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Abstract—Large volumes of high dimensional time series
data are increasingly becoming commonplace, and the ability
to project such data into three dimensional space to visually
inspect them is an important capability for scientific exploration.
Algorithms such as Multidimensional Scaling (MDS) and Prin-
cipal Component Analysis (PCA) can be used to reduce high
dimensional data into a lower dimensional space. The time
sensitive nature of such data requires continuous processing
in time windows and visualizations to be shown as moving
plots. In this paper we present: 1. an MDS-based approach to
project high dimensional time series data to 3D with automatic
transformation to align successive data segments; 2. an open
source commodity visualization of three-dimensional time series
in web browser based on Three.js; and 3. An example based on
stock market data. The paper discusses various options available
when producing the visualizations and how one optimizes the
heuristic methods based on experimental results.

I. INTRODUCTION

TSmap3D is a software toolkit for generating and visu-
alizing high dimensional time series data in 3D space as a
sequence of 3D point plots. It consists of a web portal, Web-
PlotViz for viewing the points in 3D, a highly efficient parallel
implementation of Multidimensional Scaling (MDS) [1] for
mapping high dimensional data to 3D from large data sets, and
a generic workflow with tools to prepare data for processing
and visualization. The input to the system is a set of data
points taking sequence of values at each time step. The output
is a sequence of 3D point plots that can be portrayed by the
visualization software as a continuous moving plot with user
interactions enabled for the plots. The timestamp associated
with a data point is used to segment the data into time
windows, which can be calculated by a method such as sliding
window approach. This sequence of data segments define the
time steps of the time series. A distance metric between each
pair of data points in a data segment is chosen, and the points
are projected to 3D by the MDS algorithm such that the
distances between the items in new 3D space matches the
original distances as closely as possible.

The MDS projection of points to 3D is ambiguous up to
an overall rotation, translation and reflection. When MDS
is applied to each segment in a series of consecutive data
segments for a time series data set, the resulting 3D points
in adjacent plots are not aligned by default. We introduce an
approach called MDS alignments to find the transformation

which best aligns mappings that are neighboring in time. The
MDS and alignment techniques are well established, but they
are non-trivial to apply in this particular instance with so many
details regarding the implementation. Variants of least squares
optimization are involved in both the MDS and alignment
stages, and in each case, we weight the terms in objective
functions by a user defined function. The result of MDS
followed by MDS alignments is a time series consisting of
a set of vectors, one for each data entity, in 3D (MDS can
project to any dimension but 3D is natural for visualization).

The visualization software is an HTML5 viewer (based on
Three.js [2]) for general 3D time series, which greatly helps
in understanding the behavior of time series data. The user
is capable of viewing the time series as a moving plot, while
interacting with the plots via 3D rotations, pan and zoom.
This allows them to visually inspect changes in the high
dimensional relationships between the items over time. The
web-based viewer works on any platform with a web browser
including handheld devices such as mobile phones.

This paper describes the initial results of a study concerning
the structure of financial markets viewed as collections of
securities generating a time series of 3D values and visualized
using WebPlotViz. The study should be viewed as an exam-
ination of technologies and approaches and not a definitive
study of stock structures. For example, this study looks at
only one set of U.S. securities over a 13-year time period
with daily values defining the time series. A version of the
WebPlotViz visualization software loaded with plots described
in this paper, along with many other plots, is available publicly
for reference1. WebPlotViz is available either as open source
software or as ”Software as a Service” supporting user upload
and display of data.

The remainder of this paper is organized as follows: Sec-
tion II discusses related work, then Section III presents the
workflow in detail. Section IV provides details about the
implementation of visualization software. Section V informs
on the stock data analysis using the system. Experiments and
results are discussed in Section VI. Section VII presents future
work and Section VIII concludes the paper.

1https://spidal-gw.dsc.soic.indiana.edu/



II. RELATED WORK

There are a large number of software tools for visualizing
scientific data. Most of them are desktop models utilizing the
power of low level programming to achieve highly efficient
visualizations [3], [4], [5]. Many researchers [6], [7], [8],
[9] have identified the importance of big data visualization
as a tool for scientific exploration. Big data visualization
can give valuable insight for scientists to further study prob-
lems in different directions. With the recent advancements
in Web browser technologies, visualization software is being
developed for such platforms, which offers advantages such
as platform independence and functionality in small devices.
Some examples include Many Eyes [10], a tool developed by
IBM for analyzing data visually in browsers, and iView [11],
which is a browser-based visualization software for protein-
ligand complexes developed using Three.js. Still desktop vi-
sualization software seems to provide more advanced features
than browser based software and Gephi [12] is a popular open
source visualition system.

