

ARCHITECTURE AND PERFORMANCE

OF RUNTIME ENVIRONMENTS FOR
DATA INTENSIVE SCALABLE

COMPUTING

Jaliya Ekanayake

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Computer Science
Indiana University

December 2010

ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Geoffrey Fox, Ph.D.
(Principal Advisor)

Dennis Gannon, Ph.D.

Andrew Lumsdaine, Ph.D.

David Leake, Ph.D.

December 20, 2010

iii

Copyright © 2010

Jaliya Ekanayake

Department of Computer Science

Indiana University

ALL RIGHTS RESERVED

iv

With sincere love, I dedicate this thesis to my parents, my wife Randi, and our daughter Sethmi.

v

ACKNOWLEDGEMENTS

I have been humbled by the guidance, encouragement, support that I have received from my

advisors, colleagues, and my loved ones throughout this work. I owe them a great deal of

gratitude and wish to express my sincere thanks.

 I owe my deepest gratitude to my advisor, Prof. Geoffrey Fox. It has been his insightful research

direction, invaluable guidance, constant encouragement, and generous support that has made

everything possible for me to complete this degree. He was there with me for every hurdle and in

every dead-end, and he helped me to navigate my path towards the Ph.D. I would like to

express my deepest gratitude for all his help.

I would like to thank my entire committee: Dr. Dennis Gannon, Prof. Andrew Lumsdaine, and

Prof. David Leake for their help and guidance throughout this research work. I am indebted to

them for their valuable feedback and the help they have each given to me from the beginning of

my research.

I am grateful to Dr. Sanjiva Weerawarana for encouraging me to undertake this challenging path

of life, and also for being an inspiration and a mentor from the days of my undergraduate

studies. I would like to express my deepest gratitude for all his help.

I would specially like to thank Dr. Judy Qiu for her guidance and support for my research. She

has been a mentor, a colleague, and a friend to me. Together, we worked on several research

projects, and her unprecedented support and dedication have served the crucial foundation of

support that has made the Twister project a reality.

I am indebted to Dr. Roger Barga and the Cloud Computing Futures team at Microsoft for

encouraging me and providing me with time off to work on this thesis while working for

Microsoft.

vi

During my stay at Pervasive Technology Institute (PTI), I was fortunate enough to work with

many brilliant people. Dr. Shrideep Pallickara mentored me for the research and publications.

His impeccable experience in software engineering contributed extensively to help shape the

architecture of Twister, and I have benefited immensely from the numerous discussions we have

had. I would also like to thank Dr. Marlon Pierce for providing me help and guidance throughout

my stay in PTI. Whether it be a problem with user accounts or a research issue, he was always

ready and willing to help.

Throughout this research, I was fortunate enough to work with many of my colleagues on

research publications, demonstrations, and projects. This journey would not have been the same

without their help, critique sessions, and friendship. I would like to express my sincere thanks to

my lab mates: Seung-Hee Bea, Jong Choi, Thilina Gunarathne, Li Hui, Bingjing Zhang, Stephen

Tak-lon-wu, and my brother Saliya Ekanayake.

None of this work would have been possible without the enormous support and encouragement

I received from my loved ones. They deserve much credit for all of my accomplishments. My

father, Prof. P.B. Ekanayake has served as an unfailing inspiration to me. What he has achieved

amidst enormous hardships has provided me with examples for many situations in my life. The

soothing phone calls that my mother, Padmini Ekanayake, have made to me every day since I

came to the United States have carried the love and support of my parents to me, and have

motivated me to achieve higher goals. Words are not enough to praise my wife Randika in what

she has been to me during this endeavor. She is the strength and motivation that has kept me

going through one hurdle after another in this five year long journey. Without her support and

encouragements, I would not have come this far. I must also mention my daughter Sethmi for

refreshing my days with her beautiful smile and sacrificing her valuable “time with Daddy” for

vii

his Ph.D. work. I would also like to thank my brother Saliya and his wife Kalani for their sincere

support and encouragements.

I would like to thank Grace Waitman for all her help on proof reading this thesis with her

impeccable comments and suggestions on improving the clarity of the write-up.

Finally, I would like to thank the academic and administrative staff of the School of Informatics

and Computing, along with the PTI who have taught me or helped me and made the last five

years a fun and rewarding experience. Thank you.

viii

ABSTRACT

Architecture and Performance of Runtime Environments for

Data Intensive Scalable Computing

By

Jaliya Ekanayake

Doctor of Philosophy in Computer Science

Indiana University, Bloomington

Prof. Geoffrey C. Fox, Chair

In a world of data deluge, considerable computational power is necessary to derive knowledge

from the mountains of raw data which surround us. This trend mandates the use of various

parallelization techniques and runtimes to perform such analyses in a meaningful period of time.

The information retrieval community has introduced a programming model and associated

runtime architecture under the name of MapReduce, and it has demonstrated its applicability to

several major operations performed by and within this community. Our initial research

demonstrated that, although the applicability of MapReduce is limited to applications with fairly

simple parallel topologies, with a careful set of extensions, the programming model can be

extended to support more classes of parallel applications; in particular, this holds true for the

class of Composable Applications.

This thesis presents our experiences in identifying a set of extensions for the MapReduce

programming model, which expands its applicability to more classes of applications, including

the iterative MapReduce computations; we have also developed an efficient runtime architecture,

named Twister, that supports this new programming model. The thesis also includes a detailed

discussion about mapping applications and their algorithms to MapReduce and its extensions, as

ix

well as performance analyses of those applications which compare different MapReduce

runtimes. The discussions of applications demonstrates the applicability of the Twister runtime

for large scale data analyses, while the empirical evaluations prove the scalability and the

performance advantages one can gain from using Twister.

x

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...V

ABSTRACT…… .. VIII

LIST OF FIGURES .. XVI

LIST OF TABLES ... XVIII

CHAPTER 1. INTRODUCTION .. 1

1.1. Introduction .. 1

1.2. The MapReduce Programming Model .. 4

1.3. Motivation ... 6

1.4. Problem Definition ... 11

1.5. Contributions .. 12

1.6. Thesis Outline ... 13

CHAPTER 2. PARALLEL RUNTIMES & PROGRAMMING MODELS 15

2.1. Taxonomy of Parallel/Distributed Runtimes .. 16

2.2. Cloud and Cloud Technologies .. 17

2.3. Existing MapReduce Architectures ... 17

2.3.1. Handling Input and Output Data ... 17

2.3.2. GFS and HDFS ... 18

2.3.3. Sector .. 20

2.3.4. DryadLINQ and the Concept of Partitioned Table ... 21

2.3.5. Handling Intermediate Data .. 22

xi

2.3.6. Scheduling Tasks ... 23

2.3.7. Fault Tolerance .. 24

2.4. Batch Queues .. 24

2.5. Cycle Harvesting .. 26

2.6. Work Flow ... 27

2.7. Parallel Languages ... 28

2.7.1. Sawzall .. 29

2.7.2. DryadLINQ .. 30

2.7.3. PigLatin .. 30

2.8. Message Passing ... 31

2.9. Threads .. 33

2.10. Cloud ... 34

2.11. Summary of Features Supported by Different Runtimes 36

CHAPTER 3. APPLICATION CLASSES .. 37

3.1. Map-only Applications .. 40

3.2. MapReduce Applications .. 41

3.3. Iterative MapReduce Applications .. 42

CHAPTER 4. A PROGRAMMING MODEL FOR ITERATIVE MAPREDUCE

COMPUTATIONS .. 45

4.1. Static vs. Variable Data .. 46

4.2. Long Running Map/Reduce Tasks.. 47

4.3. Granularity of Tasks .. 48

4.4. Side-effect-free Programming... 48

4.5. Combine Operation .. 49

xii

4.6. Programming Extensions .. 50

CHAPTER 5. TWISTER ARCHITECTURE .. 51

5.1. Handling Input and Output Data .. 53

5.2. Handling Intermediate Data ... 55

5.3. Use of Pub/Sub Messaging .. 57

5.4. Scheduling Tasks .. 57

5.5. Fault Tolerance ... 57

5.6. Twister Implementation .. 60

5.6.1. Software Requirements .. 60

5.6.2. Twister Daemon .. 60

5.6.3. Twister Driver.. 61

5.6.4. Pub-sub Brokers .. 62

5.6.5. File Manipulation Tool ... 63

5.7. Twister API ... 64

CHAPTER 6. APPLICATIONS AND THEIR PERFORMANCES ... 66

6.1. Performance Measures and Calculations .. 67

6.1.1. Performance and Scalability .. 67

6.1.2. Speedup .. 68

6.1.3. Parallel Overhead .. 68

6.1.4. Parallel Efficiency .. 69

6.2. Hardware Software Environments .. 70

6.3. CAP3 Data Analysis ... 72

6.3.1. Hadoop Implementation .. 72

6.3.2. DryadLINQ Implementation ... 73

6.3.3. Twister Implementation ... 75

xiii

6.3.4. Performance Evaluation ... 75

6.3.5. Discussion .. 76

6.4. High Energy Physics (HEP) Data Analysis .. 77

6.4.1. Hadoop Implementation .. 78

6.4.2. DryadLINQ Implementation ... 79

6.4.3. Twister Implementation ... 80

6.4.4. Performance Evaluation ... 81

6.4.5. Discussion .. 81

6.5. Pairwise Similarity Calculation .. 82

6.5.1. Introduction to Smith-Waterman-Gotoh (SWG) ... 82

6.5.2. Hadoop Implementation .. 84

6.5.3. DryadLINQ Implementation ... 84

6.5.4. Twister Implementation ... 85

6.5.5. Performance Evaluations ... 85

6.5.6. Discussion .. 86

6.6. K-Means Clustering ... 87

6.6.1. Hadoop Implementation .. 89

6.6.2. DryadLINQ Implementation ... 89

6.6.3. Twister Implementation ... 90

6.6.4. MPI Implementation ... 90

6.6.5. Performance Evaluation ... 91

6.6.6. Discussion .. 91

6.7. PageRank ... 92

6.7.1. Hadoop Implementation .. 93

6.7.2. Twister Implementation ... 94

6.7.3. Performance Evaluation ... 94

6.7.4. Discussion .. 95

xiv

6.8. Multi-Dimensional Scaling (MDS) Application ... 96

6.8.1. Twister Implementation ... 96

6.8.2. Performance Analysis ... 98

6.8.3. Discussion .. 98

6.9. Matrix Multiplication ... 99

6.9.1. Row-Column Decomposition Approach ... 99

6.9.2. Fox Algorithm for Matrix Multiplication ... 101

6.9.3. Fox Algorithm using Twister’s Extended MapReduce .. 102

6.9.4. Performance Evaluation ... 105

6.9.5. Discussion .. 109

6.10. Twister Benchmark Application and Micro Benchmarks 110

6.10.1. Structure of the Benchmark Application.. 110

6.10.2. Micro Benchmarks .. 111

6.11. Conclusion .. 114

CHAPTER 7. RELATED WORK ... 116

7.1. Apache Mahout .. 116

7.2. Pregel ... 120

7.3. Other Runtimes .. 123

CHAPTER 8. CONCLUSIONS AND FUTURE WORK ... 125

8.1. Summary of Work .. 125

8.2. Conclusions ... 126

8.2.1. Applicability .. 128

8.2.2. Performance and Scalability .. 129

8.3. Contributions .. 131

8.4. Future Work .. 133

xv

8.5. List of Publications Related to This Thesis ... 135

REFERENCES… .. 137

VITA…………… .. 144

xvi

LIST OF FIGURES

Figure 1. Data Flow in MapReduce programming model .. 5

Figure 2. Composable applications in a workflow. ... 39

Figure 3. The iterative MapReduce programming model supported by Twister. 46

Figure 4. Architecture of Twister MapReduce runtime. ... 52

Figure 5. Two approaches used by the Twister to transfer intermediate data. 56

Figure 6. Components of Twister Daemon ... 60

Figure 7. Processing data as files using DryadLINQ. .. 74

Figure 8. Speedups of different implementations of CAP3 application measured using 256 CPU

cores of Cluster-III (Hadoop and Twister) and Cluster-IV (DryadLINQ). 75

Figure 9. Scalability of different implementations of CAP3 application measured using 256 CPU

cores of Cluster-III (Hadoop and Twister) and Cluster-IV (DryadLINQ). 76

Figure 10. MapReduce for the HEP data analysis. ... 78

Figure 11. Simulating MapReduce using DryadLINQ. ... 79

Figure 12. Performance of different implementations of HEP data analysis applications measured

using 256 CPU cores of Cluster-III (Hadoop and Twister) and Cluster-IV (DryadLINQ). 81

Figure 13. MapReduce algorithm for SW-G distance calculation program 84

Figure 14. Parallel Efficiency of the different parallel runtimes for the SW-G program (Using 744

CPU cores in Cluster-I). ... 86

Figure 15. Performance of different implementations of K-Means clustering algorithm performed

using 256 CPU cores of Cluster-III (Hadoop, Twister, and MPI) and Cluster-IV (DryadLINQ)

 ... 91

Figure 16. Elapsed time for 16 iterations of the Hadoop and Twister PageRank implementations

(Using 256 CPU cores in Cluster-II). .. 95

xvii

Figure 17. Efficiency of the MDS application (in Cluster–II). ... 98

Figure 18. Matrix multiplication Row-Column decomposition (top). Twister MapReduce

implementation (bottom). ... 100

Figure 19. 2D block decomposition in Fox algorithm and the process mesh. 101

Figure 20. Virtual topology of map and reduce tasks arranged in a square matrix of size qxq 103

Figure 21. Communication pattern of the second iteration of the Fox - MapReduce algorithm

shown using 3x3 processes mesh. Thick arrows between map and reduce tasks show the

broadcast operation while dash arrows show the shift operation. .. 104

Figure 22. Sequential time for performing one block of matrix multiplication - Java vs. C++ 106

Figure 23. Performance of Row-Column and Fox algorithm based implementations by using 64

CPU cores of Cluster II. (Note: In this evaluation, we have not used Twister’s TCP based

direct data transfers as explained in section 5.2). ... 107

Figure 24. Performance of Twister and MPI matrix multiplication (Fox Algorithm)

implementations by using 256 CPU cores of Cluster II. The figure also shows the projected

compute-only time for both Java and C++. .. 108

Figure 25. Parallel overhead of three matrix multiplication implementations by using 256 CPU

cores of Cluster II .. 109

Figure 26. The structure of the micro benchmark program. ... 111

Figure 27. Time to send a single data item from the main program to all map tasks against the size

of the data item. .. 112

Figure 28. Time to scatter a set of data items to map/reduce tasks against scatter message size. ... 112

Figure 29. Total time for the map to reduce data transfer against <Key,Value> message size. 113

xviii

LIST OF TABLES

Table 1. Comparison of features supported by different parallel programming runtimes 36

Table 2. Application classification .. 38

Table 3. Classes of MapReduce applications .. 44

Table 4. Commands supported by the Twister’s file manipulation tool. ... 63

Table 5. The Application program interface of Twister. ... 64

Table 6. Details of the computation clusters used. ... 71

Table 7. Characteristics of data sets (B = Billions, AM = Adjacency Matrix) 94

Table 8. Breakdown of the amount of communication in various stages of the Row-column based

matrix multiplication algorithm. .. 100

Table 9. Breakdown of the amount of communication in various stages of the Fox algorithm. ... 102

Table 10. Breakdown of the amount of communication in various stages of the Twister

MapReduce version of Fox algorithm. .. 105

Chapter 1. Introduction

1.1. Introduction

With the advancements that have been made in relation to scientific instruments and various

sensor networks, the spread of the World Wide Web, and the widespread use of digital media a

data deluge has been created in many domains. In some domains such as astronomy, particle

physics, and information retrieval, the volumes of data are already in the peta-scale. For example,

High Energy Physics (HEP) experiments such as CMS and Atlas in the Large Hadron Collider

(LHC) are expected to produce tens of Petabytes of data annually even after trimming the data

via multiple layers of filtrations. In astronomy, the Large Synoptic Survey Telescope produces

data at a nightly rate of about 20 Terabytes. Although not in the same range as particle physics or

2

astronomy, instruments in biology, especially those related to genes and gnomes, produce

millions of gene data ensuring biology a place among data intensive domains.

The increase in the volume of data also increases the amount of computing power necessary to

transform the raw data into meaningful information. Although the relationship between the size

of the data and the amount of computation can vary drastically depending on the type of the

analysis performed, most data analysis functions with asymptotic time complexities beyond the

simplest 𝑂(𝑛) can require considerable processing power. In many such situations, the required

processing power far exceeds the processing capabilities of individual computers, and this reality

mandates the use of efficient parallel and distributed computing strategies to meet the scalability

and performance requirements inherent in such data analyses.

A careful analysis on applications performed on these large data sets revealed that most such

applications are composed of pipelines of data/compute intensive stages or filters. For some

applications such as converting a large collection of documents to another format, a single filter

stage is sufficient, whereas an application such as pagerank [1] require iterative application of the

pagerank computation stage until a convergence in results is obtained. Most of these applications

can be parallelized by applying a high level parallel construct such as MapReduce[2] to the above

mentioned stages. As the volume of data increases or the amount of computation performed at

each such stage increases, the overhead in applying a higher level parallel constructs to these

individual stages diminishes making the overall computation parallelizable using higher level

parallel constructs. We named such applications “composable” and make the prime focus in this

thesis.

The advancements made in computing and communication technology of the last decade also

favor parallel and distributed processing. Multi-core and many-core computer chips are

becoming the norm after the classical mechanism of increasing the performance of computer

3

processors by increasing the clock frequency has met its peak governed by the quantum physics.

These powerful multi-core chips allow many programs otherwise executed in sequential fashion

to exploit the benefits of parallelism and pack thousands of CPU cores into computation clusters

and millions of cores into data centers[3]. Similarly, the advancements in communication

technology have reduced the latencies involved in data transfers, which also favor distributed

processing.

To support data intensive scalable computing, the information retrieval industry has introduced

several new distributed runtimes and associated programming models to the spectrum of

parallel and distributed processing runtimes. MapReduce[2] and Dryad[4] are two such

prominent technologies. As many data analyses become more and more data intensive, the ratio

of CPU instructions to I/O instruction becomes reduced. According to [5], in many of these

applications, the CPU: I/O ratios are well below 10000:1. The above runtimes have adopted a

more data centered approach: they support moving computation to data favoring local data

reads, simple programming models, and various quality of services. Initial results from the

information retrieval industry show that they can be deployed in large computation

infrastructures built using commodity hardware and that they provide high-throughput

computing capabilities amidst various types of failures in computation units.

Although the above technologies have shown promising results in information retrieval, their

applicability to a wide variety of parallel computing has not been studied well. This thesis

focuses on MapReduce technologies and its related programming model. Here, we try to

understand the following foci: the applicability of the MapReduce programming model to

different classes of parallel applications, especially for the composable applications; how the

existing MapReduce runtimes support these applications; and how the programming model

could be extended to design an efficient MapReduce runtime to support more classes of parallel

4

applications by incorporating knowledge and experience from classical approaches to parallel

processing such as MPI[6, 7]. The thesis also presents a detailed performance analysis of different

MapReduce runtimes in terms of performance, scalability and quality of services.

1.2. The MapReduce Programming Model

MapReduce is a distributed programming technique proposed by Google for large-scale data

processing in distributed computing environments. Jeffrey Dean and Sanjay Ghemawat describe

the MapReduce programming model as follows:

• The computation takes a set of input (key,value) pairs, and produces a set of output

(key,value) pairs. The user of the MapReduce library expresses the computation as two

functions: Map and Reduce.

• Map, written by the user, takes an input pair and produces a set of intermediate (key,value)

pairs. The MapReduce library groups together all intermediate values associated with the

same intermediate key I and passes them to the Reduce function.

• The Reduce function, also written by the user, accepts an intermediate key I and a set of

values for that key. It merges together these values to form a possibly smaller set of values.

Typically, just zero or one output value is produced per Reduce invocation[2].

5

Figure 1. Data Flow in MapReduce programming model

Furthermore, because of its functional programming inheritance, MapReduce requires both map

and reduce tasks to be “side-effect-free”. Typically, the map tasks start with a data partition and

the reduce task performs such operations as “aggregation” or “summation”. To support these,

MapReduce also requires that the operations being performed by the reduce task to be both

“associative” and “commutative”. These are common requirements for general reductions. For

example, in MPI the default operations or user defined operations in MPI_Reduce or

MPI_Allreduce are also required to be associative and may be commutative.

Counting word occurrences within a large document collection is a typical example used to

illustrate the MapReduce technique. The data set is split into smaller segments and the map

function is executed on each of these data segments. The map function produces a (key, value)

pair for every word it encounters. Here, the “word” is the key and the value is 1. The framework

groups together all the pairs, which have the same key (“word”), and invokes the reduce function

6

by passing the list of values for a given key. The reduce function adds up all the values and

produces a count for a particular key, which in this case is the number of occurrences of a

particular word in the document set. Figure 1 shows the data flow and different phases of the

MapReduce programming model.

1.3. Motivation

The increasing amount of data and the vast computing power they require to be transformed into

knowledge have created a diverse set of problems in many domains. As a response to this

growing need the information retrieval community has come up with new programming models

and runtimes such as MapReduce and Dryad, that adopt more data centered approaches to

parallel processing and provide simpler programming models. On the other hand, the parallel

runtimes such as MPI and PVM used by the High Performance Computing (HPC) communities

have accumulated years of experience of HPC communities into their programming models; thus

their efficient runtimes are applicable to more classes of applications. This thesis is motivated by

the following hypothesis:

With the diversity of the parallel applications and the need to process large volumes of data, we

argue that, by extending simpler, data centered programming model of MapReduce using the proven

architectures and programming models in HPC world, we will expand its usability to more classes of

parallel applications.

The MapReduce programming model has attracted a great deal of enthusiasm because of its

simplicity, as well as the improved quality of services it can provide. In classic job execution

infrastructures, the scheduling decisions are influenced mainly by the availability of computer

resources. Further, in many classic parallel runtimes, the movement of data to the individual

parallel processes is typically handled via shared file systems or a master process sending data to

slave processes. As many data analyses become more and more data intensive, the ratio of CPU

7

instructions to I/O instruction reduces. Amdahl’s IO law states that the programs complete one

I/O per 50,000 instructions[8], and Jim Gray and Prashant Shenoy claim that, in many scientific

applications, this rate drops well below one I/O per 10000 instructions[9]. As we build

infrastructures to handle the data deluge, the above observations suggest that using new

programming models such as MapReduce based on the concept of “moving computation to

data” could be more efficient. Although the MapReduce was originated from the information

retrieval industry, our initial evaluations show it can be applied to many Single Program

Multiple Data (SPMD)[10] style problems in various scientific domains as well.

Classic parallel applications that were developed by using message passing runtimes such as

MPI[11] and PVM[12] utilize a rich set of communication and synchronization constructs offered

by those runtimes to create diverse communication topologies within the parallel applications.

Further, the parallel algorithms targeted for these runtimes assume the availability of a diverse

set of communication constructs in them as well. For example, a matrix multiplication application

which implements the Fox algorithm[13] in MPI utilizes the processes mesh construct available in

MPI. By contrast, MapReduce and similar high-level programming models support simple

communication topologies and synchronization constructs. Although this limits how they can be

applied to the diverse classes of parallel algorithms, our initial analyses revealed that many

data/compute intensive applications can be implemented by using these high level

programming models as well. When the volume of the data is large, algorithms based on simple

communication topologies may produce performances comparable to the algorithms that utilize

complex communication topologies which have fine grain synchronization constructs. These

observations also favor MapReduce, since its relaxed synchronization constraints do not impose

much of an overhead for large data analysis tasks. Furthermore, the simplicity and robustness of

these programming models supersede the additional overheads.

8

The emerging trend of performing data analysis on Cloud infrastructures also favors the

MapReduce style of simple programming models. Cloud infrastructures are comprised of

thousands of computers organized into data centers, that provide both data storage and

computation services to the users. Most of these infrastructures are built using commodity

hardware, and hence, the typical network bandwidth available between computation units is

well below the typical network bandwidth available in high performance computation clusters.

Apart from the above conditions, most cloud infrastructures utilize virtual machine technologies

to maximize their resource utilization, and also, to isolate the user level applications (including

the operating system) from the bare-metal systems. These characteristics introduce latencies into

the communication medium, and are significantly higher than those of computation clusters.

Programming models such as MapReduce rely on relaxed synchronization constraints; thus they

operate with higher task granularities that have less susceptibility to latencies. These features

make them an ideal match to operating on Clouds.

Various data analysis applications show different data and compute intensity characteristics.

Further, they also exhibit diverse communication topologies. MapReduce is typically applied to

large scale data parallel applications with simple communication topologies. However, as more

and more applications have become data intensive, we have noticed that the MapReduce

programming model can be used as a parallelization construct in many other types of

applications as well. Applications with simple iterative computations represent an important

class that expands across domains such as data clustering, machine learning, and computer

vision. In many of these algorithms, the computations performed inside the iterations can be

represented as one or more MapReduce computations to exploit parallelism. This idea is also

shown by Cheng Tao et al., in their paper demonstrating how MapReduce can be applied to

iterative machine learning algorithms in multi-core computers[14]. However, we noticed that, to

9

support such algorithms and expand the usability envelope of MapReduce effectively, we need

several extensions to its programming model as well as an efficient implementation.

There are some existing implementations of MapReduce such as Hadoop[15] and Sphere[16],

most of which adopt the initial programming model and the architecture presented by Google.

These architectures focus on providing maximum throughput for single step MapReduce

computations (computations that involve only one application of MapReduce) with better fault

tolerance. To support the above goals, they incorporate various measures which can be justified

for some of the large scale data analysis but which introduce considerable performance

overheads for many other applications for which the MapReduce programming model can prove

applicable. For example, in Hadoop, the intermediate data produced at the map tasks are first

stored in the local disks of the compute node where the map task is executed. Later, reduce tasks

download this output of the map tasks to the local disks where the reduce tasks are being

executed. This approach greatly simplifies the fault handling mechanism of Hadoop, as the

output of each parallel task exists in some form of file system throughout the computation.

