
Schedule Distributed Virtual Machines in a Service
Oriented Environment

Lizhe Wang†, Gregor von Laszewski†, Marcel Kunze‡, Jie Tao‡

† Pervasive Technology Institute, Indiana University Bloomington, IN 47404
‡ Steinbuch Center for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Abstract—Virtual machines offer unique advantages to the
scientific computing community, such as Quality of Service(QoS)
guarantee, performance isolation, easy resource management,
and the on-demand deployment of computing environments.
Using virtual machines as a computing resource within a dis-
tributed environment, such as Service Oriented Architecture
(SOA), creates a variety of new issues and challenges that must
be overcome. Traditionally, parallel task scheduling algorithms
only focus on handling CPU resources. Using of a virtual
machine, however, requires the monitoring and management
of additional resource properties. Additionally, CPU, memory,
storage, and software licenses must also be considered within the
scheduling algorithm. The objective of this paper is to address
these challenges of a multi-dimensional scheduling algorithm
for virtual machines within a SOA. To do this, we deploy a
testbed SOA environment composed of virtual machines which
are capable of being registered, indexed, allocated, accessed, and
controlled by our new parallel task scheduling algorithm.

Index Terms—Service oriented architecture, Virtual machine,
Scheduling algorithm

I. INTRODUCTION

Distributed computing environments and algorithms have
been developing with impressive progress for many years.
Despite these great advances in distributed computing, several
challenges still remain in actual distributed infrastructure im-
plementation, for example, Quality of Service (QoS) support,
customized computing environment provision, and flexible IT
infrastructure deployment.

Virtual machine technology recently has emerged as a
hot topic offering a variety of excellent advantages over
tradtional computing, such as performance isolation and cus-
tomized computing environment provision. Employing virtual
machines as computing resources in a distributed system,
therefore, is an interesting solution for the problems discussed
above. Service Oriented Architecture (SOA) is a distributed
computing environment where components are packaged as
independent services. These services interoperate and commu-
nicate with each other using standardized protocols. Currently,
SOA is one of the most popular building frameworks for
distributed systems.

This paper is devoted to the topic of scheduling virtual
machines in a SOA environment, which brings new research
issues, for example,

• resource provision is more complex, since virtual ma-
chines and their host resources both need to be considered

• compared with resource allocation in the traditional paral-
lel & distributed system, virtual machines contain more

properties which are used for scheduling, for example,
memory size, software packages, and access to specific
devices

In this paper, models for parallel tasks and virtual machine
based SOA environment are studied. A new parallel scheduling
algorithm, the Multi-Dimensional Scheduling Algorithm (M-
DSA) is designed and implemented in a SOA environment.
Simulation results show M-DSA’s performance improvement
when compared to the Random Resource Allocation Algo-
rithm (RRAA). A test case, bio-sequence alignment applica-
tion, runs in a real SOA environment scheduled with M-DSA.

The paper is organized as follows: Section II presents the
background of the related research – virtual machine technol-
ogy, the SOA environment and the task scheduling algorithms.
Section III formally defines the research of scheduling virtual
machines in a SOA environment: the target system model,
the parallel task model and the problem specification. Sec-
tion IV presents the M-DSA. Section V gives a performance
evaluation on the M-DSA simulation in a SOA environment.
Section VI investigates building a SOA environment on dis-
tributed virtual machines and the implementation of M-DSA in
a resource broker. Section VII concludes the paper and points
out future work.

II. RELATED WORK

A. Virtual Machine

A Virtual Machine (VM) is a software artifact that executes
other software in the same manner as the machine for which
the software is developed and executed [12]. The software
that supports multiple virtual machines on the same resource
is termed as a Virtual Machine Monitor (VMM) or hyper-
visor. The server that provides resources for multiple virtual
machines is termed as a host resource.

Test results show that employing virtual machines does
not induce a significant performance reduction – applications
lose around 5%-15% of the performance when compared
to the same cases on real machines [18]. For that reason
employing virtual machine as a computing resource can deliver
various advantages, for example, on-demand creation and cus-
tomization, QoS guarantee and performance isolation, legacy
software support, and easy resource management.

Popular virtual machine examples are Xen [2] and
VMware [15] products. Currently, virtual machines are widely
employed to build IT-infrastructure, distributed computing
platforms, and parallel systems. Examples exist in the Globus

2

Virtual Workspace and Nimbus [4], workflow systems on
distributed virtual machines [17], the In-Vigo project [1],
the Virtuoso project [11], Virtual resource marketing [3], the
OpenNebula [14] and the Cumulus project [19].