Some of the most popular dimension reduction algorithms
include Principle Component Analysis (PCA), Generative
Topographic Mapping (GTM) [13], Self-Organizing Map
(SOM) [14], t-SNE [15] and Multidimensional Scaling. We
use MDS (an improved SMACOF method) for this paper
due to its popularity and strong theoretical backgrounds. The
MDS algorithm [16] is well-known but has been efficiently
optimized and parallelized [17]. This approach has recently
been applied to visualize biological data sets including DNA
sequences and proteins [18], [19].

There are many tools to develop large-scale workflows from
both the HPC and Big Data communities. Some noteworthy
examples of HPC workflows include Tavarna [20], Kepler [21]
and Airavata [22]. These tools are geared towards linking high
performance computations outside the data flow, which is the
most important aspect of this application. The data used in
our application is large in terms of data items and number
of segments possible, hence it is more suitable for big data
management platforms. Technologies such as Hadoop [23],
Spark [24] and Flink [25] are also available. Developing
workflows on top of such frameworks provides other capa-
bilities including fault tolerance and automatic parallelization
for analyzing large data sets. To develop big data workflows,
tools such as Apache Beam [26] and Crunch, which work
as a layer on top of big data frameworks described above,
can be used. A generic dataflow language such as Apache
Beam can avoid locking in to a single big data platform. The
workflow described in this paper is implemented using Hadoop
and Crunch and later will be implemented in Apache Beam
(open source Google Cloud Dataflow).

The HTML5 visualization tool WebPlotViz described in
this paper is the next generation of our desktop visualization
tool PlotViz [27], [28]. PlotViz is a standalone Windows
application with support for displaying individual plots and
trees. With the desktop version, it was difficult to share plots
among users and manage the data in a central repository. Also

the standalone nature of PlotViz made it impossible to develop
large-scale processing algorithms for uploaded plots. Because
the data is now stored at the back-end, the new architecture
allows large-scale processing of plot data. Furthermore the new
version supports time series data visualizations.

III. DATA PROCESSING WORKFLOW

The TSmap3D framework executes all the steps, includ-
ing pre-processing, data analytics and post-processing, in a
scripted workflow as shown in Figure 1. The initial workflow
was developed with MPI(Message Passing Interface) as the
key technology to implement the data processing and used
a HPC cluster to run the workflow. Later we implemented
the same data processing steps in Apache Hadoop [23] for
better scalability, data management and fault tolerance. All
the programs in the workflow are written using Java, and
the integration is achieved using bash scripts. The MDS and
Levenberg-Marquardt MDS alignment algorithms are Java-
based MPI applications running efficiently in parallel.

Pre-processing steps of TSmap3D mainly focus on data
cleansing and preparing the data to suit the input for the MDS
algorithm. These data are then run through the MDS algorithm
to produce 3D point sets at each time value. There can be high
numbers of data segments for a data set depending on the data
segmentation approach. For each of these segments, we first
put the data into a vector form where ith element represents
the value at ith time step in that window. For each vector file, a
distance matrix file and weight file are calculated according to
user defined functions. The (i, j)th entry of these files contains
the pairwise distance or weight between i and j vectors. At
the next step MDS is run on these data segments individually
which produces the 3D point files.

Each MDS Projection is ambiguous to an overall rotation,
reflection and translation, which was addressed by a least
squares fit to find the best transformation between all con-
secutive pairs of projections. This transformation minimizes
the distances between the same data points in the two plots.
Next the plots are prepared for visualization by TSmap3D.
The points in the plots are assigned to clusters according to
user defined classifications. Colors and symbols are assigned to
clusters, and finally the files are converted to the input format
of the visualiser.