Hadoop also utilizes a dynamic task scheduling mechanism for its map/reduce tasks to improve

the overall utilization of the compute resources. Although this approach allowed Hadoop to

support features such as “dynamic flexibility” – which is a feature that allows the runtime in

using a dynamic set of compute resources, this option can also induce higher overheads, for

applications that execute tasks repetitively. Furthermore, in these runtimes, the repetitive

execution of MapReduce results in new map/reduce tasks for each iteration which loads or

accesses any static data repetitively. Although these features can be justified for single step

MapReduce computations, they introduce considerable performance overheads for many

iterative applications.

10

In contrast to the above characteristics of MapReduce, we noticed that the parallel processes in

High Performance Computing (HPC) applications based on MPI, have long lifespans in the

applications; most of the time, they utilize high performance communication infrastructures to

communicate fine grain messages with higher efficiencies for computation dominated workloads.

The use of long-running processes enables the MPI processes to store any static or dynamic data

(state information) necessary for the computation throughout the application life cycle. On the

other hand the use of stateful processes makes it harder to support fault tolerance. The use of low

latency communication infrastructures makes the inter-process communications highly efficient,

as compared to the “disk->wire->disk” approach to data transfer adopted by the MapReduce

runtimes such as Hadoop. Furthermore, by supporting low-level communication constructs, MPI

and similar parallel runtimes allow the user to create parallel algorithms with a wide variety of

communication topologies. K. Asanovic et al. presents seven dwarfs capturing various

computation and communication patterns of parallel applications into equivalence classes [17].

Although there are analyses like the one described above for the HPC applications, we could not

find a detailed analysis which compares high level abstractions such as MapReduce and Dryad

and the mapping of parallel applications to these abstractions. This knowledge would be crucial,

and would be required in order to map parallel applications to the new programming runtimes

so as to obtain the best possible performance and scalability for the applications. This is one of the

areas that we will explore in this research.

The above observations support our hypothesis of extending the MapReduce programming

model by incorporating some of the features that are present in the HPC runtimes; in doing so we

can provide an efficient implementation so that MapReduce can be used with more classes of

parallel applications.

11

1.4. Problem Definition

In a world deluged by data, high-level programming models and associated runtimes that adopt

data centered approaches have shown promising results for data intensive computing.

MapReduce is one such key technology that has been introduced to tackle large scale data

analyses from the information retrieval community. However, we noticed the following gap in

the current research concerning these high-level programming models and their architectures;

this research strives to minimize this gap.

• First, the applicability of MapReduce to the diverse field of parallel computing is not well

studied. We try to fill this gap by applying MapReduce to a selected set of applications to

represent various classes of applications that MapReduce could be applied to; we intend

to demonstrate the mapping of parallel algorithms to the MapReduce domain while

comparing and contrasting the characteristics of few existing high level programming

models.

• Second, from our preliminary research, we have identified that, although the MapReduce

programming model is a simple yet powerful programming construct that can be used in

many parallel algorithms, current MapReduce runtimes are inefficient for many

applications that require repetitive application of MapReduce or applications that require

low latency communication. On the other hand, some features of the HPC runtimes make

them highly desirable for some of these applications, even though the programming

models of the HPC runtimes are not simple nor are they an ideal match for the data

deluge. By incorporating the lessons learnt from the HPC community to MapReduce, we

wish to address the challenge of devising a new programming model and supporting it

on an efficient runtime.

12

• Finally, a detailed performance analysis of high level programming runtimes, which

identify their strengths and weaknesses for different classes of applications while

comparing them with solutions from the HPC world, has not yet been performed.

Furthermore, identifying the behaviors of these runtimes in virtualized environments

such as Clouds certainly exist as a goal worthy of further study and research.

1.5. Contributions

We envision the following contributions could emerge from this research:

• The architecture and the programming model of an efficient and scalable MapReduce

runtime which could expand applicability of the MapReduce programming model to

more classes of data intensive computations, especially for iterative MapReduce

computations.

• A prototype implementation of the proposed architecture and the programming model

that minimizes the overheads suffered by typical MapReduce runtimes.

• A classification of the problems that can be handled by MapReduce and algorithms for

mapping these to the MapReduce model while minimizing overheads, followed by a

detailed discussion of several scientific applications that could be developed using

different runtimes including the proposed runtime.

• A detailed performance analysis comprised of application level performance

characteristics to micro benchmarks, which can evaluate the performance, scalability, and

overhead of the proposed runtime against other relevant runtimes.

13

1.6. Thesis Outline

This thesis is organized as follows:-

We present the current state of the parallel programming models and runtimes related to this

thesis in Chapter 2. Here, we focus on several aspects of parallel computing such as scalability,

throughput vs. efficiency, level of abstraction, fault tolerance, and support for handling data. The

chapter also introduces some of the technologies that we used for our performance comparisons

with the proposed runtime.

After classifying the MapReduce applications to several distinct classes in Chapter 3, we

introduce the extended MapReduce programming model that we propose in this thesis in

Chapter 4, along with an explanation of how it can be used to support different classes of

applications. Furthermore, in this chapter, we compare the proposed programming model with

some of the other parallel programming techniques that can be used to implement such

applications, and we try to conclude with a set of equivalence classes of applications.

This is followed by a detailed explanation of the architecture and the implementation of the

proposed runtime “Twister” in Chapter 5. Here we discuss the various architectural designs we

used in the Twister runtime and compare and contrast it with other MapReduce and HPC

runtimes; we also discuss the feasibility of our proposed architecture.

In Chapter 6, we present the data analysis applications we have implemented using various

parallel runtimes in order to understand their benefits and compare them with the proposed

architecture. Under each application we describe the type of benchmarks we have conducted the

results obtained followed by a discussion on results. This chapter serves as the proof of our

hypothesis presented in the Section 1.3 of this thesis.

14

Finally we present our conclusion and outline the direction of future work in Chapter 8 after

following a related work to this thesis in Chapter 7.

15

Chapter 2. Parallel Runtimes & Programming Models

The discussions found in this thesis extend into many areas in parallel and distributed processing

runtimes and their programming models. Moreover, our work is built on top of the results of

much previous research. In this section, we discuss the state of the art in the above areas. First,

we will present a taxonomy of parallel and distributed processing runtimes relevant to our

research, by showing the cosmic view of the technologies and the position of the proposed

runtime in this list of technologies. As our work is mainly centered on MapReduce technologies,

we will next discuss the exiting MapReduce technologies and compare the other relevant

technologies with MapReduce using six dimensions: (i) data handling, (ii) communication, (iii)

synchronization, (iv) task granularities, (v) scalability, and (vi) Quality of Service (QoS). We also

extend the discussions to the cloud computing paradigm and its related technologies as well.

16

2.1. Taxonomy of Parallel/Distributed Runtimes

Parallel/Distributed
Runtimes

Batch
Queues

Cycle
Harvesting

Workflow

Message
Passing

Cloud
Technologies

Special
Frameworks

TORQUE,
Moab

Condor/
DAGMan

Composition
Tools

Script based
runtimes

XBaya,
Taverna

Swift,
Falkon

MapReduce

DAG Based

Hadoop,
Twister

Dryad,
DryadLINQ

Private
Domain

Public
Domain BOINC

Classic Cloud Amazon Queues

All-Pairs,
SAGA

Shared
Memory

Distributed
Memory

OpenMP
CCR

MPI
PVM

Threads Threading support in
languages

Parallel
Languages X10, Fortress, Chapel

Message
Passing

Shared
Memory

OpenMP
CCR

Threads Threading support in
languages

Parallel
Languages X10, Fortress, Chapel

17

2.2. Cloud and Cloud Technologies

Cloud and Cloud Technologies are two distinct terms that we use throughout this thesis; hence,

the term deserves a clear definition. By “Cloud,” we refer to a collection of infrastructure services

such as the Infrastructure-as-a-service (IaaS) and the Platform-as-a-Service (PaaS), etc., provided

by various organizations where virtualization plays a key role. By “Cloud Technologies,” we

refer to various technologies associated with clouds such as storage services like the S3[18],

communication queues like the Simple Queue Service (SQS) in Amazon and the Azure Queues

in Windows Azure[19]; most importantly, we also focus on the high level runtimes such as

Hadoop[15] and Dryad [20].

2.3. Existing MapReduce Architectures

Along with the MapReduce programming model, Jeffrey Dean and Sanjay Ghemawat describe in

their paper the architecture that they adopted at Google. Most of their decisions are based on the

scale of the problems that they solved using MapReduce and the characteristics of the large

computing infrastructure in which these applications were deployed. Apache Hadoop and

several other MapReduce runtimes such as Disco [21] and Sector/Sphere also adopted most of

these architectural decisions. Below, we will list some of the most important characteristics of

these runtime, as it will be useful to explain and compare them with the architectural decisions

we made in this thesis later.

2.3.1. Handling Input and Output Data

The key motivation behind the MapReduce programming model is to support large scale

computations that show “pleasingly parallel” characteristics in terms of data. As applications

become more and more data intensive, their performances are greatly determined by the

bandwidth of the medium used to access data. In this respect, moving data to the available

18

computing resources before processing as done by many classic distributed and parallel

computing infrastructures is not feasible. To eliminate this costly (in terms of performance) data

movement, MapReduce architectures have introduced the concept of the “data-compute node”,

which represents a computer that is used as both a data storage device and a computation unit.

(Note: Please note that following this point, we will simply use the term “node” to refer to a

“data-compute node” when we discuss MapReduce related technologies).

The above approach allows MapReduce runtimes to utilize larger disk bandwidth produced by

the local disks of the nodes. However, to manage data in these local disks and to obtain meta-

data to move computation to data, a higher level data management infrastructure is necessary. To

support these features, most MapReduce runtimes use distributed storage infrastructures built

using local disks to read input data and store final output data. Both Google and Hadoop utilize

distributed fault-tolerance file systems – GFS[22] and HDFS[15] in their MapReduce runtimes.

Sphere MapReduce runtime utilizes a distributed file system named Sector that uses slightly

different architecture than GFS or HDFS. Microsoft DryadLINQ[23] on the other hand, uses a

simple meta-data construct named a “partitioned file” to process data from local disks of the

compute nodes that are organized as Windows shared directories. With these features, most

MapReduce runtimes use distributed storage infrastructures to read input data and store final

output data. In the remainder of this section, we will discuss some of the above storage

architectures.

2.3.2. GFS and HDFS

The Google File System (GFS) has been developed to provide a distributed fault tolerance file

system built by using a large number of commodity machines. Many design decisions of the GFS

have been influenced by the type of operations they performed on large data sets as well as the

typical applications they use. For example, they noticed that most common file access patterns for

19

large data sets is either the initial file creation, file read, or file appends. Random updates or

writes on large data files are rare. We also noticed similar characteristics on large scientific data

products. Typically, most of these data sets are read from different applications (algorithms) for

inferences and rarely modified. In both Google and Hadoop MapReduce runtimes, the

distributed file system is used to read input data and store output data. This further simplifies the

type of operations performed on the file system and makes it almost similar to the “write-once-

read-many” access model.

The GFS architecture has two main components: (i) the GFS master and (ii) the GFS chunk server.

The Hadoop Distributed File System (HDFS) is much closer to the GFS in design and in the

HDFS; these entities are called (i) the Name Node and (ii) the Data Node respectively. The GFS

master keeps track of the all the meta-data including the file system namespace, while the GFS

chunk servers store data chunks assigned to them by the GFS master. Both the GFS and the HDFS

store data as fixed size chunks or blocks within the distributed file system, and they use

replications to recover from failures. Data which is read and is written directly to and from clients

goes to the chunk servers (data nodes), which are located using the meta-data served by the

master. Both file systems provide an interface with common file system operations to clients

although they do not implement a standard file system API such as POSIX.

The use of fixed sized blocks simplifies the design of the GFS and the HDFS since the blocks

which belong to a file can be calculated using the record ranges. Furthermore, these file systems

use fairly large blocks, typically megabytes in size, as compared with the classic distributed file

systems. This feature reduces the number of blocks at the chunk servers and blocks related meta-

data that need to be stored at the master. Also, reading large files is simplified by reading blocks.

However, we noticed that the matching block boundaries and data parallelism for various data

types is not straightforward. For example, most scientific data is typically stored as files and the

20

boundaries for parallel processing typically exist at the file level. If the files are fairly equal in

size, one can group several files into a block (if the files are comparatively smaller than the typical

best performance block sizes), or they can select an appropriately sized block to match the size of

the files. Still, the blocks may need to be padded to match the differences in file sizes and the

block boundaries. If the files are not similar in size, the padding will increase. Breaking a file into

multiple blocks is an option, when the data in files are represented as records and the data

parallelism exist at record level. For example, in text data (web pages, text documents etc..) a

record can be a sentence, a line of text or a paragraph, and many operations performed on text

data collections can be parallelized at this records level.

2.3.3. Sector

Sector is introduced as a storage cloud[16]. Similar to the GFS and the HDFS architectures, Sector

also uses a master to hold meta-data while a set of worker nodes store files. The authors claimed

that it can be deployed across wide area networks with high speed network connections and can

support better upload and download capabilities. The main distinction between Sector and the

GFS and the HDFS is that it does not store large data sets into chunks or blocks, and instead, it

expects the user to handle data partitioning. Sector stores these files (data partitions) as is, in the

local disks of the storage nodes and it supports replications. The main advantage of this approach

is that, a computation infrastructure built on top of Sector (Sphere is such a computation

infrastructure), can access files directly as native files instead of accessing them via an API

provided by Sector. This is highly beneficial when legacy applications need to be used as data

processing functions (as executables) in the MapReduce style processing runtimes. For example, a

gene assembly program named CAP3 [24] that we will discuss later expects input data to be

passed as files using command line arguments. To execute such an application using Hadoop, the

Hadoop application first needs to copy the data from HDFS to the local machine’s file system and

21

invoke CAP3 executable passing input file names in the command line. The data copying from

the HDFS to the local file system is required, since the HDFS does not provide a standard file

system interface such as POSIX. In contrast, the same application with Sector can directly execute

the CAP3 program passing input files as command line arguments, since they exists as files (not

as blocks) in the local file system. However, this approach leaves the task of partitioning data to

the user, which we think could be supported by providing a tool to perform data partitioning

using custom partitioning schemes.

2.3.4. DryadLINQ and the Concept of Partitioned Table

The academic release of Microsoft DryadLINQ [25] uses Windows shared directories to read

input data and to store output data. Instead of providing a file system to keep track of the data

partitions and their replications, DryadLINQ expects the user to provide a special file named the

“Partitioned File” to the runtime, which contains the meta-data regarding the data partitions and

their locations among the collection of local hard disks of the computations nodes. With this

information, DryadLINQ tries to schedule data processing tasks on the nodes on which the data

is available. It also supports replicas of data partitions so that, in the case of failure of a given

node, the tasks could be rescheduled to run on a different node. DryadLINQ provides

programming constructs to partition data based on the “hash” and “range” values. However, it

does not provide a tool for the user to distribute data partitions across computation nodes, or to

collect the results to a shared location, which we think, is very important for these types of

distributed runtimes.

Overall, we also think that a distributed file system that keeps track of data partitions and their

replications is an ideal candidate for distributed runtimes based on MapReduce. The GFS, the

HDFS, and the Sector file systems handle fault tolerance by supporting data replications, and

they actively maintain a given number of replications of data blocks amidst node failures, which

22

makes the overall distributed runtime more robust. However, with the capability of using

directly accessible files as data partitions, the approach adopted by Sector is more flexible.

2.3.5. Handling Intermediate Data

In most MapReduce runtimes, the intermediate data produced after the map stage of the

computation is handled using the following steps.

1. The map outputs are first buffered in memory and continuously pushed to a file(s) in the local

disk of the nodes the map tasks are executed. The meta-data regarding these outputs are sent

to the master process.

2. The master process assigns map outputs to appropriate reduce tasks based on some form of a

“key selector” and it notifies the reducers, which then retrieve data via some communication

protocol such as HTTP and store them in the local disks where they are being executed.

3. Once all the map outputs are received for a particular reduce task, the runtime performs a

sorting operation on the reduce inputs (map outputs) based on the “key” and invoke the

reduce function.

This scheme of handling intermediate data is both scalable and robust. Since the intermediate

data is handled in files, the volume of intermediate data is limited only by the amount of local

disk space available in all compute nodes. It is robust because it makes the fault tolerance

functionality of the runtime simpler and straightforward. For example, if the map tasks do not

store their outputs in the local disks first, a failed reduce task will require a re-execution of all the

map tasks to get its portion of reduce inputs. With the above scheme, a failed reduce task only

needs to collect data from the nodes where the map tasks stored their outputs.

Although the above approach is robust and scalable, it adds a considerable latency to the data

transfer between the map and the reduce tasks, especially with workloads with equal work load

23

distributions. Since the data transfer can start immediately after a map task is completed, the

effect of latency is less significant for MapReduce computation where the work load distribution

at the map tasks is not uniform. In these type of computations, the data transfer continues along

with the map stage, and, at the end of the map stage of the computation, the reduce tasks need to

wait till the data is retrieved from the slow map tasks. However, for workloads with equal load

distribution, all the data transfers start in a close time interval and the reduce tasks need to wait

till all the data is transferred via disk->wire->disk transfer approach.

Classic parallel runtimes such as MPI uses in-memory communication mechanisms to transfer

data between parallel processes, and hence, they operate with minimum latencies. On the other

hand, the performance gain results in highly complex fault tolerance mechanisms in MPI. In our

design, we try to incorporate the in-memory data communication approach with MapReduce.

2.3.6. Scheduling Tasks

Google’s MapReduce and Hadoop use a dynamic scheduling mechanism. In this approach, the

master assigns map/reduce tasks to the available computation resources at the runtime.

DryadLINQ, on the other hand, uses a static scheduling approach in which the parallel tasks in a

particular stage of the DAG (Note: DryadLINQ uses a DAG as the execution flow) are assigned to

nodes at the beginning of the computation. Both approaches have their own pros and cons. With

the dynamic scheduler in Hadoop, it can utilize compute resources when they become available,

which yield a higher utilization. It also makes the re-scheduling of tasks, in the case of a failure,

more straightforward for the master process. Furthermore, when the workload is skewed and

there are more tasks than there are available computation resources (CPU cores or threads), this

approach can effectively taper out the skewness of the task distribution. In contrast, a static

scheduling with the capability of re-scheduling in the event of failures will produce minimum

scheduling overhead. To load balance a skewed work load with this approach, one can use

24

randomization in task assignment so that tasks with different skewness are assigned to a given

processing element.

2.3.7. Fault Tolerance

Failures are common in distributed runtimes that operates on thousands of computers, especially

when the computation infrastructure is built using commodity hardware equipments. Although

this is different from the experience we have in using high end computation clusters with better

networking equipments, and also in using leased resources (virtual machines) from Cloud

providers, we also identify the need for producing distributed runtimes with fault tolerance

capabilities.

Handling failures is one of the key considerations of Google’s MapReduce architecture, and

similarly, this is also the case in Hadoop as well. In both Google and Hadoop MapReduce, the

distributed file systems handle the failures of the disks or nodes using data replication. Therefore,

applications can process input data amidst node failures, provided that the number of replicas of

data and the replica placement can effectively handle failures. Further, their approach of writing

intermediate data products to persistent storage simplifies the failure handling logic.

In both Hadoop and the Google’s MapReduce, failures of map tasks are handled by rerunning

them, while a failure of reduce tasks requires downloading the outputs of map tasks and re-

execution of the reduce task. The master process that handles the scheduling and keeps track of

the overall computation is assumed to run on a node that is less susceptible to failures. A failure

in this node requires a total restart of the overall runtime.

2.4. Batch Queues

Batch queues provide an interface to schedule jobs using computation infrastructures ranging

from single clusters to computation grids[26]. The jobs for these schedulers could be as simple as

25

an application running on a single computer, or as complex as a parallel application that runs on

thousands of computers. The main task of theses schedulers is to allocate resources to this wide

variety of requirements in a fair manner while maximizing the resource utilization. Many parallel

applications that resemble “embarrassingly parallel” characteristics, either as data parallel or task

parallel, can be scheduled as a collection of independent tasks using job queues. These

independent tasks typically do not require any form of inter task communication, and hence, they

fit best with such a scheduling mechanism.

There are several ways one can access input data in the above types of applications, including

network file system in a cluster, shared file systems, or even the option of moving data

dynamically to the local disks using scripts. Typically, the data is moved to computation

resources during the execution time. MapReduce programming model reduces to a “map-only”

mode when no reduce phase is used in the computation which resembles an embarrassingly

parallel application executed as a collection of map tasks. However, unlike the batch queues

where the input data for applications are typically moved to computation resources, the data

centered approach adopted in MapReduce allows for better data and computation affinity by

minimizing the data movement costs. Several have suggested[27, 28] locality aware scheduling to

minimize the data movement, as this is especially effective for data intensive applications.

 The task granularities of such applications vary with the type of application but coarse grain

tasks would yield lower overheads due to lower scheduling overheads. With correct task

granularities, similar parallel applications scale almost linearly with the data and computing

resources. When MapReduce is used as a “map-only” computation to execute a collection of

independent tasks, the distinction between the Batch Queues and MapReduce becomes blurred

except for the differences in the data handling. Batch queues provide mechanisms to monitor the

status of jobs, and mechanisms to guarantee fault tolerance, which are based on checkpoints and

26

the re-execution of task[29, 30]. Scheduling a large number of related parallel tasks using job

queues can be required by some parallel applications to which runtimes such as SWARM[31] can

be applied.

Thilina et al. showed that the same concept of batch queues can be used in Clouds to schedule

parallel applications that are embarrassingly parallel[32]. In these settings, the schedulers are

replaced by a user developed applications that simply monitors a message queue for task

descriptions to execute on cloud resources.

2.5. Cycle Harvesting

Cycle harvesting techniques such as the Berkeley Open Infrastructure for Network Computing

(BOINC)[33] achieve massive computational power by aggregating the compute time donated by

the voluntary participants around the globe. Condor is a workload management system that was

first developed as cycle harvesting technique, and later, it evolved into a fully fledge distributed

processing infrastructure. Condor creates a pool of computational resources, to which the users

can submit jobs. The resources in the Condor pool can be either cycle sharing or dedicated.

Typical data access patterns in both these approaches (public and private domains) involve

moving data to the computation resources and hence, they are more suitable for applications

with higher computation to data access ratios. Condor provides two problem solvers (i) Master-

Worker, and (ii) Directed Acyclic Graph Manager (DAGMan) [34]- which could be used to

execute various parallel computation tasks .The master-worker approach can be used to execute a

set of parallel computation tasks such as parameter searches where the program performs the

same computation on slightly different inputs. These types of computations are embarrassingly

parallel in nature and work well with this type of infrastructures. DAGMan allows the user to

specify the computation task as a Directed Acyclic Graph (DAG), in which the vertices represent

the computation tasks and the edges represent the data flow between two computation tasks

27

(vertices). Although the DAG approach expands the applicability of Condor to more complex

parallel processing algorithms, still, the expressiveness of a DAG is limited compared to a

scripting language or a fully-fledged programming language that could be used to describe the

problem. In addition, representing iterative computations is hard in DAG based systems. Condor

supports task-level check pointing so that a task executing in a compute node can be stopped and

migrated to another node for further execution in the case of the failure of the current hardware

node.

2.6. Work Flow

Workflows schedule a set of related tasks to be tied up as an execution graph (workflow) on

distributed computational resources where the tasks could be simple executables or fully-fledged

parallel programs that use hundreds of processes. With Grid computing [26], the scientist use

workflows to execute large scale scientific applications using many heterogeneous systems across

the Grid. G. Fox and D. Gannon define the workflow in the context of Grid computing as follows.

 “The automation of the processes, which involves the orchestration of a set of Grid services, agents

and actors that must be combined together to solve a problem or to define a new service” [35]

Workflow runtimes such as Pegasus[36] extend the resource allocation to the emerging cloud

environments as well. Typical workflow scheduling is mainly determined by the availability of

the resources and hence, the workflow runtimes schedule data movement jobs along with the

tasks in the workflows. Data locality aware scheduling is used for data intensive applications.

The granularity of the services used in the workflows is coarser than the individual computations

in MapReduce domain. However, for many embarrassingly parallel applications that are

composed of independent tasks, this distinction becomes blurred. G. Fox and D. Gannon further

classify the workflows into four distinct classes depending on the complexity of the workflow

28

graphs: (i) linear workflows, (ii) acyclic graphs, (iii) cyclic graphs, and (iv) complex – too large

and complex to effectively “program” as a graph.

The composition of workflows can range from simple scripts to widely used service composition

languages to graphical interfaces such as those discussed here [37]. Supporting the quality of

services such as fault tolerance and monitoring is an important consideration in workflow

runtimes. J. Workflow runtimes support fault tolerance in two granularities :(i) task-level, and (ii)

workflow-level. At the task level, individual services or tasks are supported with fault tolerance,

whereas in the workflow level, the entire workflow graph is supported with fault tolerance. Yu

and R. Buyya in their paper[38] present a list of major workflow runtimes and their support for

fault tolerance. Workflow composition tools such as Xbia[39] provides graphical interface to

compose workflows as well as to real time monitoring of running workflows.

2.7. Parallel Languages

Parallel languages try to minimize the complexity of programming parallel applications. There

are a wide variety of parallel languages targeted for different styles of programming[40]

However, as the applications become more and more data intensive, languages that supports

coarse the grained SPMD style programming models on distributed memory architectures are

proven to be more beneficial. In this respect, language extensions provided as libraries such as

MPI (in various languages such as C, C++, and FORTRAN), PVM, Charm[41] provide more

flexibility to program parallel algorithms on distributed memory infrastructures (We will discuss

them in more detail in the next section). In contrast, as hardware resources become more and

more multi/many core oriented, the applications can use parallel languages to exploit the fine

grain parallelism available in programs.

Three high level languages that came into the forefront with the emergence of MapReduce

technologies are Sawzall[42], DryadLINQ, and PigLatin[43]; all of which provide high level

29

abstractions to develop MapReduce style programs and other extensions using basic MapReduce

constructs. These languages are discussed in the rest of this section.

