
Received: 00 Month 0000 Revised: 00 Month 0000 Accepted: 00 Month 0000
DOI: xxx/xxxx

SPECIAL ISSUE PAPER

Twister2: Design of a Big Data Toolkit
Supun Kamburugamuve* | Kannan Govindarajan | PulasthiWickramasinghe | Vibhatha
Abeykoon | Geoffrey Fox
1School of Informatics, Computing &
Engineering, Indiana University, Bloomington,
Indiana, USA
Correspondence
*Supun Kamburugamuve. Email:
skamburu@indiana.edu

Summary
Data-drivenapplications areessential tohandle theever-increasingvolume, velocity, andveracity
of data generated by sources such as the Web and Internet of Things (IoT) devices. Simulta-
neously, an event-driven computational paradigm is emerging as the core of modern systems
designed for database queries, data analytics, and on-demand applications. Modern big data pro-
cessing runtimes and asynchronousmany task (AMT) systems from high performance computing
(HPC) community have adopted dataflow event-drivenmodel. The services are increasinglymov-
ing to an event-driven model in the form of Function as a Service (FaaS) to compose services. An
event-driven runtime designed for data processing consists ofwell-understood components such
as communication, scheduling, and fault tolerance. Different design choices adopted by these
components determine the type of applications a system can support efficiently. We find that
modern systems are limited to specific sets of applications because they have been designed
with fixed choices that cannot be changed easily. In this paper, we present a loosely coupled
component-based design of a big data toolkit where each component can have different imple-
mentations to support various applications. Such a polymorphic design would allow services and
data analytics to be integrated seamlessly and expand from edge to cloud to HPC environments.
KEYWORDS:
Big data, Event-driven computing, Dataflow, High Performance Computing

1 INTRODUCTION
Big data has been characterized by the ever-increasing velocity, volume, and veracity of the data generated from various sources, ranging fromweb
users to Internet of Things (IoT) devices to large scientific equipment. The data have to be processed as individual streams and analyzed collectively,
either in streaming or batch settings for knowledge discovery with both database queries and sophisticated machine learning. These applications
need to run as services in cloud environments as well as traditional high performance clusters. With the proliferation of cloud-based systems and
Internet of Things, fog computing 1 is adding another dimension to these applications where part of the processing has to occur near the devices.
Parallel and distributed computing are essential to process big data owing to the data being naturally distributed and processing often requir-

ing high performance in compute, communicate and I/O arenas. Over the years, theHigh PerformanceComputing community has developed highly
efficient implementations of Message Passing Interface (MPI) to execute computationally intensive parallel applications. HPC applications target
high performance hardware, including low latency networks due to the scale of the applications and the required tight synchronous parallel oper-
ations. Big data applications have been developed for commodity hardware with Ethernet connections seen in the cloud. Because of this, they are
more suitable for executing asynchronous parallel applications with high computation to communication ratios. Recently, we have observed that

0Abbreviations:Big data, Serverless Computing, Event-driven

2 Supun Kamburugamuve ET AL

more capable hardware comparable toHPCclusters is being added tomodern clouds due to increasing demand for cloud applications in deep learn-
ing, machine learning and scientific applications 2–4. These trends suggest that boundaries of HPC and clouds are getting blurred 5, 6 and converging.
Therefore, we need frameworks that combine the capabilities of both big data andHPC.
There aremany properties of data applications that influence the design of those frameworks developed to process them.Numerous application

classes exist, including database queries, management, and data analytics, from complex machine learning to pleasingly parallel event processing.
A common issue is that the data can be too big to fit into the memory of even a large cluster. In another aspect, it is impractical to always expect
a balanced data set from the processing standpoint across the nodes. This follows from the fact that initial data in the raw form is usually not load
balanced and often require too much time and disk space to balance the data. Also, the batch data processing is often insufficient, as much data is
streamed and needs to be processed online with reasonable time constraints before being stored to disk. Finally, the data may be varied and have
processing time that varies between data points and across iterations of algorithms.
Even thoughMPI is designed as a genericmessaging specification, a developer has to focus onfile access,with disks in caseof insufficientmemory

and relyingmostly on send/receive operations to develophigher level communication operations in order to express communication in a data driven
application. Adding to this mix is the increasing complexity of hardware, with the explosion of many-core and multi-core processors having differ-
ent memory hierarchies. It is becoming burdensome to develop efficient applications on these new architectures using the low-level capabilities
provided byMPI specification. Meanwhile, the success of Harp 7 has highlighted the importance of theMap-Collective computing paradigm.
The dataflow 8 computation model has been presented as a way to hide some of the system-level details from the user in developing parallel

applications.With dataflow, an application is represented as a graphwith nodes doing computations and edges indicating communications between
the nodes. A computation at a node is activatedwhen it receives events through its inputs. Awell-designed dataflow framework hides the low-level
details such as communications, concurrency, and disk I/O, allowing the developer to focus on the application itself. Everymajor big data processing
systemhas been developed according to the dataflowmodel, and theHPC community has also developed asynchronousmany tasks systems (AMT)
according to the same model. AMT systems mostly focus on computationally intensive applications, and there is ongoing research to make them
more efficient and productive. We find that big data systems developed according to a dataflowmodel are inefficient in computationally intensive
applications with tightly synchronized parallel operations 9, while AMT systems are not optimized for data processing.
At the core of the dataflowmodel is an event-driven architecture where tasks act upon incoming events (messages) and produce output events.

In general, a task can be viewed as a function activated by an event. The cloud-based services architecture ismoving to an increasingly event-driven
model for composing services in the form of Function as a Service (FaaS). FaaS is especially appealing to IoT applications where the data is event-
based in its natural form. Coupled with microservices and server-less computing, FaaS is driving next-generation services in the cloud and can be
extended to the edge.
Because of the underlying event-driven nature of both data analytics and message-driven services architecture, we can find many common

aspects among the frameworks designed to process data and services. Such architectures can be decomposed into components such as resource
provisioning, communication, task scheduling, task execution, data management, fault tolerance mechanisms, and user APIs. High-level design
choices are available at each of these layers that will determine the type of applications a framework composed of these layers can support effi-
ciently. We observe that modern systems are designed with fixed sets of design choices at each layer, rendering them only suitable for a narrow
set of applications. Because of the common underlying model, it is possible to build each component separately with clear abstractions supporting
different design choices. We propose to design and build a polymorphic system by using these components to produce a system according to the
requirements of the applications, which we term the toolkit approach. We believe such an approach will allow the system to be configured to sup-
port different types of applications efficiently. The authors are actively pursuing a project called Twister2, encompassing the concept of the toolkit.
An evaluation of the communication layer is available at 10 and the framework is open-source at 1. Server-less FaaS is a good approach to building
cloud native applications 11, 12 and in this way, Twister2 will be a cloud native framework.
This paper provides the following contributions: 1) A study of different application areas and how a common computation model fits them; 2)

Design of a component-based approach for data analysis with various choices available at each component and how they affect the applications.
The rest of the paper is organized as follows. Section2discusses the relatedwork in the area.Next section3 categorizes data applications into broad
areas and introduces the processing requirements. Section 4 discusses the components of our approach. The next section 5 details implications of
the design and section 6 concludes the paper.

2 RELATEDWORK
Hadoop 13 was the first major open-source platform developed to process large amounts of data in parallel. The map-reduce 14 functional model
introduced by Hadoop is well understood and adapted for writing distributed pleasingly parallel and one-pass applications. Coupled with Java, it

1https://github.com/DSC-SPIDAL/twister2

Supun Kamburugamuve ET AL 3
provides a great tool for average programmers to process data in parallel. Soon enough, though, the shortcomings ofHadoopsimpleAPI and its disk-
based communications 15 became apparent, and systems such as Apache Spark 16 and Apache Flink 17 were developed to overcome them. These
systems are designed according to thedataflowmodel and their executionmodels andAPIs closely followdataflowsemantics. Someother examples
of batch processing systems includeMicrosoft Naiad 18, Apache Apex 19, and Google Dataflow 20. It is interesting to note that even with all its well-
known inefficiencies, Hadoop is still being used by many people for data processing. Apart from the batch processing systems mentioned above,
there are also streaming systems that can process data in real timewhich also adhere to the dataflowmodel. Further open source streaming system
examples include Apache Storm 21, Twitter Heron 22, Google Millwheel 23, Apache Samza 24 and Apache Flink 17. Note that some of the systems
process both streaming and batch data in a unifiedway such asApacheApex, GoogleDataflow,Naiad, andApache Flink. ApacheBeam 20 is a project
developed to provide a unified API for both batch and streaming pipelines. It acts as a compiler and can translate a program written in its API to a
supported batch or streaming runtime. Prior to modern distributed streaming systems, research was done on shared memory streaming systems,
including StreamIt 25, Borealis 26, Spade 27 and S4 28.
There are synergies between HPC and big data systems, and authors 29, 30 among others 31 have expressed the need to enhance these systems

by taking ideas from each other. In previous work 32, 33 we have identified the general implications of threads and processes, cache, memory man-
agement in NUMA 34, as well as multi-core settings for machine learning algorithms with MPI. DataMPI 35 uses MPI to build Hadoop-like systems
while 36 uses MPI communications in Spark for better performance. Our toolkit approach as proposed in Twister2 makes interoperability easier at
the usage level, as one can change lower level components to fit different environments without changing the programmatic or user interface.
There is an ongoing effort in the HPC community to develop AMT systems for realizing the full potential of multicore and many-core machines,

as well as handling irregular parallel applications in a more robust fashion. It is widely accepted that writing efficient programs with the existing
capabilities of MPI is difficult due to the bare minimum capabilities it provides. AMT systems model computations as dataflow graphs and use
shared memory and threading to achieve the best performance out of many-core machines. Such systems include OCR 37, DADuE 38, Charm++ 39,
COMPS 40, Legion 41 and HPX 42, all of which focus on dynamic scheduling of the computation graph. A portability API is developed in DARMA 43
to AMT systems to develop applications agnostic to the details of specific systems. They extract the best available performance of multicore and
many-core systems while reducing the burden of the user having to write such programs usingMPI. Prior to this, there was much focus in the HPC
community on developing programs that could bring automatic parallelism to users such as Parallel Fortran 44. Research has been done with MPI
to understand the effect of computer noise on collective communication operations 45–47. For large computations, computer noise coming from
an operating system can play a major role in reducing performance. Asynchronous collective operations can be used to reduce the noise in such
situations, but it is not guaranteed to completely eliminate the burden.
Exascale computing anticipates a large number of computing nodes generally ranges from 50 - 100k nodes and 1M processes which are multi-