A. Segmenting time series

TSmap3D mainly uses a sliding window approach to seg-
ment the data. Users can choose a time window and sliding
time period to generate data sets. The data segmenting starts
with time t0, s and adds a fixed time window tw to get the
first data segment with end time t0, e. Adding a shifting time
ts to the previous start time and end time produces a sliding
data segmentation. Adding a shifting time only to the end time
produces an accumulating segmentation.

The sliding time approach with a 1 year tw and 7 day ts pro-
duces overlapping data segments, i.e. 2001-Jan-01/2002-Jan-
01 shift to 2001-Jan-08/2002-Jan-08. Data cleansing functions
need to run on each data segment because different segments



Fig. 1: Data processing workflow

can have different item sets and the data of an item in a given
time segment can be incomplete.

B. Distance & Weight Calculation

The MDS algorithm expects a distance matrix D, which
has the distance between each pair of items in a given data
segment. It also expects a weight matrix W with the weights
between each pair of items within that data segment. D =
|di,j |; di,j = distance(i, j) W = |wi,j |;wi,j = weight(i, j)
Both distance matrix and weight matrix are stored as files with
values converted to a short integer from its natural normalized
double format (value between 0 and 1) for compact storage
purposes.

To calculate both distance matrix and weight matrix, we put
each data item into a vector format from the original input file.
A row in this vector file contains values for each time step of
the time window. When creating these vector files the data
items are cleaned (i.e. remove items without sufficient values
for the time period, and fill values that are missing). After this
process, the data is now clean and in vector form.

C. MDS Program

The MDS algorithm we use [17], [29] is an efficient
weighted implementation of SMACOF [30]. Its runtime com-
plexity is effectively reduced from cubic to quadratic with the
use of the iterative conjugate gradient method for dense matrix
inversion. Also it implements robust Deterministic Annealing
(DA) process to optimize the cost function without being
trapped in local optima. Weighting allows us to give more
importance to some data items in the final fit. Note our pipeline

is set up for general cases where points are not defined in a
vector space and it only uses distances and not scalar products.
In earlier work, we have learned to prefer MDS to PCA as
MDS does optimal non-linear transformations and PCA is only
superior over all linear point transformations to the 3D space.
Despite this PCA remains a powerful approach and one could
use this visualization package with it as well as MDS presented
here.

The objective of the MDS algorithm is to minimize the
stress σ(X) defined in Eq. 1 where di,j is the distance between
points i and j in the original space; δi,j is the distance between
the two points in mapped space and wi,j is the weight between
them.

σ(X) =
∑
i,i≤N

wi,j(di,j − δi,j)2 (1)

The mathematical foundation of the parallel algorithm
along with deterministic annealing optimization approach is
described in great detail in [17]. The parallel MDS implemen-
tation uses Java and message passing. OpenMPI provides a
Java binding over its native message passing implementation,
which is further optimized in MDS to gain significant speedup
and scalability on large HPC clusters [1]. The code for MDS
is public and is also available at SPIDAL source repository 2.

D. MDS alignments

Because MDS solutions are ambiguous to an overall rota-
tion, reflection and translation, the algorithm produces visu-
ally unaligned results for consequent windows in time. We
experimented with two approaches to rotate and translate the
MDS results among such different windows so that they can
be viewed as a sequence of images with smooth transitions
from one image to other.

In the first approach we generate a common dataset across
all the data available and use this as a base to rotate and trans-
late each of the datasets. In the second approach we rotate with
respect to the result of the previous time window. This leads
to a continuous alignment of the results but requires the data
processing to run with overlapping times in a sliding window
fashion. The first method is viable for time windows with less
overlapping data, because the results of two consecutive time
windows can be very different.

The algorithm reflects, rotates, translates and scales one
data set to best match the second. It is implemented as a
least squares fit to find the best transformation that mini-
mizes sum of squares of difference in positions between the
MDS transformed datasets at adjacent time values. We use
the well-known reasonably robust LevenbergMarquardt [31]
minimization technique using multiple starting choices; this
increases robustness and allows us to see if a reflection
(improper transformation) is needed. Currently the algorithm
only uses the reflection, rotation and translation in the final
transformation as it needs to preserve the original scale of

2https://github.com/DSC-SPIDAL/damds.git



the generated points. In the future we intend to simplify the
algorithm to remove the fitted scaling factor.

