 121.05

10,000 126.51 116.49

122

Figure 32: Performance comparison of two XML data processors, pull parsing and Document Object

Model by using dom4j.

6.4. Adaptive load-balancing and Parallel Query

Optimization

A federator inherently makes workload sharing by fetching the different data

layers from separate resources to create multi-layered map image. We call this as vertical

load balancing. This is a natural load balancing and parallel processing resulting from the

architectural features.

In addition to the inherent layer-based, load balancing, a layer (in the multi-

layered map image) itself can be split into smaller bounding box tiles and each tile can be

farmed out to a worker WFS/WMS. Layer-based partitioning is based on attribute-based

query decomposition in which the attribute is the bounding box defining the requested

data‟s range in a rectangular shape. See the sample range query as a rectangle at the right-

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 2000 4000 6000 8000 10000 12000

Ti
m

e
-

m
se

cs

Data Size -KB

GML rendering
by using DOM vs. Xpp

dom4j

Xpp

123

top corner of Figure 33. This section focuses on individual layer partitioning and

proposes a novel data access/query optimization technique.

We illustrate the partitioning and parallel processing in Figure 33. A sample main

query range [Range] is partitioned into 4 smaller sub-regions as set of [R1, R2, R3 and

R4] and queried in parallel.

Figure 33: Architectural comparisons of parallel fetching with straightforward single thread fetching

124

In the following chapters we present enhancement techniques to reduce the

negative effects of time-consuming query and data conversions and data transfer

latencies. We focus on the issues at the upper level of data handling. We are not

proposing enhancement over query and/or response conversions at the autonomous

resources integrated through mediators (WFS). We take them as black boxes. Our

enhancement approaches are at the federator-level and based on the approximation of

unpredictable query workloads.

6.4.1. Problem Definition

Optimal partitioning of geo-data is difficult to achieve because polygons, line-

strings, points etc. are neither distributed uniformly nor of similar sizes. In addition, the

load they impose varies, depending on the size and location of the query. Since query

location is not known in advance, it is difficult to develop a partitioning strategy that is

optimal for all range queries. This problem is illustrated in Figure 33. The main query

range is partitioned into R1, R2, R3 and R4 through equal size binary cut to query data in

parallel and gain performance. However, with this naïve method, the expected

performance gain from the parallel query can‟t be achieved due to the characteristics of

geo-data mentioned earlier. Moreover, in data warehousing, data sets can be very large.

Answering aggregate queries exactly can be computationally expensive.

“Multiple extraction technique for informative sentences” (Metis) (A. L. Mitchell

et al., 2005) and “Guided self-scheduling for parallel super computers” (Polychronpouos

& Kuck, 1987) are the two techniques developed for the similar kinds of problems. These

techniques solve the same problem for the previously known problem sizes. In contrast,

in our case, the query size and distribution characteristics of the data according to varying

125

ranges are not known earlier. We solve actually the query approximation problem to

partition and share the workload among the worker nodes. In order to optimize the load

balancing and parallel queries, the data dense/sparse regions should be taken into

considerations and approximated before partitioning (de-clustering) the actual query.

Please see Figure 29 for the illustration of the problem.

6.4.2. Workload Estimation Table for Two-dim Range Queries

The aim is cutting the two-dimensional ranges (bounding boxes) into the smaller

pieces with approximately equal loads (range query decomposition), and the most

efficient load balancing for the parallel queries.

Our solution approach is based on utilization of workload estimation table (WT).

The WT is representation of distribution of data characteristics (kept in databases as

relational tables) in the form of list of small ranges whose query sizes are relatively close

to each other. Due to the dynamic nature of data, WT is created once and

synchronized/refined at some time intervals to reflect the changes in database.

Workload Estimation Table (WT) aims for efficient load balancing over the

unpredictable workload by utilizing the locality (Denning, 2005; Denning & Schwartz,

1972) and nearest neighborhood (Dasarathy, 1991) principles. By the “locality principle,”

we mean that if a region has a high volume of data, then the regions in close

neighborhood are also expected to have high volume of data. The human population data

across the earth can be given as an example: Obviously urban areas have higher human

population than the rural areas. Differentiating dense data regions from sparse regions

enables us to find the most efficient number of partitions for parallel processing and

126

reduces the overhead timings for handling an unnecessary number of partitions.

Clustering techniques (Buyya, 1999; Pfister, 1998) provides a more precise way for

determining this if one has access to data, but in our architecture we must treat the data

servers as black boxes.

Algorithm: Our aim is partitioning a region (R) defined in two-dimensional

ranges into sub-regions in a way that the sub-regions‟ corresponding query sizes are as

much equal as possible. The size differences between the partitions (fluctuation) are

controlled by the error rate parameter (er). The recursive algorithm to create/refine WT

is;

PT: Main routine creating/refining workload estimation table (WT)

PTInBalance: Sub-routine to find the most efficient partition according to the given er

and t.

R: Overall range covering all the data in the database. Format: (minx, miny, maxx, maxy)

t: Threshold data size (allowable maximum query size of each partition)

getData: Remote data access routine.

R = R1 + R2 => R1:bbox1 and R2:bbox2

er = Maximum allowable query size difference between partitions obtained from binary

cut.

127

For example, if larger partition query size is 10MB and er =.20 the smaller

partition query size can be minimum 8MB.

PT(R, t, er) is a routine to recursively partition the region R into two sub-regions

whose corresponding query sizes are less than t. In order to make balanced partitions, at

every iteration, it calls PTInBalance sub-routine with parameter er. When the algorithm is

done, workload estimation table (WT) will be created to enable optimized parallel queries

for the specific data. In the WT, there won‟t be any partition whose query size is larger

than any other partition more than 1+er times except for the last partitions.

Figure 34: The recursive binary partitioning routine

128

The routine getData in PTInBalance is for getting the query size information for

the corresponding ranges via remote data access. It is actual WFS‟s XML-based standard

getFeature routine to query the data (Figure 39).

PTInBalance(R, er) does not take threshold data size as parameter because its task

is only cutting the given region into two equal query sizes based on given error rate er. At

every iteration, the algorithm interacts with the remote data server and makes test queries

with newly calculated ranges. According to the results of the query sizes, it adapts the

ranges and repeat same thing with newly calculated queries. It keeps doing it until the

query sizes for the partitions get close to each other based on predefined er. If er is

defined as 0, it means both query sizes for the partitions will be equal. In that case all the

partitions will be equal size which is equal to threshold data size t.

Figure 35: The routine to find out the best partition cut point according to given error rate

129

There are two types of PTInBalance routine, one is for vertical cuts and the other

is for horizontal cuts. Above figure presents the one for the vertical cut along the x-

coordinate. In case of horizontal cut the changes will be as below

- minx -> miny

- maxx -> maxy

- gml1 = getData(minx, miny, maxx, mp)

- gml2 = getData(minx, mp, maxx, maxy)

Sample scenario and output WT:

Let‟s say we have point data set (not necessarily but for test purposes) the total

query size is 32MB (32 point data; each one is 1mb) as shown in Figure 36-a, threshold

partition size is 5MB, and error rate = .20.

For this sample scenario:

- maximum partition query size will be 5MB (threshold size)

- minimum partition size will be 4MB (due to the threshold size and error rate)

Figure 36: Sample query and corresponding partitions in WT. total query size 32MB and

threshold data size 5MB, and error rate .20

130

6.4.3. Utilizing WT for Range Query Optimization

There are three stages: (1) The main query range is decomposed by positioning it

in up-to-date workload estimation table; (2) The sub-queries are created for the partitions

in WT overlapping with main query, (3) The queries are assigned to separate threads and

the results are merged to get final response for the main query. .

Decomposing the main query by positioning on WT

Let‟s illustrate this with a sample scenario (Figure 37). The sample main query

with range R is positioned in WT. R overlaps with: p5, p6, p7, p8, p9, and p10. The set of

ranges on which parallel queries are going to be done are p5, p6, p7, p8, r1 and r2. r1 and r2

are calculated from partially overlapped partitions p9, and p10 respectively.

Creating sub-queries correspond to the partitions

Figure 37; Illustration of query decomposition

with a sample scenario

131

After having partitions in small bounding boxes, each partition is assigned to a

separate thread of work, and the results to partitions are merged to create a final response

for the main query. The partitions are assigned to threads in a round-robin fashion.

The sub-queries inherit all the attributes from the main query. The only difference

is the range attribute defined as bbox. (Figure 39)

Main query range = sum of sub-queries‟ ranges

Query range

Bbox-1

Bbox-2

Bbox-3

Bbox-4

Bbox-5

GetFeature-1

GetFeature-2

GetFeature-3

GetFeature-4

GetFeature-5

Creating queries
for sub-regions
defined in bbox

Decomposing the
“Query range” into
the set of bboxes

Figure 38: Example scenario of the partitioning a region into 5 sub-regions

132

Figure 39: A sample “GetFeature’ query for global hotspot (earthquake seismic data) sent to WFS

for a specific range defined in bbox-i.

Assigning the partitions/sub-queries workers

The technique presented here ensures that each worker node gets as much equal

as possible number of partitions. The sub-queries are assigned to separate threads to

capture the GML data from WFS and process the corresponding map pieces. Partitions

Bbox-i

-i

133

are assigned to worker nodes through separate thread of works in round-robin fashion

(Tanenbaum, 2008).

Let‟s say PN is the partition number and WN is the number of WFS worker

nodes.

Share is the number of partitions each worker node is supposed to get.

If there is no remaining (rmg = 0), every worker node is assigned share number of

partitions. If rmg is different from the number 0 then partitions are assigned to worker

nodes as below:

The first rmg #of WN is assigned share+1 number of partitions and

remaining WN are assigned share number of partitions.

Figure 33 illustrates the algorithm over a case of four partitions and three WFS

worker nodes. So, the algorithm‟s parameters would be

share = base (4/3) = 1 and rmg = 4 – (1*3) = 1;

So WFS-1 is assigned 2 (share+1) partitions; WFS-2 and WFS-3 are assigned

1(share) partitions.

134

6.4.4. Performance Evaluation

The proposed query optimization technique is evaluated based on its application

to the extended OGC compatible streaming GIS Web Services. Extended GIS Web

Services and the streaming data transfer architecture are given in earlier chapters

(Chapter 3 and Chapter 6.2).

Test setup:

Performance is evaluated with earthquake seismic data kept in relational tables in

MySQL database. Servers/nodes are deployed on 2 (Quad-core) processors running at

2.33 GHz with 8 GB of RAM.

We basically find the answers to the below questions with the evaluation tests.

- How do the number of WFS and #of partitions together affect the

performance?

- How is the number of partitions (for a specific size of query) affected by the

WT‟s pre-defined threshold query size?

Figure 40: Streaming Data fetching through publish/subscribe based messaging middleware

135

- When the WFS number is kept same, how does the partition-threshold size in

WT affect the performance?

Table 4: Parallel data access/query times based on (1) changing threshold query size used for

building WT and (2) the #of worker nodes -WFS.