threaded in nature. PMIx 48 is an extended version of PMI which has been specifically designed to support the exascale clusters and eliminates the
current restrictions for achieving scalability. It is a scalable workflow orchestration system with a well-defined set of interfaces which provide the
facility to enable applications and tools interact with the resident systemmanagement stack (SMS) and also the various SMS components interact
with each other. In case of big data resource schedulers, wewill use their functions tomanage the Twister2 processes and for HPC deployments we
can explore PMIx to manage the processes while the HPC schedulers only doing the resource allocations. Pavan Balaji et. al 49 proposed a process
management framework namedHydrawithinMPICH2. Their proposedmodel consists of threemajor components namely (i) parallel programming
library (MPI library) (ii) PMI library, and (iii) process manager. The process manager is a logically centralized unit which is primarily responsible for
launching the process and exchanging the information between those processes. The PMI library communicates with the processmanager through
the communication subsystem.
TanNguyenet. al 50 presenteda customsource-to-source translatornamedBamboowhich transformsMPICsource into semantically equivalent

precedence task graph formulation that automatically overlaps communication with the available computation. The generated source code will
be able to produce a data-driven program which is represented as a task graph and it runs like a data-flow execution model. The Open Run-Time
Environment (ORTE) 51 has been developed to run high-performance computing applications in a distributed environment. It provides support for
interprocess communication, resource discovery, and allocation, and launching the process across different platforms. The user can be allowed to
dynamically sense its environment by the system and select the best components for that situation. Similar to OpenMPI architecture, Twister2
is based on a layered architecture with components defining each layer. These components could be added/removed in order to get the required
functionality.
In practice, multiple algorithms and data processing applications are combined together in workflows to create complete applications. Systems

such as Apache NiFi 52, Kepler 53, and Pegasus 54 were developed for this purpose. The lambda architecture 55 is a dataflow solution for designing
such applications in amore tightly coupled way. Amazon Step functions 56 are bringing the workflow to the FaaS andmicroservices.
In task execution management and scheduling to acquire a fault tolerant system, Akka framework has provided a pluggable implementation to

manage task execution in other systems. The actor-basedmodel in Akka offers a versatile implementation in obtaining a fault-tolerant and scalable
solution.With the actor model, various topologies can be designed tomeet the requirements in a system.

4 Supun Kamburugamuve ET AL

FIGURE 1 Hierarchical data partitioning of a big data application

3 BIGDATAAPPLICATIONS
Here we highlight four types of applications with different processing requirements: 1) Streaming, 2) Data pipelines, 3) Machine learning, and 4)
Services.With the explosion of IoT devices and the cloud as a computation platform, fog computing is adding a newdimension to these applications,
where part of the processing has to be done near the devices.
Streaming applications work on partial data while batch applications process data stored in disks as a complete set. By definition, streaming

data is unlimited in size and hard (to say nothing of unnecessary) to process as a complete set due to time requirements. Only temporal data set
observed in data windows can be processed at a given time. In order to handle a continuous stream of data, it is necessary to create summaries
of the temporal data windows and use them in subsequent processing of the stream. There can be many ways to define data windows, including
time-basedwindows and data count-basedwindows. In themost extreme case, a single data tuple can be considered as the processing granularity.
Data pipelines are primarily used to extract, transform and load (ETL) operations even though they can include steps such as running a complex

algorithm. They mostly deal with unstructured data stored in raw form or semi-structured data stored in NoSQL 57 databases. Data pipelines work
on arguably the largest data sets possible out of the three types of applications. In most cases, it is not possible to load complete data sets into
memory at once and we are required to process data partition by partition. Because the data is unstructured or semi-structured, the processing
has to assume unbalanced data for parallel processing. The processing requirements are coarse-grained and pleasingly parallel. Generally, we can
consider a data pipeline as an extreme case of a streaming application,where there is no order of data and the streamingwindows contain partitions
of data.
Machine learning applications execute complex algebraic operations and can be made to run in parallel using synchronized parallel operations.

In most cases, the data can be load balanced across the workers as curated data is being used. The algorithms can be regular or irregular and may
need dynamic load balancing of computations and data.
Services are moving towards an event-driven model for scalability, efficiency, and cost-effectiveness in the cloud. The old monolithic services

are being replaced by leaner microservices. These microservices are envisioned to be composed of small functions arranged in a workflow 56 or
dataflow to achieve the required functionality.

3.1 Data Processing Requirements
Data processing requirements are different compared to traditional parallel computing applications due to the characteristics of data. For example,
some data are unstructured and hard to load balance for data processing. Data can be in heterogeneous sources including NoSQL databases and
distributed file systems. Also, it can arrive at varying velocities in streaming use cases. Compared to general data processing, machine learning
applications can expect curated data in amore homogeneous environment.
Data Partitioning:Abig data application requires the data to be partitioned in a hierarchical manner due tomemory limitations. Fig. 1 shows an

example of such partitioning of a large file containing records of data points. The data is first partitioned according to the number of parallel tasks
and then each partition is again split into smaller partitions. At every stage of the execution, such smaller examples are loaded into the memory of
each worker. This hierarchical partitioning is implicit in streaming applications, as only a small portion of the data is available at a given time.
Hiding Latency: It is widely recognized that computer noise can play a huge role in large-scale parallel jobs that require collective operations.

Many researchers have experimented withMPI to reduce performance degradation caused by noise in HPC environments. Such noise is much less
compared to what typical cloud environments observe with multiple VMs sharing the same hardware, I/O subsystems, and networks. Added to
this is the Java JVM noise which most notably comes from garbage collection. The computations in the dataflow model are somewhat insulated
from the effects of such noise due to the asynchronous nature of the parallel execution. For streaming settings, the data arrives at the parallel
nodeswith different speeds and processing time requirements. Because of these characteristics, asynchronous operations are themost suitable for
such environments. Load balancing 58 is a much harder problem in streaming settings where data skew is more common because of the nature of
applications.

Supun Kamburugamuve ET AL 5

FIGURE 2 MPI applications arranged in a workflow
FIGURE 3 Microservices using FaaS, Left: Functions using a workflow,
Right: Functions in a dataflow

Overlapping I/O and Computations: Because of the large data transfers required by data applications, it is important to overlap I/O time with
computing as much as possible to hide the I/O latencies.

3.2 MPI for Big Data
MPI is the de facto standard in HPC for developing parallel applications. An example HPC application is shown in Fig. 2 where a workflow system
such as Kepler 53 is used to invoke individual MPI based applications. A parallel worker of anMPI program does computations and communications
within the same process scope, allowing the program to keep state throughout the execution. AnMPI programmer has to consider low-level details
such as I/O, memory hierarchy and efficient execution of threads to write a parallel application that scales to large numbers of nodes. With the
increasing availability of multi-core and many-core systems, the burden on the programmer to get the best available performance has increased
dramatically 32, 33. Asynchronous many task systems are such as HPX 42, Legion 41, DAGuE 38 are developed to hide some of these complexities.
Becauseof the inherent load imbalance andvelocity of thedata applications, anMPIprogrammerhas to go into great detail to programefficient data
applications. Another important point is that MPI is a message level abstraction. Data applications such as pipelines, streaming, and FaaS require
higher level abstractions than low level message abstractions. When data is in a curated form as in machine learning, the authors have shown that
MPI outperforms other technologies by a widemargin 9.

3.3 Dataflow for Big Data
Data-driven computing is becoming dominant for big data applications. A dataflowprogram can hide details such as communication, task execution,
and datamanagement from the user while giving higher level abstractions including task APIs or data transformation APIs. One canmake different
design choices at these core components to tune a dataflow framework for supporting different types of applications.

FIGURE 4 Dataflow application execution, Left: Streaming execution, Middle: Data pipelines executing in stages, Right: Iterative execution

3.3.1 Streaming Applications
Asynchronous streaming applications deal with load imbalanced data coming at varying rates to parallel workers at any given moment. Because
of the dynamic data sizes and timing, a MPI based application needs to fragment the data or use synchronous operations before invoking actual
operations tofigureout thedata sizes. This process canbeextremelydifficult if doneper eachapplication.Also, tohandle streamsofdatawithhigher

6 Supun Kamburugamuve ET AL

frequencies, the tasks of the streaming computation must be executed in different CPUs arranged in pipelines. The dataflow model is a natural fit
for such asynchronous processing of chained tasks.

3.3.2 Data Pipelines
Data pipelines can be viewed as a special case of streaming application. They work on hierarchically partitioned data as shown in Fig 1 . This is
similar to streaming where a stream is partitioned among multiple parallel workers and a parallel worker only processes a small portion of the
assigned partition at a given time. Data pipelines deal with the same load imbalance as streaming applications, but the scheduling of tasks is not
equal between them. Usually, every task in a data pipeline is executed in each CPU sequentially, so only a subset of tasks are active at a given
time in contrast to all the tasks being active in streaming applications. Streaming communication operations only need to work on data that can be
stored in memory, while data pipelines do communications that require a disk because of insufficient memory. It is necessary to support iterative
computations in data pipelines in case they execute complex data analytics applications.

3.3.3 Machine Learning
Complex machine learning applications work mostly with curated data that are load balanced. This means tight synchronizations required by the
MPI-style parallel operations are possible because the data is available around the time the communication is invoked. It is not practical to run com-
plex machine learning algorithms (> O(n2)) on very large data sets as they have polymorphic time requirements. In those cases, it is required to
find heuristic approaches with lower time complexities. There are machine learning algorithms which can be run in a pleasingly parallel manner as
well. Because of the expressivity required by the machine learning applications, the dataflow APIs should be close enough to MPI-type program-
ming, but it should hide details such as threads and I/O from users. Task-based APIs as used by AMT systems are suitable for such applications.We
note that large numbers of machine learning algorithms fall into themap-collectivemodel of computation as described in 59, 60.