IV. WEBPLOTVIZ VISUALIZATION SOFTWARE

WebPlotViz is a HTML5-based viewer for large-scale 3D
point plot visualizations. It uses Three.js 3 JavaScript library
for rendering 3D plots in the browser. Three.js is built using
WebGL technology, which allows GPU-accelerated graphics
using JavaScript. It enables WebPlotViz to visualize 3D plots
consisting of millions of data points seamlessly. WebPlotViz is
designed to visualize sequences of time series 3D data frame
by frame as a moving plot. The 3D point files are stored along
with the metadata in a NoSQL database which allows scalable
plot data processing on the server side. The user can use the
mouse to interact with the plots displayed, i.e. zoom, rotate and
pan. They can also edit and save the loaded plots by changing
point sizes and assigning colors and special shapes to points
for better visualization. WebplotViz provides features to create
custom clusters and define trajectories, as well as supporting
single 3D plots such as point plots and trees. A sample plot
with 100k points and a tree are shown in Fig 3. The online
version has many such example plots preloaded.

WebPlotViz also serves as a data repository for storing and
sharing the plots along with their metadata, including functions
to search and categorize plots stored. The source code of
WebPlotViz, data analysis workflow and MDS algorithm are
available in the DSC-SPIDAL github repository4.

A. Input

WebPlotViz has an XML-based input format, as well as text
file-based and JSON-based versions. The XML and JSON file
formats contain the points and other metadata such as cluster
information of a plot. The text file input is a simple input
format with only the point information for quick visualization
of data sets. A time series input file is a collection of individual
plots and an index file specifying the order of the plots to be
displayed in the time series.

B. Grouping & Special Shapes

Points are grouped into user defined clusters and separate
colors are used to distinguish them visually. WebPlotViz offers
functions to manage these groups. For example, special shapes
can be assigned to the items in a plot through the UI as
well as in the plot input files, and the items can also be
hidden. Additionally users are provided with the functionality
to define custom clusters through the UI, which allows them
to revise the clusters provided through the input file. This is
an important functionality since when analyzing data through
visualization, domain knowledge often allows users to deter-
mine groupings and clusters that might not be obvious prior to
visualization. Special shapes are assigned to points to clearly
highlight them in the plot.

WebPlotViz also provides several color schemes that can
be applied to plots in order to mark clusters with unique

3http://threejs.org
4https://github.com/DSC-SPIDAL

colors. This can be of help if the original plot data does not
contain any color information for clusters or if the existing
color scheme does not properly highlight the key features of
the plot.

C. Trajectories

Trajectories allow the user to track the movement of a point
through time when the time series is played. A trajectory is
displayed as a set of line segments connecting the movement
of an item in time where the points are marked with labels to
identify their place.

D. Versioning

WebPlotViz provides version support for plots to allow users
to manage multiple perspectives of the same data set. Users
can edit the original plot by changing various features such as
its rotation, zoom level, point size, cluster color, and custom
clusters. They can then save the modified plot as a separate
version. Each version is recorded as a change log in the back-
end system; when a version is requested, the relevant changes
are applied to the original data set and presented to the users.
This allows the system to support large quantities of plot data
versions without increasing the storage space requirements.

E. Data Management

The software system supports management of uploaded
plots by grouping plots to collections and tagging them with
user defined keywords. The ability to associate metadata with
each plot, which may include experiment descriptions and
various settings used during the experiment, enables them to
associate important information for future reference and to
share their work easily and effectively. The system offers the
option to share plots publicly and add comments to existing
plots, which permits discussion with others regarding plot
details and findings related to the experiments. WebplotViz
also provides tag-based and content-based search functionality
to enhance usability of the system.

V. STOCK DATA ANALYSIS

A. Source of Data

Stock market data are obtained from the Center for Research
in Security Prices (CRSP)5 database through the Wharton
Research Data Services (WRDS) 6 web interface, which makes
daily security prices available to Indiana University students
for research. The data can be downloaded as a ’csv’ file
containing records of each day for each security over a given
time period. We have chosen the CRSP data because it is being
actively used by the research community, is readily available
and free to use. The data includes roughly 6000 to 7000
securities for each annual period after cleaning. The number
is not an exact one for all data segments because securities
are added/removed from the stock exchange.