2.7.1. Sawzall

Sawzall is an interpreted programming language for developing MapReduce like programs using

Google's distributed infrastructure services such as GFS and MapReduce. R. Pike et al. present its

semantics and its usability in their paper[42]. The language supports computations with two

distinct phases. First, a “query” phase performs an analysis on a single data record and emits an

output to an aggregator operation specified in the program. Unlike MapReduce, each parallel

task in the query phase emits a single value and the aggregator, written in typical sequential

languages (C++), collects the emitted results and produces another set of outputs. Finally, the

outputs of the aggregators are collected to a single file and stored. The programming model bears

a strong resemblance to MapReduce and, according to R. Pike et al., both phases of the Sawzall

programs are executed using the MapReduce infrastructure itself. Sawzall provides high level

abstractions to define the operations in the query phase and the program flow using predefined

aggregators. The Sawzall interpreter schedules the computations across distributed computing

infrastructure with the use of the MapReduce infrastructure.

Since Sawzall utilizes both the MapReduce and the GFS infrastructures, the applications

developed using Sawzall also get the benefits of data compute affinity and the robustness of

MapReduce. The language simplifies the development of some MapReduce applications, but the

extra simplifications and its coupling with text processing may limit its usage for general

MapReduce applications.

30

2.7.2. DryadLINQ

DryadLINQ stems from the Language Integrated Query (LINQ)[44] extensions provided by

Microsoft. LINQ provides a query interface to many data structures such as arrays and lists that

typical programs operate on. DryadLINQ extends this concept to a distributed tables and lists

using the underlying Microsoft Dryad[4] infrastructure. With DryadLINQ, the user can execute

programming functions, executables on partitions of data defined via a construct named a

“partitioned table”. The typical operation involves query operations such as “Select” and

“SelectMany” and the aggregate operations such as “GroupBy” and “Apply”. However, unlike

Sawzall which maps computations to MapReduce, the applications developed using DryadLINQ

are compiled to Dryad executable DAGs, which provides more flexibility in expressing complex

applications. Furthermore, with its coupling to PLINQ (Parallel LINQ), DryadLINQ applications

can exploit parallelism at the machine level by using typical LINQ queries as well. For example, a

collection of records that are assigned to a single machine in a distributed computation can be

processed by using LINQ (underneath using PLINQ) in parallel. This is especially beneficial in

multi-core computers.

2.7.3. PigLatin

PigLatin is a high-level language developed to simplify query style operations on large data sets

using Apache Hadoop. It generates MapReduce programs necessary for query operations

expressed using its syntaxes and it executes them using Hadoop. The data is typically consumed

as “tuples” comprised of many “fields” and the query operations are defined on tuples. Similar to

DryadLINQ, PigLatin also supports user defined functions for various query operations as well.

However, unlike DryadLINQ the PigLatin queries and sequential programs cannot be

interspersed by limiting its use for complex operations.

31

2.8. Message Passing

MPI[6], the de-facto standard for parallel programming, is a language-independent

communications protocol that uses a message-passing paradigm to share data and state among a

set of cooperative processes. MPI specification defines a set of routines to support various parallel

programming models such as point-to-point communication, collective communication, derived

data types, and parallel I/O operations. There were many parallel programming efforts based on

the general principle of message passing such as Chimp[45] and PVM[12] before the wide

acceptance of MPI, and it captures the knowledge gained from most of its predecessors. The use

of fully-fledged programming languages allows MPI programs to express both the parallel tasks

and the overall program logic using all of the available language constructs without being

restricted to a particular subset such as a graph language or a script. MPI runtimes are available

for many programming languages such as C++, Fotran, Java and C# and hence, they have

become the de-facto standard for parallel processing

Typical MPI deployments involve computation clusters with high-speed network connections

between nodes. MPI processes have a direct mapping to the available processors or to the

processor cores in the case of multi-core systems yielding a static scheduling. Applications can

utilize these static sets of processes in various topologies such as 2D or 3D grids, graphs, and

even no topologies using the MPI communication constructs in addition to dynamic processes

groups.

MPI communication constructs can consists of two forms: (i) individual process to process

communication and (ii) collective communication. Two cooperating processes use “send” and

“receive” constructs to perform inter-process communication which can be manifested in three

modes: (i) standard – a message is delivered when the receive is posted; (ii) ready – the

corresponding receive should be posted before the send operation; and (iii) synchronous – the

32

send does not return until the matching receive is executed. These three modes are then coupled

with two client side versions - blocking and non-blocking, and these various combinations

provide the user with six configurations. The collective communication constructs such as

broadcast, scatter, and gather all have two forms: (i) one-to-all and (ii) all-to-all; these options

offer another six modes of communication between processes. These flexible communication

routines allow programs to utilize various topologies as opposed to the limited programming

topologies supported by the higher level programming models such as MapReduce and Dryad in

which virtually no direct process-to-process communication is supported.

Fine-grained sub computations and small messages are characteristics common for typical MPI

programs. By contrast, MapReduce uses coarse grained computations and messages. In MPI, the

messages are routed in a highly efficiently manner by using the low latency communication

channels between the computation nodes, whereas in MapReduce, the messages typically go

through a high latency path of local disks->wire->local disk which is essential in providing

robust runtimes.

Accessing input data via shared file systems is a common approach to accessing data in MPI. An

interface to high performance parallel I/O was introduced in MPI2 (MPI standard 2). Its

implementations, such as ROMIO[46], minimize the effect of non-contiguous fine grained data

accesses by accessing data in large blocks and transferring them by using the MPI interconnect

network. However, the data centered approach adopted by MapReduce and similar runtimes,

provides a different set of capabilities to the applications - specifically, the possibility of moving

computation to data. Most MapReduce runtimes schedule tasks depending on data locality; this

is acquired based on the distributed file system which serves as their foundation, and on top of

which they are built.

33

The rich set of communication constructs available in MPI makes it highly desirable for

implementing parallel applications. However, this feature also makes it harder to support fault

tolerance in MPI as well. As the processes and messages both store state of the overall

computation, complex fault tolerance strategies need to be incorporated to achieve a high degree

of robustness. W. Gropp and E. Lusk in their survey paper[47] on fault tolerance in MPI suggest

several approaches of establishing MPI programs fault tolerance. There are many ongoing

research projects such as OpenMPI[48], FT-MPI[49] and MPICH-V[50], which address the fault

tolerance in MPI as well.

2.9. Threads

Various thread libraries are used to exploit the parallelism in shared memory hardware, ranging

from graphics processors to large scale SMP (Symmetric Multiprocessing) machines. Threads

support fine grained task distributions and provide the first level of parallelism to programs in

many applications. Implementations of the POSIX threads[51], boost[52], OpenMP[53], TPL[54] ,

and Intel TBB [55] are examples of these types of libraries. Furthermore, most languages support

some form of threading support as well. Libraries such as CCR[56] provide more sophisticated

parallelism based on message passing concepts while PLINQ[57] provides parallel querying

capabilities to the .NET languages.

Threads are used to support parallelism at the machine level by various runtimes. For example,

OpenMP and MPI can be used in a hybrid approach to produce distributed parallel applications,

Similarly, MapReduce runtimes utilize threading to handle parallelism at the machine level and,

in DryadLINQ, PLINQ handles the parallelism at the node level while Dryad manages tasks

across nodes. In most of these cases, threads are used to execute parallel tasks which utilize

multiple processing elements of the underlying hardware platform, although the efficiency of

these approaches depends mainly on the characteristics of the application. For example, when a

34

MapReduce runtime uses threads to execute a set of tasks, the performance depends on the

data/compute intensive characteristics of the tasks. If they are highly compute intensive, then the

threads will produce near liner performance with the number of processing elements. On the

other hand, if the tasks are I/O bound, as in many cases of data intensive computing, the

performance depends greatly on the memory and disk bandwidths of the underlying hardware

platform.

The paper presented by Cheng-Tao et al. discusses their experience in developing a MapReduce

implementation for multi-core machines[14]. Although their work is one of the key motivation of

our research, our preliminary research revealed that the performance of such a runtime is lower

than a solution developed using pure threads. However, it can provide a simple programming

model for the user.

2.10. Cloud

Among many definitions of Cloud computing, the most prominent features include: (i) providing

infrastructure, software, and platform as services accessible over the web; (ii) use virtualization

for many of its benefits, including isolation of operating systems from bare-hardware and better

utilization of resources; and (iii) exploiting economies of scale to deliver these services using

massive scale data centers. This trend has created large scale cloud deployments in many

commercial infrastructures such as Amazon EC2, Microsoft Azure[19], GoGrid[58], and

ElasticHosts[59]. Furthermore, the availability of open source cloud infrastructure software such

as Nimbus[60] and Eucalyptus[61], and the open source virtualization software stacks such as

Xen Hypervisor[62], allows organizations to build private clouds to improve the resource

utilization of the available computation facilities. This option can provide most of the benefits

from the commercial clouds except the virtually infinite view of the resources.

35

The introduction of commercial cloud infrastructure services has allowed users to provision

compute clusters fairly easily and quickly, by paying a monetary value for the duration of their

usage of the resources. The provisioning of resources happens in minutes, as opposed to the

hours and days required in the case of traditional queue-based job scheduling systems. In

addition, the use of such virtualized resources allows the user to completely customize the

Virtual Machine (VM) images, and use them with root/administrative privileges; this is another

feature that is hard to achieve with traditional infrastructures. The possibility of dynamically

provisioning additional resources by leasing them from commercial cloud infrastructures makes

the use of private clouds more promising.

However, cloud infrastructures provide more services than renting virtual machines to the users.

For example, Amazon cloud offerings include storage mechanisms such as Simple Storage

Service (S3), Blob Storages – binary large objects stored in persistent manner, messaging services

such as Simple Queue Service (SQS), and also computation runtimes such as Elastic MapReduce.

Microsoft Azure provides a platform as services by offering basic requirements to develop

applications on data centers as services. These services include blobs, queues, databases and also

workers that are named as “roles”. All these services differ from the traditional view of

computing in individual machines or computation clusters where the applications have access to

a local disk, shared file systems, and fast network communications.

The relevance of Cloud services to the data intensive computing is two folds. First, Cloud

services represent an alternative to acquiring the computation power (and storage) necessary to

do large scale analyses. Second, the various services provided by the Clouds can be used to

develop new paradigms for data analyses. For example, one can develop MapReduce-like

applications by using cloud services such as blobs, queues, and tables, which are inherently fault

tolerance and reliable without using any runtimes such as Hadoop.

36

2.11. Summary of Features Supported by Different Runtimes

The following table highlights the features supported by three Cloud Technologies and MPI.

Table 1. Comparison of features supported by different parallel programming runtimes

Feature Hadoop Dryad/DryadLINQ Sphere/Sector MPI
Programming
Model

MapReduce
and its
variations such
as “map-only”

DAG based
execution flows
(MapReduce is a
specific DAG)

User defined
functions
(UDF) executed
in stages.
MapReduce
can be
simulated
using UDFs

Message Passing
(Variety of
topologies
constructed
using the rich set
of parallel
constructs)

Input/Output
data access

HDFS Partitioned File
(Shared directories
across compute
nodes)

Sector file
system

Shared file
systems

Intermediate
Data
Communication

Local disks
and
Point-to-point
via HTTP

Files/TCP pipes/
Shared memory
FIFO

Via Sector file
system

Low latency
communication
channels

Scheduling Supports data
locality and
rack aware
scheduling

Supports data
locality and network
topology based run
time graph
optimizations

Data locality
aware
scheduling

Based on the
availability of the
computation
resources

Failure
Handling

Persistence via
HDFS
Re-execution
of failed or
slow map and
reduce tasks

Re-execution of
failed vertices, data
duplication

Re-execution of
failed tasks,
data
duplication in
Sector file
system

Program level
Check pointing
(OpenMPI[63],
FT MPI[49])

Monitoring Provides
monitoring for
HDFS and
MapReduce

Monitoring support
for execution graphs

Monitoring
support for
Sector file
system

XMPI [64], Real
Time Monitoring
MPI [65]

Language
Support

Implemented
using Java.
Other
languages are
supported via
Hadoop
Streaming

Programmable via
C#
DryadLINQ
provides LINQ
programming API
for Dryad

C++ C, C++, Fortran,
Java, C#

37

Chapter 3. Application Classes

The applicability of a parallel runtime to a problem at hand is mainly determined by the parallel

topology of the application and whether the runtime can be effectively used to support such a

topology. Moreover, the development of a parallel algorithm to a problem is also determined by

the parallel constructs supported by the runtime used to implement such an algorithm. For

example, an algorithm that expects direct communication between parallel processes is a better

match for runtimes with message passing capabilities; such an algorithm may not be a suitable

candidate for runtimes such as MapReduce. Therefore it is important to understand the various

classes of applications that a particular runtime can support; in our context, it is the MapReduce

runtimes in which we are interested.

38

Parallel applications can be categorized according to their mapping to hardware and software

systems. A broader classification based on Flynn’s taxonomy[66] uses Single Program Multiple

Data (SPMD) and Multiple Program Multiple Data (MPMD) categories to classify parallel

applications. Fox defined five classes of applications as follows[67].

Table 2. Application classification

1 Synchronous The problem can be implemented with instruction level Lockstep Operation

as in SIMD architectures

2 Loosely

Synchronous

These problems exhibit iterative Compute-Communication stages with

independent compute (map) operations for each CPU that are synchronized

with a communication step. This problem class covers many successful MPI

applications including partial differential equation solution and particle

dynamics applications.

3 Asynchronous Compute Chess and Integer Programming; Combinatorial Search often

supported by dynamic threads. This is rarely important in scientific

computing but it stands at the heart of operating systems and concurrency

in consumer applications such as Microsoft Word.

4 Pleasingly

Parallel

Each component is independent. In 1988, Fox estimated this at 20% of the

total number of applications but that percentage has grown with the use of

Grids and data analysis applications as seen here. For example, this

phenomenon can be seen in the LHC analysis for particle physics [68].

5 Metaproblems These are coarse grain (asynchronous or dataflow) combinations of classes

1)-4). This area has also grown in importance and is well supported by

39

Grids and is described by workflow.

The composable applications we discussed earlier contain features from classes 2, 4, and 5. Here,

the applications are composed of one or more individually parallelizable stages. Parallel

runtimes as Google MapReduce, Hadoop, and Dryad can be used to parallelize stages that

perform “pleasingly parallel” operations such as calculating Smith Waterman or calculating

histogram of events. As we will show in this thesis, with extended MapReduce capabilities, some

stages that require MPI style parallel constructs can also be implemented using MapReduce.

Multiple such applications can then be executed in workflows to achieve complex processing.

With applications involving only the simple parallel operations such as applying a computation

function to a collection of data files, the distinction between composability by using a runtime

such as MapReduce vs. workflows gets blurred. Figure 2 shows the structure of composable

applications.

Figure 2. Composable applications in a workflow.

40

One can classify MapReduce with its support for large scale data processing as a new addition to

the above list of categorizations. The MapReduce programming model can support applications

in classes 4 and 5, and with the extended programming model and the efficient runtime that we

will propose in this thesis it can support some of the applications in class 2 as well. Therefore, the

MapReduce class subsumes aspects of classes 2, 4, and 5.

The types of applications that can be supported (some problems in 2, 4, and 5 above) in

MapReduce can be categorized into four distinct sub classes: (i) map-only; (ii) map-reduce; (iii)

iterative-map-reduce; and (iv) extended MapReduce applications. Complex applications can be

built by combining the first three basic execution units under the MapReduce programming

model and additional algorithms can be supported with further extensions. We will defer the

discussion on further extensions to a later section (Chapter 6 section 6.9) and focus on the first

three types of basic MapReduce classes in this chapter. Although this categorization applies to

the MapReduce model, we can use the same sub categories to classify applications that can be

supported by the high-level runtimes such as Microsoft Dryad as well.

3.1. Map-only Applications

The embarrassingly parallel class of applications represents the simplest form of parallel

computations with minimum inter-task dependencies. Converting a collection of documents to a

different form, parametric sweeps, and brute force searches in cryptography are all examples of

this category of applications. In the MapReduce programming model, the tasks that are being

executed at a given phase have similar executables and similar input and output operations. With

zero reduce tasks, the MapReduce model reduces to a map-only model which can be applied to

many embarrassingly parallel applications. Similarly, the DAG based execution flow of Dryad

will also reduce to the collection of independent vertices in this category. Furthermore, other

runtimes such as Sphere, that uses user-defined functions, and the software systems such as

41

batch queues, Condor[34], Falkon [69], classic cloud services such as Amazon Queues, and

SWARM [31], all provide similar functionality by scheduling large numbers of individual

maps/jobs.

3.2. MapReduce Applications

In MapReduce, the map and reduce phases perform the computations in parallel while the

combination of intermediate keys and the shuffling strategies can be used to create different

parallel topologies according to the parallel algorithm. For example, consider a word sorting

application implemented in MapReduce. Here, the map tasks simply perform a scatter operation

on the input words. The intermediate keys are the words themselves, and the shuffling is done so

that the words that start with a given letter end up in the same reduce tasks. The reduce tasks then

sort their inputs, and one can create the complete sorted output by taking the reduce outputs in

the order of the letters assigned to the reduce tasks. In this application, the intermediate keys and

the shuffling mechanisms are used to simulate a bucket sort[70] algorithm. Although not

completely independent of the above, the runtime parameters such as (i) input data partitions,

(ii) the number of maps, (ii) the number of reducer tasks can be used to fine tune the parallelism

of MapReduce applications.

The applications described in the Google paper mainly use the map stage to distribute the

intermediate <key,value> pairs putting less weight on the map stage of the computation while the

reduce tasks perform significant amount of the computations. However, this approach produces

large amounts of intermediate data transfers. To minimize this, the authors introduce a local

reduction operation, which can perform a local reduction operation on the map outputs produced

in a given machine. From our experience in mapping various applications to the MapReduce

model, we argue that, by making map tasks coarser grained, one can gain better performance. For

example, in the word count program, instead of inputting a single word to a map task, one can

42

write a map task that takes a set of lines or a whole file as the input and which can then produce

partial word counts. This will make map tasks coarser and reduce the amount of intermediate

communications, as the map tasks can perform a local reduction by itself by accumulating counts

of words it encounters. However, we also note that these characteristics are highly application

dependent. For example, in an application that we will discuss in more detail later, the map tasks

perform most of the computation and the reduce tasks simply combine results. On the other hand,

in the matrix multiplication (“Fox algorithm using extended MapReduce”), we use map tasks to

distribute matrix blocks while the reduce tasks perform the matrix multiplication operations.

Selecting an appropriate key selector function is also an impotent aspect that one should consider

in mapping applications to MapReduce domain. A creative use of key selectors will produce

elegant MapReduce algorithms. Applications that can be implemented using MPI collective

operations can be implemented using MapReduce, but still this does not capture all the low-level

messaging constructs offered by the runtimes, such as MPI.

3.3. Iterative MapReduce Applications

Clustering, classification, pattern mining, and dimension reduction are some of the areas where

many of the iterative algorithms are used. For example, K-Means[71], Deterministic Annealing

Clustering[72], pagerank[73], and dimension reduction algorithms such as SMACOF[74] are all

examples of such algorithms. Most of these types of algorithms can be parallelized by applying

the SPMD style to the main computations that are executed inside the iterations. Depending on

the algorithm, there can be one or more SPMD steps inside the main iterative construct. Once

such an algorithm is developed, applying MapReduce to parallelize the SPMD sections is a fairly

straightforward. Cheng Tao et al. described this idea by giving ten such machine learning

algorithms in their paper[14].

43

However, the “side effect free”-nature of the MapReduce programming model does not fit well

for iterative MapReduce computations in which each map and reduce tasks are considered as

atomic execution units with no state shared in between executions. In parallel runtimes such as

those of the MPI, the parallel execution units live throughout the entire life of the program;

hence, the state of a parallel execution unit can be shared across invocations. On the other hand,

the side effect free nature of MapReduce is one of the key features that makes it easier to support

fault tolerance. We propose two strategies to extend the MapReduce programming model to suit

this class of applications: (i) an intermediate approach where the map/reduce tasks are still

considered side effect-free, but the runtime allows for the configuring and the re-usage of the

map/reduce tasks. Once configured, the runtime caches the map/reduce tasks. In this way, both the

map and the reduce tasks can keep the static data in memory, and can be called iteratively without

loading the static data repeatedly; (ii) allow map/reduce tasks to hold states (support

computations with side effects) and adopt different fault tolerance strategies that suit iterative

computations. These extensions are discussed in more detail in the next section.

Table 3 shows the data/computation flow of these three MapReduce patterns, along with

examples.

44

Table 3. Classes of MapReduce applications

Map-only Map-reduce Iterative map-reduce

• Converting a collection of

documents to different

formats

• Processing a collection of

medical images,

• Brute force searches in

cryptography

• Parametric sweeps

• HEP data analysis (more

details will follow)

• Histogramming operations,

• distributed search, and

distributed sorting

• Information retrieval

• Clustering

• Classification/Regression

• Dimension Reduction

• Matrix Multiplication

• Pagerank

45

Chapter 4. A Programming Model for Iterative

MapReduce Computations

As discussed in the previous section, there are many iterative algorithms that can be parallelized

by applying the SPMD model to the main computations that are executed inside the iterations.

Once such algorithms are identified MapReduce can be used as a parallelization construct to

implement the SPMD portions of the algorithms resulting iterative MapReduce computations. In

this section, we will discuss an extended MapReduce programming model which can be used to

support most such computations efficiently.

Further analysis of some of these algorithms revealed a set of common characteristics such as:

most such algorithms utilize data products that remain static throughout the computation as well

46

as data products that change during the computations; many of them use iterations until

convergence; many require the reduce output as a whole to make the decision to continue or stop

iterations; and we also discovered that the iteration boundaries can be used as good fault

tolerance checkpoints. To support such algorithms, we need an extended MapReduce

programming model and an efficient runtime implementation, which we try to provide in

Twister. (Note: Twister is the name given to the MapReduce runtime we developed as part of this

research; hence, we will use it hereafter to refer to the new MapReduce runtime). Twister adopts

a programming model that can support the above features of iterative algorithms. A high level

view of the programming model is shown in Figure 3 followed by a detailed discussion.

Figure 3. The iterative MapReduce programming model supported by Twister.

4.1. Static vs. Variable Data

Many iterative applications we analyzed display the common characteristic of operating on two

types of data products that we called static and variable data. Static data (most of the time the

largest of the two) is used in each iteration and remain fixed throughout the computation,

whereas variable data consists of the computed results in each iteration which become consumed

in the next iteration, in many expectation maximization (EM) type algorithms. For example, if we

47

consider the K-means clustering algorithm[71], during the nth iteration the program uses the

input data set and the cluster centers computed during the (n-1)th iteration to compute the next

set of cluster centers. Similarly, in each iteration, the pagerank algorithm[73] accesses the static

web graph and the current pageranks computed during the previous step. To support map/reduce

tasks operating with these two types of data items, we introduced a “configure” phase for map

and reduce tasks, which can be used to load (read) any static data to the map and reduce tasks.

With this improvement, a typical map phase of the computation then consumes the variable data

specified as (key, value) pairs as well as the static data loaded during the configuration phase. This

is different from other MapReduce runtimes where only one input data set is accessible at the

map phase of the computation. At the same time, typical MapReduce applications (applications

without iterative MapReduce computations), when developed using the Twister runtime, require

the use of the configure phase to access any input data. For example, in a word-count application,

the input data partitions are assigned to map tasks during the configure phase of the computation,

whereas the actual word count operation happens during the map phase of the computation.

4.2. Long Running Map/Reduce Tasks

The above programming extension adds capabilities of handling both static and variable data in

map/reduce tasks. However, reading static data in each execution of the MapReduce computation

is highly inefficient. Although some of the typical MapReduce computations such as information

retrieval consume very large data sets, many iterative applications we encounter operate on

moderately sized data sets that can fit into the distributed memory of the computation

infrastructures. This observation led us to explore the idea of using long-running map/reduce tasks

similar to the parallel processes in many MPI applications that last throughout the life of the

computation. The long running (cacheable) map/reduce tasks eliminate the necessity of reloading

static data in each iteration. Current MapReduce implementations such as Hadoop and

48

DryadLINQ do not support this behavior, and hence, they initiate new map/reduce tasks and load

static data in each iteration, which introduce considerable performance overheads for iterative

MapReduce computations. Although rare among iterative applications, one can use Twister with

extremely large data sets that cannot be fit into the distributed memory of the computation

infrastructure by reading data directly from the disks without loading them to memory.

4.3. Granularity of Tasks

The applications presented in Google’s MapReduce paper[2] used fine grained map tasks. For

example, in the word count application, the map tasks simply produce (word, 1) pairs for each

word they encounter. However, we noticed that, by increasing the granularity of the map tasks,

one can reduce the volume of the intermediate data that needs to be transferred between maps

and reduce tasks. In the above example, instead of sending (word, 1) for every word, the map task

can produce partial sums such as (word, n). With the option of configurable map tasks, the map

task can access large blocks of data/or files. In Twister, we adopted this approach in many of our

data analysis applications to minimize the intermediate data volumes and to allocate more

computation weight to the map stage of the computation. Hadoop uses an intermediate combiner

operation just after the map stage of the computation to support similar behavior. Our approach

requires some of the functionality of the reduce tasks to be coded in the map stage of the

computation. However, this coding effort pays off, since the overall execution happens as a single

task which results in higher efficiency.

4.4. Side-effect-free Programming

At first glance, the concept of long-running map/reduce tasks seems to violate the “side-effect-free”

nature of MapReduce by enabling users to store state information in map/reduce tasks. However,

since the configure operation supports only the static data, the users can still develop “side-effect-

49

free” MapReduce computations using Twister. Furthermore, the current fault tolerance

mechanism in Twister only guarantees the restoring of static data that can be reloaded by using a

data partition or any static parameters shared from the main program. This also encourages side-

effect-free computations. However, some applications can benefit from the capability of the

storing state in map/reduce tasks which give rise to a new model of MapReduce computations.

We will discuss this approach in section 6.9. Therefore, the users of the Twister runtime can chose

to use the fault tolerance capabilities of Twister by storing only static configurations in long

running map/reduce tasks, or by using the long running tasks to develop MapReduce applications

with transient states stored in them (i.e. with side effects), but without the fault tolerance

capabilities.

4.5. Combine Operation

In Google’s MapReduce architecture, the outputs of the reduce tasks are stored in the distributed

file system (GFS) as a collection files. A similar architecture is adopted in Hadoop as well.

However, most iterative MapReduce computations require accessing the “combined” output of

the reduce tasks to determine whether to proceed with another iteration or not. With Twister, we

have introduced a new phase to MapReduce named “Combine” that acts as another level of

reduction (Note: this is different from the local combine operation that runs just after the map

tasks in Hadoop). One can use the combine operation to produce a collective output from all the

reduce outputs. In Twister MapReduce, the combine operation is executed by the main program,

which contains the iterative construct that enables it to access the reduce output as a whole.