B. Web Service and SOA

Web services are application components using open proto-
cols to communicate, for example, the Simple Object Access
Protocol (SOAP) standard. Web services are self-contained
and self-describing – Web services are described in the Web
Services Description Language (WSDL)and can be discovered
using the Universal Description, Discovery and Integration
(UDDI).

Web services can be used to implement a Service Oriented
Architecture (SOA). In general, a SOA [8] contains a service
provider, a service broker, and a service requester. It is believed
that the SOA can help businesses respond more quickly
and cost-effectively to changing market conditions. The SOA
promotes the objective of separating users from the service im-
plementations. Services can therefore be executed on various
distributed platforms and be accessed across networks making
them ubiquitous to the end user. This can also maximize the
reuse of services and enable the interoperability of distributed
components and entities.

C. Task Scheduling Algorithm in Parallel & Distributed Sys-
tems

The problem of task scheduling is the distribution of the
tasks to Processing Elements (PEs) to achieve some perfor-
mance goals, e.g., minimizing execution time, minimizing
communication delays, or maximizing resource utilization.
Task scheduling algorithms are typically classified into two
subcategories: static task scheduling algorithms and dynamic
task scheduling algorithms.

In static task scheduling algorithms, the assignment of tasks
to resources is performed before applications are executed.
Information about task execution time and communication
delay is assumed to be known at compilation time. Since
task scheduling is an NP-complete problem, a large number of
heuristic algorithms [21], [16] have been developed. Heuristic
algorithms mainly rely on rules-of-thumb to guide the schedul-
ing process to reach near optimal solutions.

Dynamic task scheduling algorithms are based on the redis-
tribution of tasks among PEs during execution time. In order
to improve the performance of applications, the distribution is
performed by transferring tasks from the heavily loaded PEs
to lightly loaded PEs [5], [9], [20].

The advantage of dynamic load balancing algorithms over
static scheduling algorithms is that the system does not require
the pre-knowledge for task allocation. However, dynamic task
scheduling algorithms may cause some run-time overhead.

Many static task scheduling algorithms are based on the
list scheduling algorithm [10], [7], [6]. List based scheduling
algorithms assign priorities to tasks and sort tasks into a list
ordered in decreasing priority. Then tasks are scheduled based
on the priorities.

III. SCHEDULING DISTRIBUTED VIRTUAL MACHINES IN A
DISTRIBUTED SYSTEM: PROBLEM DEFINITION

A. What’s new?

The studied system contains a number of computing servers
(or host resources), each of which supplies several virtual
machines. Computing resources of a server, e.g., CPU and
memory, are divided between the host’s virtual machines. Each
virtual machine is pre-installed with some application level
software packages. Tasks will be allocated to some virtual
machine that can provide the proper resources (CPU and
memory) and software.

The aforementioned distributed computing environment is
more complex than traditional distributed systems in that:

• Computing resources required to be scheduled are multi-
ple dimension, for example, CPU bandwidth, memory,
and software licences. In traditional scheduling envi-
ronment, only processor resources are considered for
resource allocation.

• Resource allocation should be considered with more
restrictions, for example, some applications can only be
scheduled to certain virtual machines that provide the
required application execution environment. This scenario
does not exist in a traditional distributed system.

This section discusses the formal specification of the re-
search issue – scheduling parallel tasks for virtual machine
allocation in a SOA.

B. Target System Model

The target system, where resources are managed in a SOA
environment, can be described as: G = {H,V, L}, where:

• Host resource: H = {hi}, 1 ≤ i ≤ R
H is the set of R hosts in the target system. R is the
total amount of the hosts. Each host hi has 2 properties:

– hi.CPUPerformance is the value of CPU band-
width of the host,

– hi.MemorySize is the value of memory size of the
host.

• Virtual machines: V = {vi}, 1 ≤ i ≤M
V is the set of M virtual machines. M is the total amount
of the virtual machines. Each virtual machine vi has 1
property:

– vi.Software is the software installed on the virtual
machine, this can be a set of software.

• Virtual machine affiliation L = [Lik]
L is a R×M matrix. Lik represents the host Hi has Lik

virtual machine vk, 1 ≤ i ≤ R and 1 ≤ k ≤M .

Lik =

{
0 if host hi has not the virtual machine vk
1 if host hi has the virtual machine vk

C. Parallel Task Model

Parallel tasks are modeled as T = {J,<}, where,
• J = {ji}, , 1 ≤ i ≤ N

J is the set of N tasks to be scheduled. N is the total
number of tasks in J . Each task ji has 4 properties:

3

– ji.Req Software: software required, this can be a
set of software,

– ji.Req CPU : CPU bandwidth required,
– ji.Req Mem: memory size required, and
– ji.Req T ime: execution time required.