5Calculated (or Derived) based on data from Security Files@2016 Center
for Research in Security Prices (CRSP), The University of Chicago Booth
School of Business.

6https://wrds-web.wharton.upenn.edu/wrds



Fig. 2: WebPlotViz view area with various options

(a) 100k points and clusters (b) Tree

Fig. 3: Cluster of points and a tree visualized with WebPlotViz

This study considered daily stock prices from 2004 Jan-
uary 1st to 2015 December 31st. The paper discusses the
examination of changes over one-year windows (the velocity
of the stock) and the change over the full time period (the
position of the stock). The data can be considered as high
dimensional vectors, in a space – the Security Position Space
– with roughly 250 times the number of years of components.
We map this space to a new three dimensional space using
dimensional reduction for visualization. With a one-year pe-
riod and a 1-day shift sliding window approach, are 2770 data
segments, each generating a separate 3D plot. The Pearson
Correlation between the stock vectors is primarily used to
calculate distances between securities in the Security Position
Space. A single record of the data contains the following
attributes and information about a security for a given time (in
our case a day): ”ID, Date, Symbol, Factor to adjust volume,
Factor to adjust price, End of day price, Outstanding stocks”.

Price is the closing price or the negative bid/ask average
for a trading day. If closing price or the bid/ask average is not
available, the price is set to zero. Outstanding stocks is the
number of publicly held shares. This study uses the outstand-
ing shares and the price to calculate the market capitalization
of the stock. In addition we take two other attributes called
factor to adjust price and factor to adjust volume. These are
used for determining a stock split as described by the CRSP.

B. Data Cleansing

Here are the data anomalies we found in the data and the
steps taken to correct them.

1) Negative Price Values: According to CRSP, if the clos-
ing price is not available for any given period, the number
in the price field is replaced with a bid/ask average. Bid/ask
averages have dashes placed in front of them (which we read
as negative values). These serve simply to distinguish bid/ask
averages from actual closing prices. If neither price nor bid/ask
average is available, Price or Bid/Ask Average is set to zero.
For values with a dash in front of them, we read this as a
negative value and multiply by -1.

2) Missing Values: Missing values are indicated by empty
attribute values in the data file and are replaced with the
previous day’s value. If there are more than 5% missing values
for a given period we drop the stock from consideration. There
are about 900 stocks with more than 5% of missing values per
year from 2004 to the end of 2015.

3) Stock splits: In the 2004 to end of 2015 period there
were 2456 stock splits. The CRSP data provides the split
information in the form of two variables called Factor to
Adjust Price and Factor to Adjust Volume. Factor to adjust
price is defined as (s(t)−s(t′))/s(t′) = (s(t)/s(t′))−1 where
s(t) is the number of shares outstanding, t is a date after or on
the exit for the split, and t’ is a date before the split. We use
this variable to adjust the prices of a stock to a uniform scale
during the time period we consider by multiplying the stock
price after the split with (Factor to Adjust Price + 1). When a
stock split happens both Factor to Adjust Volume and Factor to
Adjust Price are the same and we can adjust the price with the
above method. In very rare cases these two can be different
and we ignore such instances. We had only 1 instance of a
record where these two factors had different values over the
whole period, which we feel justifies our decision to ignore
that case.

4) Duplicated Values: Although uncommon, there are du-
plicate values in the data records. The work flow removes the
duplicates and uses the earliest record as the correct value.



Fig. 4: Four Consecutive Plots of L given by Eq. 4

C. Data Segmentation

The results of this paper are primarily based on two data
segmentation approaches: 1. Sliding window with time interval
of 1 Year and 7 day or 1 day shifts (we call the sliding
windows the ’velocity approach’); 2. Accumulating times with
1 Year starting window and 1 or 7 day additions. At initial
stages we conducted experiments with time window of 1
year and sliding time of one month and 1 year; this gave
bad transitions for consecutive plots. For the accumulating
approach we start with 1 year period and add 7 days to the
previous period to create new segments and gradually expand
the time to the period end.