However, since this option requires the reduce output to be transferred to the main program, it is

only feasible with applications which produce comparatively smaller reduce outputs, or

applications which only require meta-data about the reduce output in order to proceed with

iterations. For most iterative applications we analyzed, a significant reduction in data volume

50

occurs when the computation transitions from map to reduce. This is not the case in typical non-

iterative MapReduce computations such as sorting, where all the input is available as the reduce

output. However, most such applications do not require iterative computations and they can

simply ignore the combine phase of Twister.

4.6. Programming Extensions

We have also incorporated a set of programming extensions to MapReduce in Twister. One of the

most useful extensions is mapReduceBCast(Value value). As the name implies, this extension

facilitates the process of sending a single Value (Note: MapReduce uses (key,value) pairs) to all

map tasks. For example, the “Value” can be a set of parameters, a resource (file or executable)

name, or even a block of data. Apart from the above options, the “configure” option described in

section 4.1 is supported in Twister in multiple ways. Map tasks can be configured using a

“partition-file” – a file containing the meta-data about data partitions and their locations. In

addition, one can configure map/reduce tasks from a set of values. For example

configureMaps(Value[]values) and configureReduce(Value[]values) are two programming

extensions that Twister provides. Twister also provides broadcast style operation between the

map and reduce phases using which a map task can send a single (key,value) pair to multiple reduce

tasks, allowing it to support complex parallel algorithms. We will discuss how these extensions

are supported in the coming section.

51

Chapter 5. Twister Architecture

Twister is a distributed in-memory MapReduce runtime optimized for iterative MapReduce

computations. It reads data from local disks of the worker nodes and handles the intermediate

data in distributed memory of the worker nodes. Twister utilizes a publish-subscribe (pub-sub)

messaging infrastructure for communication and data. In this section, we will explain the

architecture of the Twister MapReduce runtime.

The Twister architecture consists of three main entities: (i) client side driver (Twister Driver) that

drives the MapReduce computation; (ii) Twister Daemon running on every worker node; and (iii)

the broker network (Note: we will simply use the term “broker network” to refer to the

messaging infrastructure throughout the discussion). Figure 4 shows the architecture of the

Twister runtime.

52

Figure 4. Architecture of Twister MapReduce runtime.

A Twister Daemon runs on every compute node of the computation infrastructure and acts on

the commands issued by the Twister Driver. During the initialization of the runtime, Twister

starts a daemon process in each worker node, which then establishes a connection with the

broker network to receive commands and data. The daemon is responsible for executing

map/reduce tasks assigned to it, maintaining a worker pool (thread pool) to execute map and

reduce tasks, notifying status to the Twister Driver, and finally responding to control events.

The client side driver provides the programming API to the user, and converts these Twister API

calls to control commands and input data messages sent to the daemons running on worker

nodes via the broker network. It also handles the recovery of MapReduce computations in an

event of a failure.

53

Twister uses a publish/subscribe messaging infrastructure to handle four types of

communication needs :(i) the sending/receiving control events; (ii) sending data from the client

side driver to the Twister daemons; (iii) handling intermediate data transfer between the map and

reduce tasks; and (iv) sending the outputs of the reduce tasks back to the client side driver to

invoke the combine operation. Currently, it supports the NaradaBrokering[75] and the

ActiveMQ[76] messaging infrastructures. However, the Twister architecture clearly separates the

communication functionalities from the implementation of the other components so that it

becomes very straightforward to use other messaging infrastructures, such as those are based on

persistent queues.

5.1. Handling Input and Output Data

Twister provides two mechanisms to access input data for map tasks: (i) reading data from the

local disks of worker nodes; and (ii) receiving data directly via the broker network. The first

option allows Twister to start the MapReduce computations by using large data sets spread

across the worker nodes of the computing infrastructure. Twister assumes that the data read

from the local disks are maintained as files, and hence, it supports file based input format, which

simplifies the implementation of the runtime. The use of the native files allows Twister to pass

data directly to any executable (for example a script or compiled program running as a map or

reduce computation) as command line arguments; this feature is not possible with file systems

such as HDFS.

Both Sector and DryadLINQ adopted the same file based input data partitioning strategy as well.

A possible disadvantage of this approach is that it does require the user to break up large data

sets into multiple files. However, our experience is that it is better to leave the input data

partitioning to the user, rather than providing a standard block based approach. For example, in

some applications, the input data may already be stored as a collection of files; this situation does

54

not require any partitioning. In some applications such as BLAST, the data is available in

databases which require specific portioning strategies be adopted. Furthermore, the fixed size

block based approach adopted by both Google and Hadoop imposes another restriction as well;

the block size is fixed in the runtime but not per application. Therefore, if one needs to run

applications with different input data partition sizes, the runtime needs to be reconfigured to

achieve optimal performance. For example, in Hadoop, if the block size defined for the HDFS is

64MB, a file inserted to it which is only a few kilobytes in size would require an entire 64MB

block. When data is accessed it will retrieve this entire block as well. This optimization issue is

not present in the file based approach used in Twister.

In Twister, the meta-data regarding the input file distribution across the worker nodes is read

from a file called “partition-file”. Currently, the partition file contains a list of tuples consisting of

(file_id, node_id, file_path, replication_no) fields in them. The concept of the partition-file in Twister

is inspired by the DryadLINQ’s partitioned-file mechanism. Twister provides a tool which can

perform typical file system operations across the worker nodes such as: (i) creating directories;

(ii) deleting directories; (iii) distributing input files across worker nodes; (iv) copying a set of

resources/input files to all worker nodes; (v) collecting output files from the worker nodes to a

given location; and (vi) creating a partition-file for a given set of data that is distributed across the

worker nodes. Although these features do not provide the full capabilities that one can achieve

via a distributed file system such as GFS or HDFS, the above features try to capture the key

requirements of running MapReduce computations using the data read from local disks to

support the concept of “moving computation to data”. Integrating a distributed file system such

as HDFS or Sector with Twister will serve as interesting possibilities for future research work.

Twister also supports sending input data for map task directly from the main program via the

broker network as well. It will be inefficient to send large volumes of input data via the broker

55

network for map tasks. However, this approach is very useful for sending small variable data

(Note: please refer to the discussion of static vs. variable data in section 4.1) to map tasks. For

example, a set of parameters, a set of rows of a matrix, or a set of cluster centers represents such

data items.

5.2. Handling Intermediate Data

To achieve better performance, Twister handles the intermediate data in the distributed memory

of the worker nodes. The results of the map tasks are directly sent to the appropriate reduce tasks

where they get buffered until the execution of the reduce computation. Therefore, Twister

assumes that the intermediate data produced after the map stage of the computation will fit in to

the distributed memory of the computation infrastructure. This is generally the case for many

iterative MapReduce computations. As we have mentioned earlier, this option is not feasible for

computations that produce intermediate data that is larger than the available total memory of the

computation nodes. To support such applications, one can extend the Twister runtime to store

the reduce inputs in local disks instead of buffering in memory and provides and iterator

construct which reads data from disk.

The use of memory->wire->memory data transfer in Twister gives it a considerable performance

gain compared to disk->wire->disk approach adopted by many other MapReduce runtimes.

Twister uses two mechanisms for transferring intermediate data: (i) via the broker network; and

(ii) via direct node to node TCP links. As explained earlier, each Twister daemon maintains a

connection with one of the pub-sub brokers from the broker network. In addition to above, each

daemon also starts a TCP sever as well. When an intermediate data item (a (key,value) pair) is

produced at a Twister daemon, it identifies the pub-sub topic to which the data item needs to be

sent based on the key of the (key,value) pair. Then if the size of the data is smaller than 1KB the

daemon publishes a message containing the data item to a topic in the broker network. A

56

daemon subscribed to that topic directly receives the message containing the data item via the

broker network. If the data item is lager in size, the first daemon simply adds the data item to an

internal cache, maintained by the daemon, and publishes a message containing a key to locate the

data item in this daemon’s cache. The message also carries the hosting daemon’s IP and port

information as well. Once the message is received by a daemon that are subscribed that topic, it

contact the TCP server of the first daemon and retrieves the data item. This approach eliminates

the overloading of the broker network by large data transfers and also adds a considerable

parallelism to the intermediate data transfer phase of MapReduce. Twister uses this mechanism

for map-to -reduce data transfer as well as to reduce-to-combine data transfer phases of the

MapReduce computation. Figure 5 these two approaches.

Figure 5. Two approaches used by the Twister to transfer intermediate data.

Note: Please not that the TCP based direct data transfer mechanism described above is added to

the Twister to at later phase of this research work, and hence, it is used in the benchmarks

discussed in section 6.9 and 6.10 only.

57

5.3. Use of Pub/Sub Messaging

The use of the publish-subscribe messaging infrastructure improves the efficiency of the Twister

runtime. However, to make the runtime scalable, the communication infrastructure should also

be scalable. Both the NaradaBrokering and the ActiveMQ pub-sub messaging infrastructures we

used in Twister can be configured as broker networks (as shown in Figure 4), so that the Twister

daemons can connect to different brokers in the network reducing the load on a given broker.

This is especially useful when the application uses mapReduceBcast() with large data sets. A

benchmark performed using 624 Twister daemons revealed that by using 5 brokers (connected

hierarchically with 1 root broker and 4 leaf brokers) rather than 1 broker, the broadcast time can

improve by 4 folds for 20MB broadcast messages.

5.4. Scheduling Tasks

The cacheable map/reduce tasks used in Twister are only beneficial if the cached locations remain

fixed. Therefore, Twister schedules map/reduce tasks statically. However, in an event of a failure

of worker nodes, it will reschedule the computation on different set of nodes. The static

scheduling may lead to un-optimized resource utilization with skewed input data or execution

times of the map tasks. However, one can minimize this effect by randomizing the input data

assignment to the map tasks. Ideally, Twister should support multiple scheduling strategies to

support various classes of applications, but these improvements are left as future work in the

current implementation.

5.5. Fault Tolerance

Twister supports fault tolerance for iterative MapReduce computations. Our approach is

designed to save the application state of the computation between iterations so that, in the case of

a failure, the entire computation can be rolled back to the previous iteration. Supporting

58

individual map or reduce failures in each iteration requires adopting an architecture similar to

Google, which will eliminate most of the efficiencies that we have gained using Twister for

iterative MapReduce computations. Therefore, we decided to provide fault tolerance support

only for iterative MapReduce computations in the current implementation of Twister, based on

the following three assumptions: (i) Similar to Google and Hadoop implementations, we also

assume that the master node (where the Twister Driver would be executed) failures are rare; and

(ii) the communication infrastructure can be made fault tolerance independent of the Twister

runtime; and (iii) the data is replicated among the nodes of the computation infrastructure. Based

on these assumptions, we try to handle failures of map/reduce tasks, daemons, and worker nodes

failures.

The combine operation is an implicit global barrier in iterative MapReduce computations. This

feature simplifies the amount of state Twister needs to remember in case of a failure to recover.

To enable fault tolerance, Twister saves the configurations (information about the static data)

used to configure map/reduce tasks before starting the MapReduce iterations. In most MapReduce

computations, these simply mean only the partition file which contains the meta-data regarding

the data distribution. Then it also saves the input data (if any) that is sent directly from the main

program to the map tasks. In the case of a failure Twister Driver executes the following sequence

of actions to recover from the failure:

(i) Discards the existing map/reduce tasks in the given iteration and instructs them to

terminate.

(ii) Polls the Twister Daemons to identify the available (running) Twister Daemons

(iii) Reconfigures the map/reduce tasks and assigns them to the available daemons

according to the data locality. In this respect, Twister groups tasks depending on the

59

available data replications to the available daemons as evenly as possible while

maintaining data locality.

(iv) Executes the current iteration.

As this description demonstrates, the current fault tolerance strategy does not support the

recovery of individual tasks. This implies that any state stored in map/reduce tasks will be lost in

the case of a failure under the current implementation. As we have mentioned above, for side-

effect-free MapReduce computations, this does not impose a limitation because the tasks are

naturally considered as stateless. Furthermore, when considering the number of iterations

executed in an iterative MapReduce computations, (typically hundreds of iterations) re-executing

a few failed iterations do not impose a considerable overhead.

Although we left as a future work, one can implement the following fault tolerance strategy with

Twister by incorporating a distributed fault tolerance file system such as HDFS. Each Twister

daemon can store the state of the map/reduce tasks under its control in each nth iteration into the

distributed file system where n is specified by the user depending on the application

(1<=n<=max iterations). We need a distributed file system to recover from hardware crashes such

as disk failures or machine failures, but for software failures such as daemon failures, the saving

can be done on local disks. This approach will allow tasks with states to be recovered in the case

of a failure. However, still to recover individual task without rolling back entire iterations all the

outputs (map/reduce) need to be saved to some form of persistent storage as in Google or

Hadoop.

60

5.6. Twister Implementation

5.6.1. Software Requirements

Twister is implemented in Java programming language. For starting, stopping, and file

manipulation operations, Twister uses a set of shell scripts which internally invoke remote

commands by using secure shell (SSH) protocol. To communicate between nodes, these scripts

expect certificate based login between the nodes of the computation infrastructure, which is a

common requirement in many distributed runtimes such as MPI and Hadoop. The Java language

supports execution of any compiled program as a separate executable, and hence, in addition to

pure java functions the user can invoke any script or executables inside the map or reduce

functions using Twister. The use of shell scripts and the SSH limits the usage of Twister to Unix

like operating systems.

5.6.2. Twister Daemon

Figure 6. Components of Twister Daemon

Twister daemon is a standalone Java program that is comprised of several software components

such as: a thread pool; a TCP server, a task scheduler, internal cache, a class loader, and a broker

connection manager. Figure 6 shows these components.

61

The broker connection manager maintains a connection with a particular broker in the broker

network. When Twister is used with ActiveMQ, it establishes a connection to one of the available

brokers and it maintains an active connection to one of the available brokers in the network. Since

the TCPserver is the bulk data transfer point of the daemon, it is implemented with the support

of concurrent connections. Task scheduler maintains a mapper queue and a reducer queue. A

mapper holds a single map task, and executes it passing the input data and collects any output

data produced by the map function. It then sends this data to the appropriate reducer. The

reducer is a wrapper for a single reduce task. It collects intermediate data targeted for that reduce

task and executes it when the Twister Driver instruct it via the broker network. The reducer also

sends the reduce outputs to the combine function. Task scheduler assigns map/reduce tasks to the

thread pool for execution. Twister Driver assigns individual tasks to Twister Daemons

(processes) while internally the daemons use threads to execute individual map/reduce tasks.

Therefore, the Twister runtime supports a hybrid task scheduling approach, which is especially

effective for computation nodes with multiple processor cores.

Twister does not require the user defined map/reduce functions to be available during the

deployment of the runtime. The user can upload jar files containing the implementations of

MapReduce computations at any time of the Twister’s life cycle. It loads these jars dynamically

using a custom class loader which is initiated per each job by the runtime. This enables the user

to develop MapReduce applications incrementally without needing to restart the Twister

runtime.

5.6.3. Twister Driver

Twister Driver is a library that needs to be used in the main program of the MapReduce

computation. The user program invokes Twister Driver passing it a job description. The driver

then assigns map/reduce tasks to Twister daemons and waits for their responses. When all map

62

tasks are completed, the Twister Driver notifies all reducers to invoke their corresponding reduce

tasks. When reducers send reduce outputs, the driver collects them and invoke the combine

function. Although the reduce tasks are executed once all map tasks are completed, the data

transfer between map and reduce tasks happens immediately after the completion of the

individual map tasks. Therefore, in typical MapReduce computations, one can expect the data

transfer to be interspersed with computation.

5.6.4. Pub-sub Brokers

Current Twister implementation supports the NaradaBrokering and the ActiveMQ pub-sub

brokers. The deployment of the broker network is left to the users to manage as it is highly

specific to the individual broker network used. Information regarding the broker network is

passed to Twister via a configuration file.

63

5.6.5. File Manipulation Tool

Twister provides a simple tool to manipulate files and executable programs across computation

nodes. The interface is provided in a shell script, which supports the following set of commands.

Table 4. Commands supported by the Twister’s file manipulation tool.

Command Parameters Description

initdir

[Directory to create - complete path to
the directory]

Create a directory in all compute nodes
(let's call this data_dir).

mkdir [sub directory to create - relative to
data_dir specified]

Create a sub directory inside data
directory in all compute nodes.

rmdir [sub directory to delete - - relative to
data_dir]

Remove a sub directory inside data
directory in all compute nodes.

put [src directory(local)]

[destination directory (remote) -
relative to data_dir]

[file filter pattern]

[number of duplicates (optional)]

Distribute input data across compute
nodes. This command evenly
distributes the available files in the
input directory to all compute nodes. It
utilizes multiple threads to speed up
the process.

putall [input data directory (local)]

[destination directory (remote) -
relative to data_dir]

Copy data or any resources in the
input directory to all compute nodes.

cpj [resource to copy to the apps
directory]

Copy any user defined application jar
files to all compute nodes.

ls [-a][directory | sub directory relative
to data_dir]

List files/directories inside the data_dir.

create_partit
ion_file

[common directory – relative to
data_dir]

[file filter pattern][partition file name]

Creates a partition file containing all
data files available in a particular
directory of all compute nodes.

64

5.7. Twister API

Twister Application Program Interface allows users to develop MapReduce computations that

can be executed using Twister. Following table lists the individual API construct along with a

small description.

Table 5. The Application program interface of Twister.

Type of
function

Application Program Interface

Map /* Configure the map task */

void configure(JobConf jobConf, MapperConf mapConf)

/* The map function */

void map(MapOutputCollector collector, Key key, Value val)

/* Any clean up necessary to map task */

void close()

Reduce /* Configure the reduce task */

void configure(JobConf jobConf, ReducerConf reducerConf)

/* The reduce function */
void reduce(ReduceOutputCollector collector, Key key,

 List<Value> values)

/* Any clean up necessary to reduce task */

void close()

Combine /* Configure the combine task */

void configure(JobConf jobConf)

/* The combine function */

void combine(Map<Key, Value> keyValues)

/* Any clean up necessary to reduce task */

void close()

65

Configure

Maps

/* Configure map tasks using a partition file */

void configureMaps(String partitionFile)

/* Configure map tasks using a set of Value objects */

void configureMaps(Value[] values)

Configure

Reduce

/* Configure reduce tasks using a set of Value objects */

void configureMaps(Value[] values)

Run

MapReduce

/* Execute MapReduce using already configured map and reduce tasks */

TwisterMonitor runMapReduce()

/* Execute MapReduce using a set of (key,value) pairs sent from the main program
*/

TwisterMonitor runMapReduce(List<KeyValuePair> pairs)

/* Execute MapReduce passing one Value sent from the main program. Each map
will get a Key is similar to its map task number. */

TwisterMonitor runMapReduceBCast(Value val)

In the next section we will discuss some of the applications that we have implemented in Twister

and how these architectural features enable better efficiencies in them.

66

Chapter 6. Applications and their Performances

One motivation of this research is to understand the applicability of different parallel runtimes to

various classes of applications and analyze their performance characteristics. To achieve this

goal, we have implemented a series of data analysis programs using several available parallel

runtimes such as Apache Hadoop, Microsoft DryadLINQ, MPI, and Twister. We selected these

applications to represent the different classes of applications that are described in Chapter 3. This

way, by analyzing their parallel implementations, we can predict the suitability of the above

runtimes to applications of similar nature. Some of these are implemented using all the above

runtimes whereas some are implemented using few runtimes depending on the s suitability.

 The easiness in implementing a parallel algorithm using a given runtime and its parallel

constructs, gives us an idea about the suitability of the runtime to the class of applications that we

67

are interested. Also, the selection of real applications to implement gives us an in-depth

understanding of various challenges that one may face in developing data analysis programs

using the above runtimes. This analysis also serves as a proof to the programming extensions that

we have introduced in Twister. Rest of this section is organized as follows. First, it gives a brief

introduction to different performance measures that we have used and the calculations

performed to understand the various parallelization characteristics. Next, it will give detailed

information regarding the hardware and software environments we used in our evaluations.

Finally, the section moves into describing the applications and their different implementations.

We present performance evaluations under each application followed by a discussion.

6.1. Performance Measures and Calculations

Performance, scalability, overhead, and efficiency are the most common measurements we used

in this analysis. Bellow we will give a brief introduction to these measures.

6.1.1. Performance and Scalability

Performance of an application is typically measured as the average execution time, and it is a key

measurement that one can use to compare different algorithms and implementations at a higher

level. In parallel and distributed applications, this is a collective measure of the performance of

the computation units (CPU), the memory, the input/output subsystems, the network, and even

the efficiency of the parallel algorithm. Furthermore, the execution time of an algorithm also

varies with the size of the problem, i.e. the amount of data, used for the computation. Therefore,

in most of our applications, we measure the average execution time by varying the amount of

data to understand its effect on performance. For an efficient parallel algorithm, the performance

should vary with data according to the computation complexity of the underlying algorithm. For

example, the performance of a matrix multiplication typically has a quadratic relation to the

68

input data. However, it can deviate from the expected relationship due to the effects of parallel

overhead, the cache effects, and other runtime overheads.

Scalability in parallel applications is measured by using two approaches. The “strong scalability”

is the measure of execution times by keeping the total problem size fixed while increasing the

amount of processors. The “weak scalability” is the measure of execution times by keeping the

problem size per processor fixed while increasing the number of processors. In most of our

performance measures we use the first approach.

6.1.2. Speedup

Speedup is used to understand how well a parallel application performs compared to a

sequential version of the same problem, and is calculated using the following formula.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
T(1)
T(p) (1)

In this formula T(1) is the execution time of a sequential program whereas T(p) denotes the

execution time of the parallel program when p processors are used. When T(1) is measured using

a sequential program, the formula gives the absolute speedup. Also, a variation of this formula

can be used with parallel applications, in which T(1) is obtained by running the parallel

application itself on a single processor. The speedup is governed by the Amdahl law[77] and

therefore most programs produce sub linear speedups. However, in some applications, one can

notice super linear speedups due to cache effects.

6.1.3. Parallel Overhead

Parallel overhead of an application is a measure of the extra work that the program performs

compared to its sequential counterpart. This comprises of, the overheads introduced by the

communication and synchronization. Also, in some applications, the duplicate work performed

69

in parallel tasks may add up to this value. The overhead is calculated using the following formula

in which p is the number of parallel processors used, T(p) is the execution time when p

processors are used, and T(1) is the sequential execution time.

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
p. T(p) − T(1)

p. T(1) (2)

In this thesis, we use the overhead calculation extensively to compare the parallelization

characteristics of different implementations of a given algorithm. In such situations, for T(1) we

use sequential execution time of the best performing implementation. In some applications, we

use estimations for the sequential time when evaluating sequential time is not possible due to

extremely long execution times.

6.1.4. Parallel Efficiency

Parallel efficiency is another measure we use for evaluating the performance of parallel

applications. It identifies the efficiency in which the computation resources are used by the

parallel programs and is calculated using the formula shown below. Here, p is the number of

parallel units, T(p) is the running time with p parallel units, and T(1) is the sequential execution

time.

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
T(1)

p. T(p) (3)

Estimating serial execution times for some applications is not straightforward and, hence, we

calculated parallel efficiency using the formula (4) below in which α = p1/p2 where p2 is the

smallest number parallel units (CPU cores) used for the experiment, so alpha ≥ 1. This calculates

the parallel efficiency with respect to the minimum number of parallel units used for the

experiment.

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
T(p2)

α. T(p1) (4)

70

6.2. Hardware Software Environments

We have carried out a series of performance evaluations for the different applications by using

several computation clusters. This is mainly to facilitate the operating system requirements

imposed by the different parallel runtimes. For example, DryadLINQ runs only on Windows

Server 2008 operating system whereas Apache Hadoop and Twister run only on Linux operating

systems. In most cases, the cluster are installed with one operating system, therefore we had to

use multiple computation clusters to obtain the measurements. Although we use different

hardware resources, for most of the evaluations, we make sure that the different runtimes run on

earthier on the same hardware (with different operating systems depending the runtime

requirements) or at least in nearly similar hardware environments.

Apart from hardware differences, depending on the runtime used, the applications are

implemented with the best suitable features available in the selected runtime. For example, in

DryadLINQ the files are accessed from shared directories while Hadoop uses HDFS. These

variations add different performance characteristics to the underlying application, and therefore,

the performance comparisons will not be identical in every situation. However, our motivation in

this research is to develop and deploy applications using the best strategy for each runtime and

analyze their performances to see what benefits one can gain from these different technologies

and runtimes. For performance analysis, we used several computation clusters as follows.

71

Table 6. Details of the computation clusters used.

Cluster ID Cluster-I Cluster-II Cluster-III Cluster-IV

nodes 32 230 32 32

CPUs in each node 6 2 2 2

Cores in each CPU 8 4 4 4

Total CPU cores 768 1840 256 256

CPU Intel(R) Xeon(R)
E7450 2.40GHz

Intel(R) Xeon(R)
E5410 2.33GHz

Intel(R) Xeon(R)
 L5420 2.50GHz

Intel(R) Xeon(R)
L5420 2.50GHz

Memory Per Node 48GB 16GB 32GB 16GB

Network Gigabit
Infiniband

Gigabit Gigabit Gigabit

Operating Systems Red Hat
Enterprise Linux
Server release
5.4 -64 bit

Windows Server
2008 Enterprise -
64 bit

Red Hat
Enterprise
Linux Server
release 5.4 -64
bit

Red Hat
Enterprise Linux
Server release
5.3 -64 bit

Windows Server
2008 Enterprise
(Service Pack 1) -
64 bit

We use the academic release of DryadLINQ, Apache Hadoop version 0.20.2, MPI.NET, OpenMPI,

and Twister for our performance comparisons. Both Twister and Hadoop use JDK (64 bit) version

1.6.0_18, while DryadLINQ and MPI.NET uses Microsoft .NET version 3.5. We use OpenMPI

version 1.0.