• < is a partial order defined on J
< specifies operational precedence constraints. ji < jk
means that ji must be completed before jk can begin,
1 ≤ i ≤ N , 1 ≤ k ≤ N , jk, ji ∈ J .

D. Problem Definition

For parallel tasks T = {J,<}, the resource allocation array
is defined as:

S = {Si} = {< hij , vik, tiq >}
1 ≤ ij ≤ R, 1 ≤ ik ≤M, 1 ≤ iq, hij ∈ H, vik ∈ V, 0 ≤ tiq

where,
• hij , vik are the host and the virtual machine allocated for

the task ji, and
• tiq is the starting time of the task ji

It should be noted that ij here is a single variable to represent
an integer, it is not two dimensional subscript. ik and iq are
the same case.

For the sake of easily specifying the problem the following
definitions are introduced:

• TST : Task Starting Time
Each task ji, 1 ≤ i ≤ N , has its own Job Starting Time:
JSTi. Task Starting Time of parallel task T , TST , is
defined as follows:

TST = min{JST1, JST2, ..., JSTN}

• TFT : Task Finish Time
Each task ji , 1 ≤ i ≤ N , has its own Job Finish Time:
JFTi. Task Finish Time of parallel task T , TFT , is
defined as follows:

TST = max{JFT1, JFT2, ..., JFTN}

• TET : Task Execution Time
Task Execution Time of parallel task T , TET , is defined
as follows:

TET = TFT − TST

The schedule of the parallel task T = {J,<} on the target
system G = {H,V, L} is a function f which maps the parallel
task J to the allocation array S:

f : J → S, f ∈ F, F is the set of all feasible mappings.

Therefore, the problem of parallel task scheduling on the
target system can be defined as follows:
Given parallel tasks T = {J,<} and the target system G =
{H,V, L}, find a schedule fmin, fmin ∈ F , which gives the
parallel task the minimum Task Execution Time TET .

IV. MULTI-DIMENSION SCHEDULING ALGORITHM

A. Why is static scheduling algorithm used?

This section proposes a Multi-Dimension Scheduling Al-
gorithm (M-DSA) for parallel task resource allocation, which

belongs to the static scheduling algorithms classification. Static
scheduling algorithms are adopted for distributed virtual ma-
chine allocation with the following considerations.

Firstly, the distributed virtual machines are prepared and
required via resource reservations or mutual negotiation in
the SOA. Therefore, the tasks’ resource requirements can be
gathered at either compile time or preparation time. This is
the typical context for static scheduling algorithms.

Dynamic scheduling algorithms normally require the run-
ning task’s load information. In the distributed virtual ma-
chine environment, virtual machines reserve and guarantee the
resource allocation of the running tasks. Therefore, the load
information is meaningless for scheduling algorithms.

Furthermore, dynamic scheduling algorithms sometimes de-
mand task migration and the transfer of a running virtual
machine over wide-area networks is expensive.

B. How does the M-DSA Differ from Existing List Based
Scheduling Algorithms?

Task’s requirements on host resources are multi-
dimensional. In the parallel task model, hence the term
“Multi-Dimension”, the following are used – required CPU,
required remory, required task execution time, and required
software environment. In traditional list scheduling algorithms
resources are modeled as PEs, which only count for the CPU
bandwidth or the processor number. When multiple resource
dimensions are considered, coordinated scheduling policies
should be developed to adopt the multiple restrictions. The
M-DSA is designed and implemented to handle the new
requirements for task scheduling.

The M-DSA is a list based scheduling algorithm. Therefore,
the primary goal of the algorithm is to schedule a task as
early as possible when all the resources required by the job
are available.

The M-DSA contains two steps:
• Task sorting

Initially all the tasks of the parallel task should be sorted
according to the dependencies between tasks.

• Resource allocation
Then the sorted tasks are scheduled onto the target
system. The proper host resources and virtual machines
will be allocated to each task.

C. Task Sorting Algorithm

The parallel tasks T = {J,<} can be represented by
a Directed Acyclic Graph (DAG). Algorithm 1 shows the
algorithm of building a DAG from parallel task T = (J,<).

In Algorithm 1, the set of all the direct predecessors of each
vertex is set to empty firstly. For each dependence ji < jk of
the set <, a directed arc from vertex ji to jk is created and
the vertex ji is added to the set of the direct predecessors of
vertex jk. Finally the created DAG is output.