Threshold 1WFS 2WFS 4WFS Avg #of

query size Avg StDev Avg StDev Avg StDev Parallel Qry

NO-Prt 64.51 0.28 65.06 0.28 65.06 0.28 1

6 MB 48.85 0.79 34.23 0.56 34.12 0.45 2.2

4 MB 49.82 0.62 26.2 0.79 19.65 0.56 4.6

2 MB 52.2 0.96 27.33 0.88 15.77 0.78 8.5

1 MB 55.94 1.03 28.57 1.22 14.59 1.15 16.9

0.5 MB 61.73 0.95 32.4 0.59 17.9 0.7 31.3

 Table values are in seconds.

The values in the table are obtained by running the tests on 10 different regions

(ranges) correspond to 10MB of GML data. If there is no partition and parallel querying

(NO-prt in table) 10MB of query fetch takes average 65.06 seconds. This is shown as

first row in the table.

 The average number of parallel queries is defined by region‟s data distribution

characteristics, the parameters used to build WT (threshold query size and error rate), and

136

actual main query size. WT built with different threshold query sizes (the first column)

give different #of partitions for the same query ranges (the last column).

Figure 41: Parallel query optimization performance results

The speed-up (performance gain from parallel querying) increases as the partition

number increases. After a threshold value, the ratio of the performance gain starts

decreasing. You can see that pattern for each line in the figure. For example, in case of

using 4 WFS (red-line), the threshold value for the partition size is 2MB.

The initial increase is due to improved load balance by reducing the effect of

fluctuation in partitions‟ loads, and the decrease is due to the non-parallelizable

137

overheads and limited number of clusters. In addition, success of parallel access/query is

based on how well we share the workload with worker nodes.

Table 4 shows in last column that the average numbers of parallel queries are

increasing linearly according to the increased threshold partition size used to build WT.

As the error rate is decreased, the workload sharing balance increases and gives

better average query response times. On the other hand, WT refinement takes longer time

but it does not affect the actual query time at the application run time.

As the number of processors serving the parallel queries increases the

performance increase. As the threshold query size decreased (sensibility of data sharing),

the fluctuation in query sizes between the partitions decreases and the degree of equal

workload sharing increases.

Overhead times

We have done this test to see if the overhead times stemming from partitioning

and parallel processing is in tolerable amount. There are two overhead times compared to

straightforward single process work. These are partitioning and sub-query creation. Since

the federator overlap IO and CPU bound jobs, it doesn‟t affect the performance negative

– asynchronous run.

Calculating overlapped partitions: The main query range (bbox) is positioned in

WT and overlapped ranges are extracted. The main query range is decomposed according

to that set of ranges.

Sub-query creation: For each overlapped partitions corresponding sub-queries are

created. These queries are actually XML-based getFeature query (see APPENDIX G).

138

After having created the queries, they are assigned to separate threads and query the data

sources in parallel.

Table 5: Overhead times based on number of partitions to be applied

Partition

Partitioning: Calculating

overlapped partitions

Creating Sub-Queries

for partitions Total overhead time

Number Average StDev Average StDev Average StDev

5 70.67 12.74 48.05 14.01 118.72 26.75

10 81.58 15.16 96.10 16.67 177.68 31.83

15 121.75 19.74 136.15 21.72 257.90 41.46

20 137.08 21.75 192.20 22.92 329.28 44.67

25 159.34 24.98 244.25 21.58 403.59 46.57

30 170.92 29.04 276.30 26.75 447.22 55.79

Table values (Table 6) are in milliseconds.

Graph shows the pattern of changes in overhead times according to the changing

partition numbers, and their relative weights in total overhead. Because of the overhead

times, if we do unnecessary number of partitioning then there is not going to be a

performance gain for less than a threshold-data size but we see from the figure that it is

less than some small amount that does not affect the overall performance considerably.

139

Figure 42: Overhead times coming from parallel query optimization

6.5. Just-in-time Map Rendering

This chapter analysis on-demand rendering of GML data illustrated as phase-2

(B) in Figure 46. Our motivation is to see how much time is spent on rendering a GML

data, and compare it with the data access/query times presented in Chapter 6.4. XML-

based GML data rendering is consisted of three successive tasks. These are

- Parsing and extraction geometry elements

- Plotting geometry elements as layer object

- Converting layer object into specified image type (such as JPEG, PNG, etc.)

140

These processing steps to create a map image layer from a GML are illustrated in

Figure 43.

For the first step, we use the pull-parsing technique. Its performance evaluations

are given in Chapter 6.3. Creation of a layer object and plotting geometry elements on it

are achieved by using JAVA Graphics2D and Abstract Windowing Toolkits (AWT)

libraries. For the test purposes we have used GML representations of earthquake seismic

data. For the simplicity, multi-layered map images and layer overlaying issues are not

taken into considerations.

Figure 43: Map rendering process steps

Table 6 shows performance values for the map rendering steps illustrated in

Figure 43.

Table 6: Average timing values for map image processing steps

Data Data Data JAVA Image Layer

(KB) extraction plotting to JPEG Creation

1 15.59 0.00 25.43 41.02

141

10 72.81 3.00 25.43 101.24

100 183.06 15.33 25.43 223.82

1,000 270.47 83.11 25.43 379.01

5,000 671.74 153.67 25.43 850.84

10,000 1,025.67 828.50 25.43 1,879.60

100,000 7,059.72 3,738.25 25.43 10,823.40

Table time values are in milliseconds.

Figure 44: Average timings for map-image creation steps

As sown in Figure 44, sub-tasks to create a binary map image from GML data

takes linear time with increasing data size. Compared to the remote data fetching times

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

0 2000 4000 6000 8000 10000 12000

Ti
m

e
-

m
se

cs

Data Size -KB

Map Image Creation steps and their timings
(for JPEG 400X400 pixel image size)

data extraction

data plotting

image conversion

total response time

25.43

142

given in Chapter 6.4.4, plotting is scalable with data size and has good enough

performance results.

 The values for “Image conversion time‟ shown in Figure 44 do not change with

the GML data size. For 400x400 pixel JPEG map image creation its value is steady-state

and 25.43 msecs. Image object to JPEG conversion time changes with the requested

map‟s pixel sizes (see Figure 45). The map size is a request parameter defined by the

user. In order to see the affects of map sizes in overall map rendering performance, see

Table 7 and Figure 45. The figure presents conversion times in case of converting to

mime/JPEG for different map sizes in pixel values.

Table 7: Average timings and standard deviation values of object to image/JPEG conversion

Resolution

Average

(msec) StdDev

200x200 19.24 8.53

400x400 25.43 9.29

600x600 46.38 10.42

800x800 71.58 16.70

1000x1000 131.67 17.24

143

Figure 45: Image conversion timings based-on pixel resolution values

6.6. Overall System Evaluation

6.6.1. Data and Process Flow

As shown in Figure 46 overall system evaluations are measured in three points.

These are tagged as A, B and C:

A. Fetching GML data (Chapter 6.4)

B. Creation of a layer from GML data (Chapter 6.5)

C. Displaying the requested data at user-end (Overall response time)

0

10

20

30

40

50

60

70

80

200x200 400x400 600x600 800x800

Ti
m

e
m

se
c

Resolution in Pixels

Java Image Object to JPEG conversion
for different map sizes

conversion time

25.43

144

(A) and (B) were analyzed in detail in Chapter 6.4 and Chapter 6.5 respectively.

Here, we present the overall response time from the end users‟ point of view. It is

formulated as

C = A + B + Image transfer

Figure 46: Test setup for Federator-oriented enhancement analysis and evaluations

The Measured response time can be further detailed as below (see Figure 46

simultaneously):

C = time(measured) = time(map is displayed) – time(client makes request).

- [time(client makes request).] Client makes requests through the interactive smart map tools.

- The federator (actually WMS) parse and render requests and define set of actions

required based on the requests and its capabilities file.

145

- WMS creates the map image (from the returned datasets) and returns them to the

clients. This step is also detailed as below:

o Defines the set of WFS and WMS to communicate with to build the response

in accordance with its capability file and client provided parameters.

o Creates requests for WFS and other WSM

o Invokes WFSs‟ getFeature Web Service interfaces for vector data encoded in

Geographic Markup language (GML) (Cox et al., 2003).

o Streaming GML transfer through Naradabrokering messaging middleware

from WFS to Federator/WMS

o Parsing and rendering returned GML data sets

o Aggregating and overlaying layers according to the request and capability file.

o Sending the map images to the WMS Client.

[time(map is displayed)] Client shows the returned maps on his browser

6.6.2. Test Case Scenario

Analysis and evaluations of the system will be done on three-layered map images.

The federator federates three different data from three separate servers. The first one is

NASA satellite map images, the second one is earthquake seismic data, and the third one

is States‟ boundary lines data. These are the datasets actually used in real Geo-science

applications named Pattern Informatics (Chapter 5.2) and Virtual California (Chapter

5.3). The NASA satellite map images provided by OnEarth project‟s WMS at JPL (Jet

Propulsion Labs) in California. The earthquake seismic data sets are provided by WFS at

Indiana University Community Grids Labs ("CGL," 2001) in Indiana. The States‟

146

boundary lines data sets are provided by WFS at USGS (United States Geological

Surveys) ("USGS," 2008) in Colorado.

Figure 47: Test-case scenario - test setup

 The ucs.indiana.edu machines (used for event-based dynamic map tools and

federator) have 2 Quad-core Intel Xeon processors running at 2.33 GHz with 8 GB of

memory and operating Red Hat Enterprise Linux ES release.

After giving the system‟s test setup and end-to-end process flow, we make a base-

line performance tests (Chapter 6.6.3), and later, we evaluate the adaptive parallel query

optimization technique‟s contribution (Chapter 6.6.4) to the end-to-end response time by

comparing with the base-line performance test results.

147

6.6.3. Base-line System Test

Base-line system tests shows the response times when the straightforward

sequential data access and rendering approaches are used. In that approach, each data is

accessed and rendered sequentially to create multi-layer map images whose layers are

provided by geographically distributed standard data services.

 The access/query times for satellite map images, earthquake seismic data and state

boundaries data are given in Table 8 and illustrated in Figure 48.

Table 8: The average response times for straightforward sequential data access

Data Data access/query Data Image Response

Size (MB) satellite seismic boundary Overlay Transfer Time client

1 0.986 7.229 10.528 0.171 0.075 18.989

2 0.931 14.038 22.111 0.135 0.072 37.288

4 0.848 26.531 42.519 0.138 0.080 70.116

8 0.794 50.114 83.765 0.161 0.143 135.178

The table values are in seconds.

Table 9: The standard deviations for the average response times given in Table 8

Data Data access/query Data Image Response

Size (MB) satellite seismic boundary Overlay Transfer Time client

1 0.162 0.197 0.200 0.090 0.042 0.368

2 0.320 0.127 0.214 0.035 0.039 0.373

4 0.142 0.654 0.477 0.028 0.031 0.772

148

8 0.130 0.180 1.805 0.069 0.156 1.683

In Figure 48, x-coordinate values are data sizes in MB. Each column shows total

response time to access/query three set of data. One of them is satellite map image and

other two are GNL data sets. X-coordinate values represent data size for each GML data

sets, earthquake seismic and state boundaries data. For example for the last column, 8MB

of earthquake seismic data and 8MB of state boundaries data are accesses/queried. Total

data size fetched is 16MB + size of satellite map image for the corresponsing bounding

box parameter.