72

6.3. CAP3 Data Analysis

An EST (Expressed Sequence Tag) corresponds to messenger RNAs (mRNAs) transcribed from

the genes residing on chromosomes. Each individual EST sequence represents a fragment of

mRNA, and the EST assembly aims to re-construct full-length mRNA sequences for each

expressed gene. Because ESTs correspond to the gene regions of a genome, EST sequencing has

become a standard practice for gene discovery, especially for the genomes of many organisms

that may be too complex for whole-genome sequencing. EST is addressed by the software CAP3

which is a DNA sequence assembly program developed by Huang and Madan[24]. CAP3

performs several major assembly steps including computation of overlaps, construction of

contigs, construction of multiple sequence alignments, and generation of consensus sequences to

a given set of gene sequences. The program reads a collection of gene sequences from an input

file (FASTA file format) and writes its output, including the standard output, to several output

files. During an analysis, the CAP3 program is invoked repeatedly to process a large collection of

input FASTA files.

Input.fasta -> Cap3.exe -> Stdout + Other output files

Processing a collection of input files using CAP3 can easily be parallelized by performing each

invocation in a different processing unit. Since there is no inter task dependencies, it resembles a

typical embarrassingly parallel application, i.e. according to our classification; it represents the

“map-only” class of applications. We have developed parallel CAP3 programs by using Hadoop,

DryadLINQ, and Twister runtimes. The details are presented below.

6.3.1. Hadoop Implementation

The Hadoop version of CAP3 is implemented by developing a map task that executes the CAP3

program as a separate process on a given input FASTA file. The CAP3 application is

implemented in C and it expects the inputs as native files. However, the Hadoop file system only

73

provides an interface accessible via its APIs. This forced us to use a network file system available

in the computation cluster to store and access input data for the CAP3 program. This limitation

arises in Hadoop when a parallel application uses an executable, most probably a legacy

application that needs to access input as files via the command line arguments, as map or reduce

tasks. Since HDFS stores data as blocks on the host file system, the stored data can only be

accessed via an APIs provided by the HDFS. Currently HDFS provides both Java and C++ APIs

to access data. However, to use these APIs one need to change the existing programs, which is

not possible when the source code of an application is not available. One alternative approach is

to store input files in HDFS and alter the map task to move the input file from the HDFS to the

local file system before invoking the executable program. Since Hadoop schedules tasks based on

the data locality, the data movement between HDFS and the local file system typically requires

only a local data copying operation and hence may not incur network overheads. However, for

large data sets, this approach produces considerable overheads and large temporary storage

space.

6.3.2. DryadLINQ Implementation

To implement a parallel CAP3 application using DryadLINQ, we adopted the following

approach: (i) the input files are partitioned among the nodes of the cluster so that each node

stores roughly the same number of input files; (ii) a “data-partition” (A text file for this

application) is created in each node containing the names of the input files available in that node;

(iii) a DryadLINQ “partitioned-file” (a meta-data file understood by DryadLINQ) is created to

point to the individual data-partitions located in the nodes of the cluster. These three steps enable

DryadLINQ programs to execute queries against all the input data files. After these steps, the

DryadLINQ program which performs the parallel CAP3 execution becomes just a single line

program contacting a “Select” query which select each input file name from the list of file names

74

and executes a user defined function on that. In our case, the user defined function calls the CAP3

program passing the input file name as program arguments. The function also captures the

standard output of the CAP3 program and saves it to a file. Then it moves all the output files

generated by CAP3 to a predefined location. Figure 7 shows the method we have adopted to

process input as files using DryadLINQ.

Figure 7. Processing data as files using DryadLINQ.

Although we use this program specifically for the CAP3 application, the same pattern can be

used to execute other programs, scripts, or analysis functions written using frameworks such as R

and Matlab, on a collection of data files. (Note: In this application, we rely on DryadLINQ to

process the input data on the same compute nodes where they are located. If the nodes

containing the data are free during the execution of the program, the DryadLINQ runtime will

schedule the parallel tasks to the appropriate nodes to ensure co-location of process and data;

otherwise, the data will be accessed via the shared directories.) Unlike in Hadoop, in DryadLINQ

the user is expected to handle the data partitioning. Also, it stores input data on the local disks of

the compute nodes directly as files. Therefore, the locally stored data files are directly accessible

to the computation vertices that are schedule to run on that particular computation node.

Dryad
Partitioned File

Dryad
Data File

FASTA
Files

Dryad
Data File

FASTA
Files

Dryad
Data File

FASTA
Files

75

6.3.3. Twister Implementation

Similar to Hadoop, in Twister, the user can create a map-only application by not specifying a

particular reduce task. Twister adopts DryadLINQ’s approach to input data storage where it

stores input files on the local disks of the compute nodes. The input FASTA files are distributed

using the data distribution tool provided by Twister before executing the application. The meta-

data regarding the file distribution is stored in a partition file, which is used by the Twister for

scheduling computation tasks.

6.3.4. Performance Evaluation

We measured both the performance and the scalability of the three implementations of CAP3 by

using a data set containing FASTA files each with roughly 460 short sequences. The results of

these benchmarks are shown in Figure 8 and Figure 9.

Figure 8. Speedups of different implementations of CAP3 application measured using 256
CPU cores of Cluster-III (Hadoop and Twister) and Cluster-IV (DryadLINQ).

76

Figure 9. Scalability of different implementations of CAP3 application measured using 256
CPU cores of Cluster-III (Hadoop and Twister) and Cluster-IV (DryadLINQ).

6.3.5. Discussion

Although the main processing section of the CAP3 represents a “map-only” operation, all the

above implementations used the corresponding parallel runtime to collect the outputs generated

to a single computer. This reduces the overall speedup achievable for the parallel applications.

However, the speedups in Figure 8 show that all three runtimes works equally well for CAP3.

We also expect them to behave in the same way for similar applications with simple parallel

topologies. Figure 9 indicates that for the data set we selected, the different implementations scale

up to 16 computation nodes before producing diminishing returns. We expect better scalability

characteristics for larger problem sizes. As we have explained in section 6.3.1 in the Hadoop

implementation, we stored the input files in a network file system shared across the computation

nodes rather than the HDFS. This prevented Hadoop implementation from exploiting data

locality in scheduling computation task, and hence, produced lower speedups compared to the

other two runtimes. This behavior may prevail in parallel applications developed using Hadoop

77

that uses legacy applications or unmodifiable executables in map/reduce tasks. Integrating

Hadoop with a distributed file system that implements POSIX standard file system interfaces

with the capability of providing data locality information would solve this issue.

6.4. High Energy Physics (HEP) Data Analysis

Most experiments in high energy physics produce large volumes of data. With the advancements

in particle accelerators and detectors the physicist are getting closer and closer to uncovering

some of the unsolved mysteries in the universe. Hedron colliders such as LHC (Large Hedron

Collider) and its several detectors are expected to produce peta-bytes of data per year. Most of

the data (the events generated as results of particle collisions) that exit from the initial stages of

online filtration needs to be analyzed using some rigorous analysis functions to extract the

information hidden in them. High Energy Physics group at Caltech provided us with such an

analysis application with a large data set so that we can explore the new programming

technologies to implement a parallel version of their application.

The input data for this application consists of a large number of binary files each taking roughly

33MB of disk space. The program is composed of two stages. First, the input files are processed

by complex analysis function written using a language named ROOT [78], which is an

interpreted C++ like language that can be used for rapid prototyping. The output of this stage of

the computation is a histogram of identified features per given input file. During the next step, all

the histograms produced in the previous stage is merged to form a single histogram representing

the entire data analysis. This clearly resembles a perfect MapReduce application in which the map

task perform the first stage of the computation while a set of reduce tasks can be used to merge

the partial histograms to form next level of partial histograms. Finally, these partial histograms

can be merged to produce the final histogram representing the entire analysis. This process is

shown in Figure 10

78

Figure 10. MapReduce for the HEP data analysis.

Although the characteristics of the application fits directly with the MapReduce model, its

dependency to the ROOT analysis framework makes it challenging to implement using existing

MapReduce runtimes. We were able to solve some of these challenges and were able to

implement parallel applications for the above problem using Hadoop, DryadLINQ and the

Twister runtimes.

6.4.1. Hadoop Implementation

In Hadoop implementation, the map and reduce tasks invoke ROOT interpretable analysis

programs directly as executables. However, as shown in the CAP3 analysis, since the executables

are expecting input data as files via the command line arguments, we could not use the HDFS

effectively to store data. Therefore, we stored the input data in a high performance parallel file

system (Lustre) and programmed the map tasks to download input files to local disk of the

compute nodes during the runtime. In this approach, each map task first, copy an input file from

the shared parallel file system to the local disk where it has been scheduled to run, and then

executes the first stage of the computation that produces a histogram in the local file system.

Next, the map task reads the resulting histogram back to the memory and “emits” (produces an

output to the runtime) it to the Hadoop runtime so that Hadoop can send this data to an

appropriate reduce task. The reduce tasks save the data objects received from the map tasks to files

in the local file system and then execute another ROOT interpreted script which merges

79

histograms. Finally, the main program collects the partial histograms produced at the end of the

each reduce task and combines them together to form a final output of the computation. As we

will show in Figure 12 the online data movement introduced a significant performance penalty

for the Hadoop implementation of this application.

6.4.2. DryadLINQ Implementation

MapReduce is a subset of the DAG based execution model that the Dryad/DryadLINQ support.

We can simulate the three main phases of MapReduce; map, shuffle and group by, and reduce, using

three queries in DryadLINQ. According to the authors of DryadLINQ MapReduce can be

simulated in DryadLINQ as follows.

Figure 11. Simulating MapReduce using DryadLINQ.

In the above code segment, the first “SelectMany” query applies a function – mapper – to all

inputs which produces one or more (key,value) pairs at each invocation. These pairs are then

grouped according to their keys by a GroupBy operation which accepts a KeySelctor function that

determines the grouping behavior. Finally, the reduce function is applied to each group using

another “SelectMany” query. According to the MapReduce model, the reduce function produces

only a single output per each group of values corresponding to a particular key. Therefore, the

last query in the above code segment can be replaced by a “Select” operation as well. (Note: In

DryadLINQ, the “Select” operation applies a user defined function to an input and returns a

80

single output whereas “SelectMany” performs the same functionality but can return one or more

outputs at each invocation).

For DryadLINQ implementation, we first distribute input data to local disks of the compute

nodes and created a partitioned-file comprising of meta-data about the data distribution using a

similar approach described in section 6.3.2. The first phase of the program produces a collection

of vertices in DryadLINQ’s DAG based execution flow. Each of these vertices executes a ROOT

interpreted function as a separate executable, which processes the input data files passed in as

command line arguments. Next, each vertex reads the output histogram and returns it to the

DryadLINQ runtime as an object with an “id” field generated using a random number that lies in

the range of zero and the number of reduce tasks specified by the user. During the next step of

the program, a “GroupBy” operation is performed on these data objects grouping them according

to their id field. A “Select” operation is used next to combine the grouped histograms together to

produce new partial histograms. Finally, the main program collects these partial histograms and

combines them together to produce the final histogram.

6.4.3. Twister Implementation

The Twister implementation of the HEP analysis uses map and reduce tasks similar to that of

Hadoop implementation. However, there are few notable differences in the two implementations.

Unlike in Hadoop, in the Twister version, the input data is distributed to the local disks of the

compute nodes and the map tasks directly access them as files. This eliminates the requirements

of using a separate parallel file system to hold input data or to use two levels of indirections as in

DryadLINQ. Furthermore, in Twister the histograms produced after the map stage of the

computation is directly transferred to the reduce tasks via the publish/subscribe messaging

infrastructure where as in both Hadoop and DryadLINQA the data transfer happens via file

systems. In Hadoop, reduce outputs are written to the distributed file system (HDFS) and a

81

combine operation on these outputs needs to be done manually. Twister’s combine phase

represents another level of reduce operation which can be used to combine the results of the

reduce stage of the computation. Therefore the final merging of histograms is handled in the

combine stage of Twister.

6.4.4. Performance Evaluation

We measure the performance of this application using two computation clusters each with 256

CPU cores. The performance is measured by increasing the input sizes up to 1TB, and the results

are shown in Figure 12.

Figure 12. Performance of different implementations of HEP data analysis applications
measured using 256 CPU cores of Cluster-III (Hadoop and Twister) and Cluster-IV

(DryadLINQ).

6.4.5. Discussion

The results in Figure 12 highlight that the Hadoop implementation has a considerable overhead

compared to the DryadLINQ and the Twister implementations. This is mainly due to the

differences in storage mechanisms used in these frameworks. DryadLINQ and Twister access the

82

input from local disks where the data is partitioned and distributed before the computation. As

we have explained, the Hadoop implementation moves input data from IU Data Capacitor – a

high performance parallel file system based on Lustre file system – to the local disks during the

execution time. The dynamic data movement in the Hadoop implementation incurred a

considerable overhead to the overall computation. In contrast, the ability to read input from the

local disks gives significant performance improvements to both DryadLINQ and Twister

implementations.

Histogramming is a natural match to the MapReduce programming model and such applications

can be implemented in similar fashion as above. The moving-computation-data support in

MapReduce improves performance of many data intensive applications. We expect Hadoop to

show similar performance characteristics to applications where the data can be utilized from its

distributed file system –HDFS.

6.5. Pairwise Similarity Calculation

Calculating similarity or dissimilarity between each element of a data set with each element in

another data set is a common problem and is generally known as an All-pairs[79] problem. This

section discusses one such application in gene sequencing. The application we have selected

calculates the Smith Waterman Gotoh(SW-G)[80] distance (say 𝛿𝑖𝑗 –distance between sequence i

and sequence j) between each pair of sequences in a given gene sequence collection.

6.5.1. Introduction to Smith-Waterman-Gotoh (SWG)

Smith-Waterman [81] is a widely used local sequence alignment algorithm for determining

similar regions between two DNA or protein sequences. In our studies we use Smith-Waterman

algorithm with Gotoh’s improvement for Alu sequencing. The Alu clustering problem [82] is one

of the most challenging problems for sequencing clustering because Alus represent the largest

83

repeat families in human genome. As in metagenomics, this problem scales like O(N2) as given a

set of sequences we need to compute the similarity between all possible pairs of sequences.

We adopted the following algorithm to map this application to the MapReduce domain. To

clarify our algorithm, let’s consider an example where N gene sequences produces a pairwise

distance matrix of size NxN. We decompose the overall computation by considering the resultant

matrix and group the overall computation into a block matrix of size DxD. Due to the similarities

of distances 𝛿𝑖𝑗 and 𝛿𝑗𝑖 we only calculate the distances in the blocks of the upper triangle of the

block matrix as shown in Figure 13. Each of these blocks is assigned to a map task which

calculates SW-G distances for each pair of sequences within that block. Moreover, each map task

that calculates a non-diagonal block produces a transpose block of the calculated distances as

well. This allows us to construct the full NxN distance matrix by computing only the half of the

actual distances. The row number of a given block is used as the input key for the reduce tasks,

which simply collect the data blocks corresponding to a row and write to output files after

organizing them in their correct order. At the end of the computation all the blocks

corresponding to a single row block will be written to a file by the reduce tasks.

84

Figure 13. MapReduce algorithm for SW-G distance calculation program

6.5.2. Hadoop Implementation

We used JAligner[83] library to calculate SW-G distances in the Hadoop implementation of the

above algorithm, where it is used in the map task to compute a block of distances. The block size

(D) can be specified via an argument to the program. Also, it needs to be specified in such a way

that there will be much more map tasks than the number of processing elements in the

computation cluster. This way the Apache Hadoop can schedule map tasks as a pipeline, which

results a global load balancing of the application. The input data is distributed to the worker

nodes through the Hadoop distributed cache, which makes them available in the local disk of

each compute node.

6.5.3. DryadLINQ Implementation

The DryadLINQ version of the above application is developed by simulating MapReduce

programming model using DryadLINQ queries as explained in the HEP data analysis

application. For this implementation we have used NAligner library (C# version of the JAligner

library) to calculate Smith Waterman distances. First, the main program computes the block

boundaries and assigns them to vertices. DryadLINQ replicates the input sequence file to every

vertex automatically. This approach is possible, because the size of the sequence file, even with

large number of sequences, is not considerably large when compared to the size of the output

matrix. Each vertex computes Smith Waterman distances in a given block and produces two

blocks as output. The output blocks are indexed based on their corresponding row numbers

where they will fit in to the resultant distance matrix. Next a “GroupBy” operation is performed

on all the output blocks to group them according to their row numbers, followed by another

stage of “Select” operation to combine blocks in a particular row to a single output file. The

85

overall computation produces D (refer to Figure 13) output files corresponding to the D row

blocks in the resultant matrix.

6.5.4. Twister Implementation

We also developed a Twister counterpart of the above algorithm by adopting a similar approach

to the Hadoop implementation. Apart from minor differences in the programs, the map and

reduce functions for the Twister implementation are very similar to that of Hadoop. In all three

implementations we expect the input sequence file to be available in all the compute nodes while

we use block indices and block boundaries as input (key,value) for map tasks. In Hadoop

implementation the (key,values) are assigned to maps by writing them to individual files in HDFS,

whereas in Twister the main program can directly send them to map tasks using the

runMapReduce(KeyValue[]) API call. Twister also uses JAligner as the alignment engine.

6.5.5. Performance Evaluations

We identified samples of human and Chimpanzee Alu gene sequences using Repeatmasker[84]

with Repbase Update [85] and produced a data set of 50000 sequences by replicating a random

sample of 10000 sequences from the original data. We used this data to measure parallel

performance of DryadLINQ, Hadoop, and Twister runtimes. Figure 14 shows the parallel

efficiency (η) of each runtime under varying data sizes.

86

Figure 14. Parallel Efficiency of the different parallel runtimes for the SW-G program
(Using 744 CPU cores in Cluster-I).

6.5.6. Discussion

Due to the sheer volume of SW-G comparisons, we did measure the sequential execution times of

the above programs. Instead, we estimated serial running time by simply summing up the times

spent on each map and reduce tasks. The results clearly show that all three runtimes achieve

maximum efficiencies and maintains them with the increase of data. Although the absolute

efficiency is not correctly reflected by the estimated serial time, it provides a valuable base point

for our comparisons. Since this is a typical MapReduce computation, we expect all runtimes to

achieve higher absolute efficiencies. Twister outperforms Hadoop, because of its faster data

communication mechanism, and the lower overhead in the static task scheduling. Moreover, in

Hadoop each map/reduce task is executed as a separate process (a Java Virtual Machine - JVM)

whereas in Twister they are executed using threads. The Lower efficiency in DryadLINQ was

mainly due to an inefficient task scheduling mechanism used in the initial academic release[86].

87

To evaluate the scalability of the Twister runtime further, we performed another benchmark

using 1632 CPU cores of Cluster-II. In this evaluation, the Twister runtime is configured to use a

daemon in each CPU core simulating a cluster of 1632 single core nodes. The efficiencies

calculated for this evolution shows a value of 79% indicating that the runtime is scalable to such

number of nodes. These results also prove that the Twister is capable of running typical

MapReduce computations although we have added enhancements focusing on iterative

MapReduce computations.

6.6. K-Means Clustering

K-Means clustering [71] is a well-known data clustering algorithm that performs an iterative

computation to find a given number of cluster centers in a given input data set starting from a

random set of cluster centers. In each iteration, the algorithm computes the distance (typically

Euclidean distance) between the current cluster centers and all the input data points, and assigns

each data point to a nearest cluster center. Then, it computes the new cluster centers by

calculating the average distances of points assigned to a given cluster center. To check the

convergence, the algorithm performs a comparison between the cluster centers produced during

the nth iteration and the cluster centers produced from (n-1)th iteration. If this difference is greater

than a given threshold the iterations will continue.

In this algorithm, the major computation is the calculation of distances between the cluster

centers and the data points. Therefore, a parallel algorithm can be developed by performing this

computation in parallel. A MapReduce version of the above algorithm is shown below.

88

K-means Clustering Algorithm for MapReduce

Do

Broadcast Cn

[Perform in parallel] –the map() operation

for each Vi

 for each Cn,j

Dij <= Euclidian (Vi,Cn,j)

Assign point Vi to Cn,j with minimum Dij

for each Cn,j

 Cn,j <=∑ (𝑉𝑖)
𝐾𝑗
𝑖

 Emit (j,[Cn,j , Kj])

[Perform Sequentially] –the reduce() operation

Collect all [Cn,j , Kj]

for each Cn,j

 Cn,j <=� �C𝑛,𝑗,𝑚�
𝑚
𝑖

 Kj <=� �K𝑗,𝑚�
𝑚
𝑖

Cn,j = Cn,j/Kj

Calculate new cluster centers Cn+1

Diff<= Euclidian (Cn, Cn+1)

while (Diff <THRESHOLD)

Assume that the input is already partitioned and available in the compute nodes. In this

algorithm, Vi refers to the ith vector, Cn,j refers to the jth cluster center in nth iteration, Dij refers to

the Euclidian distance between ith vector and jth cluster center, and K is the number of cluster

centers. The number of map tasks is defined by m. We implement the above algorithm using four

parallel runtimes, Hadoop, DryadLINQ, Twister, and MPI.

89

6.6.1. Hadoop Implementation

In Hadoop implementation, depending on the number of map tasks to be used, the main program

partitions the input data into a collection of files and stores them in HDFS. Each map task reads a

data partition from HDFS and the current cluster centers from Hadoop’s distributed cache. Then

the map task assigns points to cluster centers and calculates a sum of points for each cluster

center. Finally, it “emits” these partial sums along with the number of points in each cluster

center to reduce tasks. The reduce task collects this information, combines the partial cluster

centers, produces the new cluster centers, and writes them to a file in HDFS. The main program

reads the new cluster centers from HDFS and calculates the difference between the new cluster

centers and the previous cluster centers, and determines whether to proceed to with new

iteration.

As we have discussed in Chapter 2, Hadoop considers each iteration as a new MapReduce

computation, and hence, the input data partitions are read from files in every iteration. Also the

communication between map and reduce tasks, and the reduce task and the main program happen

via some form of file system. These communication paths add higher overheads compared to an

approach of sending them directly via network connections.

6.6.2. DryadLINQ Implementation

DryadLINQ implementation uses an Apply operation to perform the map phase of the

computation, in which the data vectors are assigned to cluster centers. The apply operation

works on a collection of inputs (in this case, a set of input vectors) and produces a single output.

Similar to a map task in Hadoop implementation, each vertex outputs an object comprising of all

the partial cluster centers and the number of points assigned to each cluster center. Another

Apply operation, which runs sequentially, calculates the new cluster centers for the nth iteration.

Finally, the main program calculates the distance between the previous cluster centers and the

90

new cluster centers using a Join operation to compute the Euclidian distance between the

corresponding cluster centers. DryadLINQ supports a feature known as “loop unrolling” which

can be used to build a single DryadLINQ query to represent multiple iterations of some set of

query operations. Deferred query evaluation is a feature of LINQ, whereby a query is not

evaluated until the program accesses the query results. Thus, in the K-means program, we

accumulate the computations performed in several iterations (we used 4 as our unrolling factor)

into one query and only “materialize” the value of the new cluster centers in every 4th iteration.

6.6.3. Twister Implementation

Twister runtime is optimized to handle iterative MapReduce computations. As in Hadoop, the

input data is first partitioned into a collection of files and then distributed to the local disks of the

compute nodes. Following this, a “partitioned file” is created containing the meta-data of the file

partitions. Twister provides a tool to support these operations. Map tasks are then configured

using “configureMaps()” method passing the above partitioned file. Twister also supports a

broadcast style operation to start MapReduce computations - “mapReduceBCast()”. The program

uses this method to send the current cluster centers to all map tasks in each iteration. Unlike

Hadoop, Twister’s combine phase collects the outputs produce after the reduce stage to a single

location accessible to the main program and the data transfer between phases happens via TCP

based connections. This approach minimizes the overhead in overall data transfers, which starts

from the main program and return back to it after following map and reduce phases.

6.6.4. MPI Implementation

We implemented the above parallel K-Means algorithm using MPI as well. This is mainly to

evaluate the performance of the MapReduce runtimes comparing to MPI. We use a data

portioning scheme similar to MapReduce but kept all the data partitions in a network file system

91

of the computation cluster. MPI processes are inherently long running, so the input data is loaded

only once during the execution.

6.6.5. Performance Evaluation

To evaluate the performance of the K-means clustering applications, we selected a data set

comprising of 2D vector points distributed around a known set of cluster centers. Then we use

the K-Means clustering implementations to identify those clusters and verify the results using the

earlier known cluster centers. To compare performances, we used only a fixed number of

iterations in each implementation. Figure 15 below shows the performance of four

implementations of K-Means clustering algorithm.

Figure 15. Performance of different implementations of K-Means clustering algorithm
performed using 256 CPU cores of Cluster-III (Hadoop, Twister, and MPI) and Cluster-IV

(DryadLINQ)

6.6.6. Discussion

Although we used a fixed number of iterations, we changed the number of data points from 500

thousand to 20 millions. In K-means clustering, increase in the number of data points increases

92

the amount of computation. However, it was not sufficient to ameliorate the overheads

introduced by Hadoop and DryadLINQ runtimes. As a result, the graph in Figure 15 mainly

shows the overhead of the different runtimes. The use of file system based communication

mechanisms and the loading of static input data at each iteration in Hadoop and in each unrolled

loop in DryadLINQ resulted considerably higher overheads in these runtimes compared to

Twister and MPI. Iterative applications that perform more complex computations or access larger

volumes of data may produce better results for Hadoop and DryadLINQ, as the higher

overheads induced by these runtimes becomes relatively less significant. However, the

aforementioned inefficiencies of these runtimes produce considerable overheads making them

less useful for this class of applications.

A straightforward way to implement the above algorithm in MapReduce and DryadLINQ is by

using the map phase to assign points to cluster centers and send (cluster center, point) pairs to the

reduce stage. This approach results intermediate data transfers in the orders of input data and

produce considerable overheads when every iteration performs the same data transfer. One can

use a “combine” operation in Hadoop – a reduce operation that runs locally just after the map

tasks to accumulate results before sending them to reduce tasks. Similarly in DryadLINQ one can

re-partition data after an assignment and performs a local combine operation using “Apply” query

in DryadLINQ. In all our implementations, we merged this combine stage to the map task so that it

outputs only the partial cluster centers and their counts as the output after operating on a

collection of points. This minimizes the additional overhead in data transferring and scheduling

of tasks by the runtimes.