Algorithm 2 presents the sorting algorithm for a DAG. In
Algorithm 2, IncomingDegree is the number of the incoming
degree of a vertex. Sequence Stack V ertex is a sequence
stack for storing vertexes whose incoming degrees are 0.
Directpredecessors is the set of all the direct predecessors

4

Algorithm 1 Algorithm of DAG generation
BEGIN
FOR each vertex ji ∈ J DO

ji.Directpredecessors← ∅
ENDFOR
FOR each dependence ji < jk ∈ < DO

create a directed arc from vertex ji to jk
Add ji to jk.Directpredecessors

ENDFOR
output DAG
END

Algorithm 2 Task Sorting Algorithm
vi.IncomingDegree: the number of the incoming degree of
vertex vi;
Sequence Stack V ertex: a stack that stores vertex;
vi.Directpredecessors: the set of all the direct predecessors
of the vertex vi.
vi.Direcsuccessors: the set of all the direct successors of the
vertex
vi.Sorted Jobs List: the list of sorted vertexes;
BEGIN
Sorted Jobs List← ∅;
FOR each vertex vi ∈ DAG DO

IF (vi.IncomingDegree = 0)
Add vi into the stackSequence Stack V ertex

ENDIF
ENDFOR
WHILE (Sequence Stack V ertex is not empty) DO

v ← pop Sequence Stack V ertex
Add the vertexv to the end of Sorted Jobs List
remove v and its arcs from DAG
FOR each vj ∈ v.Direcsuccessors DO

vj .IncomingDegree← vj .IncomingDegree− 1
IF (vj .IncomingDegree = 0)

Add vj into the stackSequence Stack V ertex;
ENDIF

ENDFOR
ENDWHILE
IF (number of output vertex < n)

ERROR (“Jobs dependencies Error. There is ring in the
DAG.”)
ELSE

output Sorted Jobs List
ENDIF
END

of a vertex. Direcsuccessors is the set of all the direct
successors of a vertex. Sorted Jobs List is the list of sorted
vertexes.

First the algorithm initializes the list Sorted Jobs List to
empty and push all the vertexes whose incoming degrees are
0 into the sequence stack Sequence Stack V ertex. While
the Sequence Stack V ertex is not empty, the algorithm
does the loop as follows: it pops a vertex v out of the stack
Sequence Stack V ertex and adds the vertex v to the end of
the list Sorted Jobs List, removes the vertex v and its arcs

from the DAG; for each vertex vj in the set Direcsuccessors
of the vertex v, it reduces the incoming degree of the vertex
vj with 1; at this moment, if the incoming degree of vj is 0,
pushs the vertex vj into the stack Sequence Stack V ertex
and then repeats the loop until there is no vertex in the
Sequence Stack V ertex anymore.

Finally, if the number of the output vertexes is the same
as the number of the vertexes in the DAG, output the list
Sorted Jobs List, it means that the vertexes of the DAG are
sorted successfully, otherwise the input data DAG is incorrect.

D. Resource Allocation Algorithm

In Algorithm 3, Sorted Jobs List is the sorted job list
which is the result of Algorithm 3. ji.Directpredecessors is
the set of all the direct predecessors of the task ji, this is the
result of Algorithm 1. T0 is the possibly earliest task starting
time of a task. TFT is the Task Finish Time of a task. h is the
allocated host for a job. vm is the allocated virtual machine
for a task in the loop. TST is the Task Starting Time for the
task execution. TET is the total Task Execution Time of all
the tasks.

For a certain task selected from Sorted Jobs List, the
algorithm searches all the hosts for suitable a virtual machine
resource. If it finds one for the first time, the information of the
suitable resource is stored in the variables h, vm, and TST .
If it finds another suitable resource with information of hx,
vmx, and a earlier task staring time TSTx, the hx, vmx and
TSTx would be selected as resource allocation for task ji.

Here, we define the suitable resource h and vm for task j
as follows:

j.Req CPU ≤ h.CPUPerformance
j.Req Mem ≤ h.MemorySize

j.Req Software ⊆ vm.Software

The more suitable resource means resource allocation with
consideration of load balance. In other words, a host with
light computing load profile is more suitable than a host with
heavy computing load profile. We define a parameter, RLPt

– Resource Load Profile, to represent the load status of the
target system at certain time, t.