Figure 48: The overall (end-to-end) average response times - straightforward sequential data access

to data sources.

149

From the figure we see that for the small data payloads (less than 2MB – second

bar in Figure 48) the response time is acceptable. However for larger data payloads the

performance gets worse and the response time gets relatively longer. On the other hand,

scientific applications require handling (transferring, parsing, rendering and displaying)

large scale data. We enhance these baseline performance results by using federator and

optimized parallel data access and query technique presented earlier.

6.6.4. Performance Enhancement with Federation and Parallel Query

Optimization through WT tables

This chapter shows the performance enhancements from (1) federator‟s

characteristic features such as accessing the separate data sources in parallel and (2) for

an individual data set, applying attribute-based query decomposition and accessing in

parallel through WT tables. This technique is explained earlier in Chapter 6.4 as

“adaptive parallel query optimization”.

1) Access/query of data sources in parallel – federator’s architectural

properties:

Here, we show how much performance gain we obtain by fetching the data sets

parallel for the test case scenario given in Figure 47.

Table values are in seconds.

150

Table 10: Average Response times - parallel data access through the federator.

Data Parallel Data Image Response

Size (MB) Data Fetch Overlay Transfer Time Client

1 10.60 0.14 0.12 10.87

2 22.61 0.17 0.13 22.91

4 42.75 0.14 0.12 43.01

8 83.91 0.15 0.15 84.21

Table 11: Standard deviations for the average values given in Table 10

Data Parallel Data Image Response

Size (MB) Data Fetch Overlay Transfer Time Client

1 0.206 0.034 0.181 0.261

2 0.491 0.116 0.130 0.507

4 0.454 0.085 0.173 0.497

8 1.957 0.050 0.118 1.560

151

Figure 49: Average response times - parallel data access through the federator

The data source with the slowest response time defines the overall parallel data

access time. As it is shown in Table 10 and Figure 49, state boundaries data from USGS

in Colorado (see Figure 47) is the slowest server responding and it dominates the overall

response time. The performance gain from parallel access through federator increases as

the response time differences between the data sets decreases.

In order to get rough approximation of performance gain, compare this figure

with Figure 48 which gives total response time by sequential data access. For example,

the last column shows that parallel data access for the test case scenario is two times

faster than the sequential access.

152

2) Further enhancement by accessing individual data sets in parallel

We use optimized parallel query technique given in Chapter 6.4 to access

individual data set. This technique is called workload estimation table (WT).

The performance values change depending on the partitions‟ threshold query size

and error rate given to the algorithm to build WT. These issues analyzed and evaluated in

Chapter 6.4 and specifically in Figure 41. Here we apply the technique to the given test

case (Figure 47) and compare the results with the baseline test results (Figure 48).

Here are the parameters given to WT for the individual data sets earthquake

seismic data and state boundaries data:

• WT parameters for state boundaries:

• Partition size=2MB

• Error rate=1.0

• Data sources: frameworkwfs.usgs.gov and gridfarm18.ucs.indiana.edu

• WT for earthquake seismic data:

• Partition size=1MB

• Error rate=0.2

• Data sources: gridfarm12.ucs.indiana.edu and gf.17.ucs.indiana.edu

When we use these WT tables for those data sets and fetch the data parallel we get

the optimized performance results given in Table 12 and shown in Figure 50. Table

values are in seconds.

153

Table 12: Average Response times - parallel data access through the federator and WT tables

Data Parallel Data Image Response

Size (MB) Data Fetch Overlay Transfer Time Client

1 8.651 0.143 0.125 8.928

2 15.843 0.171 0.132 16.145

4 27.029 0.140 0.120 27.285

8 41.792 0.152 0.153 42.094

Table 13: Standard deviations for the values given in Table 12

Data Parallel Data Image Response

Size (MB) Data Fetch Overlay Transfer Time Client

1 0.167 0.034 0.181 0.383

2 0.109 0.116 0.130 0.355

4 0.131 0.085 0.173 0.390

8 0.924 0.050 0.118 1.092

154

Figure 50: Average response times - parallel data access through the federator and WT tables

Figure 50 shows the improved performance results from using WT to make

parallel data access/query. As you realize the slowest individual data access dominate the

overall performance. In this test case scenario the slowest data source is state boundaries

data provided by WFS from SDSC at Colorado. The blue-bars in the figure actually

represent the access/query times of the state boundary data. The performance gain from

parallel data access/query increases as the response time difference between data sets

decreases compared to synchronous data access/query.

155

3) Comparison of performances of optimized parallel data access via WT

(Figure 50) with sequential access (Figure 48):

Table values are in seconds.

Table 14: Comparison of average response times - optimized parallel data access with sequential

access

Data Response Times Standard Deviation

Size (MB) Sequential Optmzd Parallel Sequential Optmzd Parallel

1 18.989 8.916 0.368 0.383

2 37.288 16.143 0.373 0.355

4 70.116 27.280 0.772 0.390

8 135.178 42.093 1.683 1.092

Figure 51 shows that we gain a lot of performance by accessing data sources in

parallel with the adaptive optimization technique based on WT. We can also conclude

that (1) as the data size increase the performance gain increases, and (2) if the individual

data access/query times get closer to each other, then the performance gain from the

parallelization of these data sets increases. To be more specific, for the total size 16MB

the overall performance gain from the parallelization through WT is about four times

better than the one from the sequential data access.

156

Figure 51: Comparison of the average response times of the straightforward and optimized parallel

query approaches.

Besides the data characteristics, different data types such as point data, linearRing

data, lineStrings etc. affects the performance gain from parallelization. Sometimes

queried objects cannot be decomposed perfectly because of the queried objects‟

continuity properties. In case of fetching discrete objects, it is possible that some objects

will be fetched multiple times and that degrades the system performance gain.

157

CHAPTER 7

ABSTRACTION OF THE FRAMEWORK FOR THE

GENERAL DOMAINS

Our experiences with GIS have shown that a federated, service-oriented, GIS-

style information model can be generalized to many application areas and scientific

domains. We call this generalized framework Application Specific Information System

(ASIS), and provide a blueprint architecture in terms of principles and requirements (see

Figure 52). Developing such a framework requires first defining a core language (such as

GML) expressing the primitives of the domain; second, key service components, service

interfaces and message formats defining services interactions; and third, the capability

file requirements (based on core-language) enabling inter-service communications to link

the services for the federation.

158

7.1. Generalization Framework

GIS is a mature domain in terms of information system studies and experiences. It

has standards bodies defining interoperable online service interfaces and data models

such as OGC ISO/TC211, but many other fields do not have this. In order to see the

applicability of the GIS-style information model given in Chapter 4, we have surveyed

two science domains (Astronomy and Chemistry). Table 15 presents the results briefly in

terms of service counterparts (ASIS vs. science domains).

Astronomy has a standards body, the International Virtual Observatory Alliance

(IVOA) ("IVOA," 2004), for defining data formats and online services that are somewhat

analogous to the OGC standards. FITS (Flexible Image Transfer), Images and VOTable

(Williams et al., 2002) are the data models. SkyNodes are database servers with an

ADQL (Astronomy Distributed Query Language) based SOAP interfaces that return

VOTable-encoded results. VOPlot (Kale, Navelkar, Hegde, Kembhavi, & Kulkarni,

2004) and TopCat (Clifton, Cooley, & Rennie, 2004) are two services to visualize the

astronomy data in the format of VOTable (Ochsenbein, 2008), FITS (Wells, Greisen, &

Harten, 1981) and images. VOResource and Unified Content Descriptors (UCD) are the

metadata definition and standards for the service descriptions (Yasuda et al., 2004).

Chemistry, although a vastly different field, does provide a common data model

(CML (G. L. Holliday et al., 2006)) that can be used to build up Web Services. Although

many research groups have investigated service architectures for chemistry and chemical

informatics, the field has (to our knowledge) no Web Service standards-defining body

equivalent to the OGC or IVOA. There has been work to define "chemical spaces"

159

(Kirkpatrick & Ellis, 2004) that are analogous to geographic spaces, although the

number of dimensions may be greater. In this case, our approaches to GIS information

retrieval could probably be extended to cover chemical information.

This chapter presents a high level architecture that consists of abstract

components and explains their data flow and components interactions. In this section, we

focus on the principles and requirements to generalize GIS-like architecture to any other

information system domains. It should be noted that this abstract architecture is intended

to be domain-specific. That is, it may be realized in chemistry or astronomy, for

example, but we are not suggesting cross-domain interoperability.

ASIS is a proposed solution to heterogeneous data integration. This solution

enables inter-service communication through well-defined service interfaces, message

formats and capabilities metadata. Data and service integration is done through capability

federation of these services, which are implemented in Web Services. In ASIS approach,

Figure 52: Application Specific Information System (ASIS)

160

there are two general groups of services. These are Application Specific Feature Service

(ASFS) and Application Specific Visualization Service (ASVS), and each service is

described by corresponding generic metadata descriptions that can be queried through

Web Service invocations. In addition to allowing service discovery, this approach also

enables at least three important qualities of services. First, services of the same type that

provide a subset of the request can be combined into a “super-service” that spans the

query space and has the aggregate functionality of its member services. Second, the

capability metadata can be used to determine how to combine services into filter chains

with interconnected input-output ports. Third (and building on the previous two),

capabilities of super-services can be broken into smaller, self-contained capabilities that

can be associated with specific services. This enables performance gains through load-

balancing.

ASIS must consist of filter-like Web Services components (ASFS and ASVS)

having common interfaces and communicating with each other through a capability

metadata exchange. Being a Web Service enables filter services to publish their

interfaces, locate each other and chain together easily. Filters have inter-service

capabilities and are chainable. If the filter is capable of communicating and obtaining

data from other filters, and updates (or aggregates) its capability metadata with these data

(after capability files exchange), then it can claim that it serves these data. Filter Services

are information/data services that enable distributed data/information access, querying

and transformation through their predictable input/output interfaces defined by capability

document. Filter located in the same community network can update their capability

metadata dynamically through “getCapabilities” service interface of the filters.

161

Dynamically updating capabilities of filters enable removal of obsolete data or down

filters.

7.2. Standard Service Interfaces and Mediators

As it is illustrated in Figure 52, inter-service communication is achieved through

common service interfaces and capability metadata exchange. The standard service

interfaces can be grouped into three types: a) capability metadata exchange: inter-service

communication (set-up stage); b) interactive data display: selecting layer composition and

bounding box regions; and c) querying of data itself over the display, getting further

information about the data content and attributes.

As mentioned before, capability helps clients make valid requests for its

successive queries. Capability basically provides information about the data sets and

operations available on them with communication protocols, return types, attribute based

constraints, etc. Each domain has different set of attributes for the data and it is defined in

ASL common data model. For example, in GIS domain, attributes might be bounding box

values (defining a range query for data sets falling in a rectangular region) and coordinate

reference system.