D. Distance Calculation

The stocks study uses the Pearson correlation to measure the
distance between two stocks. Pearson correlation is a measure
of how related two vectors are with values ranging between
-1 and 1, -1 indicating a linear opposite relation, 1 indicating
a linear positive relation and 0 indicating no linear relation.
To incorporate the change of price of a stock over a given
time period we include a concept called length. The general
formula we use for calculating distance between stocks Si and
Sj is shown below. Each stock has n price points in its vector
and Si,k is the kth price value of that stock. Sj is the mean
price of the stock during the period.

di,j =
√

(L(i)2 + L(j)2 − 2L(i)L(j)ci,j) (2)

ci,j =

∑n
k=1 (si,k − s̄i)(sj,k − s̄j)√∑n

k=1(si,k − s̄i)2
∑n

k=1(sj,k − s̄j)2
(3)

In Eq. 2, L is a function indicating the percentage change
of a stock during a given period and ci,j is the correlation
between two stocks for a given time window as shown in
equation 3. For one set of experiments we have taken L(Si) =
1 for all stocks. For another set of experiments Eq. 4 is used
for L.

L(Si) = 10| log(Si,n/Si,1)| (4)

When calculating the ratio in Eq. 4, we impose a rather
arbitrary cut that stock price ratios lie in the region 0.1 to
10. The two different distance calculations with L = 1 and L
as specified in Eq. 4 lead to different point maps in the final
result.

E. Weight Calculation

We calculate weight using the market capitalization of
stocks. Limiting the range of market capitalization is done
to avoid large companies from dominating the weights and
small companies from having negligible importance. We take
the dynamic weight of a stock i as specified in Eq. 5 where
M is a set with market capitalization of all stocks.

wi = max( 4
√
max(M)× .05, 4

√
marketcapi) (5)

Weight wi,j between two stocks i and j is defined by wi,j =
wiwj , where marketcap of a stock is the average market
capitalization of that stock during the considered period.

F. Reference Stocks

The system adds five reference or fiducial stocks with
known stock values to all the data segments to better visualize
and interpret the results.

1) A constant stock.
2) Two increasing stocks with different increasing rates of

α = 0.1, 0.2 with Eq. 6 are used to calculate the price
of ith day

3) Two decreasing stocks with different decreasing rates of
α = 0.1, 0.2 with Eq. 7 are used to calculate the price
of ith day

For the uniform variation in price fiducial stocks, they are
taken to have a constant fractional change each day so as to
give annual value. For the choice L = 1 for all stocks, the
two choices of annual change lead to identical structures, so
in that case there are essentially just three ”fiducials: constant,
uniform increase, and uniform decrease. To calculate these
fiducial values we use the formula 6 for increasing case and
7 for decreasing case where αd = α/250 and x0 = 1 for
α = .1 or α = .2.

xi = (1 + αd)× xi−1 (6)

xi = xi−1/(1 + αd) (7)

G. Stock Classifications

We use sector-based classification of stocks and relative
price change-based classification to color the stock point in
the final plots. This allows us to visualize how stocks behave
as groups.



(a) 2008-05-01 to 2009-05-01 Period with most stocks in the negative (b) 2013-09-19 to 2014-09-19 Period with most stocks in the positive

Fig. 5: Two sample plots from Stock velocities

Fig. 6: Four Consecutive Plots of L given by Eq. 4

Fig. 7: Two views of leading finance stocks final position trajectories for L given by Eq. 4 with accumulating data segments

1) Relative Change in Value: To visualize the distribution
of stocks, a histogram-based coloring approach is used. Stocks
are put into bins according to the relative change of prices of
the corresponding time window. Then for each bin we assign
a color and use that to paint the stocks which fall into that
bin.

2) Special Symbols for Chosen Stocks: On top of the
above two classifications, we took the top 10 stocks in each
major sector in etf.org 7 and created special groups consisting
of 10 stocks each. These stocks consist of large companies
dominating in each sector. ETF top stocks and our special
fiducial stocks are marked using special symbols (glyphs)
which allow the user to visualize the stocks clearly in the
plot and track their movements through time.

H. Stock Experiments

Several experiments with stock data were conducted with
different time shifts and distance functions. This was done

7http://www.etf.com/

on a dedicated cluster using 30 nodes, each having 4 Intel
Xeon E7450 CPUs at 2.40GHz with 6 cores, totaling 24
cores per node and 48GB main memory running Red Hat
Enterprise Linux Server release 5.11 (Tikanga) OS. For all the
experiments the starting time window tw is a 1-Year period.