6.7. PageRank

PageRank algorithm calculates numerical value to each web page in World Wide Web, which

reflects the probability that the random surfer will access that page. The process of PageRank can

93

be understood as a Markov Chain which needs recursive calculation to converge. An iteration of

the algorithm calculates the new access probability for each web page based on values calculated

in the previous iteration. The iterating will stop when the difference (δ) is less than a predefined

threshold, where δ is the vector distance between the page access probabilities in Nth iteration

and those in (N-1)th iteration.

There already exist many published work optimizing PageRank algorithm, like some of them

accelerate computation by exploring the block structure of hyperlinks[87, 88]. In this research, we

did not create any new PageRank algorithm, but implemented the most general PageRank

algorithm [1] in MapReduce programming model. The web graph is stored as an adjacency

matrix (AM) and is partitioned to use as static data in map tasks. The variable input for a map task

is the initial page rank score. The output of reduce tasks is the current PageRanks which will be

used by the map tasks in the next iteration.

6.7.1. Hadoop Implementation

We implemented the above algorithm by using Hadoop similar to the approach we used in K-

means clustering. The adjacency matrix is partitioned and stored as a collection of files in HDFS,

so that each file is processed by a map task. The current PageRank scores are transferred using

Hadoop’s distributed cache. The map tasks update the ranks in its data partition using the current

PageRank and send the updated ranks to a collection of reduce tasks, which then compute partial

set of PageRanks. Finally the main program calculates the next set of page ranks for the input.

The iterations continue until the difference between the current PageRanks and the previous

PageRanks reach a certain threshold.

94

6.7.2. Twister Implementation

By leveraging the features of Twister, we were able to implement PageRank in an efficient

manner. Some of these improvements are: (i) the partial adjacency matrices are only loaded once

per map task because they can be configured as static data in Twister; (ii) current PageRanks are

directly sent to the map tasks using the broadcast feature. Further optimizations that are

independent of Twister include: (i) increasing the map task granularity by wrapping certain

number of URLs entries together and (ii) merging all the tangling nodes as one node to save the

communication and computation cost.

6.7.3. Performance Evaluation

We investigated the performance of Hadoop and Twister implementations of the PageRank using

ClueWeb data set [89] collected in January 2009. We built the adjacency matrix using this data set

and tested the page rank application using 32 computer nodes of Cluster-II. Table 7 summarizes

the characteristic of three ClueWeb data sets we used in our tests.

Table 7. Characteristics of data sets (B = Billions, AM = Adjacency Matrix)

ClueWeb data set CWDS1 CWDS3 CWDS5

Number of AM partitions 4000 2400 800

Number of web pages 49.5M 31.2M 11.7M

Number of links 1.40B 0.83B 0.27B

Average out-degree 28.3 26.8 22.9

95

Figure 16. Elapsed time for 16 iterations of the Hadoop and Twister PageRank
implementations (Using 256 CPU cores in Cluster-II).

6.7.4. Discussion

Figure 16 shows the performance of PageRank applications under different data sizes. Both

Hadoop and Twister show similar performance characteristics with the increasing data sizes.

However, it also reveals that Hadoop takes considerably longer time than Twister (Notice the log

scale in y axis). We also calculated the efficiency of the PageRank application using formula (4)

above with p1 and p2 times taken from runs on 128 and 256 CPU cores respectively for the

CWDS3 data set. The results revealed that the Twister version of the application can maintain

above 80% efficiency at 256 CPU cores. As we have mentioned above, Twister’s support for long

running map/reduce tasks gives it a considerable performance advantage over Hadoop, as the

static data is only loaded once for the computation. Furthermore, the direct transfer of

intermediate data and the current PageRanks enables it to perform better as well. Although

Twister broadcasts current PageRanks to all map tasks using the publish/subscribe broker

network, the actual data movement only occurs from the broker network to each Twister daemon

96

(typically one per compute node), which internally shares this data among the map tasks it owns

without copying. This approach improves the overall performance of similar algorithms

significantly.

6.8. Multi-Dimensional Scaling (MDS) Application

Multidimensional scaling (MDS) is a general term used for the techniques to configure low

dimensional mappings of given high-dimensional data with respect to the pairwise proximity

information, while the pairwise Euclidean distance within the target dimension of each pair is

approximated to the corresponding original proximity value. In other words, it is a non-linear

optimization problem to find low-dimensional configuration which minimizes the objective

function, called STRESS[90] or SSTRESS [91].

Among many MDS solutions, we are using a well-known expectation maximization (EM) like

method called SMACOF (Scaling by Majorizing of COmplicated Function)[74]. SMACOF is

based on iterative majorization approach and is calculated by iterative matrix multiplication. For

the stop condition, SMACOF algorithm measures the STRESS value of current mapping and

compares it to the STRESS value of the previous mapping result. If the difference of STRESS

values between previous one and the current one is smaller than threshold value, then it stops

iteration. For details of the SMACOF algorithm, please refer to[92].

6.8.1. Twister Implementation

At a very high level the computation performed in SMACOF algorithm can be viewed as a set of

matrix and vector multiplications. More precisely, in the nth iteration the current lower

dimensional mapping Xn is derived using the formula:

Xn= D x B x Xn-1

97

In this formula D is the distance matrix given as the input to the algorithm, B represents a

derived matrix similar in size to D, and Xn-1 is the mapping to the lower dimension found in the

previous iteration. To determine the condition for proceeding with iterations, the algorithm also

computes a STESS value based on the Xn. In the above equation, the D and B are square matrices

while the Xn is a vector (2D or 3D depending on the dimension the high dimensional data is

reduced). This feature can be used to convert the above equation to a matrix-vector multiplication

instead of matrix-matrix multiplication that minimizes the computational complexity of the entire

algorithm. Therefore, the Twister implementation calculates Xn using two matrix-vector

multiplications. The following pseudo code segment shows the Twister version of the MDS

program.

Pseudo Code: Multi Dimensional Scaling using MapReduce

//Load static data to map tasks

configureBXMaps()

configureDCMaps()

configureSTRESSMaps()

//Start main iteration

while(diff<THREASHOLD){

Cn=calculateBXMapReduce(Xn-1)

Xn =calculateDCMapReduce(Cn)

STRESSn=calculateSRESSMapReduce(Xn)

diff=STRESSn-STRESSn-1

}

In the above pseudo code, “calculateBXMapReduce(Xn-1)” calculates the vector Cn resulting

from matrix-vector multiplication B x Xn-1 in the above formula. The

“calculateDCMapReduce(Cn)” calculates the matrix-vector multiplication D x Cn. This application

98

demonstrates the programming model we envisioned in Twister in which the MapReduce is used

as a programming construct to parallelize sections of iterative applications. Furthermore, it also

shows how complex iterative applications can be developed using Twister runtime as well.

6.8.2. Performance Analysis

To evaluate the performance of our implementation, we used a data set comprising of 35339 gene

sequences that produce a 1.24 billion pair-wise distances in matrix D. Estimating the serial

running time for MDS application is not straightforward and hence we calculated the parallel

efficiency using the formula (4). The outcome of this benchmark is shown in Figure 17.

Figure 17. Efficiency of the MDS application (in Cluster–II).

6.8.3. Discussion

For the selected data set, Twister maintains higher efficiencies (>80%) for considerable number of

CPU cores. With large data, we expect it to maintain similar efficiencies for even higher number

of CPU cores. As we have shown in [86, 93-95] both Hadoop and DryadLINQ showed extremely

high overheads for iterative applications such as K-Means clustering or matrix multiplication.

99

The MDS uses three MapReduce computations in a single iteration involving two matrix- vector

multiplications and one STRESS calculation. Thus we expect both Hadoop and DryadLINQ to be

highly inefficient for this application and hence did not implement MDS using those runtimes.

6.9. Matrix Multiplication

In this section, we discuss two parallel matrix multiplication algorithms that can be used with

Twister. For simplicity of the explanation, we assume that the matrices have square dimensions.

Let’s consider a matrix multiplication where A and B matrices produce a result matrix of C. We

also assume that the multiplication uses n parallel processes.

6.9.1. Row-Column Decomposition Approach

In this algorithm, the first matrix (A) is partitioned into a collection of row blocks. The height of a

row block is determined by the dimension of the matrix (N) and the number of iterations (r). The

second matrix (B) is partitioned to a set of column blocks. In MapReduce implementation, each

map task holds a column block of matrix B, and in each iteration it receives a row block of matrix

A from the main program. During the ith iteration, jth map task calculates the (i,j)th block of matrix

C, while the reduce task collects these output blocks and merges them to form a row block of

matrix C. For this algorithm, we used the Twister’s long running map/reduce tasks with configure

option, so that the column blocks of matrix B is loaded only once for the entire computation.

Figure 18 illustrates this approach.

100

Figure 18. Matrix multiplication Row-Column decomposition (top). Twister MapReduce
implementation (bottom).

Since the amount of communication determines the scalability characteristics of an algorithm, in

the following table we list the amount of communication performed in each step of the above

algorithm.

Table 8. Breakdown of the amount of communication in various stages of the Row-column

based matrix multiplication algorithm.

Operation Amount of communication Total for r iterations

ConfigureMaps() (N*b)*n = N2 N2

mapReduceBcast () (N/r)*N*n = N2n/r N2n

In between map and reduce (b*N/r)*n = N2/r N2

Collecting results (b*N)*n=N2 N2

Total communication = N2n+3N2 = O(N2n)

101

6.9.2. Fox Algorithm for Matrix Multiplication

The Fox algorithm[13] uses 2D block based approach with a square processes mesh. Similar to the

above analysis let’s also assume that the total number of processes available is n. This leads to a

processes mesh of qxq where q=√n. Although the process mesh is a logical arrangement, parallel

runtimes such as MPI provide optimized communication constructs for processes arranged in 2D

meshes.

Figure 19. 2D block decomposition in Fox algorithm and the process mesh.

In the Fox algorithm, each process holds a block of matrix A and a block of matrix B and

computes a block of matrix C. In kth iteration every process executes the following

communication and computation operations.

1. The process that holds A(i, (i+k) mod q) broadcasts it to all the process in the row i
2. All the processes in row i receive the above element (say D)
3. Every process calculates C(i,j) =C(i,j) + D x B(i,j)
4. Every process sends the block B(i,j) to the process that holds B((i+1) mod q, j)

In the previous algorithm, each iteration completes a one row block of the resultant matrix C. Int

contrast, in this algorithm, each process keeps accumulating the final value for a block of matrix

C throughout the computation until it terminates in q iterations.

Similar to the row-column approach, we can also calculate the amount of communication the Fox

algorithm performs as follows. To make the analysis similar to the previous algorithm, we use q=

√n property in the equations.

102

Table 9. Breakdown of the amount of communication in various stages of the Fox

algorithm.

Operation Amount of communication Total for q= √n iterations

Initial data distribution 2*N2 2*N2

Broadcast (N/q)*(N/q)*q*q = N2 N2√n

Shift operation (N/q)*(N/q)*q*q = N2 N2√n

Collecting results N2 N2

Total communication = 2N2√n +3N2 = O(N2√n)

The above analysis shows that the Fox algorithm performs far less communication than the row-

column based decomposition approach discussed earlier. Further, in the Fox algorithm, each

process only requires memory to hold three blocks of matrices while the previous approach

requires memory for more than two row blocks at a time. Therefore it is interesting to see if one

can implement Fox algorithm using MapReduce.

6.9.3. Fox Algorithm using Twister’s Extended MapReduce

We have come up with a MapReduce algorithm that can simulate Fox matrix multiplication.

Unlike MPI which supports mesh configuration of processes, MapReduce provides only map

followed by reduce communication pattern. However, we can simulate a square arrangement of

processes using MapReduce as follows.

Let’s assume that we use n map tasks and n reduce tasks and each type is arranged to form a

square mesh with dimension q = √n as shown in Figure 20. Typically, in MapReduce the keys

generated as the map outputs are matched to different reduce tasks using a hash function. Here,

we use an identify function as the “Key Shuffler”. Also we use integer keys between 1 and n as

map output keys, so that a map output can be send to a particular reduce task depending on the

103

output key. For example, if map task 2 needs to send a message to reduce task 5 it can do so by

producing a (key,value) pair with key equal to 5 and the message as the value.

m1 m2 mq

mq+1 mq+2 m2q

mn-q+1 mn-q+2 mn

r1 r2 rq

rq+1 rq+2 r2q

rn-q+1 rn-q+2 rn

n map tasks n reduce tasks

Figure 20. Virtual topology of map and reduce tasks arranged in a square matrix of size
qxq

As explained before, in Fox matrix multiplication, at some point of execution each process needs

to send its block of matrix A to all the processes (row wise broadcast) in the same row and sends

its block of matrix B to the process right above in the process mesh (shift). For this algorithm, we

assume n parallel processes executed as map and reduce computations in two phases of the

MapReduce computation. Although we use 2n tasks, at a given time, only one set of tasks (map

or reduce) will be executed, therefore we can safely assume that there are only n processes. Each

map task holds a block of matrix A and a block of matrix B while each reduce task computes a

block of matrix C. In each iteration, the main program, map, and reduce tasks performs the

following operations.

104

1. Main program sends the iteration number k to all map tasks
2. The map tasks that meet the following condition send its A block (say Ab)to a set of

reduce tasks
a. Condition for map => ((mapNo div q) + k) mod q == mapNo mod q
b. Selected reduce tasks => ((mapNo div q) * q) to ((mapNo div q) * q +q)

3. Each map task sends its B block (say Bb) to a reduce task that satisfy the following
condition

a. Reduce key => ((q-k)*q + mapNo) mod (q*q)
4. Each reduce task performs the following computation

a. Ci = Ci + Ab x Bi (0<i<n)
b. If (last iteration) send Ci to the main program

The communication pattern for the second iteration of this algorithm is shown in Figure 21 using

a 3x3 processes mesh.

m1 m2 m3 m4 m5 m6 m7 m8 m9

Each map task holds a block of matrix A and a block of matrix B and sends
them selectively to reduce task in each iteration

B1

A1

B2

A2

B3

A3

B4

A4

B5

A5

B6

A6

B7

A7

B8

A8

B9

A9

r1 r2 r3 r4 r5 r6 r7 r8 r9

configureMaps(ABBlocks[])
for(i<=q){
 result=mapReduceBcast(i)
 if(i=q){
 appendResultsToC(result)
 }
}

Each reduce task accumulates the results of a block of matrix C

C2 C3 C4 C5 C6 C7 C8 C9C1

Figure 21. Communication pattern of the second iteration of the Fox - MapReduce
algorithm shown using 3x3 processes mesh. Thick arrows between map and reduce tasks

show the broadcast operation while dash arrows show the shift operation.

In this algorithm, we assume that the reduce tasks are long running so that they can accumulate

the result of a blocks of matrix C, which makes the reduce tasks no longer side effect free. That is,

we will not be able to recover these states with the current fault tolerance strategy of Twister.

However, it is possible to recover the state of these types of computations by saving state of each

reduce task to a distributed file system in every X number of iterations, where X defines the

105

number of roll-back iterations necessary in an event of a failure. We will discuss this hybrid

approach to fault tolerance in the future work section of this thesis. Apart from the above, the

row-wise broadcast is implemented as a selective broadcast operation using Twister’s row-wise

broadcast option for a logical mesh of reduce tasks, which utilizes the underneath pub-sub

infrastructure to handle the broadcast operation. Furthermore, for larger blocks Twister

automatically uses direct TCP channels between daemons, which eliminates the loading of the

broker network with large data transfers. Table 10 highlights the amount of communication

performed in each step of the above algorithm.

Table 10. Breakdown of the amount of communication in various stages of the Twister

MapReduce version of Fox algorithm.

Operation Amount of communication Total for q= √n iterations

configureMaps 2*N2 2*N2

Selective Broadcast (N/q)*(N/q)*q*q = N2 N2√n

Shift operation N2 N2√n

Collecting results N2 N2

Total communication = 2N2√n +3N2 = O(N2√n)

6.9.4. Performance Evaluation

According to the analysis, the amount of communication in both implementations of the Fox

algorithm is the same, and it is lower than that of the row-column approach. To compare these

implementations, we performed a set of matrix multiplications using each implementation on the

same set of hardware nodes. We used 256 CPU cores of Cluster II and evaluated each algorithm

using different sizes of matrices. We also evaluated the performance of an OpenMPI based

implementation of the Fox Matrix Multiplication algorithm on the same hardware setting.

106

Since Twister programs are implemented in Java and the MPI program is implemented in C++,

first, we evaluate two sequential programs written in Java and C++ and compare their

performances. Figure 22 shows these performances.

Figure 22. Sequential time for performing one block of matrix multiplication - Java vs. C++

The above measurements are made by using almost identical Java and C++ programs on the

same hardware. Here we used matrices similar in size to the blocks that are assigned to

individual processing cores in a parallel version of the program. The results show that there is a

significant performance difference between Java and C++ for the matrix multiplication operation.

Next we compared the performance of the two Twister implementations against increasing

matrix dimensions. In this evaluation, both Twister implementations use pub-sub brokers for

intermediate data transfers (Note: We have not used the TCP based direct data transfers as

explained in section 5.2). The following figure shows these performance characteristics.

107

Figure 23. Performance of Row-Column and Fox algorithm based implementations by
using 64 CPU cores of Cluster II. (Note: In this evaluation, we have not used Twister’s TCP

based direct data transfers as explained in section 5.2).

Next, we evaluated the Twister and the MPI implementations of the Fox algorithm. In this

evaluation, we used Twister’s TCP based direct data transfer mechanism. The following graph

shows the overall matrix multiplication time of both Twister (Java) and OpenMPI (C++)

applications. We measured only the time for matrix multiplication iterations (Initial data

distribution and final data collection is ignored). The graph also shows the ideal compute times

for each runtime based on the graph above as follows:

Compute time = time per one block * number of iterations

108

Figure 24. Performance of Twister and MPI matrix multiplication (Fox Algorithm)
implementations by using 256 CPU cores of Cluster II. The figure also shows the projected

compute-only time for both Java and C++.

According to Figure 24, Twister version of the matrix multiplication application is about three

times slower than the OpenMPI counterpart. However, as shown in Figure 22, a multiplication of

a block of matrix in Java is roughly three times slower than a C++ implementation. Therefore, if

we normalize for these differences, both Twister and MPI would have similar performance

characteristics. To understand this better, we performed an overhead calculation for the two

implementations. Since there is a considerable difference between the sequential running times of

Java and C++, when calculating overheads we used Java sequential times for Twister and C++

sequential times for MPI.

109

Figure 25. Parallel overhead of three matrix multiplication implementations by using 256
CPU cores of Cluster II

6.9.5. Discussion

The results in Figure 23 clearly indicate that the Twister versions of the Fox algorithm perform

much better than the row-column decomposition approach. As we have explained, the Row-

Column algorithm performs more data transfer than the Fox algorithm. Also, the broadcast

operation in row-column algorithm depends heavily on the performance of the pub-sub brokers.

These factors contribute to the higher running time of the row-column approach.

 The parallel overheads shown in Figure 25 indicate that both MPI and Twister shows similar

overhead characteristics and they both show negative overheads due better utilization of cache in

the parallel application than the sequential application. For larger matrices i.e. smaller

1/SQRT(grain size), both Twister and MPI implementations give highly desirable overhead

characteristics. The Fox matrix multiplication is has a complex communication pattern

compared to typical MapReduce applications. Twister runtime enables the development of such

110

algorithms in MapReduce programming model and as we have seen in matrix multiplication we

expect it to produce better performance characteristics for large problem sizes.

Twister supports long running map/reduce tasks to improve the performance of many iterative

MapReduce computations. It also allows theses tasks to be configured with static data. Since the

tasks only store static data, the map and reduce functions in Twister can still be considered “side

effect free”, a feature that simplify the fault handling mechanism of the runtime. With side-effect

free tasks, Twister runtime can restart a failed iteration by simply re-configuring the tasks with

the static data and re-executing the failed iteration. Similar to its MPI counterpart, in the Twister

implementation of the Fox algorithm, we use reduce tasks to accumulate results of blocks of

matrix C introducing side-effects. Therefore, under the current Twister implementation, this

computation will not tolerate failures. To support fault tolerance with stateful map and reduce

tasks, the runtime needs save the state of individual tasks to a fault tolerance file system such as

HDFS. This is an interesting future work.

6.10. Twister Benchmark Application and Micro Benchmarks

So far in this chapter, we discussed the real data analysis applications and their performances. To

understand performance of the Twister runtime better we developed a MapReduce application

that can simulate various application patterns. This section discusses some of the micro

benchmarks that we performed and our findings.

6.10.1. Structure of the Benchmark Application

In the MapReduce model, the main communication occurs between map and reduce stages. Apart

from this, Twister’s extended programming model supports broadcasting data to all map tasks as

well as configuring map and reduce tasks by sending data directly from the main program (a

scatter operation). The benchmark application supports variable message sizes to be used in all

111

the above three communication phases and variable sleep times, simulating computation times,

at the map and reduce phases. This behavior allows us to use the benchmark application to

evaluate Twister runtime under different communication loads or computation loads. The

structure of this application is shown in Figure 26 below.

reduce

mapmap
Main

Program map

reduce

BroadCast

Scatter

map -> reduce
communicationVariable message sizes for

communication
Variable sleep times for map/

reduce tasks

Figure 26. The structure of the micro benchmark program.

6.10.2. Micro Benchmarks

We evaluated the Twister runtime for the above three communication phases using 32 nodes of

Cluster II. With each of these tests we used two broker settings; (i) single broker and (ii) 5

brokers connected in mesh configuration. To evaluate the effect of different message brokers we

used both NaradaBrokering and ActiveMQ separately for each test setting. However, we could

not test NaradaBrokering in full mesh configuration with multiple brokers due to a problem in

NaradaBrokering. Therefore, for tests with NaradaBrokering we used a tree configuration for the

broker network. Following set of figures shows the performance characteristics of these

benchmarks.

112

Figure 27. Time to send a single data item from the main program to all map tasks against
the size of the data item.

Figure 28. Time to scatter a set of data items to map/reduce tasks against scatter message
size.

113

Figure 29. Total time for the map to reduce data transfer against <Key,Value> message
size.

According to Figure 27, ActiveMQ broker performs the broadcast operation faster than the

NaradaBrokering and more brokers in both types speedup the broadcast operation. In Twister,

the broadcast operation is used when the main program (Twister Driver) sends some data

directly to all map tasks. For example, in K-Means clustering, the main program sends the current

cluster centers to all map tasks in each iteration. In the above benchmark, we used broadcast

messages up to 20 megabytes in size which can represents roughly 2.5 million double values in

each message proving that the brokered approach we adopted in Twister is capable of such large

broadcasts. However, in real applications the broadcasts are typically used to send smaller data

items such as parameters to all map tasks.

We performed a similar benchmark for the operation that configure map and reduce tasks. In this

operation the data originates from the main program and scattered to individual map and reduce

tasks. However, unlike the broadcast operation where the broker handles the actual broadcasting,

in this operation each piece of data needs to travel from the originator to the destination via the

114

broker network. That is, all the data needs to go through the connection between the main

program and the first broker. This implies that the multiple brokers will not provide much

benefit for this operation as observed in the performance results in Figure 28. For message sizes

up to about 10 megabytes NaradaBrokering is faster than the ActiveMQ broker. However, for

larger messages ActiveMQ handles the scatter operation better than NaradaBrokering.

Finally, we performed a benchmark to evaluate the performance of map to reduce data transfer.

This is a crucial operation in MapReduce programming model. The amount of data transfer from

map to reduce stages varies depending on the application. For example, in applications such as

data clustering only the cluster centers need to be sent from map task to the reduce tasks. In

contrast, a sorting operation transfers the entire data set through the map reduce pipeline. Snice

brokers are optimized for dispersing large number of small messages (or events), sending data

via the broker network is acceptable only when the individual messages are considerably small.

Larger messages cause considerable delays when sending via a broker network. As it can be seen

in Figure 29, the TCP based direct data transfer mechanism solves this issue and it scales well

with larger message sizes as well.

6.11. Conclusion

In this section, we discussed a series of data analysis applications that we have developed using

Twister. Also, we discussed their respective performance by comparing them with the

performance of several other implementations which performs the same algorithms. In each

application, we discussed the mapping of the problem to the MapReduce programming model

and its different implementations, by explaining the different ways that one can utilize these

runtimes, especially the Twister runtime. We believe that the selected set of applications fairly

represents the three application classes: (i) the map-only, (ii) the map-reduce, and (iii) the

iterative map-reduce that we discussed earlier; therefore, the techniques we applied to these

115

applications can be reused to support other similar problems in these categories. We also

discussed the applicability of Twister to the Fox matrix multiplication algorithm.

We also performed an extensive set of performance analyses to identify the performance

characteristics of Twister under different problem categories. For all applications we tested,

implementations based on Twister demonstrate the best performances compared to the

DryadLINQ and the Hadoop implementations. The use of long running tasks and the faster

communication mechanism utilized in Twister make it highly efficient for iterative MapReduce

applications for which both DryadLINQ and Hadoop show considerable overheads. Although

MPI outperforms Twister in iterative applications, our results indicate that the performance gap

between MPI and Twister becomes reduced for large problem sizes. We performed several non-

iterative applications such as CAP3 (section 6.3), HEP (section 6.4), and SW-G (section 6.5) which

demonstrate the applicability of Twister to typical MapReduce applications. However, unlike

Hadoop and DryadLINQ, in the current Twister implementation, we have not implemented fault

tolerance support for non-iterative applications. We will discuss some of the possible approaches

to make Twister fault tolerant for typical MapReduce applications in the section which discusses

potential future research avenues.

116

Chapter 7. Related Work

The research work related to this thesis can be divided into two categories. First, this work could

be classified with the broadly relevant parallel processing runtimes, including several

MapReduce implementations that we discussed in Chapter 2, and second, the work could be

categorized with the other parallel runtimes, which support some forms of parallel iterative

algorithms. In this section we will discuss some of the approaches adopted by others for the

second category.

7.1. Apache Mahout

Apache Mahout is a sub-project of the Hadoop, which provides scalable machine learning

libraries based on Hadoop’s MapReduce programming model. Currently, they support several

categories of machine learning applications such as clustering, classification, and

117

recommendation mining. Although most of these algorithms perform iterative MapReduce

computations, since they are based on Hadoop, each iteration is executed as a new MapReduce

computation by Hadoop. For example, consider the following pseudo code extracted from the K-

Means clustering implementation of the latest Apache Mahout (version 0.3) implementation.