Standard requests/query instances for the standard service interfaces are created

according to the standard agreed-on request schemas. These must be defined by open

standards bodies in corresponding domains. The request instances contain format and

attribute constraints related to the ASL common data model. For example in the GIS

domain, getMap request defines a map images‟ return format (JPEG, PNG, SVG, etc.),

height, width, bounding box values, and so on. Format, height and width are related to

162

display, but bounding box values are related to the attributes of the data defined in its

ASL representation provided by ASFS. In this specific example of the getMap request,

ASVS must both visualize information through the getMap service interface and provide

a way of navigating ASFS services and their underlying database. ASVS make

successive queries to the related ASVSs to get the ASL data and render it to create final

display for its clients.

In ASIS, the task of mediators is to translate requests to the standard service

interfaces to those of the information/data sources‟, and transform the results provided by

the information source back to the ASIS‟s standard formats. For ASFS, the returned data

is ASL, and for ASVS the returned results can be any kind of display format such as

images.

The mediators-wrappers (in Figure 52) enable data sources integrated to the

system conform to the global data model (ASL) but enable the data sources to maintain

their internal structure. At the end, this whole mediator system provides a large degree of

autonomy. Instead of actual physical data federation, system makes distributed querying

and response composition on the fly.

7.3. Components Abstraction – ASFS and ASVS

In ASIS, there are two groups of filter services, ASVS and ASFS, which

correspond to the OGC‟s WFS and WMS, respectively. Since they have different service

APIs and provided data, they have different schema of capabilities. The capability

metadata defines service and data attributes, and their constraints and limitations to

enable clients to make valid queries and get expected results. Capabilities metadata and

163

Application Specific Language (ASL) are closely related to each other. One defines the

domain-specific data and other defines the query and response constraints over the

service and data provided.

ASVS must visualize information and provides a way of navigating ASFS and

their underlying database. ASVS must provide human readable information such as text

and graphs (scalable vector graphic (SVG) or portable network graphic (PNG)) images.

An ASFS is an annotation service providing heterogeneous data in common data model

with an attribute-based query capability. ASFS serves data in ASL, which must be

realized as a domain specific XML-encoded common data model containing content and

representation tags. Heterogeneity in queries and data formats is handled through

resource specific mediators.

User defined services in ASIS (see Figure 52) provide application specific data

and services. These can include transformations, reasoning, event-detection, and data-

mining tools for extraction knowledge from the feature data provided by ASFS in ASL

format.

164

Table 15: Components and common data model matching for generalization of GIS to ASIS. Two

selected domains are Astronomy and Chemistry.

165

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1. Summary and Conclusions

We have presented a service-oriented architecture for understanding and

managing the production of knowledge from the distributed observation, simulation and

analysis data through integrated data-views in the form of multi-layered map images. The

infrastructure is based on a common data model, standard GIS Web-Service components,

and a federation service. The federator integrates GIS data service components and

enables unified data access and query over integrated data-views through event-based

interactive display tools. Integrated data-views are defined in the federator‟s capability

metadata, which consists of composition of layers provided by standard GIS Web-

Services. The framework applies just-in-time (late-binding) federation in which the data

166

is kept in its originating sources all the time. This enables autonomy and ease of data

maintenance.

Creating a GIS in accordance with OGC and Web Services standards, and the

compatibility nature of open standard GIS services and their capability definitions,

inspired us to develop an information system enabling both unified data access/query and

display from a single access point. Open standards and Web Service technologies also

enable integrating the third party geospatial functionality and data into the custom

applications easily.

We have developed a framework for federating service-oriented Geographic

Information Systems and have addressed interoperability issues by integrating Web

Services with Open Geographic Standards. This enables us to provide interoperability at

data, service and application levels, and to integrate Geo-data sources into Geo-science

Grid applications seamlessly. We have also enhanced the standard Web Map Service

with the streaming data-transfer and rendering capability by using a publish/subscribe-

based messaging middleware.

The federator architecture inherently enables workload sharing by fetching the

different data layers from separate resources to create a multi-layered map image. This is

natural load balancing and parallel processing resulting from the architectural features.

However, we can take this general idea further. In addition to layer-based load-balancing,

a layer (in the multi-layered map image) itself can be split into smaller bounding box tiles

and each tile can be farmed out to a worker Web Feature Servers and Web Map Servers.

Layer-based partitioning is based on attribute-based query decomposition.

167

We have introduced novel load balancing and parallel processing technique with

attribute-based query partitioning for unevenly distributed, variable-sized data processing

and rendering. We applied it to distributed map rendering from the federator‟s point of

view. This is basically an adaptive query optimization technique that is applicable to the

range queries for getting numerical values.

In such a framework built over common data model and standard service

interfaces according to standard specifications, repeated XML validations are not crucial

and impede performance. In such cases, using pull parsing approach for handling XML-

encoded data models give the best performance results in data rendering compared to

other XML data handling approaches such as Document Object Model (DOM) and the

push approach (ex. Simple API for XML -SAX).

Regarding the system software contribution, we have developed streaming and

non-streaming versions of the Open Geospatial Consortium‟s Web Map Server (WMS)

with Web Service principles. We have also developed a federation service supporting

performance-enhancing techniques such as adaptive load balancing and parallel

processing over distributed GIS Web Services. We have also developed generic

browser/event-based interactive map tools for data access, query and display enhanced

with AJAX technologies.

Although our framework has been developed for GIS, we have also defined the

principles for generalizing our approach to other science domains. We call this

generalization ASIS – Application Specific Information Systems. ASIS is a blueprint

architecture for generalizing GIS-like federated information systems. We have defined

two general service types of services (ASFS and ASVS) with prescribed service

168

interfaces that enable metadata exchange and data querying. Data flows from databases to

users through ASFS and then ASVS. Due to the domain specific data heterogeneity, each

domain should define its own ASL and corresponding queries.

8.2. Summary of Answers to Research Questions

1. How to integrate Web Service principles with some features (data and rendering

services) of GIS to enable fine-grained dynamic information presentation?

- Incorporating widely accepted Open GIS Standards with Web Services

The Web Map Service (WMS) and the Web Feature Service (WFS) are two major

services defined by OGC for creating a basic GIS framework enabling information

rendering of heterogeneous data sources as map images. WMS is the key service to the

information rendering/visualization in GIS domain. WMS produces maps from the

geographic data in GML provided by WFS. It also enables attribute and feature-based

data querying over data display by its standard service interfaces

We have demonstrated that the common Open Geographic Standards can be

developed with WSDL-SOAP based Web Services. We have used these services in

several Geo-science applications and have demonstrated the usability of these services.

This is described in detail in Chapter 5.

In order to incorporate widely accepted OGC standards, we have created XML-

based standard query schemas from the standard HTTP GET/POST based query

definitions which are actually attribute-value pairs. We have also defined standard

services as Web Service in Web Service Description Language (WSDL) based on the

services/functions provided. For WMS see Chapter 3.3.2 and for WFS see (Aydin, 2007).

169

2. How to merge Asynchronous Java Script and XML (AJAX) with Web Services

client stubs for event and browser-based interactive map tools?

- Mediating HTTP-based AJAX tools with SOAP-based GIS Web Services

AJAX uses HTTP GET/POST requests (through JavaScript‟s XMLHttpRequest)

for the message transfers. Web Services use Simple Object Access Protocol (SOAP) to

communicate. In order to be able to integrate these two different message protocols, we

must convert the message formats into a common format or make them interoperable.

Integration is based on coupling AJAX actions with the Web Services

invocations, and synchronizing the request and response objects from the point of end

users (or browser). In order to do that, we introduced an intermediary service explained in

Chapter 3.3.3.2.

AJAX and Web Services are XML based structures and this property allows

developers to utilize their advantages together. The proposed system enables AJAX based

high performance web application to be able to invoke/interact with Web Services. If

Web Service based applications have web based user interface for end users, then, using

this framework makes displaying much faster. Users do not need to wait whole data to be

received to render and display the results. Partial displaying is possible without refreshing

the whole page. Instead of making request for whole page, only the interested part will be

requested. This also reduces the workload of the network traffic.

3. How to make attribute based federated query over distributed heterogeneous

geo-data sources?

- Capability metadata aggregation of standard GIS Web Services

170

- Unified data access/query from a single access point (with the help of

federator’s aggregated capability metadata)

The OGC defined standard data services (Web Map Server and Web Feature

Server) provide data in standard formats (common data models) with the corresponding

capability metadata (about the data+services) with the standard service API. These

properties of the services and standardization make them compos-able. Compos-ability

nature of the standard GIS data services inspired us developing a federated information

system framework enabling first, application-based hierarchical data definitions, and

second, high performance designs based on load balancing and parallel processing.

We have introduced a federator (extended from Web Map Server –WMS, see

Chapter 4.3.1.1. and 4.3.1.2) which federates the standard GIS Web Services components

through aggregation of their capabilities metadata and presents a single database image to

the user which is defined in its aggregated capability metadata. This enables application-

based compositions of data sets and corresponding services and unified data

access/query/display from a single access point.

4. How to generalize the domain-specific federation framework (proposed for

GIS) to general science domains such as Astronomy and Chemistry?

- Defining architectural requirements

- Analyzing constraints and limitations

Our experiences with GIS have shown that federated, service-oriented, GIS-style

information model can be generalized to many application areas such Chemistry and

Astronomy. We call this generalized framework Application Specific Information System

171

(ASIS) and give blueprint architecture in terms of principles and requirements (Chapter

7). Developing such a framework requires first defining a core language (such as GML)

expressing the primitives of the domain, second, key service components, service

interfaces and message formats defining services interactions, and third, the capability

file (based on core-language) enabling inter-service communications to link the services

for the federation.

GIS is a mature domain in terms of information system studies and experiences. It

has standards bodies defining interoperable online service interfaces and data models

such as OGC ISO/TC211, but many other fields do not have this. In order to see the

applicability of the GIS-style information model given in Chapter 4, we have surveyed

two science domains (Astronomy and Chemistry). Table 15 presents the results briefly in

terms of service counterparts (ASIS vs. science domains).

5. How to make responsive data access/query over the data defined and queried by

range attributes?

- Sharing an unpredictable workload (whose load changes by range query) to

the workers in a most efficient way

- Adaptive load balancing and unpredictable workload estimation

- Parallel data access/query via attribute-based query decomposition

Federator inherently makes workload sharing by fetching the different data sets

from separate resources to create multi-layered map image. This is a natural load

balancing and parallel processing resulting from the architectural features.

172

A layer (in the multi-layered map image) itself can be split into smaller bounding

box tiles and each tile can be farmed out to slave WFS/WMS. Layer-based partitioning is

based on attribute-based query decomposition in which the attribute is the bounding box

defining the requested data‟s range in a rectangular shape. This is presented in Chapter

6.4.

In order to estimate the main query workload and partition it into the most

efficient number, we propose a data structure used by the federator called as Workload

Estimation Table (WT). It is created once and synchronized with the remote database

routinely to reflect the data characteristics in database (data dense sparse regions based

on range-location).