3.3.4 Services
The services are composed of event-driven functions which can be provisioned and scaled without the user having to know the underlying details
of the infrastructure. The functions can be directly exposed to the user for event-driven applications or by proxy through microservices for
request/response applications. Fig. 3 showsmicroservices using functions arranged in a workflow and in a dataflow.

4 TOOLKIT COMPONENTS
Considering the requirements of different applications, we have designed a layered approach for big data with independent components at each
level to compose an application. The layers include: 1. Resource allocations, 2. Data Access, 3. Communication, 4. Task System, and 5. Distributed
Data. Among these communications, task system and datamanagement are the core components of the systemwith the others providing auxiliary
services. On top of these layers, one can develop higher-level APIs such as SQL interfaces which are not a focus of this paper. Fig. 5 shows the
runtime architecture of Twister2 with various components. Even though Fig. 5 shows all the components in a single diagram, one can mix and
match various components according to their needs. Fault tolerance and security are two aspects that affect all these components. Table. 1 gives a
summary of various components, APIs, and implementation choices.

4.1 Architecture Specification
System specification captures the essentials of a parallel application thatwill determine the configuration of the components.We identify execution
semantics and coordination points as the two essential features that define the semantics of a parallel application.
CoordinationPoints:Tounderstandand reasonabout aparallel application,we introducea concept called a coordinationpoint. At a coordination

point, a program knows that a parallel computation has finished.WithMPI, a coordination point is implicitly definedwhen it invokes and completes
a communication primitive. For example, when AllReduce operation finishes a parallel task, it knows that the code before the AllReduce has been
completed. For data driven applications, the coordination happens at the data level. Depending on the abstractions provided, the coordination
can be seen at communication level, task level or the distributed data set level. For example, a task is invoked when its inputs are satisfied. So the
coordination of tasks happens at the beginning of such executions. No coordination between parallel tasks are allowed inside the tasks. At the
data level, the coordination occurs when the data sets are created and its subsequent operations are invoked. HPC also has coordination points
at the end of jobs. These are managed in workflow graphs with systems like Kepler, Taverna, and Pegasus. The data driven coordination points are
finer-grained thanworkflow and similar to those in HPC systemswhere computing phasesmove to communication phases.

Supun Kamburugamuve ET AL 7

FIGURE 5 Runtime architecture of Twister2

Execution semantics:Execution semantics of an applicationdefinehow the allocated resources aremapped to executionunits. Cluster resources
are allocated in logical containers and these containers can host processes that execute the parallel code of the application. Execution semantics
define themapping of computation tasks into the containers using processes or a hybrid approachwith threads and processes.

4.2 Job Submission & Cluster Resource Allocation
Cluster resource allocation is often handled by specialized software that manages a cluster such as Slurm, Mesos 62, Yarn or Kurbenetes 63. Such
frameworks have been part of the HPC community for a long time and the existing systems are capable of allocating a large number of jobs in large
clusters. Yarn andMesos are big data versions of the same functionality provided by Slurm or Torquewith an emphasis on fault tolerance and cloud
deployments. In particular, both are capable of handling node failures and offer applications the opportunity to work even when the nodes fail by
dynamically allocating resources. Twister2 uses a pluggable architecture for allocating resources utilizing different schedulers available. An allo-
cated resource including CPUs, RAM and disks are considered as a container. A container can run a single computation or multiple computations
using processes/threads depending on the system specification. For computationally expensive jobs, it is important to isolate the CPUs to preserve
cache coherence while I/O-bound jobs can benefit from the idle CPUs available. For cloud deployments with FaaS, resource management frame-
works such as Kubernetes are exploited to scale the applications. In addition to standard HPC schedulers, frameworks such as Pilot-Jobs 64 and
pmix 65 can be exploited tomanage the twister2 processes in HPC environments.

4.3 Communication
Communication is a fundamental requirementof parallel computing and theperformanceof theapplications largely revolves aroundefficient imple-
mentations. High-level communication patterns as identified by the parallel computing community are available through MPI implementations 66.
Some of the heavily used primitives are Broadcast, Gather, Reduce, AllGather and AllReduce 67. The naive implementation of these primitives using
point-to-point communication in a straightforward way produces worst-case performance in practical large-scale parallel applications. These pat-
terns can be implemented using data distribution algorithms that minimize the bandwidth utilization and latency of the operation. In general, they
are termed collective algorithms. Twister2 will support message-level BSP-style communications as in MPI implementations, and solely data-level
communications as in data flow programs. The dataflow-style communications will be used for data pipeline and streaming applications. One can
choose to use BSP style or dataflow style for machine learning algorithms. Table. 2 summarizes some of the operations available in BSP and
dataflow communications. It is important to note that key based operations are first-class in dataflow.

4.3.1 BSP Communications
In MPI specification, collective operations and other point-to-point communication operations are driven by computations. Once the program is
ready to communicate, it can initiate the appropriate operations which will invoke the network functions. The asynchronous communications are

8 Supun Kamburugamuve ET AL

TABLE 1 Components of the Twister2 Toolkit

Component Area Implementation Comments; User API
Architecture
Specification

Coordination Points State and Configuration Management; Pro-
gram, Data andMessage Level

Change execution mode;
save and reset state

Execution Semantics Mapping of Resources to Bolts/Maps in
Containers, Processes, Threads

Different systems make dif-
ferent choices - why?

Job Submission (Dynamic/Static) Resource
Allocation

Plugins for Slurm, Yarn, Mesos, Marathon,
Aurora

Client API (e.g. Python) for
JobManagement

Communication DataflowCommunication MPI Based, TCP, RDMA Define new Dataflow com-
munication API and library

BSP Communication ConventionalMPI, Harp MPI P2P and Collective API

Task System

Taskmigration Monitoring of tasks and migrating tasks for
better resource utilization Task-based programming

with Dynamic or Static
Graph API; FaaS API;
Support accelerators
(CUDA,KNL)

Elasticity OpenWhisk
Streaming and FaaS Events Heron, OpenWhisk, Kafka/RabbitMQ
Task Execution Process, Threads, Queues
Task Scheduling Dynamic Scheduling, Static Scheduling,

Pluggable Scheduling Algorithms
Task Graph Static Graph, Dynamic Graph Generation

Data Access Static (Batch) Data File Systems, NoSQL, SQL Data APIStreaming Data Message Brokers, Spouts
Distributed Data
Management Distributed Data Set Relaxed Distributed Shared Memory

(immutable data),MutableDistributedData
Data Transformation API;
Spark RDD 61, Heron
Streamlet

Fault tolerance Check pointing
Lightweight barriers, Coordination Points,
Upstream backup; Spark/Flink, MPI and
Heronmodels

Streaming and batch cases
distinct; Crosses all compo-
nents

Security Messaging, FaaS, Storage Research Crosses all components

TABLE 2 MPI and dataflow communication operations

Collectives
BSP (MPI) Reduce, AllReduce Gather, AllGather Broadcast, Scatter Barrier – – –
Dataflow Reduce, Keyed Reduce Gather, Keyed Gather Broadcast – Union Join Partition

slightly different than synchronous operations in the sense that after their invocation, the program can continue to compute while the operation is
pending. It is important to note that evenwith asynchronous operations the user needs to employ other operations such as wait/probe to complete
the pending operation. The underlying implementation for a collective can use different algorithms based on factors includingmessage size. Signifi-
cant research has been done onMPI collectives 67, 68 and the current implementations are optimized to an extremely high extent. A comprehensive
summary of collective operations and possible algorithms is found in 69. Harp 7 is a machine learning-focused collective library that supports the
standardMPI collectives as well as other operations like rotate, push and pull.

Supun Kamburugamuve ET AL 9

FIGURE 6 Default implementation of a dataflow reduce
FIGURE 7 Optimized dataflow reduce operation with sub-tasks
arranged in a tree

4.3.2 DataflowCommunications
Adataflowcommunication pattern defines how the links are arranged in the task graph. For instance, a single task can broadcast amessage tomulti-
ple tasks in the graphwhen they are arranged in a broadcast communication pattern. Themost commondataflowoperations include reduce, gather,
join 70, union, partition and broadcast. MPI implementations and big data have adopted the same type of collective communications but sometimes
they have diverged in semantics. This is especially evident among big data frameworkswhere same operation is implementedwith slightly different
semantics.
The additional requirements of dataflow communications over BSP style as in MPI specification are highlighted in Table 3 . Since a dataflow

collective needs to work with an arbitrary task graph, the collectives can go between different task sets deployed on distinct nodes. Also, dataflow
communicationswork at data level rather than themessage level as inMPI specification. For example, a dataflowcommunication can reduce awhole
data set as a single operation that runs in many steps using hierarchical partitioning. In case of insufficient memory, the communications can use
disks to save intermediate data of the operation. Also, the semantics of the dataflow primitives are different compared to theMPI collectives, with
keyed operations, joins, unions, and partitioning. Because a dataflow operation can be invoked an arbitrary number of times depending on the data
requirements, termination detection of an operation running in multiple steps is required. The operations are stateful to support special messages
running through the communications, buffering of messages and supporting things like disk based sorting.
The system specification dictates how a task can send and receive data via its input and output ports (coordination points) and how they can

communicate with each other while performing computations. If they communicate inside the tasks, that will introduce another coordinating point
inside the task. The authors of this paper propose dataflow collective operations implemented as a graph enrichment, which introduces sub-tasks
to the original dataflow graph. Fig.6 and Fig.7 show the naive implementation and our proposed approach for dataflow collective operations. In
this approach, the collective operations computation is moved to a sub-task under which the collective operation depends. These sub-tasks can be
connected to each other according to different data structures like trees and pipes in order to optimize the collective communication. This model
preserves the dataflow nature of the application.
The dataflow collectives are implemented using semantics similar to MPI ISend/IRecv. Any channel implementation that supports the

IRecv/ISend semantics can be used underneath. Because of this, implementation can use MPI ISend/IRecv operations, TCP socket API and RDMA
(Remote Direct Memory Access) based implementations. These options will give the library the ability to work in cloud environments as well as
HPC environments. Twister2 dataflow communication library can be used by other big data frameworks to be efficient in HPC environments. We
believeMPI specification can be enriched with dataflow communication requirements to support a wide range of applications including large scale
data processing.