 K-Means Clustering – Apache Mahout

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

[Perform sequentially] the main program

while(! converged && (iteration<MAX_ITERATIONs)

JobConf jobConf = new JobCon()

jobConf.setXXX()

..

JobClient.runJob(jobConf)

converged=isConverged()

iteration++

end while

 [Perform in parallel] –the map(Key = id, Value = point)

Cluster = findNearestClusterForTheInputPoint(point)

Emit(cluster,point)

[Perform in parallel] – the local combine (Key=cluster,List<Value =point>)

for each point Pi

 count++

 sum= sum + Pi

end for

Emit(cluster, [count,sum])

[Perform Sequentially] –the reduce(Key=cluster, List<Value=[count,sum])

for each value Vi

 totalCount= totalCount +Vi.count

 totalSum= totalSum + Vi.sum

end for

118

20

21

newCluster = calculateCluster(totalCount,totalSum)

WriteToFileSystem (clusterId,newCluster)

According to this implementation, the main program creates a new Hadoop MapReduce job per

each iteration (line number 2) and executes these jobs until convergence of cluster centers or the

maximum number of iterations has been reached. During an iteration, at each map task, a worker

in Hadoop reads the input data and calls the user defined map function (line number 9), by

passing it point by point, which then calculates the nearest cluster center for the input data point

and emits a (cluster, point) pair. The local combine function calculates the count and the sum for a

group of points assigned to a single cluster center and produces a (cluster, (count, sum)) key-value

pairs as output. The reduce function performs a similar operation to the combine function. It

calculates the new cluster centers from a collection of combine outputs. To analyze the overhead of

this, we can write the total running time of this computation for n iterations using P processors as

follows:- (Note: for this analysis we assume that there are a large enough number of map and

reduce tasks to process on P processors).

Time for K-Means on P processors =

T(P) = n *[T(job submission)+T(read input) + T(map()) + T(map to reduce data transfer) + T(reduce()) +

T(write output)]

In the above formula, the T(read-input) and T(write-output) represent times for reading an input

data partition and writing a reduce output, respectively. If we assume uniform map and reduce

running times, we can estimate the sequential running time of the K-Means clustering program

as follows:-

Time for K-Means on 1 processor =

T(1) = P* T(read input) +n* P* T(map()) + n* P* T(reduce()) + P* T(write output)

119

If we calculate the overhead of the MapReduce implementation using formula (2) of section

Chapter 6, it will be as follows:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑃(𝑇(𝑃) –𝑇(1)

𝑇(1)

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =

𝑃 ∗ 𝑛 [𝑇(𝑗𝑜𝑏 𝑠𝑢𝑏:) + 𝑇(𝑟𝑒𝑎𝑑 𝑖𝑛𝑝𝑢𝑡) + 𝑇(𝑚𝑎𝑝())
+ 𝑇(𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟) + 𝑇(𝑟𝑒𝑑𝑢𝑐𝑒()) + 𝑇(𝑤𝑟𝑖𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡)] −

𝑃 ∗ 𝑇(𝑟𝑒𝑎𝑑 𝑖𝑛𝑝𝑢𝑡) + 𝑛 ∗ 𝑃 ∗ 𝑇(𝑚𝑎𝑝()) +
 𝑛 ∗ 𝑃 ∗ 𝑇(𝑟𝑒𝑑𝑢𝑐𝑒()) + 𝑃 ∗ 𝑇(𝑤𝑟𝑖𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡)

P ∗ T(read input) + n ∗ P ∗ T(map()) +
 n ∗ P ∗ T(reduce()) + P ∗ T(write output)

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =

𝑛[𝑇(𝑗𝑜𝑏 𝑠𝑢𝑏:) + 𝑇(𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)]
+ (𝑛 − 1)[𝑇(𝑟𝑒𝑎𝑑 𝑖𝑛𝑝𝑢𝑡) + 𝑇(𝑤𝑟𝑖𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡)]

 T(read input) + T(write output) +
n[T(map()) + T(reduce())]

With the support for long running tasks, as in Twister, the above overhead reduces to:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑇(𝑗𝑜𝑏 𝑠𝑢𝑏:) + 𝑛𝑇(𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)
 T(read input) + T(write output) +

n[T(map()) + T(reduce())]

This is much smaller than that of Apache Mahout, because it does not include the additional job

submission, data reading, and writing times per each iteration. Furthermore, as we have

explained in section 2.3, the data transfer in Hadoop goes through the file system twice, a step

which incurs considerable data transfer overhead. The overhead of reading input data multiple

times increases dramatically in runtimes that read data from remote locations such as Cloud

MapReduce[96].

Apache Mahout provides implementations for a set of commonly used machine learning

algorithms. However, as we have shown above, irrespective of the algorithm, the

implementations incur considerable overheads when they are executed on the Hadoop runtime.

120

In contrast, most these algorithms will experience minimum overheads on Twister due to the

enhanced architecture and the programming model we used.

7.2. Pregel

Pregel[97] is a runtime developed for processing large graphs in which the programs are

expressed as a sequence of iterations. A user defined function is evaluated at each vertex of the

graph during an iteration, and between iterations, the vertices send messages to each other. The

authors describe the programming model as follows:

“Pregel computations consist of a sequence of iterations, called supersteps. During a superstep the

framework invokes a user defined function for each vertex, conceptually in parallel. The function specifies

behavior at a single vertex V and a single superstep S. It can read messages sent to V in superstep S + 1,

send messages to other vertices that will be received at superstep S + 1, and modify the state of V and its

outgoing edges. Messages are typically sent along outgoing edges, but a message may be sent to any vertex

whose identifier is known.”

Although the programming model of Pregel is different than Twister’s MapReduce based

programming model, there exist some similarities between the two runtimes. Most notably,

unlike other MapReduce runtimes such as Hadoop and Dryad, both Twister and Pregel use long

running tasks. A Vertex in Pregel holds a user defined value corresponding to the node of the

graph that it represents, and it keeps changing this value depending on the computation

performed by the user defined function, which is executed at each vertex. Twister also uses long

running map/reduce tasks, and it supports configuring them with any static data once per

computation; this possibility allows for the elimination of the need to re-load static data in each

iteration. Although the functional view of MapReduce does not encourage the use of stateful

map/reduce tasks, as we have shown in the Fox matrix multiplication described in section 6.9, one

can use stateful map/reduce tasks in Twister to implement complex applications.

121

The possibility in supporting fault tolerance easily is one of the key benefits of the MapReduce

programming model. However, with the use of stateful tasks, this possibility will no longer be in

effect, because the tasks cannot be re-executed without losing their current state. The runtime

needs to be able to preserve the state of every task in order to recover from failures. Furthermore,

the runtime cannot simply save the current state of tasks to the local disks of the computers

where they are executed, because a disk failure could result in a complete re-execution of the

entire program. In typical MapReduce, a disk failure could results in the re-execution of the

failed tasks in order to produce the missing intermediate data, however with stateful, tasks this

proves impossible. Therefore, the task state must be preserved in a fault tolerant distributed file

system such as GFS or HDFS. From the Pregel paper, it is not clear which mechanism the system

uses to save the state of the vertices in every super-step. However, it could most likely be stored

in the Google File System so as to support fault tolerance. Serializing the entire graph to a

distributed file system in each iteration is a costly checkpointing mechanism; therefore, we

believe that a checkpoint at every few iterations will be a more practical approach. Currently, we

do not support fault tolerance for stateful map/reduce tasks in Twister, as it is not coupled with a

distributed file system such as HDFS or GFS. The development of this type of failure handling

mechanism should emerge in interesting future research.

Under the MapReduce model, there is no direct communication path from the reduce stage back

to the map stage of the computation. However, such a communication can be simulated by

writing the output of the reduce stage to a distributed file system, and then reading the output

back in map tasks during the next iteration. To illustrate this approach, let’s consider a

MapReduce implementation of a PageRank algorithm. For this analysis, we assume that the link

graph is presented as an adjacency matrix in the format <<page_1, <link_1, .. ,link_m1>>, <<page_2,

<link_1 ,.. ,link_m2>, …, <<page_n, <link_1 ,.. ,link_mn>>. The following algorithm shows a possible

approach in implementing PageRank in MapReduce.

122

 Pagerank Algorithm for MapReduce

1

2

3

4

5

6

7

8

9

10

11

12

do

 [Perform in parallel] –the map() operation

for each page Pi

 PR(Pi)=ReadPageRankFromFileSystem(Pi)

 r=PR(Pi) / num_out_links

 for each link Lj

Emit(Lj,Pi, r)

[Perform Sequentially] –the reduce() operation

Collect all (Lj,Pi, r)

for each Lj

for each page Pi

 PR(Li) =PR(Li) + r

 WriteOutPutToFileSystem(Li,r)

while (num_iterations<MAX_ITERATIONS)

As can be seen in the above algorithm, steps 3 and 12 use a distributed file system to share the

current PageRank values between the reduce and the map stages of the computations. In Twister,

we used the combine operation to collect these current PageRank vectord to the main program.

Then we broadcasted it to all map tasks again. However, in both these implementations, the

above steps are responsible for the majority of the running time of the PageRank computation. In

Pregel, the above steps are represented by direct messages transferred between super steps.

Further, the communication between vertices does not introduce additional overheads.

Therefore, the messaging-based approach adopted by Pregel provides a natural programming

model for graph based algorithms.

123

7.3. Other Runtimes

Hoefler et al. discuss an efficient MapReduce implementation using MPI [98]. Their approach

take advantage of the built in collective communication routines such as MPI_Scatter and

MPI_Reduce to implement map and reduce operations, respectively. The use of the MPI_Reduce

pushes the reduce operation to the MPI library itself and this process involves some limitations:

for example, the number of intermediate keys needs to be known beforehand by all processing

elements. Furthermore, this approach requires every map task to send a message for every key,

irrespective of whether it has any data to send for that key. As we have demonstrated in Chapter

6, in MapReduce, the intermediate keys play the role of defining the communication topology

between the map and reduce tasks. In addition, there are no limitations to the number of

intermediate <key, value> pairs a map task can generate in a given iteration as well. While their

approach can be used to simulate MapReduce on MPI, it will be highly efficient for some of the

applications; however, it does not cover some of the key issues that MapReduce solves such as

moving computation data, distributed input reading, and fault tolerance.

One of our key motivations in this research is to develop an efficient architecture and a

programming model for MapReduce by incorporating best practices in terms of the HPC

runtimes to MapReduce, but while still keeping the benefits of MapReduce intact. In this respect,

the two specific features we have incorporated into Twister include: (i) long running tasks; and

(ii) a faster communication mechanism. (With the improvement discussed in section 5.2, the

bottleneck of brokers is also eliminated.) The results obtained from several benchmark

applications indicate that we have successfully achieved the above objective with Twister. One of

the key insights we have demonstrated is that, when the amount of data increases, a runtime

with coarser grained tasks yet which utilizes sub optimal data transfer constructs, can achieve

efficiencies in the same order as many HPC runtimes.

124

Ying Yu Bu et al. present LaHoop[99] runtime that extends the Apache Hadoop for iterative

MapReduce computations. They also adopt long running tasks and allow tasks to retain static

data across iterations. Furthermore, they optimize Hadoop’s scheduler to assign tasks to the same

location so as to support the process of reusing configured tasks. These optimizations are very

similar to what we proposed concerning Twister in our initial paper [95] a few years ago;

therefore, we are glad to see others adopting our recommended strategies about supporting

iterative MapReduce applications.

The paper presented by Cheng-Tao et al. discusses their experience in developing a MapReduce

implementation for multi-core machines[14]. They used the MapReduce runtime to implement

several machine learning algorithms, and they demonstrate that MapReduce is especially

effective for many algorithms that can be expressible in certain “summation form”. Phoenix

runtime, presented by Colby Ranger et al., is a MapReduce implementation for multi-core

systems and multiprocessor systems [100]. The evaluations used by Ranger et al. is comprised of

typical use cases found in Google's MapReduce paper such as word count, reverse index and also

iterative computations such as Kmeans. Some of our design decisions in Twister were inspired by

the benefits obtained in these shared memory runtimes. For example, in the above runtimes, the

data transfer simply requires sharing memory references; in Twister, we use distributed memory

transfers. Sending some data values to all map tasks is a trivial operation with shared memory, in

Twister we introduced mapReduceBcast() to handle such requirements.

125

Chapter 8. CONCLUSIONS AND FUTURE WORK

8.1. Summary of Work

In this dissertation, we presented the architecture and the programming model of an efficient

parallel programming runtime, named Twister which is based on MapReduce that can be applied

to many data intensive applications. We identified the composable class of applications to which

the MapReduce can be effectively applied. We analyzed the domain of MapReduce applications

and categorized them into several prominent classes including: (i) map-only; (ii) map-reduce; (iii)

iterative map-reduce; and (iv) complex map-reduce; and through this process, we discussed the

mapping of the algorithms to the parallel runtime constructs in order to demonstrate how

different parallel runtimes, including Twister, could be used to parallelize these applications. We

presented a detailed performance analysis of Twister and compared it to other runtimes using a

126

series real of data analysis applications to demonstrate how it could be used to achieve

considerable efficiencies in comparison with typical MapReduce runtimes. Finally, we discussed

research related to this thesis, along with a discussion about the current state of the art.

8.2. Conclusions

Large scale data analyses are becoming the norm in many areas of research and in numerous

industries, a development that mandates the use of parallel and distribute processing.

MapReduce extends the map-fold semantics offered in many functional languages to the

distributed processing world; it also adds the support of moving computation to data by the use of

distributed file systems. The simplified programming model of MapReduce allows the

underlying runtimes to better support fault tolerance. However, this simplicity also limits its

applicability to algorithms with fairly simple communication topologies. We proposed several

extensions to the programming model which can potentially improve its overall applicability to

more classes of applications.

The programming model proposed in this thesis uses three user defined functions and a main

program: (i) map; (ii) reduce; (iii) combine; as well as (iv) a main program containing one or more

MapReduce invocations, or, most importantly, an iterative construct (e.g. while or for loop)

which invokes one or more MapReduce computations. It uses long running map and reduce tasks,

inspired by classical parallel runtimes such as MPI. Furthermore, the programming model

distinguishes between the static and variable data consumed by the map and reduce tasks which

yield a behavior of configure once and invoke many times; this feature greatly simplifies the

programming logic of many iterative MapReduce applications, and also reduces the overhead of

loading static data in each iteration. We also introduced an additional phase called combine after

the reduce phase of MapReduce, so as to collect all the reduce outputs to a single location for

decision making. Sending a set of data items to individual map tasks (a scatter type operation)

127

and sending one data item to all map tasks (a broadcast type operation) prove to be very useful

programming constructs that we support in the extended programming model as well.

The architecture presented in the introductory paper of MapReduce[2] exhibits a considerable

coupling of the runtime to the infrastructure used in Google and to the type of operations that

they perform. One of their recent papers [97], mentioned that preemption is one of the main

reasons that they need fault tolerance rather than the hardware failures. These characteristics

motivate them to develop their runtime with tight fault tolerance capabilities in which every

piece of data produced was retained in some form of file system. We architected Twister to

support iterative applications with a relaxed fault tolerance mechanism which achieved

considerably higher efficiencies, especially in comparison with runtimes such as Hadoop that

share a similar architecture to Google. Performance and efficiency are especially beneficial when

running applications on the infrastructures acquired from Cloud on a pay per use basis or from

resources allocated via job queues as well.

Our architecture comprises of three main entities: (i) A MRDriver, which is used as a library in

the main program mentioned above; (ii) a daemon process that manages invocations of map and

reduce tasks in a given computing node; and (iii) a publish/subscribe broker network. MRDriver

manages a MapReduce computation during its life cycle while the daemons keep invoking

map/reduce tasks, depending on the instructions relayed by the MRDriver. The architecture uses

the broker network for transferring data as well as events related to the runtime. Depending on

the size of data produced, the daemons either use the broker network or direct TCP links to send

intermediate data between to one other. This is highly efficient compared to the disk->network-

>disk based communication mechanisms adopted by other MapReduce runtimes. The runtime

also supports computation units with multi-core processors by using configurable thread pools

128

and employing a process which directly transfers data via memory for tasks residing in the same

computation unit.

We implemented a series of data analysis applications representing different classes of

MapReduce computations and discussed their algorithms. Most of these applications are

implemented using several parallel runtimes such as Hadoop, DryadLINQ, and, in some cases, in

MPI, to compare the performance of these runtimes with Twister. To evaluate performance,

scalability, and efficiency, we performed a series of benchmarks using these applications; we also

used a micro benchmark developed to simulate various application scenarios. These evaluations

allowed us to derive the following conclusions regarding the applicability, performance and

scalability of the proposed architecture and the programming model.

8.2.1. Applicability

In Chapter 6 of this thesis, we demonstrated the applicability of the proposed programming

model to various classes of applications. Although it mainly focused on iterative applications, it

does not lose the capability of supporting map-only or map-reduce classes of computations, as

we have shown in sections 6.3, 6.4, and 6.5.

The map tasks in Twister can be programmed to access data loaded to memory via the configure

option, or they can also access data directly from files in local disks. If the first option is used, the

total amount of data that can be processed is limited to the total memory available in the

computation infrastructure. This is typically enough for many iterative MapReduce

computations. However, the latter option can be used to process large volumes of data and

remains limited only by the total hard disk space available in the computation infrastructure, as

we have shown in section 6.4.

Twister sends intermediate data directly from map tasks to reduce tasks either via pub-sub

brokers or via TCP links. This does not impose a restriction to the volume intermediate data

129

transfer. However, since Twister stores the reduce inputs in memory, with the current

implementation of Twister, the total intermediate data transfer (in a single iteration) should be

limited to the total memory available in the computation infrastructure. In most MapReduce

computations, a significant reduction of data volume occurs after the map phase of the

computation; therefore, we expect that for most applications, this will not impose a restriction.

Twister provides fault tolerance to iterative computations by automatically unrolling and re-

executing failed iterations. It does not support fault tolerance at the individual map and reduce

tasks as in Hadoop, and therefore, it does not provide fault tolerance to typical MapReduce

computations. As our experience indicates, the failures are less common in computation

resources in academic, environments and also, in resources leased from infrastructure services

such as Amazon EC2. Therefore, we expect Twister to be an alternate for typical MapReduce

computations in these environments as well.

The partition-file based data partitioning mechanism used in Twister allows users to access data

directly as files in the local file system. This makes the use of executables or legacy applications in

map or reduce functions fairly easy compared to the block based data partitioning strategies

adopted in other runtimes.

8.2.2. Performance and Scalability

Twister significantly outperforms both DryadLINQ and Hadoop for all the iterative MapReduce

computations that we have evaluated. For example, in both K-Means clustering and PageRank

(section 6.7) computations, Twister performs ten times faster than its closest competitor. In matrix

multiplication (section 6.9), Twister shows negative overheads due to super linear speedups, a

characteristic that we have seen before only in MPI based runtimes. After normalizing for the

performance differences in C++ versus Java, the performance of Twister become very close with

the performance of MPI for this application. In the MDS application (section 6.8) we noticed

130

efficiencies above 80% even though the algorithm performs three MapReduce invocations in each

iteration. In map-only and map-reduce applications (sections 6.3, 6.4, and 6.5) the performance of

Twister and the other runtimes are in the same order of magnitude; however, in many of them

Twister out performs the others.

In Chapter 6, we applied Twister to various MapReduce applications and ran it on moderately

sized computation resources. We have performed SW-G (section) on 1629 CPU cores using 1629

Twister daemons and it showed a linearly scalability. Similarly, for many other evaluations, it

showed desirable scalability characteristics as well. As we have explored in section 6.10, with

micro benchmarks, there are several operations we can consider that can effectively evaluate the

scalability of Twister. These include the following: (i) broadcast from main program; (ii) scatter

from main program; (iii) intermediate data transfer; and (iv) collection of output to combine

operation. In the first operation, the data is broadcasted to all daemons via a broker network and

therefore the scalability of twister is governed by the scalability of the broker network used. As

we have shown, more brokers can reduce the load on a single broker for this type of operation.

In the second operation, every piece of data goes from the MRDriver to a particular broker and

then to the target daemon. This operation is not performed in parallel to minimize the load on the

initial broker and may hinder the scalability of the application. However, typically, it is not

advisable to use this operation for larger data items.

Intermediate data transfer is a significant factor in deciding the scalability of Twister. When

intermediate data is transferred only using the broker network, the scalability suffers due to the

loading of the brokers. Therefore, Twister adopts the TCP based direct communication for large

intermediate data transfers. As discussed in section 6.10.2, this mechanism can transfer arbitrary

large data items in parallel without suffering from scalability issues.

131

Finally, having the combine operation to collect the reduce output is a sequential activity, as there

is only one combine function execution per iteration. Twister uses the TCP based data transfer

strategy for large data items here as well. In addition, the downloading of data happens using

multiple threads. For large deployments, transferring significant data to the combiner and

processing them at the main program will hinder the scalability of the runtime. Furthermore,

depending on the algorithm used, any computation performed in the main program will be

sequential and will contribute to scalability degradation.

8.3. Contributions

In section 1.5, we proposed the contribution of this thesis. Here, we will discuss how we achieved

them.

• Architecture and the programming model of an efficient and scalable MapReduce

runtime that extends the applicability of MapReduce programming model to more

classes of data intensive computing. This proves effective especially, for the iterative

MapReduce computations.

We introduced a MapReduce programming model based on long running tasks with

cacheable static data. We also introduced a combine operation and its semantics to

MapReduce. As we have discussed above, these changes extends MapReduce to iterative

and complex classes of applications.

• A prototype implementation of the proposed architecture and the programming model

that minimizes the overheads suffered by typical MapReduce runtimes.

After realizing the benefits of the novel MapReduce runtime, we developed a release

version of the software including a cluster deployment mechanism and a set of scripts to

manipulate data across the local nodes of the computations clusters. We released Twister

as an open source project under Indiana University’s Academic License to the public via

132

www.iterativemapreduce.org. We also developed a detailed user guide and examples

demonstrating the use of this runtime along with the source codes. The work in this

thesis was showcased at the doctoral symposium of the annual Super Computing

conference in 2009 (SC-09 in Portland) and a lengthy tutorial of Twister was given during

the National Center for Supercomputing Applications (NCSA)’s Virtual School Summer

Courses in September 2010.

• The classification of problems that can be handled by MapReduce and algorithms for

mapping these to the MapReduce model while minimizing overheads, followed by a

detail discussion on different implementations using the proposed runtime as well as

two other relevant runtimes.

We classify the MapReduce domain into four classes and discuss their characteristics, as

well as how to map algorithms in different categories to the MapReduce programming

model while incurring minimum overheads. Chapter 6 of this thesis discusses these

aspects in greater detail.

• A detailed performance analysis comprised of application level performance

characteristics to micro benchmarks and which evaluates the performance, scalability,

and overhead of the proposed runtime against relevant runtimes.

We performed a series of benchmarks using large data sets and considerable processing

infrastructures on different versions of applications we have developed using

DryadLINQ, Hadoop, and Twister, and in several cases, in MPI. Although we used these

evaluations to understand the performance characteristics of Twister, they also served as

comparisons of Twister with other runtimes; further, this highlights their strengths and

weaknesses. Furthermore, we used a set of micro benchmarks to simulate various

application scenarios which demonstrated the performance characteristics of Twister

under such scenarios.

http://www.iterativemapreduce.org/�

133

Overall, we have successfully extended the MapReduce programming model to iterative class of

applications and we have demonstrated how to get the most benefits possible from it for more

complex applications as well. The prototype we developed, Twister, was released as an open

source project so that others could explore and benefit from and improve the scalable software

architecture we discussed in this thesis. The related discussion concerning relevant research and

the current state of the art, in combination with the extensive set of performance analyses we

have included in this thesis, may help readers to gain an overall understanding of the different

MapReduce runtimes and their applicability.

8.4. Future Work

In this research, we focused on an efficient runtime to support iterative MapReduce

computations. We extended MapReduce programming model and introduces several

improvements to its architecture. However, there are several areas which future work could do to

build on this model:

Fault tolerance is one of the key features in MapReduce. Current Twister implementation

supports fault tolerance for iterative MapReduce computations by re-executing failed iterations

entirely. It does not support fault tolerance for typical MapReduce computations, which require

saving the intermediate data in some form of file system that hinders the performance of iterative

applications. One can research these issues and devise a methodology to checkpoint applications

after a certain number (say n) of iterations. Then for typical MapReduce applications, we can use

the same strategy with n as one.

Although we can store intermediate outputs in local disks of the compute nodes to achieve fault

tolerance for typical and iterative MapReduce computations, this process does not solve the fault

tolerance requirements of complex applications such as the Fox matrix multiplication in which

134

the map and reduce tasks accumulate state of the computation. A fault tolerance distributed file

system is required to support such applications.

As in other MapReduce runtimes, Twister also assumes that the failures of the Master node is

rare, i.e. if the Master node, where the Twister Driver runs fails, then the entire computation fails

in Twister as well. There can be multiple ways to support Master failures: (i) a check pointing

mechanism that can save the state of the Twister Driver and the “main program” which uses the

Twister Driver; (ii) a duplicate master based approach; or even a (iii) master election based

approach. These potential research avenues will prove fascinating for future developments which

could prove common to many runtimes

Running multiple MapReduce applications in a workflow fashion is another common usage of

MapReduce. In many such cases, one MapReduce application consumes the output of one or

more previous MapReduce applications. In the current Twister runtime, the output of reduce

tasks are stored in the local disk of the compute nodes, a process which does not guarantee fault

tolerance with disk failures. A distributed file system or a simple data replication mechanism

with a meta-data catalog needs to be integrated with Twister to support fault tolerance to such

applications.

Incorporating the above type of file systems with Twister and understanding the effects in

relation to the overall architecture and performance proves to be another interesting area for

future research. There are multiple choices to adopt in this regard: (i) a block based file system

such as HDFS, (ii) a distributed file storage such as Sector, and (iii) a distributed high

performance file system such as Lustre. All these options provide different capabilities and could

be well suited to different applications.