1) 4 experiments with distance calculation from Eq. 4
with time shift of 1 Day and 7 Days for velocity and
accumulating segmentation.

2) Distance calculation with L(Si) = 1 and time shift of 7
Days with velocity segmentation.

The resulting plots of these experiments are publicly avail-
able in WebPlotViz8.

VI. DISCUSSION

Running time of the MDS algorithm for different number
of points utilizing 4, 8 and 16 nodes is shown in Fig 9. A node
has 24 cores and hence we were running 24 MPI processes
in each node. The total parallelism of each test is number of

8https://spidal-gw.dsc.soic.indiana.edu/public/groupdashboard/Stocks



(a) Distance with L = Log

(b) Distance with L = 1

Fig. 8: Heatmap(right) of original distance to projected dis-
tance and original distance distribution(left)

Fig. 9: MDS performance on 4, 8 and 16 nodes with points
ranging from 1000 to 64000. Each node has 24 MPI processes.
Different lines shows the different parallelisms used.

nodes times number of processes. It is evident from the graph
that the running time decreases when the parallelism increases
at larger point counts hence achieving strong scaling. For four
nodes test, it was not possible to run the 64000 point test due
to memory limitations. A detailed study of the performance
of the algorithm can be found in [32], [1].

Four sample consecutive plots from the stock analysis are
shown in Figure 6 with distance calculated from Eq. 2 with
L from 4. Figure 5 shows two sample plots with velocity
segmentation for different periods in time. The glyphs show
those stocks the study has chosen to highlight. The different
colors are decided by the histogram coloring approach. Fig-
ure 7 shows trajectories of a few stocks over the whole time
period considered. The trajectories are useful to inspect the

relative movement of stocks over time.

The accuracy of the MDS projection of original distances
calculated using Eq. 2 to 3D is primarily visualized using the
heat maps. Fig 8b is a sample heat map between 3D points
and original distances for L(Si) = 1 and Fig 8b is a heat map
for L calculated using Eq. 4 case. When the distances between
majority of the 3D points are closer to original distances they
create a dense area along the diagonal of the heat map plot;
this can be seen as the dark colors along the diagonal of Fig 8a
and 8b. It is evident from sample heat maps 8a and 8b that
the majority of 3D projections are accurate.

We first applied the MDS algorithm for each data segment
independently. With this approach we have observed high
alignment errors in some data segments. MDS final stress and
alignment error are shown in the Fig 10. There were some data
segments with high stress values compared to their neighbors.
When MDS was run again on these segments the stress
reduced to the range of the neighbors. By this experiment
it was evident that even with the deterministic annealing and
SMACOF approaches for MDS, it can produce local optimum
solutions in rare cases. One way to reduce this effect is to
initialize the MDS for a data segment with the solution of the
previous data segment. This way the MDS algorithm starts
with a solution closer to the global optimum and produced
comparably good results as shown in Fig 11.

In Fig 10 and 11, high alignment errors seen in the 2008
stock crash period are primarily due to stock volatility. When
two data segments are different from each other, it is expected
to create an alignment error. Having a small time shift can
definitely reduce these large changes from one plot to another.
The alignment errors for a 1-Day shift are shown in Fig 12
which are shown to be much less than the 7-Day data. When
the time shift is small, data segments increase dramatically
and require more computing power. On the other hand, large
time shifts produce larger volatility in the sequence of plots.

There were various experiments done with different choices
for MDS alignment techniques and MDS algorithm before we
came up with an approach that produces good visualizations.
Table I summarizes the options for MDS algorithm and
table II summarizes the options for alignments. We concluded
that initializing MDS with the previous solution and using
continuous alignments as the best approach among the choices
we explored.