4.3.3 High Performance Interconnects
Use of high performance communication fabrics such as Infiniband is one of the key areaswhereMPI excels.MPI implementations support a variety
of high-performance communication fabrics and performwell compared to Ethernet counterparts. Recently there have beenmany efforts to bring
RDMA (Remote direct memory access) communications to big data systems, including HDFS 31, Hadoop 71 and Spark 72. The big data applications
are primarily written in Java and RDMA applications are written in C/C++, requiring the integration to go through JNI. Even by passing through
additional layers such as JNI, the application still performs reasonably well with RDMA. One of the key forces that drags down the adoption of
RDMA fabrics is their low-level APIs. Nowadays with unified API libraries such as Libfabric 73 and Photon 74, this is no longer the case.

4.4 Task System
In order to develop an application in the communication layer, one needs a deep understanding of threaded execution, efficient use of communica-
tions and data management. The task layer provides a higher-level abstraction on top of the communication layer to hide the details of execution

10 Supun Kamburugamuve ET AL

TABLE 3 DataflowCommunication

Feature Dataflow BSP
Graph structure Arbitrary task graph laid out on processes. Col-

lective operations can have distinctive sources
and destinations running on different nodes and
processes.

In place, process model.

Data sizes Support dynamic data sizes to facilitate rich data
including text data.

Before invoking an operation, data sizes
across the tasks needs to calculated. This
requires additional operations.

Data larger thanmemory Use disks in order to sort and handle large data. BSP specification works on inmemory data
Termination detection We need to detect termination of dataflow com-

munications with asynchronous unbalanced data
transfers including arbitrary steps across tasks.

Not required

Stateful operations Data bufferring, streaming operations, sending
special messages through streams with order
guarantes.

Operations are stateless by definition.

Keys Key based operations to group data. Keys are not used.
Granuality Data level, ability to work on multiple records of

a data set
Message level

and communication from the user, while still delegating datamanagement to the user. At this layer, computations aremodeled as task graphswhich
can be created either statically as a complete graph or dynamically as the application progresses.

FIGURE 8 Left: User graph, Right: execution graph of a data flow

4.4.1 Task graph
Anode in the task graph represents a taskwhile an edge represents a communication link between nodes. Each node in the graph holds information
about the inputs and its outputs (edges). Also, a node contains an executable user code. The user code in a task is executedwhen events arrive at the
inputs of the task. The userwill output events to the output edges of the task graph and theywill be sent through the network by the communication
layer. A task can be long-running or short-running depending on the type of application. For example, a stream graph will have long running tasks
while a dataflow graph without loops will have short running tasks. When loops are present, long-running tasks can be appropriate to reduce task
creation overheads.

4.4.2 Execution Graph
Execution graph is a transformation of the user-defined task graph, created by the framework for deploying on the cluster. This execution graphwill
be scheduledonto the available resourceby the task scheduler. For example, someuser functionsmay runona larger number of nodes dependingon
theparallelism specified.Also,when creating the execution graph, the framework canperformoptimizations on theuser graph to increase efficiency

Supun Kamburugamuve ET AL 11
by reducing data movement and overlapping I/O and computations. Fig. 8 shows the execution graph and the user graph where they run multiple
W operations andS operations in parallel.

4.5 Task Scheduling
Task scheduling is the process of scheduling multiple task instances into the cluster resources. The task scheduling in Twister2 generates the task
schedule plan based on the per job policies,which places the task instances into the processes spawnedby the resource scheduler. It aims to allocate
a number of dependent and independent tasks in a near optimal manner. The optimal allocation of tasks decreases the overall computation time of
a job and improves the utilization of cluster resources. Moreover, task scheduling requires different scheduling methods for the allocation of tasks
and resources based on the architectural characteristics. The selection of the best method is a major challenge in the big data processing environ-
ment. The task scheduling algorithms are broadly classified into two types, namely static task scheduling algorithms and dynamic task scheduling
algorithms. Twister2 supports both types of task scheduling algorithms. It considers both the soft (CPU, disk) and hard (RAM) constraints and seri-
alizes the task schedule plan in the format of Google Protocol Buffers 75. Additionally, the Google Protobuf contains information about the number
of containers and the task instances to be allocated for each container. Additionally, it houses the required resource information such as CPU,
disk memory, and RAM for the containers and the task instances to be allocated in those containers. We have defined the task scheduling model
which comprises of Job Model (consider different type of jobs namely batch, streaming), Resource Model (consider datacenters, heterogeneous
resources), PerformanceMetrics (considers completion time, data locality, makespan), Scheduling Policy (scheduling algorithms implemented with
specific goals), and Programmingmodel (dataflow programmingmodel).

4.5.1 Task Scheduling for Batch and Streaming Jobs
The task scheduling for batch jobs can be performed prior to the processing based on the knowledge of input data and the task information for
processing in a distributed environment. Moreover, the resources can be statically allocated prior to the execution of jobs. Nevertheless, the task
scheduling for streaming jobs is considerably more difficult than batch jobs due to the continuous and dynamic nature of input data streams that
requires unlimited processing time. The task scheduling considers the availability of resource and resource demand as important parameters while
scheduling the streaming tasks. Also, it should give more importance to the network parameters such as bandwidth and latency. Streaming task
components 76 that communicate each other should be scheduled in close network proximity to avoid the network delay in the streaming jobs
processing. Dynamic task scheduling is more suitable than static task scheduling for handling the dynamic streams of data or streaming jobs. The
Task Scheduler invokes an appropriate task scheduling algorithm based on the application, input data, and the source of input data. It receives the
task graphand fetches the corresponding task graphattributes and the task scheduling algorithm tobe considered toprocess the jobeither fromthe
task graph attributes or from the task scheduling configuration file. First, it computes the number of task instances to be created for the execution
of the task graphwhich is based on the parallelism of the number of tasks in the task graph. Subsequently, it generates the task schedule planwhich
consists of the number of containers to be created and the task instances to be hosted in the containers. Finally, it sends the task schedule plan to
the Task Executor for the execution of tasks on the worker nodes.

4.5.2 Static Task Scheduling Algorithm
In static task scheduling, the jobs are allocated to the nodes before the execution of a job and the processing nodes are known at the compile
time. Once the tasks are assigned to an appropriate resource, the execution continues to run until finishing the execution of the task. The main
objective of the static task scheduling strategy is to reduce the scheduling overheadwhich occurs during the runtime of the task execution. Some of
the popular static task scheduling strategies are Capacity Scheduling, Data Locality-Aware Scheduling, Round Robin Scheduling, Delay Scheduling,
FIFO Scheduling, First Fit Scheduling, Fair Scheduling andMatchmaking Scheduling.
Twister2 is implemented with the following static task scheduling algorithms: (1) Round Robin (RR), (2) First Fit (FF), and (3) Data Locality-

Aware (DLA). The implemented task scheduling algorithms able to handle both the batch and streaming jobs. The round-robin scheduling algorithm
generates the task scheduling plan in which the task instances are allocated to the containers in a round robin manner without considering any pri-
ority to the task instances. It has the support to launch homogeneous containers of equal size of disk, memory, CPU and heterogeneous nature of
task instances. Round-robin-based task (heterogeneous) instance allocation in the (homogeneous) containers is represented in Fig. 9 . The FF task
scheduling algorithmgenerates the task scheduling plan inwhich the task instances are allocated to a finite number of containerswith the objective
of minimizing the number of containers and reducing the waste of underlying resources. In contrast to the round-robin task scheduling, it provides
the support for launching heterogeneous containers and the heterogeneous nature of task instances. Fig. 10 shows the FF-based task (heteroge-
neous) instances allocation in the (heterogeneous) containers. The data locality-aware task scheduling algorithm is implementedwith an awareness
of data locality (i.e. the distance between the data node that holds the data and the task execution node). Scheduling of tasks to the execution node

12 Supun Kamburugamuve ET AL

FIGURE 9 RR Task Scheduling (Homogeneous Containers and Hetero-
geneous Task Instances)

FIGURE 10 FF Task Scheduling (Heterogeneous Containers and Het-
erogeneous Task Instances)

FIGURE 11 DLA Task Scheduling (Execution on the Data Nodes) FIGURE 12 DLA Task Scheduling (Execution Closer to the Data Nodes)

which has the input data or closest to the input data maximizes the overall response time of a job. However, in some scenarios the execution of
a node requires the data which has been distributed in nature, hence the data locality-aware task scheduling algorithm should consider that case
while scheduling the tasks. Fig. 11 and Fig. 12 show the data locality-aware task scheduling scenarios handled in the Twister2 framework.

4.5.3 Dynamic Task Scheduling Algorithm
In the dynamic scheduling strategy, jobs are allocated to the nodes during the execution time of tasks. It is assumed that the user has complete
knowledge about their application requirements, such as the maximum size of the container (CPU, disk, and RAM) or the required number of
containers while submitting the jobs to the Twister2 framework. Thus the task scheduling algorithm should be able to generate an appropriate
task scheduling plan using that information. However, the static task scheduling algorithm does not consider the availability of resources and the
resource demand, which can lead to over-utilization or under-utilization of the resources and thus pave the way for inefficiencies. Contrary to the
static task scheduling, the dynamic task scheduling evaluates the scheduling decisions during the execution of the job. It provides the support or
triggers the taskmigration based on the status of the cluster resources and theworkload of the application. Resource-Aware Scheduling, Deadline-
Aware Scheduling andEnergy-Aware Scheduling are examples of dynamic scheduling strategy. As such, Twister2will be empoweredwith a dynamic
task scheduling algorithmwhich considers thedeadlineof the job, inter-node traffic, inter-process traffic, resource availability and resourcedemand
with the objective of minimizing themakespan (i.e. total execution time of all the tasks) of a job and effectively utilizing the underlying resources.