6. How to apply pull-parsing technique to GML data rendering, and analyzing the

limitations of the other parsing techniques

There are two well-known and commonly-used paradigms for processing XML

data, the Document Object Model (DOM) and the Simple API for XML (SAX). DOM

builds a complete object representation of the XML document in memory. This can be

memory intensive for large documents, and entails making at least two passes through the

data. SAX operates at one level lower. Rather than actually constructing a model in

memory, it informs the application of elements through callbacks. This also requires at

least two passes through the data. These are all expensive and resource (such as CPU and

memory) consuming processes and they don‟t provide enough performance for the large

scale applications.

173

In such a framework built over common data model and standard service

interfaces according to standard specifications, the repeated data validations are not

crucial. In such cases, using pull parsing approach for handling XML-encoded data

models give the best performance results in data rendering compared to other XML data

handling approaches such as Document Object Model (DOM) and push approach (ex.

Simple API for XML -SAX).

8.3. Future Research Directions

In this thesis we have outlined our research and implementations to build

geophysical data Grid architecture enabling fine-grained information/knowledge

presentations in multi-layered map images through novel federator architecture based on

common data model, standard GIS Web-Service components and a federation service.

We addressed several issues related to archival data access and processing from a single

access point, and investigated high-performance design techniques to support responsive

Geographic Information Systems.

The work presented in this thesis was aimed towards problems in Geo-science,

and we believe it can be adopted for other scientific domains if those domains‟ data can

be spatially defined. The data space may be real space (such as astronomy), or it may be

in a parameter space (such as chemical spaces). However the effects of domain specific

requirements are not well understood. We think that it is important to explore how the

common data standards such as GML and service standards such as WFS or WMS can be

adapted to these different domains. Our initial discussion for that is given in Chapter 7.

 More detailed future researches might be listed as below:

174

 Integrating dynamic/adaptable resources discovery and capability aggregation

service to federator: In the proposed federated GIS system, we use a static approach to

create application specific hierarchical data layers in federator‟s aggregated capability

metadata. Federated capabilities that define the data and corresponding data sources are

not allowed to be changed or updated after the application runs. It would be useful for the

system to automatically create, deploy, and update the required layers and to add the

corresponding services dynamically.

 Applying distributed hard-disk approach to handle large scale workload

estimation tables: In case of creation of WT for relatively large data sets (i.e. larger than

the local server‟s physical storage capacity), the system might fail. This challenge can be

overcome by utilizing distributed hard disk approach. Apache Hadoop (ex. Hadoop)

("The Hadoop Project," 2008) can be given as a good example distributed hard disk

implementation for data intensive distributed applications.

It enables applications to work

with thousands of nodes and petabytes of data.

 Extending the system with Web2.0 (Shuen, 2008) standards: The term "Web 2.0"

describes the changing trends in the use of World Wide Web technology and web design

that aim to enhance creativity, communications, secure information sharing, collaboration

and functionality of the web. It would be useful to see to see if our proposed framework

can be extended with Web2.0 and what kind of outcomes can be obtained.

 Layered WT for different zoom levels and handling/optimizing multiple range

queries: In order to avoid from unnecessary number of parallel queries (for relatively

higher zoom levels)), introducing the layered Workload Estimation Tables (WT) would

be very efficient. This approach is similar to Google Map‟s tiling approach for map

175

images for different zoom (resolution) levels. Moreover, in case of using range queries

having multiple different range variables, the gain from the optimization might not be as

good as expected. It would be useful to be able to use combination of multiple WTs.

176

APPENDICES

APPENDIX A: Sample Request Instances to standard WMS Service

Interfaces

i. GetCapability Request Instance

177

ii. GetMap Request Instance

178

iii. GetFeatureInfo Request Instance

179

APPENDIX B: A Template Capabilities.xml File for WMS.

180

APPENDIX C: A Sample WMS Capabilities.xml Instance

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSPY v2004 rel. 4 U (http://www.xmlspy.com)-->
<WMS_Capabilities xmlns="http://www.opengis.net/wms" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wms
C:\capabilities_1_3_0.xsd" version="1.3.0" updateSequence="String">
 <Service>
 <Name>WMS</Name>
 <Title>Pervasive WMS</Title>
 <Abstract>wms reference implementation</Abstract>
 <KeywordList>
 <Keyword >pervasive</Keyword>
 <Keyword >wms</Keyword>
 </KeywordList>
 <OnlineResource xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"
 xlink:href="http://toro.ucs.indiana.edu:8086/WMSServices.wsdl"/>
 <!-- the following service information is optional -->
 <ContactInformation>
 <ContactPersonPrimary>
 <ContactPerson>Ahmet Sayar</ContactPerson>
 <ContactOrganization>Pervasive Tech Lab</ContactOrganization>
 </ContactPersonPrimary>
 <ContactPosition>Research Assistant</ContactPosition>
 <ContactAddress>
 <AddressType>XXXX</AddressType>
 <Address>501 N. Morton St. Rm 222</Address>
 <City>Bloomington</City>
 <StateOrProvince>IN</StateOrProvince>
 <PostCode>47404</PostCode>
 <Country>USA</Country>
 </ContactAddress>
 <ContactVoiceTelephone>1(812)8560752</ContactVoiceTelephone>
 <ContactFacsimileTelephone>1(812)8567972</ContactFacsimileTelephone>

 <ContactElectronicMailAddress>asayar@cs.indiana.edu</ContactElectronicMailAddress>
 </ContactInformation>
 </Service>
 <Capability>
 <Request>
 <GetCapabilities>
 <Format>application/vnd.ogc.wms_xml</Format>
 <DCPType>
 <!-- Currently there is just one DCPT supported HTTP.
 In the near future there will be web services
 support by the Open-GIS.
 Whenever they update their standard schemas, I
 will update my capabilities document.-->
 <HTTP><Get><OnlineResource /></Get>

<Post> <OnlineResource /></Post>
</HTTP>

181

 </DCPType>
 </GetCapabilities>
 <GetMap>
 <Format>image/gif</Format>
 <Format>image/png</Format>
 <Format>image/jpg</Format>
 <Format>image/tif</Format>
 <Format>image/bmp</Format>
 <Format>image/svg+xml</Format>
 <DCPType>
 <HTTP><Get><OnlineResource /></Get>

<Post> <OnlineResource /></Post>
</HTTP>

 </DCPType>
 </GetMap>
 </Request>
 <Exception>
 <Format>application/vnd.ogc.se_xml</Format>
 <Format>application/vnd.ogc.se_inimage</Format>
 <Format>application/vnd.ogc.se_blank</Format>
 </Exception>
 <Layer queryable="0" cascaded="1" opaque="0" noSubsets="0" fixedWidth="1"
 fixedHeight="1">
 <Name>pervasive WMS-demo Layers</Name>
 <Title>pervasive WMS-demo Layers</Title>
 <Abstract>pervasive WMS-demo Layers</Abstract>
 <KeywordList>
 <Keyword>pervasive</Keyword>
 <Keyword>WMS</Keyword>
 <Keyword>layer</Keyword>
 </KeywordList>
 <CRS>EPSG:4326</CRS>
 <EX_GeographicBoundingBox>
 <westBoundLongitude>-150</westBoundLongitude>
 <eastBoundLongitude>100</eastBoundLongitude>
 <southBoundLatitude>30</southBoundLatitude>
 <northBoundLatitude>50</northBoundLatitude>
 </EX_GeographicBoundingBox>
 <MinScaleDenominator>0</MinScaleDenominator>
 <MaxScaleDenominator>100000000</MaxScaleDenominator>

 <!-- WORLD SEISMIC -->
 <Layer queryable="0" cascaded="1" noSubsets="0">
 <Title>World_Seismic</Title>
 <Abstract>Seismic data for the world</Abstract>
 <CRS>EPSG:4326</CRS>
 <Layer queryable="1" cascaded="1" noSubsets="0" fixedWidth="0"
 fixedHeight="0">
 <Name>Nasa:Satellite</Name>
 <Title>Nasa:Satellite</Title>
 <EX_GeographicBoundingBox>
 <westBoundLongitude>-150</westBoundLongitude>
 <eastBoundLongitude>-100</eastBoundLongitude>

182

 <southBoundLatitude>30</southBoundLatitude>
 <northBoundLatitude>50</northBoundLatitude>
 </EX_GeographicBoundingBox>
 <BoundingBox CRS="EPSG:26986" minx="189000"
 miny="834000" maxx="285000" maxy="962000" resx="1" resy="1" />
 <MinScaleDenominator>0</MinScaleDenominator>
 <MaxScaleDenominator>100000000</MaxScaleDenominator>
 </Layer>
 <Layer queryable="1" cascaded="1" noSubsets="0" fixedWidth="0"

fixedHeight="0">

 <Name>Google:Map</Name>
 <Title>Google:Map</Title>
 <EX_GeographicBoundingBox>
 <westBoundLongitude>-150</westBoundLongitude>
 <eastBoundLongitude>-100</eastBoundLongitude>
 <southBoundLatitude>30</southBoundLatitude>
 <northBoundLatitude>50</northBoundLatitude>
 </EX_GeographicBoundingBox>
 <BoundingBox CRS="EPSG:26986" minx="189000"
 miny="834000" maxx="285000" maxy="962000" resx="1" resy="1" />
 <MinScaleDenominator>0</MinScaleDenominator>
 <MaxScaleDenominator>100000000</MaxScaleDenominator>
 </Layer>
 <Layer queryable="1" cascaded="1" noSubsets="0" fixedWidth="0"
 fixedHeight="0">
 <Name>Google:Satellite</Name>
 <Title>Google:Satellite</Title>
 <EX_GeographicBoundingBox>
 <westBoundLongitude>-150</westBoundLongitude>
 <eastBoundLongitude>-100</eastBoundLongitude>
 <southBoundLatitude>30</southBoundLatitude>
 <northBoundLatitude>50</northBoundLatitude>
 </EX_GeographicBoundingBox>
 <BoundingBox CRS="EPSG:26986" minx="189000"
 miny="834000" maxx="285000" maxy="962000" resx="1" resy="1" />
 <MinScaleDenominator>0</MinScaleDenominator>
 <MaxScaleDenominator>100000000</MaxScaleDenominator>
 </Layer>
 </Layer>
 </Layer>
 </Capability>
</WMS_Capabilities>

183

APPENDIX D: A Sample Instance of WFS Capabilities file

184

185

186

APPENDIX E: A Simplified WMS Web Services Service Definition file

(WSDL)

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://services.wms.ogc.cgl"

xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://services.wms.ogc.cgl"
xmlns:intf="http://services.wms.ogc.cgl"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.2RC2
Built on Dec 08, 2004 (12:13:10 PST)-->
 <wsdl:message name="getFeatureInfoResponse">
 <wsdl:part name="getFeatureInfoReturn" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getMapResponse">
 <wsdl:part name="getMapReturn" type="xsd:anyType"/>
 </wsdl:message>
 <wsdl:message name="getCapabilityResponse">
 <wsdl:part name="getCapabilityReturn" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getMapRequest">
 <wsdl:part name="request" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getFeatureInfoRequest">
 <wsdl:part name="request" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getCapabilityRequest">
 <wsdl:part name="request" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="WMSServices">
 <wsdl:operation name="getMap" parameterOrder="request">
 <wsdl:input message="impl:getMapRequest" name="getMapRequest"/>
 <wsdl:output message="impl:getMapResponse" name="getMapResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getCapability" parameterOrder="request">
 <wsdl:input message="impl:getCapabilityRequest" name="getCapabilityRequest"/>
 <wsdl:output message="impl:getCapabilityResponse" name="getCapabilityResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getFeatureInfo" parameterOrder="request">
 <wsdl:input message="impl:getFeatureInfoRequest" name="getFeatureInfoRequest"/>
 <wsdl:output message="impl:getFeatureInfoResponse" name="getFeatureInfoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="WMSServicesSoapBinding" type="impl:WMSServices">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