Developing a browser-based big data visualization frame-
work is challenging due to several factors. One of the biggest
challenges was efficiently transferring data between the server
and the browser. WebPlotViz has adopted a highly optimized
JSON format for transferring data between browser and server.
For very large plots it still takes a considerable amount of time
for data transfer. Having large amounts of data in JavaScript
is a burden to the browser when buffering the data for time
series visualization. Careful handling of data at the browser is
required to avoid excessive use of memory.
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Fig. 10: MDS final Stress and alignment fit when applying independent MDS for consecutive plots, x axis shows the time
series
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Fig. 11: MDS final Stress and alignment fit when initializing MDS with the previous data segment’s solution, x axis shows
the time series

MDS Pros Cons
Run MDS independently for each
segment

Can run in parallel for different data segments Produce local optimal solutions for some data
segments randomly

Initialize MDS with previous so-
lution

Produces optimal solutions and runs quickly be-
cause the algorithm starts near solution

Needs to run sequentially and best suitable for
online processing

TABLE I: MDS Choices

Alignment Pros Cons
Respect to common data points
for all segments

Can run easily in parallel for different data seg-
ments

Doesn’t produce the best rotation

Respect to previous data points Produce the best rotations when there are over-
lapping data and shift is small

Needs to run sequentially and best suitable for
online processing

TABLE II: MDS Rotation Choices

VII. FUTURE WORK

The current TSmap3D system uses batch algorithms to
process time series data offline. The system can be improved to
handle real-time data using the faster interpolative MDS and
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Fig. 12: MDS alignment fit for 1 Day shift with Accumulating
segmentation and Log distances

alignment technologies for updating structure maps quickly.
Data processing can be moved to a data flow engine such as
Heron [33] for real time data analysis. This will allow us to
create a real time visualization system of the streaming data
sets. The stock data analysis is being extended to different
distance metrics as well as data segmentation to obtain deeper
understanding of the data. In the future we would like to
use the system to analyze different time series data sets. The
web based visualization system can be improved to include
different types of data sets including complex graphs. We are
working on a distributed data processing architecture for up-
loaded plots on the server side for calculating various metrics
and transformation of the plots. These new additions will allow
the system to use high end data processing capabilities of
GPUs for doing transformations efficiently. The system can be
improved to use different algorithms than MDS for generating
the visualizations. The JSON format for transferring very large



data sets can be inefficient for very large plots. Efficient data
transfer mechanisms between back-end servers and JavaScript
need to be explored.

VIII. CONCLUSIONS

With the user-centered rich set of functions for visualization
software, as well as the scalable and efficient MDS algorithm
and big data work flow, the TSmap3D system provides a
comprehensive tool set for generating 3D projections of high
dimensional data and analyzing them visually. We discussed
how TSmap3D framework is being utilized to apply Multidi-
mensional Scaling to financial data and visualized the changes
in relationships among stocks over time. The stock data
observed smooth transitions between consecutive plots when
using the smallest time shift possible. So we can conclude that
using finer-grained time shifts produces the best time series
plots in general. The tools and workflow used are generic and
can be applied to discover interesting relationships in other
time series data sets.
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[21] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management
and the Kepler system,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[22] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler
et al., “Apache airavata: a framework for distributed applications and
computational workflows,” in Proceedings of the 2011 ACM workshop
on Gateway Computing Environments. ACM, 2011, pp. 21–28.

[23] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.
[24] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster Computing with Working Sets.” HotCloud, vol. 10, pp.
10–10, 2010.

[25] “Apache Flink,” https://flink.apache.org/, accessed: 2016.
[26] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-

Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt et al.,
“The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, out-of-order data process-
ing,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1792–
1803, 2015.

[27] S.-H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox, “Dimension reduction
and visualization of large high-dimensional data via interpolation,”
in Proceedings of the 19th ACM international symposium on high
performance distributed computing. ACM, 2010, pp. 203–214.

[28] J. Y. Choi, S.-H. Bae, X. Qiu, and G. Fox, “High performance dimension
reduction and visualization for large high-dimensional data analysis,” in
Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on. IEEE, 2010, pp. 331–340.

[29] Y. Ruan, G. L. House, S. Ekanayake, U. Schutte, J. D. Bever, H. Tang,
and G. Fox, “Integration of clustering and multidimensional scaling to
determine phylogenetic trees as spherical phylograms visualized in 3
dimensions,” in Cluster, Cloud and Grid Computing (CCGrid), 2014
14th IEEE/ACM International Symposium on. IEEE, 2014, pp. 720–
729.

[30] J. De Leeuw and P. Mair, “Multidimensional scaling using majorization:
SMACOF in R,” Department of Statistics, UCLA, 2011.
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