4.6 Task Execution
Depending on the system specification, a process model or a hybrid model with threads can be used for execution. It is important to handle both
I/O and task execution within a single execution module so that the framework can achieve the best possible performance by overlapping I/O and
computations. The execution is responsible for managing the scheduled tasks and activating them with data coming from the message layer. To
facilitate dynamic task scheduling, scaling of tasks for FaaS environments and high frequency messaging, it is vital to maintain high-performance
concurrent message queues. Much research has been done on improving single queuemultiple-threaded consumer bottlenecks for task execution,
as shown in 77.
Unlike in MPI based applications where threads are created equal to the number of CPU cores, big data systems typically employ more threads

than the cores available to facilitate I/O operations. With I/O offloading and advanced hardware, the decision to choose the correct model for a
particular environment becomes a research question.When performing large data transfers or heavy computations, the threads will not be able to
attend to computing or I/O depending on the operation being performed. This can lead to unnecessarymessage buildups in upstream tasks or in the
task itself. The ability tomodel such behaviors and pick the correct executionmodel 78 is important for achieving optimumperformance. It has been
observed that using a single task executor for both these applications would bring inferior performance 79.
For an application running on multi-core (multiple CPUs) machines with multiple sockets, the effects of context switching can be significant due

to cache misses and memory access latency 80, especially when crossing NUMA (non-uniform memory access) domains. With NUMA, the data
locality is considered and the tasks are allocated (byTwister2 task scheduler and resource scheduler) in away that sharedmemory access is efficient
as described in work 80. With many core machines now having large numbers of hardware threads, a single process can expect to deal with larger

Supun Kamburugamuve ET AL 13
memory and more parallelism within a process. Languages such as Java require garbage collection (GC) to reclaim memory, and having processes
with very largememory allocated can cause long pauses inGC. Because of this, a balance for the number of processes per nodemust bemaintained.

4.7 Data Access
Data access abstracts out various data sources including files and streaming sources to simplify the job of an application developer. In most dis-
tributed frameworks, the data is presented as a higher level abstraction to the user, such as the RDD 61 in Apache Spark and DataSet for Apache
Flink. Since the goal of Twister2 is to provide a toolkit which allows developers to choose the desired components, Twister2 includes a lower level
API for data access in addition to a higher level abstraction. For example, the abstraction of a File System allows Twister2 to support NFS, HDFS,
and Luster, which enables the developer to store and read data from any file by specifying only the URL. In addition to the data sources that are
supported by the framework, the pluggable architecture allows users to add support for any data source by implementing the relevant interfaces.
Another important role of the data access layer is to handle data partitioning and data locality in an efficient manner. An unbalanced set of data

partitions will create stragglers, which will increase the execution time of the application. The data access layer is responsible for providing the
developerwith appropriate information regarding data locality. Data locality directly affects the execution time since unnecessary datamovements
will degrade the efficiency of the application. In addition to the built-in functions of Twister2, the developer is given the option to plug in custom
logic to handle data partitioning and locality.

4.8 Distributed Data
The core of most dataflow frameworks is a well-defined high-level data abstraction. RDDs 72 in Apache Spark and DataSets in Apache Flink are
well-known examples for higher level data abstractions. Twister2 provides an abstraction layer so that developers can develop applications using
data transformation APIs that are provided. The distributed data abstraction used in Twister2 is termed a DataSets. DataSets are the main unit of
parallelism when programs are developed using the data flowmodel in the framework. The number of splits or partitions that a DataSet is broken
into determines the number of parallel tasks that will be launched to perform a given data flow operation. Twister2 DataSets support two primary
types; immutable and mutable. The immutable version is most suitable for traditional dataflow applications. Mutable DataSet allows the data sets
to be modified, but a given task may only alter the entries from the partition that is assigned to that task. The DataSet API provides the developer
with a wide variety of transformations and actions that allow the developer to build the required application logic effortlessly.
DataSets are loaded lazily,whichmeans that the actual data is not readuntil the executionof a dataflowoperation is performed. This allowsmany

optimizations such as pipelining transformations and performing local data reads to be implemented. Fault tolerance is built into the distributed
data abstraction; if a task or a node fails the required calculationwill be redone automatically by the system and the program can complete without
any problems. Distributed DataSets leverage functionalists provided by the data access APIs, therefore the data partitioning and data locality are
managed by the data access layer, removing the burden from the DataSets implementation. Leveraging the lower level APIs adheres to the toolkit
approach taken by Twister2 and allows each system component to bemodified and updatedwith little effect to the other components.
The framework generates an execution graph based on the transformations and actions that are performed on the distributed

data set. This execution graph takes into account the number of partitions in the data set and the localities of the data parti-
tions. Fig. 13 shows an example of such an execution graph. It demonstrates the execution graph of an application which applies the
logF ile.map(...).filter(...).reduceByKey(...).forEach(...) sequence of transformations to a data set that has 4 partitions.

FIGURE 13 Example execution graph for logF ile.map(...).filter(...).reduceByKey(...).forEach(...)

14 Supun Kamburugamuve ET AL

4.9 Fault Tolerance
A crucial feature in distributed frameworks is fault tolerance since it allows applications to recover from various types of failures that may occur
during the application runtime. Fault tolerance has becomemore andmore important with the usage of larger commodity computer clusters to run
applications. However, the overheads caused by fault tolerance mechanisms may reduce the application’s performance, so it is important to keep
them as lightweight as possible. Most distributed frameworks such as Spark and Flink have inherent support for fault tolerance. There are several
projects such as 81 and 82 which provide fault tolerance for MPI applications. It is important to allow the application developer to determine the
level of fault tolerance required. This enables applications which run on reliable hardware with very large mean times of failure to run without the
burden of fault tolerance. Checkpointing is a well-known mechanism used to handle failures in distributed frameworks. Dataflow application can
have automatic checkpointingmechanisms at the coordination points to recover from failures. The checkpointingmechanismworks differently for
streaming data and batch data. Opting out of checkpointing does not mean that the application will fail as soon as one failure occurs. Instead the
system can automatically restart the application or recover from the failure using cached intermediate data if available.

4.9.1 Fault Tolerance For Streaming Data
Twister2 provides fault tolerance to streaming applications through lightweight distributed checkpoints. The model used is based on the stream
barrier-based distributed snapshots described in 17. This checkpointing method injects barriers into the data stream and uses them to create snap-
shots so that every item in the streambefore thebarrier is processed completely. This helps guarantee exactly once semantics for streamprocessing
applications. It also allows developers to choose the checkpointing frequency just by specifying the intervals at which the barriers are injected into
the stream. Developers can completely forgo checkpointing, removing the overhead of fault tolerance if they choose. There are threemain types of
message processing guarantees that are required by various stream processing applications: exactly once, at least once and at most once. The fault
tolerance mechanism provides support for all three given that some required conditions are met. For instance, to provide exactly once guarantee,
the streaming source is required to have the capability to replay the source from a certain point. It is also important to note that stricter guarantees
result in higher overheads for the fault tolerancemechanism.

4.9.2 Fault Tolerance For Batch Data
Applications based on batch data can vary from pleasingly parallel applications to complexmachine learning applications. Providing fault tolerance
for pleasingly parallel applications is relatively simple because of the narrow dependencies involved. The system can relaunch a task when it fails
without affecting any other running task. On the other hand, complex algorithms typically consist of wide dependencies, recovering from a failure
is muchmore complex for such scenarios. Twister2 provides fault tolerance for batch data at two levels, namely checkpoint-based and cache-based
mechanism.Checkpoint-based fault tolerance is themainmechanismwhile the cache-basedmodel canbeused to reduceoverheadof checkpointing
based on the application.
Checkpoint-based fault tolerancedevelops snapshots of the runtimeapplication. These snapshots are created at coordination points in the appli-

cations, a natural candidate for a checkpoint since the runtime has the least amount of moving parts, such as messages at this point. This allows the
checkpoints to be lightweight and simple. The developer has the flexibility to specify the checkpoints based on the application requirements. If a
failure occurs, the framework recovers by loading the data and state from the checkpoint and relaunching the necessary tasks. The amount of tasks
that need to be relaunched depends on the task dependencies. If the applications have narrow dependencies it may suffice to relaunch tasks for a
subset of the data partitions.
Cached-based fault tolerance provides a more lightweight mechanism to reduce the need for checkpointing. It is important to note that this is

not a full-fledged alternative to the checkpoint-basedmodel and cannot handle node level failures. Once a task level failure occurs, the system first
checks if the necessary intermediate data partitions are available in the cache. If so, the framework will relaunch the tasks without rolling back all
the way to the most recent checkpoint. Developers are given the ability to specify which intermediate results need to be cached according to the
application requirements.

4.10 StateManagement
State management is an important aspect of distributed systems as it touches on most of the core components of the system. State of the system
encompasses various parameters and details of the system at runtime. State management needs to be addressed at two levels: job level state and
task level state. Job level state consists of information that is required to run the distributed application as a whole. Job level state is particularly
important for fault tolerance and load distribution. Keeping a job level state allows tasks to be migrated within the cluster since the required state
information is accessible to anyworker node in the system. If oneworker is overloaded, some of its tasks can bemigrated to aworker that is under-
utilized so that the load canbedistributed. The same state information allows the framework to recover fromanode failure by relaunching the tasks

Supun Kamburugamuve ET AL 15
on a new worker node. Job level state management is achieved via a distributed shared memory. Checkpointing mechanisms need to take a state
into considerationwhen creating checkpoints of the system. Job level state ismanaged by separate processes thatmake sure the global state is con-
sistent and correct. Task level state is runtime information that can be kept local to a task. Task level state is savedwhen checkpoints are performed
and is used during the recovery process. This is especially important for long-running stateful tasks such as streaming tasks. In most scenarios, the
loss of information that falls under task level state does not affect the application as a whole and can be recovered.