187

 <wsdl:operation name="getMap">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getMapRequest">

 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://services.wms.ogc.cgl"
use="encoded"/>

 </wsdl:input>
 <wsdl:output name="getMapResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://services.wms.ogc.cgl"
use="encoded"/>

 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getCapability">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getCapabilityRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://services.wms.ogc.cgl"
use="encoded"/>

 </wsdl:input>
 <wsdl:output name="getCapabilityResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://services.wms.ogc.cgl"
use="encoded"/>

 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getFeatureInfo">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getFeatureInfoRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://services.wms.ogc.cgl"
use="encoded"/>

 </wsdl:input>
 <wsdl:output name="getFeatureInfoResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://services.wms.ogc.cgl"
use="encoded"/>

 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="WMSServicesService">
 <wsdl:port binding="impl:WMSServicesSoapBinding" name="WMSServices">
 <wsdlsoap:address location="http://localhost:8080/wmsstream/services/WMSServices"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

188

APPENDIX F: A Simplified WFS Web Services Service Definition file

(WSDL)

189

190

191

APPENDIX G: Sample GetFeature Request for WFS - for earthquake

fault data

192

APPENDIX H: Sample Simplified GML Document for Earthquake

Fault data.

193

 APPENDIX I: Sample GetFeature Response

194

REFERENCES

Adler, M., Boutell, T., Bowler, J., Brunschen, C., Costello, A. M., Crocker, L. D., et al.

(2003). Portable Network Graphics Specification (PNG) (No. REC-PNG-

20031110))

Allcock, W. (2003). Protocol extensions to FTP for the Grid (GGF Document Series-

GFD No. GFD-R.020). Los Alamos, USA: Argonna National Labs.)

Andersson, O., & others. (2003). Scalable Vector Graphics (SVG) Specification Version

1.1 (Standard Specification): World Wide Web Consortium (W3C))

ANL. (2008). Argonne National Labaratories Retrieved 02/12/2008s, 2008, from

http://www.anl.gov/

Apache Tomcat Project. (2008). Retrieved 03/10/2008, from http://tomcat.apache.org/

Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I., Hors, A. L., et al. (1998).

Document Object MOdel (DOM) Version1.0 (specification No. TR/REC-DOM-

Level-1): W3C)

Atkinson, M., DeRoure, D., Dunlop, A., Fox, G., Henderson, P., Hey, T., et al. (2005).

Web Service Grids: An Evolutionary Approach Concurrency & Computation:

Practice&Experience, 17(Number 2-4, February/April 2005), 377-389.

Aydin, G. (2007). Service Oriented Architecture for Geographic Information Systems

Supporting Real Time Data Grid. Unpublished Doctoral dissertation, Indiana

University, Bloomington.

http://www.anl.gov/
http://tomcat.apache.org/

195

Aydin, G., Aktas, M. S., Fox, G. C., Gadgil, H., Pierce, M., & Sayar, A. (2005).

SERVOGrid Complexity Computational Environments (CCE) Integrated

Performance Analysis. Paper presented at the 6th IEEE/ACM International

Workshop on Grid Computing (Grid'05). from

http://grids.ucs.indiana.edu/ptliupages/publications/gwpap243.pdf

Aydin, G., Sayar, A., Gadgil, H., Aktas, M. S., Fox, G. C., Ko, S., et al. (2008). Building

and Applying Geographical Information Systems Grids. Concurrency and

Computation: Practice and Experience (To appear).

Beaujardiere, J. d. l. (2004). OGC Web Map Service Interface (Report No. 03-109r1):

Open GIS Consortium Inc. (OGC))

Berman, F., Fox, G., & Hey, T. (2003). Grid Computing: Making the Global

Infrastructure a Reality. Chichester, England: John Wiley & Sons.

Bhata, K., Menon, A., Zaslavsky, I., Seber, D., & Baru, C. (2003). CREATING GRID

SERVICES TO ENABLE DATA INTEROPERABILITY: AN EXAMPLE

FROM THE GEON PROJECT (Annual Meeting Report No. Paper No. 124-6).

Seattle: Geological Society of America (GSA))

Boag, S., Chamberlin, D., Fernández, M. F., vandenBerg, J., Robie, J., & Siméon, J.

(2007). XQuery 1.0: An XML Query Language (No. REC-xquery-20070123/).

(W. C. Recommendation)

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., et al. (2004).

Web Services Architecture [Electronic Version], from http://www.w3.org/TR/ws-

arch/

http://grids.ucs.indiana.edu/ptliupages/publications/gwpap243.pdf
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

196

Bowler, J., Brown, C., Capsimalis, M., Cohn, R., Cole, L., Deweese, T. E., et al. (2001).

SVG (Specification No. REC-SVG-20010904))

Bush, B. (2004). NISAC Interdependent Energy Infrastructure Simulation System (No.

LA-UR-04-7700): Los Alamos National Labs)

Bush, B., & others. (2003). NISAC ENERGY SECTOR: Interdependent Energy

Infrastructure Simulation System (IEISS) (Nisac Capabilities Workshop No. LA-

UR-03-1159). Portland,OR: Los Alamos National Labs)

Buswell, S., Devitt, S., Diaz, A., Ion, P., Miner, R., Poppelier, N., et al. (1999).

Mathematical Markup Language (MathML) version 1.01 (Standard

Specification): World Wide Web Consortium (W3C))

Buyya, R. (1999). High Performance Cluster Computing: Architectures and Systems

(Vol. 1). NJ, USA: Prentice Hall PTR.

Cao, P., & Wan, M. (2008, December 10, 2008). The HDF5-iRODS Module: A Data

Grid System for Object Level Access. Paper presented at the 4th IEEE

International Conference on e-Science, Indianapolis IN, USA.

CGL. (2001). Community Grids Laboratory Retrieved 07/25/2008, 2008, from

http://grids.ucs.indiana.edu/ptliupages/

Chen, A., Donnellan, A., McLeod, D., Fox, G., Parker, J., Rundle, J., et al. (2003).

Interoperability and Semantics for Heterogeneous Earthquake Science Data.

Paper presented at the (ISWC'03) International Workshop on Semantic Web

Technologies for Searching and Retrieving Scientific Data.

http://grids.ucs.indiana.edu/ptliupages/

197

Christensen, E., Curbera, F., Meredith, G., & Weerawarana, S. (2001). Web Services

Description Language (WSDL) (No. NOTE-wsdl-20010315): World Wide Web

Consortium (W3C))

Chu, K.-D., Di, L., & Thornton, P. (2006). Introduction of Grid Computing Application

Projects at the NASA Earth Science Technology Office Lecture Notes in

Computer Science (LNCS), 3947, 289-298.

Clark, J. (1999). XSL Transformations (XSLT) (No. REC-xslt-19991116): W3C)

Clark, J., & DeRose, S. (1999). XML Path Language (XPath) Version 1.0 (Specification

No. REC-xpath-19991116))

Clement, L., Hately, A., Riegen, C. v., & Rogers, T. (2004). Universal Description,

Discovery and Integration (UDDI) Version 3.0.2 (Technical Committee

Specification): OASIS)

Clifton, C., Cooley, R., & Rennie, J. (2004). data mining for topic identification in a text

corpus. IEEE Transactions on Knowledge and Data Engineering, 16, 949-964.

Committee, O. (2001). OpenGIS Implementation Specification: Grid Coverage (Report

No. Document 01-004): Open GIS Consortium Inc (OGC))

Cox, S., Daisey, P., Lake, R., Portele, C., & Whiteside, A. (2003). OpenGIS® Geography

Markup Language (GML) Encoding Specification (No. 02-023r4): Open

Geospatial Consortium (OGC))

crisisgrids. (2006). GIS Research at Indiana University Community Grids Lab.

Retrieved 03/10/2008, 2008, from http://www.crisisgrid.org

http://www.crisisgrid.org/

198

Crockford, D. (2006). The application/json Media Type for JavaScript Object Notation

(JSON) (No. RFC 4627))

Dasarathy, B. V. (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification

Techniques: IEEE Computer Society Press

Deegree. (2001). Retrieved 03/28/2008, 2008, from http://deegree.sourceforge.net/

Delaney, J. (2007). Geographical Information Systems, An Introduction (2nd ed.). New

York: Oxford University Press.

Denning, P. J. (2005). The locality principle. Communications of the ACM 48(7), 19-24.

Denning, P. J., & Schwartz, S. C. (1972). Properties of the working-set model.

Communications of the ACM, 15(3), 130.

Di, L., Chen, A., Yang, W., & Zhao, P. (2003, June 24, 2008). The Integration of Grid

Technology with OGC Web Services (OWS) in NWGISS for NASA EOS Data.

Paper presented at the 8th Global Grid Form (GGF8) & 12th High Performance

Distributed Computing (HPDC12) Seattle, USA.

Doherty, M., Blanshard, L., & Manandhar, A. (2003, September 2003). Implementing

and Using SRB. Paper presented at the e-Science All Hands Meeting (AHM

2003), Nottingham, UK.

Donnellan, A. (2004). QuakeTables Fault Database for Southern California (No. CL#04-

1973): NASA Jet Propulsion Labs (JPL))

Donnellan, A., Fox, G., Rundle, J., McLeod, D., Tullis, T., & Grant, L. (2003).

Numerical Simulations for Active Tectonic Processes: Increasing Interoperability

and Performance. Retrieved. from

http://deegree.sourceforge.net/

199

http://grids.ucs.indiana.edu/ptliupages/publications/Abstract_Donnellanjapanmar0

3.pdf.

ECMA. Retrieved 03/12/2008, from http://www.ecmainternational.org/

ECMAScript Language. (1999). (Standard specification))

Erl, T. (2005). Service-Oriented Architrecture (SOA): Concepts, Technology and Design.

Upper Saddle River: Prentice Hall Ptr.

ESRI. (2007). Retrieved March 23, 2008, from http://www.esri.com/index.html

Esri. (2004). ArcIMS (White Paper No. j-8694). (esri)

Evans, J. D. (2003). Web Coverage Service (WCS), Version 1.0.0 (OpenGIS® Standard

Specification No. 03-065r6))

Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern web

architecture. ACM Transactions on Internet Technology, 2(2), 115-150.

Foster, I., & Kesselman, C. (1996). Globus: A Metacomputing Infrastructure Toolkit. The

International Journal of Supercomputer Applications and High Performance

Computing, 11(2), 115-128.