Current Twister implementation uses a static set of hardware nodes that are configured during

the initialization of the runtime. Dynamic scaling of processing resources is a very important

135

property that a runtime should support. This is especially useful when applications are executed

using Cloud resources. For example, an application may have several phases of computations in

which only a few of these phases have higher processing requirements. The ability of a runtime

to dynamically scale its processing units will save money when used in such scenarios. To

support dynamic scalability with Twister, one needs to improve its task scheduling mechanism

as well as add capabilities to dynamically move input data between processing units. For

example, the addition of processing units requires Twister to re-distribute data and start

computations on the newly added nodes.

Current Twister architecture uses a pubsub broker network as well as direct TCP links for data

communication. The use of publish/subscribe infrastructure enables the runtime to connect data

producers and consumers using virtualized topics, whereas direct TCP links are used to avoid

the broker network from getting flooded with large data transfers. A separate communication

layer that provides both these functionalities would be a definite improvement to the architecture

of Twister.

The programming extensions we have introduced in Twister enable it to be used with iterative

MapReduce applications. One can introduce more programming extensions by analyzing more

classes of applications, especially complex applications, so as to extend its applicability further.

8.5. List of Publications Related to This Thesis

Following is a list of publications directly related to this thesis:

• Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu,

Geoffrey Fox, Twister: A Runtime for Iterative MapReduce," The First International

Workshop on MapReduce and its Applications (MAPREDUCE'10) - HPDC2010

http://www.iterativemapreduce.org/hpdc-camera-ready-submission.pdf�

136

• Jaliya Ekanayake, (Advisor: Geoffrey Fox) Architecture and Performance of Runtime

Environments for Data Intensive Scalable Computing, Doctoral Showcase,

SuperComputing2009. (Presentation)

• Jaliya Ekanayake, Atilla Soner Balkir, Thilina Gunarathne, Geoffrey Fox, Christophe

Poulain, Nelson Araujo, Roger Barga, DryadLINQ for Scientific Analyses, Fifth IEEE

International Conference on e-Science (eScience2009), Oxford, UK.

• Jaliya Ekanayake, Geoffrey Fox, High Performance Parallel Computing with Clouds and

Cloud Technologies, First International Conference on Cloud Computing

(CloudComp09) Munich, Germany, 2009.

• Geoffrey Fox, Seung-Hee Bae, Jaliya Ekanayake, Xiaohong Qiu, and Huapeng Yuan,

Parallel Data Mining from Multicore to Cloudy Grids, High Performance Computing and

Grids workshop, 2008.

• Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox MapReduce for Data Intensive

Scientific Analysis, Fourth IEEE International Conference on eScience, 2008, pp.277-284.

http://grids.ucs.indiana.edu/ptliupages/publications/SC09-abstract-jaliya-ekanayake.pdf�
http://grids.ucs.indiana.edu/ptliupages/publications/SC09-abstract-jaliya-ekanayake.pdf�
http://www.slideshare.net/jaliyae/architecture-and-performance-of-runtime-environments-for-data-intensive-scalable-computing-2653554�
http://grids.ucs.indiana.edu/ptliupages/publications/eScience09-camera-ready-submission.pdf�
http://grids.ucs.indiana.edu/ptliupages/publications/cloud_handbook_final-with-diagrams.pdf�
http://grids.ucs.indiana.edu/ptliupages/publications/cloud_handbook_final-with-diagrams.pdf�
http://grids.ucs.indiana.edu/ptliupages/publications/CetraroWriteupJan09_v12.pdf�
http://www.cs.indiana.edu/~jekanaya/papers/eScience-final.pdf�
http://www.cs.indiana.edu/~jekanaya/papers/eScience-final.pdf�

137

REFERENCES

[1] The Power Method. Available: http://en.wikipedia.org/wiki/Pagerank#Power_Method

[2] J. D. Ghemawat, "Mapreduce: Simplified data processing on large clusters," ACM
Commun, vol. 51, pp. 107-113, January, 2008.

[3] Datacenter. Available: http://en.wikipedia.org/wiki/Data_center

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, "Dryad: distributed data-parallel
programs from sequential building blocks," presented at the Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, Lisbon, Portugal,
2007.

[5] G. Bell, J. Gray, and A. Szalay, "Petascale Computational Systems:Balanced
CyberInfrastructure in a Data-Centric World," IEEE Computer, vol. 39, pp. 110-112, 2006.

[6] C. T. M. Forum, "MPI: a message passing interface," presented at the Proceedings of the
1993 ACM/IEEE conference on Supercomputing, Portland, Oregon, United States, 1993.

[7] (2009, December). MPI. Available: http://www-unix.mcs.anl.gov/mpi/

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture, a Quantitative Approach:
Morgan Kaufman, 1990.

[9] J. Gray and P. Shenoy, "Rules of thumb in data engineering," in 16th International
Conference on Data Engineering, San Diego, CA , USA 2000, pp. 3-10.

[10] "single program multiple data," in Algorithms and Theory of Computation Handbook, P. E.
Black, Ed., ed: CRC Press LLC, 1999.

[11] MPI (Message Passing Interface). Available: http://www-unix.mcs.anl.gov/mpi/

[12] PVM (Parallel Virtual Machine). Available: http://www.csm.ornl.gov/pvm/

[13] G. Fox and S. Otto, "Matrix Algorithms on the Hypercube," California Institute of
Technology1985.

[14] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y. Ng, and K. Olukotun, "Map-
Reduce for Machine Learning on Multicore," in NIPS, ed: MIT Press, 2006, pp. 281-288.

[15] A. S. Foundation. (2009, Apache Hadoop. Available: http://hadoop.apache.org/core

[16] Y. G. Gu, "Sector and Sphere: The Design and Implementation of a High Performance
Data Cloud," Crossing boundaries: computational science, e-Science and global e-Infrastructure
I. Selected papers from the UK e-Science All Hands Meeting 2008 Phil. Trans. R. Soc. A vol. 367,
pp. 2429-2445, 2009.

http://en.wikipedia.org/wiki/Pagerank#Power_Method�
http://en.wikipedia.org/wiki/Data_center�
http://www-unix.mcs.anl.gov/mpi/�
http://www-unix.mcs.anl.gov/mpi/�
http://www.csm.ornl.gov/pvm/�
http://hadoop.apache.org/core�

138

[17] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, "The Landscape of
Parallel Computing Research: A View from Berkeley," EECS Department, University of
California, Berkeley UCB/EECS-2006-183, December 18 2006.

[18] Amazon Simple Storage Service (Amazon S3). Available: http://aws.amazon.com/s3/

[19] Windows Azure Platform. Available: http://www.microsoft.com/windowsazure/

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, "Dryad: distributed data-parallel
programs from sequential building blocks," SIGOPS Oper. Syst. Rev., vol. 41, pp. 59-72,
2007.

[21] Disco project. Available: http://discoproject.org/

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google file system," SIGOPS Oper. Syst.
Rev., vol. 37, pp. 29-43, 2003.

[23] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. Currey,
"DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using
a High-Level Language," in OSDI, R. Draves and R. v. Renesse, Eds., ed: USENIX
Association, 2008, pp. 1-14.

[24] X. Huang, & Madan, A., "CAP3: A DNA sequence assembly program.," Genome Res, vol.
9, pp. 868-77, 1999.

[25] M. Research. (2009, Dryad and DryadLINQ Academic Release. Available:
http://research.microsoft.com/en-us/downloads/03960cab-bb92-4c5c-be23-
ce51aee0792c/default.aspx

[26] I. T. Foster, "The Anatomy of the Grid: Enabling Scalable Virtual Organizations,"
presented at the Proceedings of the 7th International Euro-Par Conference Manchester on
Parallel Processing, 2001.

[27] K. Ranganathan and I. Foster, "Decoupling Computation and Data Scheduling in
Distributed Data-Intensive Applications," presented at the Proceedings of the 11th IEEE
International Symposium on High Performance Distributed Computing, 2002.

[28] G. Khanna, U. Catalyurek, T.Kurc, P. Sadayappan, and J. Saltz, "A Data Locality Aware
Online Scheduling Approach for I/O-Intensive Jobs with File Sharing," presented at the
12th International Workshop on Job Scheduling Strategies for Parallel Processing, France,
2006.

[29] (2010, LSF Batch Concepts. Available:
http://people.ee.ethz.ch/~ballisti/computer_topics/lsf/admin/01-conce.htm

[30] D. Thain, T. Tannenbaum, and M. Livny, "Distributed computing in practice: the Condor
experience: Research Articles," Concurrency and Computation Practice and Experience, vol.
17, pp. 323-356, 2005.

http://aws.amazon.com/s3/�
http://www.microsoft.com/windowsazure/�
http://discoproject.org/�
http://research.microsoft.com/en-us/downloads/03960cab-bb92-4c5c-be23-ce51aee0792c/default.aspx�
http://research.microsoft.com/en-us/downloads/03960cab-bb92-4c5c-be23-ce51aee0792c/default.aspx�
http://people.ee.ethz.ch/~ballisti/computer_topics/lsf/admin/01-conce.htm�

139

[31] S. L. Pallickara and M. Pierce, "SWARM: Scheduling Large-Scale Jobs over the Loosely-
Coupled HPC Clusters," in eScience, 2008. eScience '08. IEEE Fourth International Conference
on, 2008, pp. 285-292.

[32] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, "Cloud Computing Paradigms for Pleasingly
Parallel Biomedical Applications," presented at the Emerging Computational Methods
for the Life Sciences Workshop of ACM HPDC 2010 conference,, 2010.

[33] D. P. Anderson, "BOINC: A System for Public-Resource Computing and Storage,"
presented at the Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, 2004.

[34] J. Frey. Condor DAGMan: Handling Inter-Job Dependencies. Available:
http://cs.wisc.edu/condor/dagman/

[35] G. C. Fox and D. Gannon, "Special Issue: Workflow in Grid Systems: Editorials," Concurr.
Comput. : Pract. Exper., vol. 18, pp. 1009-1019, 2006.

[36] Pegasus Project. Available: http://pegasus.isi.edu/

[37] S. Dustdar and W. Schreiner, "A survey on web services composition," Int. J. Web Grid
Serv., vol. 1, pp. 1-30, 2005.

[38] J. Yu and R. Buyya, "A taxonomy of scientific workflow systems for grid computing,"
SIGMOD Rec, vol. 3, pp. 44-49, 2005.

[39] S. Shirasuna, "A Dynamic Scientific Workflow System for Web services Architecture,"
Ph.D., Department of Computer Science, Indiana University Bloomington, Bloomington,
2007.

[40] I. Foster, "Languages for Parallel Processing," in Handbook on Parallel and Distributed
Processing, J. Blazewicz, et al., Eds., ed, 2000.

[41] L. V. Kale and S. Krishnan, "Charm++: Parallel Programming with Message-Driven
Objects," in Parallel Programming using C++, G. V. Wilson and P. Lu, Eds., ed: MIT Press,
1996, pp. 75-213.

[42] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, "Interpreting the data: Parallel
analysis with Sawzall," Sci. Program., vol. 13, pp. 277-298, 2005.

[43] Apache Pig. Available: http://pig.apache.org

[44] (2009, December). LINQ Language-Integrated Query. Available:
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

[45] R. A. A. Bruce, S. Chapple, N. B. MacDonalds, A. S. T. and, and S. Trewin, Edinburgh
Parallel Computing Center, University of EdinburghNovember, 1999 CHIMP and PUL:
Support for portable parallel computing.

http://cs.wisc.edu/condor/dagman/�
http://pegasus.isi.edu/�
http://pig.apache.org/�
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx�

140

[46] R. Thakur, W. Gropp, and E. Lusk, "Data Sieving and Collective I/O in ROMIO,"
presented at the Proceedings of the The 7th Symposium on the Frontiers of Massively
Parallel Computation, 1999.

[47] W. G. a. E. Lusk, "Fault Tolerance in Message Passing Interface Programs," International
Journal of High Performance Computing Applications, vol. 18, pp. 363-372, 2004.

[48] Open MPI:Open Source High Performance Computing. Available: http://www.open-
mpi.org/

[49] G. E. Fagg and J. Dongarra, "FT-MPI: Fault Tolerant MPI, Supporting Dynamic
Applications in a Dynamic World," presented at the Proceedings of the 7th European
PVM/MPI Users' Group Meeting on Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 2000.

[50] MPICH-V. Available: http://mpich-v.lri.fr/

[51] POSIX Thread. Available: http://en.wikipedia.org/wiki/POSIX_Threads

[52] Boost Library. Available: http://www.boost.org/

[53] OpenMP. Available: http://openmp.org/wp/

[54] Task Parallel Library. Available: http://msdn.microsoft.com/en-
us/library/dd460717.aspx

[55] Threading Building Blocks. Available: http://www.threadingbuildingblocks.org/

[56] Microsoft Robotics Developer Studio. Available: http://msdn.microsoft.com/en-
us/library/bb648752.aspx

[57] J. Duffy and E. Essey. (2007, Parallel LINQ: Running Queries On Multi-Core Processors.
Available: http://msdn.microsoft.com/en-us/magazine/cc163329.aspx

[58] ServePath. (2009, GoGrid Cloud Hosting. Available: http://www.gogrid.com/

[59] ElasticHosts. (2009, Cloud Hosting. Available: http://www.elastichosts.com/

[60] K. Keahey, I. Foster, T. Freeman, and X. Zhang, "Virtual workspaces: Achieving quality
of service and quality of life in the Grid," Sci. Program., vol. 13, pp. 265-275, 2005.

[61] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D.
Zagorodnov, "The Eucalyptus Open-Source Cloud-Computing System," in Cluster
Computing and the Grid, 2009. CCGRID '09. 9th IEEE/ACM International Symposium on,
2009, pp. 124-131.

[62] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield, "Xen and the art of virtualization," presented at the Proceedings of the
nineteenth ACM symposium on Operating systems principles, Bolton Landing, NY,
USA, 2003.

http://www.open-mpi.org/�
http://www.open-mpi.org/�
http://mpich-v.lri.fr/�
http://en.wikipedia.org/wiki/POSIX_Threads�
http://www.boost.org/�
http://openmp.org/wp/�
http://msdn.microsoft.com/en-us/library/dd460717.aspx�
http://msdn.microsoft.com/en-us/library/dd460717.aspx�
http://www.threadingbuildingblocks.org/�
http://msdn.microsoft.com/en-us/library/bb648752.aspx�
http://msdn.microsoft.com/en-us/library/bb648752.aspx�
http://msdn.microsoft.com/en-us/magazine/cc163329.aspx�
http://www.gogrid.com/�
http://www.elastichosts.com/�

141

[63] T. I. M. Joshua Hursey, Andrew Lumsdaine, "Interconnect agnostic checkpoint/restart in
Open MPI," Proceedings of the 18th ACM international symposium on High Performance
Distributed Computing, pp. 49-58, 2009.

[64] XMPI - A Run/Debug GUI for MPI. Available: http://www.lam-mpi.org/software/xmpi/

[65] S. H. Russ, R. Jean-Baptiste, T. S. K. Kumar, and M. G. Harmon, "Transparent Real-Time
Monitoring in MPI," presented at the Proceedings of the 11 IPPS/SPDP'99 Workshops
Held in Conjunction with the 13th International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing, 1999.

[66] M. J. Flynn, "Some Computer Organizations and Their Effectiveness," IEEE Trans.
Comput, vol. C-21, p. 948, 1972.

[67] G. C. Fox, R. D. Williams, and P. C. Messina, Parallel Computing Works! : Morgan
Kaufmann 1994.

[68] Enabling Grids for E-science (EGEE). Available: http://www.eu-egee.org/

[69] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, "Falkon: a Fast and Light-
weight tasK executiON framework," presented at the Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, Reno, Nevada, 2007.

[70] E. Corwin and A. Logar, "Sorting in linear time - variations on the bucket sort," J. Comput.
Small Coll., vol. 20, pp. 197-202, 2004.

[71] J. B. MacQueen, "Some Methods for Classification and Analysis of MultiVariate
Observations," in Proc. of the fifth Berkeley Symposium on Mathematical Statistics and
Probability. vol. 1, L. M. L. Cam and J. Neyman, Eds., ed: University of California Press,
1967.

[72] K. Rose, E. Gurewwitz, and G. Fox, "A deterministic annealing approach to clustering,"
Pattern Recogn. Lett., vol. 11, pp. 589-594, 1990.

[73] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Available: http://infolab.stanford.edu/~backrub/google.html

[74] J. de Leeuw, "Applications of convex analysis to multidimensional scaling," Recent
Developments in Statistics, pp. 133-145, 1977.

[75] S. Pallickara and G. Fox, "NaradaBrokering: A Distributed Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids," presented at the Middleware
2003, 2003.

[76] ActiveMQ. Available: http://activemq.apache.org/

[77] G. Amdahl, "Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities," in American Federation of Information Processing Societies, pp. 483-
485.

http://www.lam-mpi.org/software/xmpi/�
http://www.eu-egee.org/�
http://infolab.stanford.edu/~backrub/google.html�
http://activemq.apache.org/�

142

[78] (2009, December). ROOT, Data Analysis Framework. Available: http://root.cern.ch/

[79] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and D. Thain, "All-Pairs: An
Abstraction for Data Intensive Computing on Campus Grids," in IEEE Transactions on
Parallel and Distributed Systems, 2010, pp. 33-46.

[80] O. Gotoh, "An improved algorithm for matching biological sequences," Journal of
Molecular Biology vol. 162, pp. 705-708, 1982.

[81] T. F. Smith and M. S. Waterman, "Identification of common molecular subsequences,"
Journal of molecular biology, vol. 147, pp. 195-197, March 25 1981.

[82] A. L. Price, E. Eskin, and P. A. Pevzner, "Whole-genome analysis of Alu repeat elements
reveals complex evolutionary history," Genome Res, vol. 14, pp. 2245–2252, 2004.

[83] (2009, December). JAligner. Available: http://jaligner.sourceforge.net

[84] A. F. A. Smit, R. Hubley, and P. Green. (2004, Repeatmasker. Available:
http://www.repeatmasker.org

[85] J. Jurka, "Repbase Update:a database and an electronic journal of repetitive elements,"
Trends in Genetics, vol. 6, pp. 418-420, 2000.

[86] J. Ekanayake, A. Balkir, T. Gunarathne, G. Fox, C. Poulain, N. Araujo, and R. Barga,
"DryadLINQ for Scientific Analyses," presented at the 5th IEEE International Conference
on e-Science, Oxford UK, 2009.

[87] Y. Zhu, S. Ye, and X. Li, "Distributed PageRank computation based on iterative
aggregation-disaggregation methods," presented at the Proceedings of the 14th ACM
international conference on Information and knowledge management, Bremen,
Germany, 2005.

[88] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub, "Exploiting the Block Structure of
the Web for Computing PageRank," Stanford InfoLab, Technical Report2003.

[89] (2009, The ClueWeb09 Dataset. Available: http://boston.lti.cs.cmu.edu/Data/clueweb09/

[90] J. Kruskal, "Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis," Psychometrika, vol. 29, pp. 1-27, 1964.

[91] Y. Takane, Young, F. W., & de Leeuw, J., "Nonmetric individual differences
multidimensional scaling: an alternating least squares method with optimal scaling
features," Psychometrika, vol. 42, pp. 7-67, 1977.

[92] I. Borg, & Groenen, P. J., Modern Multidimensional Scaling: Theory and Applications:
Springer, 2005.

[93] J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, and G. Fox, "High Performance Parallel
Computing with Clouds and Cloud Technologies," in Cloud Computing and Software
Services: Theory and Techniques, ed: CRC Press (Taylor and Francis).

http://root.cern.ch/�
http://jaligner.sourceforge.net/�
http://www.repeatmasker.org/�
http://boston.lti.cs.cmu.edu/Data/clueweb09/�

143

[94] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox, "Twister: a
runtime for iterative MapReduce," presented at the Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, Chicago,
Illinois, 2010.

[95] J. Ekanayake, S. Pallickara, and G. Fox, "MapReduce for Data Intensive Scientific
Analyses," presented at the Proceedings of the 2008 Fourth IEEE International
Conference on eScience, 2008.

[96] H. Liu and D. Orban, "Cloud MapReduce: a MapReduce Implementation on top of a
Cloud Operating System," Accenture Technology Labs.

[97] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G.
Czajkowski, "Pregel: a system for large-scale graph processing," presented at the
Proceedings of the 2010 international conference on Management of data, Indianapolis,
Indiana, USA, 2010.

[98] T. Hoefler, A. Lumsdaine, and J. Dongarra, "Towards Efficient MapReduce Using MPI,"
presented at the Proceedings of the 16th European PVM/MPI Users' Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Interface, Espoo,
Finland, 2009.

[99] Y. Bu, B. Howe, M. Balazinska, and M. Ernst, "HaLoop: Efficient Iterative Data Processing
On Large Clusters."

[100] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, "Evaluating
MapReduce for multi-core and multiprocessor systems," in 13th International Symposium
on High-Performance Computer Architecture, 2007, pp. 13-24.

144

Vita

Name: Jaliya Ekanayake

Date of Birth: January 14, 1980

Place of Birth: Matara, Sri Lanka

Education:

January, 2007 Master of Science, Computer Science - 2007

Indiana University, Bloomington, Indiana

March, 2004 Bachelor of Science, Computer Science and Engineering - 2004

University of Moratuwa, Sri Lanka

Experience:

May, 2010 - Present Research Software Development Engineer, Microsoft Research

Microsoft Corporation, Redmond, Washington

June, 2009 - September, 2009 Summer Intern, Microsoft Research

Microsoft Corporation, Redmond, Washington

August, 2005 – May, 2010 Research Assistant

Community Grids Lab, Indiana University

Bloomington, Indiana

February, 2005 - August, 2005 Research Engineer

Lanka Software Foundation, Colombo Sri Lanka

Honors/Affiliations:

 Graduate Student Scholarship – Indiana University,
Bloomington (2005 – 2010)

Lanka Software Foundation Fellowship (2004-2005)

Committer for Apache Sandesha, Apache Axis2, and a member
of the Project Management Committee for Apache Sandesha
(2004 –2008)

	Chapter 1. Introduction
	1.1. Introduction
	1.2. The MapReduce Programming Model
	1.3. Motivation
	1.4. Problem Definition
	1.5. Contributions
	1.6. Thesis Outline

	Chapter 2. Parallel Runtimes & Programming Models
	Taxonomy of Parallel/Distributed Runtimes
	2.2. Cloud and Cloud Technologies
	2.3. Existing MapReduce Architectures
	2.3.1. Handling Input and Output Data
	2.3.2. GFS and HDFS
	2.3.3. Sector
	2.3.4. DryadLINQ and the Concept of Partitioned Table
	2.3.5. Handling Intermediate Data
	2.3.6. Scheduling Tasks
	2.3.7. Fault Tolerance

	2.4. Batch Queues
	2.5. Cycle Harvesting
	2.6. Work Flow
	2.7. Parallel Languages
	2.7.1. Sawzall
	2.7.2. DryadLINQ
	2.7.3. PigLatin

	2.8. Message Passing
	2.9. Threads
	2.10. Cloud
	2.11. Summary of Features Supported by Different Runtimes

	Chapter 3. Application Classes
	3.1. Map-only Applications
	3.2. MapReduce Applications
	3.3. Iterative MapReduce Applications

	Chapter 4. A Programming Model for Iterative MapReduce Computations
	4.1. Static vs. Variable Data
	4.2. Long Running Map/Reduce Tasks
	4.3. Granularity of Tasks
	4.4. Side-effect-free Programming
	4.5. Combine Operation
	4.6. Programming Extensions

	Chapter 5. Twister Architecture
	5.1. Handling Input and Output Data
	5.2. Handling Intermediate Data
	5.3. Use of Pub/Sub Messaging
	5.4. Scheduling Tasks
	5.5. Fault Tolerance
	5.6. Twister Implementation
	5.6.1. Software Requirements
	5.6.2. Twister Daemon
	5.6.3. Twister Driver
	5.6.4. Pub-sub Brokers
	5.6.5. File Manipulation Tool

	5.7. Twister API

	Chapter 6. Applications and their Performances
	6.1. Performance Measures and Calculations
	6.1.1. Performance and Scalability
	6.1.2. Speedup
	6.1.3. Parallel Overhead
	6.1.4. Parallel Efficiency

	6.2. Hardware Software Environments
	6.3. CAP3 Data Analysis
	6.3.1. Hadoop Implementation
	6.3.2. DryadLINQ Implementation
	6.3.3. Twister Implementation
	6.3.4. Performance Evaluation
	6.3.5. Discussion

	6.4. High Energy Physics (HEP) Data Analysis
	6.4.1. Hadoop Implementation
	6.4.2. DryadLINQ Implementation
	6.4.3. Twister Implementation
	6.4.4. Performance Evaluation
	6.4.5. Discussion

	6.5. Pairwise Similarity Calculation
	6.5.1. Introduction to Smith-Waterman-Gotoh (SWG)
	6.5.2. Hadoop Implementation
	6.5.3. DryadLINQ Implementation
	6.5.4. Twister Implementation
	6.5.5. Performance Evaluations
	6.5.6. Discussion

	6.6. K-Means Clustering
	6.6.1. Hadoop Implementation
	6.6.2. DryadLINQ Implementation
	6.6.3. Twister Implementation
	6.6.4. MPI Implementation
	6.6.5. Performance Evaluation
	6.6.6. Discussion

	6.7. PageRank
	6.7.1. Hadoop Implementation
	6.7.2. Twister Implementation
	6.7.3. Performance Evaluation
	6.7.4. Discussion

	6.8. Multi-Dimensional Scaling (MDS) Application
	6.8.1. Twister Implementation
	6.8.2. Performance Analysis
	6.8.3. Discussion

	6.9. Matrix Multiplication
	6.9.1. Row-Column Decomposition Approach
	6.9.2. Fox Algorithm for Matrix Multiplication
	6.9.3. Fox Algorithm using Twister’s Extended MapReduce
	6.9.4. Performance Evaluation
	6.9.5. Discussion

	6.10. Twister Benchmark Application and Micro Benchmarks
	6.10.1. Structure of the Benchmark Application
	6.10.2. Micro Benchmarks

	6.11. Conclusion

	Chapter 7. Related Work
	7.1. Apache Mahout
	7.2. Pregel
	7.3. Other Runtimes

	Chapter 8. CONCLUSIONS AND FUTURE WORK
	8.1. Summary of Work
	8.2. Conclusions
	8.2.1. Applicability
	8.2.2. Performance and Scalability

	8.3. Contributions
	8.4. Future Work
	8.5. List of Publications Related to This Thesis