4.11 API
Over the years, there have been numerous languages and different types of APIs developed for programming data-driven applications. Twister2
supports three different levels of APIs with the objective of handling different programming and performance requirements for the applications.
These three levels are classified as: 1) Communication API, 2) Task/FaaS API, and 3) Distributed Data API. The user can adopt the communication
API to program parallel applications with auxiliary components such as data access API at the lowest level. It will give the maximum possible per-
formance of the system because the user controls both the task execution and data placement, but at the same time, it will be themost difficult way
to program.
Next, the user can create or generate a task graph to create an application. The task graph can bemade either statically or dynamically depending

on the application requirements. By using the Task/FaaS API, the user can control data placement among the tasks while the frameworkwill handle
the communication and execution. At the highest level, the user can adopt theDistributedDataAPI,whichwill allow the framework to control every
aspect of the application. At this level, programming will be easier for certain types of applications and the performance will be considerably less
compared to the same application written in other layers. Fig. 14 provides a summary of the points discussed above and lists types of applications
that are most suitable to be implemented at each level. When we go up the API levels, we must utilize complex objects to represent data and use
these abstractions for communication. For efficient message transfers, it is necessary to use low level abstractions to communicate in order to
reduce the burden of serialization.

FIGURE 14 Twister2 Big Data Toolkit API levels

5 DISCUSSION
With our previous work 9 we have observed that various decisions made at different components of a big data runtime determine the type of
applications that can be executed efficiently. The layered architecture proposed in this work will eliminate the monolithic designs and empower
components to be developed independently and efficiently. The Twister2 design has the following implications: 1) It will allow developers to choose
only the components that they need in order to develop the application. For example, a user may only wantMPI-style communication with a static
scheduling and distributed shared memory for their application; 2) Each component will havemultiple implementations, allowing the user to sup-
port different types of applications, e.g., the toolkit can be used to compose a system that can perform streaming computations as well as data
pipelines.
We identify communications, task system, and distributed shared memory as the three main components required by an application. The user

APIswill be available to these components to program an application. Table 4 shows the different capabilities expected from different types of big
data applications described herein. It is important to note that one can build a streaming, data pipeline ormachine learning algorithmswith only the
communication layer. Later, they can add the task system on top of communication to further enhance the ease of programming, and finally, they
can add the data layer to give the framework the highest possible control while reducing the burden on the programmer.

16 Supun Kamburugamuve ET AL

TABLE 4 Requirements of applications

Type of applications Capabilities
Data Task System Communications

Streaming Distributed Data Set Static Graph DataflowCommunications
Data Pipelines Distributed Data Set Static Graph or Dynamic Graph DataflowCommunications
Machine Learning Distributed SharedMemory Dynamic Graph Dataflow Communications / BSP

Communications
FaaS Stateless Dynamic Graph Dataflow, P2P Communication

In general, it is safe to assume that machine learning algorithms require complex communications and executions. It is worth noting that there
are a large group of machine learning algorithms that work withminimal parallel communications, and such algorithms are similar to data pipelines
and can be scaled easily. Machine learning algorithms that work with large data sets also use heuristic methods to lower the parallel computation
complexity in order tomake them run in amore pleasingly parallel manner. Security and fault tolerance are two areas that cross all the components
of the toolkit. In order to be fault tolerant, each component has to be able to work under different failure scenarios. We recognize security as an
important aspect of this approach, but reserve a lengthy discussion to a subsequent work.

6 CONCLUSIONS& FUTUREWORK
We foresee that the share of large-scale applications driven by data will increase rapidly in the future. The HPC community has tended to focus
mostly on heavy computational-bound applications, and with these new developments, there is an opportunity to explore data-driven applications
with HPC features such as high-speed interconnects and many-core machines. Data-driven computing frameworks are still in the early stages,
and as we discussed there are four driving application areas (streaming, data pipelines, machine learning, and service) with different processing
requirements. In this paper, we discussed the convergence of these application areas with a common event-driven model. We also examined the
choices available in the design of frameworks supporting big data with different components. Every choice made by a component has ramifications
for the performance of the applications the system can support.We believe the toolkit approach gives the required flexibility to the user to strike a
balance between performance and usability which allows the inclusion of proven existing technologies in a unified environment. This will enable a
programming environment that is interoperable across application types and system infrastructure including both HPC and clouds, whereas in the
latter case it supports a cloud-native framework 11. The authors are actively working on the implementation of various components of the toolkit
and APIs in order to deliver the promised flexibility across various applications and systems.

ACKNOWLEDGMENT
This work was partially supported by NSF CIF21DIBBS 1443054, NSF RaPyDLI 1415459 and the Indiana University Precision Health initiative.

References
[1] Bonomi F, Milito R, Zhu J, Addepalli S. Fog Computing and Its Role in the Internet of Things. In: Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing. MCC ’12. New York, NY, USA: ACM; 2012. p. 13–16. Available from: http://doi.acm.org/10.1145/
2342509.2342513.

[2] Hoffa C, Mehta G, Freeman T, Deelman E, Keahey K, Berriman B, et al. "On the Use of Cloud Computing for Scientific Workflows". In: 2008
IEEE Fourth International Conference on eScience; 2008. p. 640–645.

[3] Langmead B, Nellore A. Cloud computing for genomic data analysis and collaboration. Nature Reviews Genetics. 2018;19(4):208.
[4] Stewart CA, Knepper R, Link MR, Pierce M, Wernert E, Wilkins-Diehr N. "Cyberinfrastructure, Cloud Computing, Science Gateways, Visu-

alization, and Cyberinfrastructure Ease of Use". In: Encyclopedia of Information Science and Technology, Fourth Edition. IGI Global; 2018. p.
1063–1074.

http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513

Supun Kamburugamuve ET AL 17

[5] Mateescu G, GentzschW, Ribbens CJ. "Hybrid ComputingâĂŤWhere HPCmeets grid and Cloud Computing". "Future Generation Computer
Systems". 2011;27(5):440 – 453. Available from: http://www.sciencedirect.com/science/article/pii/S0167739X1000213X.

[6] Fox G, Qiu J, Jha S, Ekanayake S, Kamburugamuve S. "Big Data, Simulations and HPC Convergence". In: "Big Data Benchmarking". Cham:
Springer International Publishing; 2016. p. 3–17.

[7] Zhang B, Ruan Y, Qiu J. Harp: Collective Communication on Hadoop. In: 2015 IEEE International Conference on Cloud Engineering; 2015. p.
228–233.

[8] Halbwachs N, Caspi P, Raymond P, Pilaud D. The synchronous data flow programming language LUSTRE. Proceedings of the IEEE.
1991;79(9):1305–1320.

[9] Kamburugamuve S, Wickramasinghe P, Ekanayake S, Fox GC. Anatomy of machine learning algorithm implementations in MPI, Spark, and
Flink. The International Journal of High Performance Computing Applications. 2017;0(0):1094342017712976. Available from: http://dx.doi.
org/10.1177/1094342017712976.

[10] Kamburugamuve S, Wickramasinghe P, Govindarajan K, Uyar A, Gunduz G, Abeykoon V, et al.. Twister: Net-Communication Library for Big
Data Processing in HPC and Cloud Environments;. Accepted in IEEE CLOUD2018, San Francisco, July, 2 - 7.

[11] CloudNative Computing Foundation;. Accessed: 2017-Aug-06. https://www.cncf.io/.
[12] Gannon D, Barga R, Sundaresan N. Cloud Native Applications. IEEE Cloud Computing Magazine special issue on cloud native computing. to

be published;.
[13] White T. Hadoop: The Definitive Guide. 1st ed. Sebastopol, CA, USA: O’ReillyMedia, Inc.; 2009.
[14] Dean J, Ghemawat S. MapReduce: A Flexible Data Processing Tool. Commun ACM. 2010 Jan;53(1):72–77. Available from: http://doi.acm.

org/10.1145/1629175.1629198.
[15] Ekanayake J, Li H, Zhang B, Gunarathne T, Bae SH, Qiu J, et al. Twister: A Runtime for IterativeMapReduce. In: Proceedings of the 19th ACM

International Symposium on High Performance Distributed Computing. HPDC ’10. New York, NY, USA: ACM; 2010. p. 810–818. Available
from: http://doi.acm.org/10.1145/1851476.1851593.

[16] ZahariaM, ChowdhuryM, FranklinMJ, Shenker S, Stoica I. Spark: Cluster Computing withWorking Sets. In: Proceedings of the 2NdUSENIX
Conference on Hot Topics in Cloud Computing. HotCloud’10. Berkeley, CA, USA: USENIX Association; 2010. p. 10–10. Available from: http:
//dl.acm.org/citation.cfm?id=1863103.1863113.

[17] Carbone P, Katsifodimos A, Ewen S,Markl V, Haridi S, Tzoumas K. Apache flink: Stream and batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee onData Engineering. 2015;36(4).

[18] Murray DG,McSherry F, Isaacs R, IsardM, Barham P, AbadiM. Naiad: A Timely Dataflow System;. .
[19] Apache Apex;. Accessed: June 19 2018. https://apex.apache.org/.
[20] Akidau T, Bradshaw R, Chambers C, Chernyak S, Fernández-Moctezuma RJ, Lax R, et al. The Dataflow Model: A Practical Approach

to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-of-order Data Processing. Proc VLDB Endow. 2015
Aug;8(12):1792–1803. Available from: http://dx.doi.org/10.14778/2824032.2824076.

[21] Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, et al. Storm@Twitter. In: Proceedings of the 2014 ACMSIGMOD Interna-
tional Conference onManagement of Data. SIGMOD ’14. NewYork, NY, USA: ACM; 2014. p. 147–156. Available from: http://doi.acm.org/10.
1145/2588555.2595641.

[22] Kulkarni S, Bhagat N, Fu M, Kedigehalli V, Kellogg C, Mittal S, et al. Twitter Heron: Stream Processing at Scale. In: Proceedings of the 2015
ACMSIGMOD International Conference onManagement ofData. SIGMOD ’15. NewYork, NY, USA: ACM; 2015. p. 239–250. Available from:
http://doi.acm.org/10.1145/2723372.2742788.

[23] Akidau T, Balikov A, Bekiroğlu K, Chernyak S, Haberman J, Lax R, et al. MillWheel: Fault-tolerant Stream Processing at Internet Scale. Proc
VLDB Endow. 2013 Aug;6(11):1033–1044. Available from: http://dx.doi.org/10.14778/2536222.2536229.