Foster, I., & Kesselman, C. (2004). The Grid 2: Blueprint for a new Computing

Infrastructure. San Francisco, USA: Elsevier

Fox, G. C. (2004). Grids of Grids of Simple Services. Computing in Science and

Engineering, 6(4), 84-87.

http://grids.ucs.indiana.edu/ptliupages/publications/Abstract_Donnellanjapanmar03.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Abstract_Donnellanjapanmar03.pdf
http://www.ecmainternational.org/
http://www.esri.com/index.html

200

Gadgil, H., Fox, G., & Pallickara, S. (2005). HPSearch for Managing Distributed

Services. Paper presented at the IEEE/ACM Cluster Computing and Grid

Conference (CCGrid 2005).

Gadgil, H., Fox, G., Pierce, M., & Pallickara, S. (2005). HPSearch: Service Management

& Administration Tool. Paper presented at the 1st VLAB Workshop.

Google Map. (2005). Google maps Application Programming interface Retrieved

08/18/2008, 2008, from http://code.google.com/apis/maps/

Graham, S., Karmarkar, A., Mischkinsky, J., Robinson, I., & Sedukhin, I. (2006). Web

Services Resource Framework (WS-Resource), Version 1.2 (Standar

Specification): Organization for the Advancement of Structured Information

Standards (OASIS))

Granat, R. A. (2003, June 2003). A Method of Hidden Markov Model Optimization for

Use with Geophysical Data Sets. Paper presented at the International Conference

on Computational Science (ICCS 2003), Saint Petersburg, Russia.

Gray, J., Szalay, A. S., Thakar, A. R., Kunszt, P. Z., Stoughton, C., Slutz, D., et al.

(2002). Data Mining the SDSS SkyServer Database (Technical Report -TR No.

MSR TR 02 01): Microsoft)

group, I. V. W. (2005). IVOA SkyNode Interface (No. 2005-05-10): International Virtual

Observatory Alliance (IVOA))

GT4. (2008). Retrieved 06/12/2008, from http://www.globus.org/toolkit/docs/4.0/

http://code.google.com/apis/maps/
http://www.globus.org/toolkit/docs/4.0/

201

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F., Karmarkar, A., et

al. (2007). SOAP Version 1.2 Part 1: Messaging Framework (Standard

Specification))

The Hadoop Project. (2008, 01/29/2009). Retrieved 02/21/2009, 2009, from

http://hadoop.apache.org/core/

Hedges, M., Hasan, A., & Blanke, T. (2007, 10 December 2007). Curation and

Preservation of Research Data in an iRODS Data Grid. Paper presented at the

Third IEEE International Conference on e-Science and Grid Computing.

Holliday, G. L., Murray-Rust, P., & Rzepa, H. S. (2006). Chemical markup, XML, and

the world wide web. 6. CMLReact, an XML vocabulary for chemical reactions.

Journal of chemical information and modeling, 46, 145-157.

Holliday, J. R., Chen, C.-c., Tiampo, K. F., Rundle, J. B., Turcotte, D. L., & Donnellan,

A. (2005). A RELM Earthquake Forecast Based on Pattern Informatics. Paper

presented at the American Geophysical Union (AGU) - fall meeting. from

http://www.relm.org/Holliday.pdf

ISO. (2008). International Standards Organization Retrieved 03/27/2008, 2008, from

http://www.isotc211.org/

IVOA. (2004). International Virtual Observatory Alliance Retrieved 12/23/2007, 2007,

from http://www.ivoa.net/

JAG. (1999). Joint Advisory Group Retrieved 03/27/2008, from

http://www.isotc211.org/organizn.htm#jag

JMF. (2008). Java Media Framework Retrieved 09/01/2008, 2008

http://hadoop.apache.org/core/
http://www.relm.org/Holliday.pdf
http://www.isotc211.org/
http://www.ivoa.net/
http://www.isotc211.org/organizn.htm#jag

202

Kale, S., Navelkar, A., Hegde, H., Kembhavi, A., & Kulkarni, P. (2004). VOPlot: A

Toolkit for Scientific Discovery using VOTables. Astronomical Data Analysis

Software and Systems 314, 350.

Kesteren, A. v. (2008). The XMLHttpRequest Object (W3C Working Draft No. WD-

XMLHttpRequest-20080415): W3C)

Khare, B. R., & Taylor, R. N. (2004, May 2004). Extending the Representational State

Transfer (REST) Architectural Style for Decentralized Systems. Paper presented

at the 26th International Conference on Software Engineering (ICSE'04),

Edinburgh, Scotland.

Kirkpatrick, P., & Ellis, C. (2004). Chemical Space. Nature, 432, 823–865.

Kirtland, M. (2001). A Platform for Web Services (Tech Report): Microsoft)

Kolodziej, K. (2004). OpenGIS Web Map Server Cookbook (Implementation

Specification No. 03-050r1): Open Geospatial Consortium Inc. (OGC))

Koontz, L. D. (2003). Geographic Information Systems: Challenges to Effective Data

Sharing (No. GAO-03-874T). Washington, DC)

Kreger, H. (2001). Web Services Conceptual Architecture (WSCA 1.0): IBM)

LAITS. (2008). Retrieved 03/19/2008, 2008, from http://grid.laits.gmu.edu

LANL. (2007). Los Alamos National Laboratories Retrieved 08/23/2008, 2008, from

http://www.lanl.gov/

http://grid.laits.gmu.edu/
http://www.lanl.gov/

203

Lansing, J. (2002). OWS1 Coverage Portrayal Service (CPS) (Interoperability Program

Report-Engineering Specification No. 2002-02-29): Open Geospatial Consortium

(OGC))

Little, M., Newcomer, E., & Pavlik, G. (2007). Web Services Context Specification (WS-

Context), Version 1.0 (Standard Specifications): Organization for the

Advancement of Structured Information Standards (OASIS))

Lu, W., Chiu, K., & Pan, Y. (2006). A Parallel Approach to XML Parsing. Paper

presented at the 7th International Conference on Grid Computing, Barcelona,

Spain.

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., et al. (2006).

Scientific Workflow Management and the Kepler System. Concurrency and

Computation: Practice and Experience, 18(10), 1039-1065.

MCAT. (1998, May 11, 1998). Retrieved 02/20/2009, 2009, from

http://www.sdsc.edu/srb/index.php/MCAT

Means, S., & Bodie, M. (2001). The Book of SAX: The Simple API for XML San

Francisco: Starch Press.

Melamed, R., & Keidar, I. (2004, 09/01/2004). A scalable reliable multicast system for

dynamic environments Paper presented at the Network Computing and

Applications (NCA).

Meyer, E. A. (2006). CSS: The Definitive Guide, Third Edition (3rd ed.).

Meyer, T. W., Davidson, J. W., Resnick, I. G., III, R. C. G., Bush, B. W., Unal, C., et al.

(2003). The Los Alamos Center for Homeland Security. Los Alamos Science, 28.

http://www.sdsc.edu/srb/index.php/MCAT

204

Mitchell, A. L., Divoli, A., Kim, J.-H., Hilario, M., Selimas, I., & Attwood, T. K. (2005).

METIS: multiple extraction techniques for informative sentences. Bioinformatics,

21(22), 4196-4197.

Mitchell, T. (2005, 08/10/2005). Build AJAX-Based Web Maps Using ka-Map. O'Reilly

xml.com.

Nanjo, K. Z., Holliday, J. R., Chen, C.-c., Rundle, J. B., & Turcotte, D. L. (2006).

Application of a modified pattern informatics method to forecasting the locations

of future large earthquakes in the central Japan. Tectonophysics, 424, 351-366.

Newcomer, E., & Lomow, G. (2005). Understanding SOA with Web Services: Addison

Wesley.

Novotny, J., Russell, M., & Wehrens, O. (2004, 08/31/2004). GridSphere: An Advanced

Portal Framework. Paper presented at the 30th EUROMICRO Conference.

Ochsenbein, F. (2008). VOTable Format Definition (No. Version 1.20): International

Virtual Observatory Alliance)

OGC. (1994, 06/12/2008). The Open Geospatial Consortium, Inc Retrieved 02/14/2008,

from http://www.opengeospatial.org/

OGC Schema. (2008). Retrieved 09/14/2008, 2008, from http://schemas.opengis.net/

OnEarth. (2007, 12/08/2007). Retrieved 03/15/2008, from http://onearth.jpl.nasa.gov

Pallickara, S., & Fox, G. (2003). NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids. Paper

presented at the ACM/IFIP/USENIX. from

http://grids.ucs.indiana.edu/ptliupages/publications/NB-Framework.pdf

http://www.opengeospatial.org/
http://schemas.opengis.net/
http://onearth.jpl.nasa.gov/
http://grids.ucs.indiana.edu/ptliupages/publications/NB-Framework.pdf

205

Peng, Z.-R., & Tsou, M.-H. (2003). Internet GIS: Distributed Geographic Information

Services for the Internet and Wireless Networks. New Jersey, USA: John Wiley &

Sons.

Pfister, G. F. (1998). In Search of Clusters. Upper Saddle River, NJ, USA Prentice-Hall,

Inc.

Plale, B., Gannon, D., Brotzge, J., Droegemeier, K., Kurose, J., McLaughlin, D., et al.

(2006). CASA and LEAD: Adaptive Cyberinfrastructure for Real-Time

Multiscale Weather Forecasting. IEEE Computer, 39(11), 56-64.

Plale, B., Ramachandran, R., & Tanner, S. (2006, January 2006). Data Management

Support for Adaptive Analysis and Prediction of the Atmosphere in LEAD. Paper

presented at the 22nd Conference on Interactive Information Processing Systems

for Meteorology, Oceanography, and Hydrology (IIPS), Entebbe, Uganda.

Polychronpouos, C. D., & Kuck, D. J. (1987). Guided self-scheduling: A practical

scheduling scheme for parallel supercomputers. IEEE Transactions on Computers,

36(12), 1425 - 1439

Purger, N., Budav´ari, T. a., Szalay, A. S., Thakar, A., & Csabai1, I. a. (2004). Build

Your Own SkyNode! Astronomical Data Analysis Software and Systems, 314(2),

201.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. IEEE, 77(2), 257-286.

Rajasekar, A., Wan, M., & Moore, R. (2002, July 24, 2002). MySRB & SRB:

Components of a Data Grid. Paper presented at the Proceedings of the 11th IEEE

206

International Symposium on High Performance Distributed Computing,

Washington.

Ramamurthy, M. K., & Droegemeier, K. K. (2008). Linked Environments for

Atmospheric Discovery (LEAD): A Cyberinfrastructure for Mesoscale

Meteorology Research and Education. Geophysical Research Abstracts, 10.

Rao, A., Percivall, G. S., & Enloe, Y. (2000, 07/27/2000). Overview of the OGC catalog

interface specification. Paper presented at the International Geoscience and

Remote Sensing Symposium IGARSS'00.

Redmond, F. E. (1997). Dcom: Microsoft Distributed Component Object Model with

Cdrom (1st edition ed.). Foster City, USA: IDG Books Worldwide, Inc.

Rew, R. K., & Davis, G. P. (1990, February 1990). The Unidata netCDF: Software for

Scientific Data Access. Paper presented at the Sixth International Conference on

Interactive Information and Processing Systems for Meteorology, Oceanography,

and Hydrology, Anaheim, CA, USA.

RMI [Electronic. (2004). Version]. Java Remote Method Invocation Specification.