[24] Ranjan R. Streaming Big Data Processing in Datacenter Clouds. IEEE Cloud Computing;.
[25] Thies W, Karczmarek M, Amarasinghe S. In: Horspool RN, editor. StreamIt: A Language for Streaming Applications. Berlin, Heidelberg:

Springer Berlin Heidelberg; 2002. p. 179–196. Available from: http://dx.doi.org/10.1007/3-540-45937-5_14.
[26] BalazinskaM, BalakrishnanH,Madden SR, StonebrakerM. Fault-tolerance in the Borealis Distributed StreamProcessing System. ACMTrans

Database Syst. 2008Mar;33(1):3:1–3:44. Available from: http://doi.acm.org/10.1145/1331904.1331907.
[27] Gedik B, Andrade H, Wu KL, Yu PS, Doo M. SPADE: The System s Declarative Stream Processing Engine. In: Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data. SIGMOD ’08. New York, NY, USA: ACM; 2008. p. 1123–1134. Available from:
http://doi.acm.org/10.1145/1376616.1376729.

http://www.sciencedirect.com/science/article/pii/S0167739X1000213X
http://dx.doi.org/10.1177/1094342017712976
http://dx.doi.org/10.1177/1094342017712976
https://www.cncf.io/
http://doi.acm.org/10.1145/1629175.1629198
http://doi.acm.org/10.1145/1629175.1629198
http://doi.acm.org/10.1145/1851476.1851593
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dx.doi.org/10.14778/2824032.2824076
http://doi.acm.org/10.1145/2588555.2595641
http://doi.acm.org/10.1145/2588555.2595641
http://doi.acm.org/10.1145/2723372.2742788
http://dx.doi.org/10.14778/2536222.2536229
http://dx.doi.org/10.1007/3-540-45937-5_14
http://doi.acm.org/10.1145/1331904.1331907
http://doi.acm.org/10.1145/1376616.1376729

18 Supun Kamburugamuve ET AL

[28] Neumeyer L, RobbinsB,Nair A, Kesari A. S4:Distributed StreamComputingPlatform. In: 2010 IEEE International Conference onDataMining
Workshops; 2010. p. 170–177.

[29] Fox G, Qiu J, Jha S, Ekanayake S, Kamburugamuve S. In: Rabl T, Nambiar R, Baru C, Bhandarkar M, Poess M, Pyne S, editors. Big Data,
Simulations and HPC Convergence. Cham: Springer International Publishing; 2016. p. 3–17. Available from: http://dx.doi.org/10.1007/
978-3-319-49748-8_1.

[30] Fox GC, Qiu J, Kamburugamuve S, Jha S, Luckow A. HPC-ABDS High Performance Computing Enhanced Apache Big Data Stack. In: Cluster,
Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on; 2015. p. 1057–1066.

[31] Islam NS, Rahman MW, Jose J, Rajachandrasekar R, Wang H, Subramoni H, et al. High Performance RDMA-based Design of HDFS over
InfiniBand. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press; 2012. p. 35:1–35:35. Available from: http://dl.acm.org/citation.cfm?id=2388996.2389044.

[32] Ekanayake S, Kamburugamuve S, Fox GC. SPIDAL Java: High Performance Data Analytics with Java and MPI on Large Multicore HPC Clus-
ters. In: Proceedings of the 24th High Performance Computing Symposium. HPC ’16. San Diego, CA, USA: Society for Computer Simulation
International; 2016. p. 3:1–3:8. Available from: http://dx.doi.org/10.22360/SpringSim.2016.HPC.031.

[33] Ekanayake S, Kamburugamuve S,Wickramasinghe P, FoxGC. Java thread and process performance for parallel machine learning onmulticore
HPC clusters. In: 2016 IEEE International Conference on Big Data (Big Data).Washington, DC, USA: IEEE; 2016. p. 347–354.

[34] Blagodurov S, Zhuravlev S, Fedorova A, Kamali A. A Case for NUMA-aware ContentionManagement onMulticore Systems. In: Proceedings
of the 19th International Conference on Parallel Architectures and Compilation Techniques. PACT ’10. New York, NY, USA: ACM; 2010. p.
557–558. Available from: http://doi.acm.org/10.1145/1854273.1854350.

[35] Liang F, Feng C, Lu X, Xu Z. Performance Benefits of DataMPI: A Case Study with BigDataBench. In: Zhan J, Han R,Weng C, editors. Big Data
Benchmarks, Performance Optimization, and Emerging Hardware: 4th and 5th Workshops, BPOE 2014, Salt Lake City, USA, March 1, 2014
and Hangzhou, China, September 5, 2014, Revised Selected Papers. Cham: Springer International Publishing; 2014. p. 111–123. Available
from: http://dx.doi.org/10.1007/978-3-319-13021-7_9.

[36] AndersonM, Smith S, SundaramN, Capotă M, Zhao Z, Dulloor S, et al. Bridging the Gap BetweenHPC and Big Data Frameworks;.
[37] Mattson TG, Cledat R, CavÃl’ V, Sarkar V, BudimliÄĞ Z, Chatterjee S, et al. TheOpenCommunity Runtime: A runtime system for extreme scale

computing. In: 2016 IEEEHigh Performance Extreme Computing Conference (HPEC); 2016. p. 1–7.
[38] Bosilca G, Bouteiller A, Danalis A, Herault T, Lemarinier P, Dongarra J. DAGuE: A generic distributed DAG engine for High Performance

Computing. Parallel Computing. 2012;38(1):37 – 51. Extensions for Next-Generation Parallel Programming Models. Available from: http:
//www.sciencedirect.com/science/article/pii/S0167819111001347.

[39] Kale LV, Krishnan S. CHARM++: A Portable Concurrent Object Oriented System Based on C++. In: Proceedings of the Eighth Annual Con-
ference on Object-oriented Programming Systems, Languages, and Applications. OOPSLA ’93. New York, NY, USA: ACM; 1993. p. 91–108.
Available from: http://doi.acm.org/10.1145/165854.165874.

[40] Conejero J, Corella S, Badia RM, Labarta J. ask-based programming in COMPSs to converge fromHPC to big data. The International Journal
of High Performance Computing Applications. 0;0(0):1094342017701278. Available from: http://dx.doi.org/10.1177/1094342017701278.

[41] Pebay P, Bennett JC, Hollman D, Treichler S, McCormick PS, Sweeney CM, et al. Towards Asynchronous Many-Task in Situ Data Analysis
Using Legion. In: 2016 IEEE International Parallel andDistributed Processing SymposiumWorkshops (IPDPSW). vol. 00; 2016. p. 1033–1037.
Available from: doi.ieeecomputersociety.org/10.1109/IPDPSW.2016.24.

[42] SterlingT,AndersonM,BohanPK,BrodowiczM,KulkarniA, ZhangB. In:Markidis S, LaureE, editors. TowardsExascaleCo-design in aRuntime
System. Cham: Springer International Publishing; 2015. p. 85–99. Available from: http://dx.doi.org/10.1007/978-3-319-15976-8_6.

[43] HollmanD, Lifflander J,Wilke J, Slattengren N,Markosyan A, Kolla H, et al.. DARMA v. Beta 0.5; 2017.
[44] Bozkus Z, Choudhary A, Fox G, Haupt T, Ranka S. Fortran 90D/HPF Compiler for DistributedMemoryMIMDComputers: Design, Implemen-

tation, and Performance Results. In: Proceedings of the 1993ACM/IEEEConference on Supercomputing. Supercomputing ’93. NewYork, NY,
USA: ACM; 1993. p. 351–360. Available from: http://doi.acm.org/10.1145/169627.169750.

[45] Hoefler T, Schneider T, Lumsdaine A. Characterizing the Influence of SystemNoise on Large-Scale Applications by Simulation. In: Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis. SC ’10. Washington,
DC, USA: IEEE Computer Society; 2010. p. 1–11. Available from: https://doi.org/10.1109/SC.2010.12.

[46] Hoefler T, Schneider T, Lumsdaine A. The impact of network noise at large-scale communication performance. In: 2009 IEEE International
Symposium on Parallel Distributed Processing; 2009. p. 1–8.

[47] Agarwal S, Garg R, Vishnoi NK. In: Bader DA, Parashar M, Sridhar V, Prasanna VK, editors. The Impact of Noise on the Scaling of Collec-
tives: A Theoretical Approach. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 280–289. Available from: http://dx.doi.org/10.1007/
11602569_31.

http://dx.doi.org/10.1007/978-3-319-49748-8_1
http://dx.doi.org/10.1007/978-3-319-49748-8_1
http://dl.acm.org/citation.cfm?id=2388996.2389044
http://dx.doi.org/10.22360/SpringSim.2016.HPC.031
http://doi.acm.org/10.1145/1854273.1854350
http://dx.doi.org/10.1007/978-3-319-13021-7_9
http://www.sciencedirect.com/science/article/pii/S0167819111001347
http://www.sciencedirect.com/science/article/pii/S0167819111001347
http://doi.acm.org/10.1145/165854.165874
http://dx.doi.org/10.1177/1094342017701278
doi.ieeecomputersociety.org/10.1109/IPDPSW.2016.24
http://dx.doi.org/10.1007/978-3-319-15976-8_6
http://doi.acm.org/10.1145/169627.169750
https://doi.org/10.1109/SC.2010.12
http://dx.doi.org/10.1007/11602569_31
http://dx.doi.org/10.1007/11602569_31

Supun Kamburugamuve ET AL 19
[48] Castain RH, Solt D, Hursey J, Bouteiller A. PMIx: ProcessManagement for Exascale Environments. In: Proceedings of the 24th EuropeanMPI

Users’ Group Meeting. EuroMPI ’17. New York, NY, USA: ACM; 2017. p. 14:1–14:10. Available from: http://doi.acm.org/10.1145/3127024.
3127027.

[49] Balaji P, Buntinas D, Goodell D, Gropp WD, Krishna J, Lusk EL, et al. PMI: A Scalable Parallel Process-Management Interface for Extreme-
Scale Systems. In: 17th EuroMPI Conference, Lecture Notes in Computer Science, Springer. Stuttgart, Germany, 2010; 2009. Available from:
http://www.springerlink.com/content/q9u361j4q6800773/.

[50] Nguyen T, Cicotti P, Bylaska E, Quinlan D, Baden SB. Bamboo: Translating MPI Applications to a Latency-tolerant, Data-driven Form. In:
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press; 2012. p. 39:1–39:11. Available from: http://dl.acm.org/citation.cfm?id=2388996.2389050.