Retrieved June 2008, from http://java.sun.com/j2se/1.4.2/docs/guide/rmi/

Rundle, J. B., Klein, W., Martins, J., Tiampo, K. F., Donnellan, A., & Kellogg, L. H.

(2002). GEM plate boundary simulations for the Plate Boundary Observatory:

Understanding the physics of earthquakes on complex fault systems. Pure and

Appl. Geophysics, 159(10), 2357-2381.

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/

207

Rundle, J. B., Turcotte, D. L., Shcherbakov, R., Klein, W., & Sammis, C. (2003).

Statistical physics approach to understanding the multiscale dynamics of

earthquake fault systems. Geophysics, 41(4).

Sayar, A., Pierce, M., & Fox, G. (2005a). Developing GIS Visualization Web Services

for Geophysical Applications. Paper presented at the ISPRS Spatial Data Mining

Workshop from

http://grids.ucs.indiana.edu/ptliupages/publications/isprs_asayar.pdf

Sayar, A., Pierce, M., & Fox, G. (2005b). OGC Compatible Geographical Information

Services (Tecchnical Report No. TR610). Bloomington: Indiana University)

Sayar, A., Pierce, M., & Fox, G. (2006). Integrating AJAX Approach into GIS

Visualization Web Services. Paper presented at the IEEE, International

Conference on Internet and Web Applications and Services, ICIW'06.

Serrano, N., & Aroztegi, J. P. (2007). Ajax Frameworks in Interactive Web Apps. IEEE

Software, 24(5), 12-14.

Shuen, A. (2008). Web 2.0: A Strategy Guide (First Edition ed.). Sebastopol, CA:

O'Reilly Media Inc.

Siegel, J. (1996). CORBA 3. Fundamentals and Programming (Omg): Verlag John Wiley

& Sons.

Slominski, A. (2005, 03/22/2005). XML Pull Parser (Xpp). Retrieved 02/19/2008, from

http://www.extreme.indiana.edu/xgws/xsoap/xpp/xpp2/index.html

Sonnet, J. (2005). Web Map Context Documents (WMC) (Standard specs No. 05-005):

Open Geospatial Consortium Inc. (OGC))

http://grids.ucs.indiana.edu/ptliupages/publications/isprs_asayar.pdf
http://www.extreme.indiana.edu/xgws/xsoap/xpp/xpp2/index.html

208

Sosnoski, D. (2001). XML and Java technologies: A look at features and performance of

XML document models in Java: IBM)

Tanenbaum, A. S. (2008). Modern Operating Systems (Third ed.). NJ, USA: Pearson

Prentice Hall.

Tiampo, K. F., Rundle, J. B., Mcginnis, S. A., Gross, S., & Klein, W. (2002).

Eigenpatterns in southern California seismicity. Journal of Geophysical Research,

107(B12), 2354.

Tiampo, K. F., Rundle, J. B., Mcginnis, S. A., & Klein, W. (2002). Pattern Dynamics and

Forecast Methods in Seismically Active Regions Pure and Applied Geophysics,

159(10), 2429-2467.

Tran, P., Greenfield, P., & Gorton, I. (2002). Behavior and performance of message-

oriented middleware systems. Paper presented at the International Conference on

Distributed Computing Systems Workshops, ICDCSW.

Turi, D., Missier, P., Goble, C., Roure, D. D., & Oinn, T. (2007). Taverna Workflows:

Syntax and Semantics Paper presented at the 3rd IEEE International Conference

on e-Science and Grid Computing (e-Science'07), Bangalore, India.

USGS. (2008). United States Geological Surveys Retrieved 09/12/2008, 2008, from

http://www.usgs.gov/

Vretanos, P. A. (2001). Filter Encoding Version 1.0.0 (Implementation Specification No.

01-067): Open Geospatial Consortium Inc. (ogc))

Vretanos, P. A. (2002). Web Feature Service Implementation Specification (Reference

Document No. 02-058))

http://www.usgs.gov/

209

Wells, D., Greisen, E., & Harten, R. (1981). FITS - a Flexible Image Transport System.

Astronomy and Astrophysics Supplement Series, 46, 363.

Williams, R., Ochsenbein, F., Davenhall, C., Durand, D., Fernique, P., Giaretta, D., et al.

(2002). VOTable: A Proposed XML Format for Astronomical Tables (Standard

Specification): US National Virtual Observatory)

WS-I. (2002). Web Service Interoperability Retrieved 03/23/2008, 2008, from

http://www.ws-i.org/

XSL. (1999). Retrieved 01/25/2008, 2008, from http://www.w3.org/Style/XSL/

Yasuda, N., Mizumoto, Y., Ohishi, M., O‟Mullane, W., Budav´ari, T. a., Haridas, V., et

al. (2004). Astronomical Data Query Language: Simple Query Protocol for the

Virtual Observatory. Paper presented at the Astronomical Data Analysis Software

and Systems XIII. ASP Conference Series, ASP Conf. Series. from

http://www.adass.org/adass/proceedings/adass03/reprints/P3-10.pdf

Youn, C., Baru, C., Bhatia, K., Chandra, S., Lin, K., Memon, A., et al. (2007).

GEONGrid portal: design and implementations. Concurrency and Computation:

Practice & Experience 19(12), 1597 - 1607.

Zaslavsky, I., & Memon, A. (2004, August 2004). GEON: Assembling Maps on Demand

from Heterogeneous Grid Sources. Paper presented at the International ESRI

Users Conference, San Diego, CA.

http://www.ws-i.org/
http://www.w3.org/Style/XSL/
http://www.adass.org/adass/proceedings/adass03/reprints/P3-10.pdf

210

Glossary

ASFS (Application Specific Feature Service) is the correspondence of Web Feature

Service (WFS) in ASIS.

ASIS (Application Specific Information Service): Abstracted GIS for general science

domain

ASL (Application Specific Language): Domain specific language. It is the

correspondence of GML in ASIS.

ASVS (Application Specific visualization Service): is the correspondence of Web Map

Service (WMS) in ASIS.

Bbox (Bounding box) (OGC-defined): is a geo-data attribute to define 2-dimensional

ranges in rectangular shapes (minx,miny maxx,maxy).

Capability metadata: is a metadata about the data and services together. It includes

information about the data and corresponding operations with the attribute-based

constraints and acceptable request/response formats.

COM (Common Object Model): Microsoft's windows object model, which is being

extended to distributed systems and multi-tiered architectures.

CORBA (Common Object Request Broker Architecture): An approach to cross-platform,

cross-language distributed objects developed by a broad industrial group, the

OMG. CORBA specifies basic services (such as naming, trading, persistence)

and the protocol IIOP used by communicating ORBS.

CPS (Coverage Portrayal Service): OGC-defined service standards enabling map display

of coverage data provided by WCS (Web Coverage Services).

211

CSS (Cascading Style Sheet) is a stylesheet language used to describe the presentation of

a document written in a markup language

DCOM (Distributed Component Object Model) is a Microsoft proprietary technology for

software components distributed across several networked computers to

communicate with each other.

GIS (Geographic Information Systems) is an information system for capturing, storing,

analyzing, managing and presenting data which are spatially referenced.

GML (Geographic Markup Language) is the XML grammar defined by OGC to express

geographical features. GML serves as a modeling language for geographic

systems as well as an open interchange format for geographic transactions on the

Internet.

HTTP (Hyper Text Transport Protocol): A stateless transport protocol allowing control

information and data to be transmitted between web clients and servers.

JPEG (Joint Photographic Expert Group) is an image file format. It is also a commonly

used method of compression for photographic images

JSP (Java Server Pages) may be viewed as a high-level abstraction of servlets and allows

software developers to dynamically generate HTML, XML or other types of

documents in response to a Web client request

NASA (National Aeronautics and Space Administration) is an agency of United States

government, responsible for the nation‟s public space program.

OGC (Open Geospatial Consortium) is a non-profit, international, voluntary consensus

standards organization that is leading the development of standards for geospatial

and location based services.

212

PI (Pattern Informatics) is an earthquake Geo-science application developed at UC-

Davis. It defines method using observational data to identify the existence of

correlated regions of seismicity.

SOA (Service Oriented Architecture) A Service-oriented Architecture is essentially a

collection of services. These services communicate with each other. The

communication can involve either simple data passing or it could involve two or

more services coordinating some activity. Some means of connecting services to

each other is needed.

SOAP (Simple Object Access Protocol) SOAP is a lightweight protocol for exchange of

information between Web Services in a decentralized, distributed environment. It

is an XML based protocol that consists of three parts: an envelope, a set of

encoding rules for expressing instances of application-defined data types, and a

convention for representing remote procedure calls and responses.

SVG (Scalable Vector Graphics) is an XML specification and file format for describing

two-dimensional vector graphics, both static and animated.

UDDI (Universal Description Discovery and Integration) is a platform-independent,

XML-based registry. It is an open industry initiative, sponsored by OASIS,

enabling businesses to publish service listings and discover each other and define

how the services or software applications interact over the Internet

VC (Virtual California) is a Geo-science application. It is an earthquake simulation

model for the California. The simulation takes into account the gradual movement

of faults and their interaction with each other

213

Web Services: A Web Service is a software system identified by a URI, whose public

interfaces and bindings are defined and described using XML. Its definition can

be discovered by other software systems. These systems may then interact with

the Web Service in a manner prescribed by its definition, using XML based

messages conveyed by Internet protocols.”

WFS (Web Feature Service) provides an interface allowing requests for geographical

features (geo-data) across the web using platform-independent calls.

WSDL (Web Service Description Language) is an XML-based language that provides a

model for describing Web Services.

XML (Extensible Markup Language): A W3C-proposed recommendation. Like HTML,

XML is based on SGML, an International Standard (ISO 8879) for creating

markup languages.

XPP (XML Pull Parser) is a way of parsing/manipulating XML documents. XML Pull

Parsing refers to the process of parsing XML as a stream rather than building a

tree (DOM) or pushing events out to client code (SAX).

XSL (Extensible Stylesheet Language) is a family of recommendations for defining

XML document transformation and presentation. It consists of three parts. These

are XSLT, XPath and XSL-FO.

XSLT (XSL Transformations) is a language for transforming XML

XPath (XML Path Language) is an expression language used by XSLT to access or refer

to parts of an XML document.

214

WMS (Web Map Service) (OGC-defined): Produces maps of spatially referenced data

dynamically from geographic information. This international standard defines a

„map” to be a portrayal of geographic information as a digital image file suitable

for display on a computer screen

WS-I (Web Service Interoperability Organization) is an open industry organization

chartered to establish practices for Web Services interoperability, for selected

groups of Web Services standards, across platforms, operating systems and

programming languages.

Vitae

Name of Author: Ahmet Sayar

Date of Birth: July 2, 1973

Place of Birth Golcuk, TURKEY

Degrees Awarded:

January 2009 Ph.D. in Computer Science,

Indiana University

Bloomington, IN, U.S.A

July 2001 M.S. in Computer & Information Science

Syracuse University

Syracuse, NY, U.S.A

July 1997 B.S. in Management Engineering

Istanbul Technical University

Istanbul, TURKEY