[51] CastainRH,Woodall TS,DanielDJ, Squyres JM,Barrett B, FaggGE. TheOpenRun-TimeEnvironment (OpenRTE): ATransparentMulti-cluster
Environment for High-Performance Computing. In: Di Martino B, Kranzlmüller D, Dongarra J, editors. Recent Advances in Parallel Virtual
Machine andMessage Passing Interface. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 225–232.

[52] Apache NiFi;. Accessed: July 19 2017. https://nifi.apache.org/.
[53] LudÃd’scher B, Altintas I, Berkley C, Higgins D, Jaeger E, JonesM, et al. Scientificworkflowmanagement and the Kepler system. Concurrency

and Computation: Practice and Experience. 2006;18(10):1039–1065. Available from: http://dx.doi.org/10.1002/cpe.994.
[54] Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, et al. Pegasus: A framework for mapping complex scientific workflows onto

distributed systems. Scientific Programming. 2005;13(3):219–237.
[55] Marz N, Warren J. Big Data: Principles and Best Practices of Scalable Realtime Data Systems. 1st ed. Greenwich, CT, USA: Manning

Publications Co.; 2015.
[56] AWS Step Functions;. Accessed: July 19 2017. https://aws.amazon.com/step-functions/.
[57] Han J, E H, Le G, Du J. Survey on NoSQL database. In: 2011 6th International Conference on Pervasive Computing and Applications; 2011. p.

363–366.
[58] Nasir MAU, Morales GDF, Garcia-Soriano D, Kourtellis N, Serafini M. The power of both choices: Practical load balancing for distributed

stream processing engines. In: 2015 IEEE 31st International Conference onData Engineering; 2015. p. 137–148.
[59] ChuCT, Kim SK, Lin YA, YuY, Bradski G, NgAY, et al. Map-reduce forMachine Learning onMulticore. In: Proceedings of the 19th International

Conference on Neural Information Processing Systems. NIPS’06. Cambridge, MA, USA: MIT Press; 2006. p. 281–288. Available from: http:
//dl.acm.org/citation.cfm?id=2976456.2976492.

[60] GhotingA, KrishnamurthyR, Pednault E, Reinwald B, Sindhwani V, Tatikonda S, et al. SystemML:Declarativemachine learning onMapReduce.
In: 2011 IEEE 27th International Conference onData Engineering; 2011. p. 231–242.

[61] ZahariaM, ChowdhuryM,Das T, Dave A,Ma J,McCauleyM, et al. Resilient DistributedDatasets: A Fault-tolerant Abstraction for In-memory
Cluster Computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. NSDI’12. Berkeley,
CA, USA: USENIX Association; 2012. p. 2–2. Available from: http://dl.acm.org/citation.cfm?id=2228298.2228301.

[62] Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz RH, et al. Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center. In: NSDI. vol. 11; 2011. p. 22–22.

[63] Bernstein D. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud Computing. 2014 Sept;1(3):81–84. Available from:
doi.ieeecomputersociety.org/10.1109/MCC.2014.51.

[64] Luckow A, Santcroos M, Weidner O, Merzky A, Maddineni S, Jha S. Towards a Common Model for Pilot-jobs. In: Proceedings of the 21st
International Symposium onHigh-Performance Parallel and Distributed Computing. HPDC ’12. New York, NY, USA: ACM; 2012. p. 123–124.
Available from: http://doi.acm.org/10.1145/2287076.2287094.

[65] Castain RH, Solt D, Hursey J, Bouteiller A. PMIx: ProcessManagement for Exascale Environments. In: Proceedings of the 24th EuropeanMPI
Users’ Group Meeting. EuroMPI ’17. New York, NY, USA: ACM; 2017. p. 14:1–14:10. Available from: http://doi.acm.org/10.1145/3127024.
3127027.

[66] Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, et al. In: Kranzlmüller D, Kacsuk P, Dongarra J, editors. OpenMPI: Goals,
Concept, and Design of a Next Generation MPI Implementation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004. p. 97–104. Available
from: http://dx.doi.org/10.1007/978-3-540-30218-6_19.

[67] Thakur R, GroppWD. In: Dongarra J, Laforenza D, Orlando S, editors. Improving the Performance of Collective Operations inMPICH. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2003. p. 257–267. Available from: http://dx.doi.org/10.1007/978-3-540-39924-7_38.

[68] Pješivac-Grbović J, Angskun T, Bosilca G, Fagg GE, Gabriel E, Dongarra JJ. Performance analysis of MPI collective operations. Cluster
Computing. 2007;10(2):127–143. Available from: http://dx.doi.org/10.1007/s10586-007-0012-0.

[69] Wickramasinghe U, Lumsdaine A. A Survey of Methods for Collective Communication Optimization and Tuning. arXiv preprint
arXiv:161106334. 2016;.

http://doi.acm.org/10.1145/3127024.3127027
http://doi.acm.org/10.1145/3127024.3127027
http://www.springerlink.com/content/q9u361j4q6800773/
http://dl.acm.org/citation.cfm?id=2388996.2389050
http://dx.doi.org/10.1002/cpe.994
http://dl.acm.org/citation.cfm?id=2976456.2976492
http://dl.acm.org/citation.cfm?id=2976456.2976492
http://dl.acm.org/citation.cfm?id=2228298.2228301
doi.ieeecomputersociety.org/10.1109/MCC.2014.51
http://doi.acm.org/10.1145/2287076.2287094
http://doi.acm.org/10.1145/3127024.3127027
http://doi.acm.org/10.1145/3127024.3127027
http://dx.doi.org/10.1007/978-3-540-30218-6_19
http://dx.doi.org/10.1007/978-3-540-39924-7_38
http://dx.doi.org/10.1007/s10586-007-0012-0

20 Supun Kamburugamuve ET AL

[70] Barthels C, Müller I, Schneider T, Alonso G, Hoefler T. Distributed Join Algorithms on Thousands of Cores. Proc VLDB Endow. 2017
Jan;10(5):517–528. Available from: https://doi.org/10.14778/3055540.3055545.

[71] LuX, IslamNS,Wasi-Ur-RahmanM, Jose J, SubramoniH,WangH, et al. High-PerformanceDesign ofHadoopRPCwithRDMAover InfiniBand.
In: 2013 42nd International Conference on Parallel Processing. New York, NY, USA: IEEE; 2013. p. 641–650.

[72] Lu X, Shankar D, Gugnani S, Panda DKDK. High-performance design of apache spark with RDMA and its benefits on various workloads. In:
2016 IEEE International Conference on Big Data (Big Data); 2016. p. 253–262.

[73] Grun P, Hefty S, Sur S, Goodell D, Russell RD, Pritchard H, et al. A Brief Introduction to the OpenFabrics Interfaces - A NewNetwork API for
Maximizing High Performance Application Efficiency. In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects; 2015. p.
34–39.

[74] Kissel E, SwanyM. Photon: RemoteMemoryAccessMiddleware forHigh-PerformanceRuntime Systems. In: 2016 IEEE International Parallel
and Distributed Processing SymposiumWorkshops (IPDPSW); 2016. p. 1736–1743.

[75] Google Protocol Buffers;. Accessed: August 20 2017. https://developers.google.com/protocol-buffers/.
[76] Boyang P, Mohammad H, Zhihao H. R-Storm: Resource-Aware Scheduling in Storm. Annual Middleware Conference. ACM; 2015. Available

from: http://dx.doi.org/10.1145/2814576.2814808.
[77] Alistarh D, Kopinsky J, Li J, Shavit N. The SprayList: A Scalable Relaxed Priority Queue. SIGPLANNot. 2015 Jan;50(8):11–20. Available from:

http://doi.acm.org/10.1145/2858788.2688523.
[78] Rosti E, Serazzi G, Smirni E, Squillante MS. Models of Parallel Applications with Large Computation and I/O Requirements. IEEE Trans Softw

Eng. 2002Mar;28(3):286–307. Available from: http://dx.doi.org/10.1109/32.991321.
[79] ChenCT, Hung LJ, Hsieh SY, Buyya R, Zomaya AY. Heterogeneous Job Allocation Scheduler for HadoopMapReduceUsingDynamic Grouping

Integrated Neighboring Search. IEEE Transactions on Cloud Computing. 2017;PP(99):1–1.
[80] Stenström P, Joe T, Gupta A. Comparative Performance Evaluation of Cache-coherent NUMA and COMA Architectures. SIGARCH Comput

Archit News. 1992 Apr;20(2):80–91. Available from: http://doi.acm.org/10.1145/146628.139705.
[81] Fagg G, Dongarra J. FT-MPI: Fault tolerant MPI, supporting dynamic applications in a dynamic world. Recent advances in parallel virtual

machine andmessage passing interface. 2000;p. 346–353.
[82] Hursey J, Graham R, Bronevetsky G, Buntinas D, Pritchard H, Solt D. Run-through stabilization: AnMPI proposal for process fault tolerance.

Recent advances in themessage passing interface. 2011;p. 329–332.

https://doi.org/10.14778/3055540.3055545
http://dx.doi.org/10.1145/2814576.2814808
http://doi.acm.org/10.1145/2858788.2688523
http://dx.doi.org/10.1109/32.991321
http://doi.acm.org/10.1145/146628.139705

	Twister2: Design of a Big Data Toolkit
	Abstract
	Introduction
	Related Work
	Big Data Applications
	Data Processing Requirements
	MPI for Big Data
	Dataflow for Big Data
	Streaming Applications
	Data Pipelines
	Machine Learning
	Services

	Toolkit Components
	Architecture Specification
	Job Submission & Cluster Resource Allocation
	Communication
	BSP Communications
	Dataflow Communications
	High Performance Interconnects

	Task System
	Task graph
	Execution Graph

	Task Scheduling
	Task Scheduling for Batch and Streaming Jobs
	Static Task Scheduling Algorithm
	Dynamic Task Scheduling Algorithm

	Task Execution
	Data Access
	Distributed Data
	Fault Tolerance
	Fault Tolerance For Streaming Data
	Fault Tolerance For Batch Data

	State Management
	API

	Discussion
	Conclusions & Future work
	Acknowledgment
	References