RLP (t) =

∑
j(Tj .Req CPU × Tj .Req Mem)∑

i(hi.CPUPerformance× hi.MemorySize)

Where,
hi.CPUPerformance is the value of CPU bandwidth of the
host hi,
hi.MemoerySize is the value of memory size of the host hi,
Tj is the task which occupies one host resource at time t,
Tj .Req CPU is the value of required CPU of task Tj , and
Tj .Req Mem is the value of required memory of task Tj .
RLP (t) shows, at certain time t, how much resources are

occupied. In other words, it reflects, how busy the system is
in certain time transaction.

V. SIMULATION AND PERFORMANCE EVALUATION

In this section, the performance of parallel task scheduling
algorithm – D-MSA is analyzed by simulation. TETs of

5

Algorithm 3 Resource Allocation Algorithm
Sorted Jobs List: the list of sorted tasks
ji.Directpredecessors: the set of all the direct predecessors
of the task ji.
T0: the possibly earliest job starting time
TFT : Task Finish Time of a task
h: allocated host for the task
vm: allocated virtual machine for the task
TST : Task Starting Time for the task execution
TET : the total Task Execution Time of all the jobs
BEGIN
FOR each task ji in Sorted Jobs List DO

found FreeResource = False
TST = 0
IF (ji.DirectPredecessors = ∅)

T0 = 0
ELSE

T0 = max {TFT of ji.DirectPredecessors}
ENDIF
FOR each host DO

IF (find a suitable host hx with vmx (Lh,vm = 1),
and task starting time TSTx after T0)

IF (found FreeResource = False)
h = hx

vm = vmx

TST = TSTx

found FreeResource = True
ELSE

IF (TST = TSTx)
IF (hx is more suitable than h)

h = hx

vm = vmx

ENDIF
ELSE IF (TST > TSTx)

h = hx

vm = vmx

TST = TSTx

ENDIF
ENDIF

ENDIF
ENDFOR
schedule < h, vm, TST > to task ji
Update the host h resource allocation information with

< vm, TST, ji >
ENDFOR
TFT = max{TFT of all the tasks}
output TFT
END

different sizes of parallel tasks are examined with different
load profiles of the target system.

A. Simulation Environment

The simulation environment is composed of two modules:
• Task Module: Task Module generates the parallel tasks

to be scheduled. The Task Module includes two compo-
nents:

– DAG Generator: DAG Generator generates DAG of
parallel tasks, including dependencies between tasks.
Users can specify parameters for task generation,
e.g., task number. In this simulation, 2 sets of parallel
tasks are generated whose task number are 100 and
200 respectively.

– Task Requirement Generator: Task Requirement
Generator randomly generates resource requirements
for tasks.

• Resource Module: The Resource Module generates the
target system for simulation. There are two components in
the Resource Module: VM Generator and Host Generator.
VM Generator generates the virtual machines and their
installed software. Host Generator generates the hosts
with resource properties.

B. Simulation results and Evaluation

The M-DSA is tested in the simulation environment dis-
cussed above. A performance comparison between the M-DSA
and the RRAA is performed to justify the performance im-
provement of the M-DSA. The Random Resource Allocation
Algorithm (RRAA) sorts the parallel tasks input and randomly
selects hosts and virtual machines for parallel tasks, which can
fulfill the task resource requirements. The RRAA is simulated
and tested in the same environment.

A complete performance comparison is done in various
simulation scenarios:

• different RLPs: 0%, 5%, 10%1 and
• different task number: 100 and 200.

The host number is fixed at 100. The simulation results are
shown in Figure 1. It can be concluded that the M-DSA can
gain at least 20% performance improvement compared with
the RRAA.

!"

#!!!"

$!!!"

%!!!"

&!!!"

'()*+",-."#!!"
/0121"

33++",-."#!!"
/0121"

'()*+",-."$!!"
/0121"

33++",-."$!!"
/0121"

!"
#$
%&
'&
()
*
+,

%*
-
&%
.#
&(
+,

/0
%

!%("#&#%

3456!7" 345687" 3456#!7"

Fig. 1. Performance comparison of the M-DSA and the RRAA

1The scenario of RLP = 0 means that no tasks run on distributed
resources. In this simulation, it is generated to evaluate the performance of
scheduling algorithms in some lightly loaded use cases.

6

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

#!" $!!" $#!" %!!"

!"
#$
%&
'&
()
*
+
,
%*
-
&
%.
#&
(+
,
/
0%

!"#$%,)-1&2%

3456789:%;+#<%,)-1&26788%

Fig. 2. Performance of the M-DSA when the task number increases

The scalability of the M-DSA is also studied in the simu-
lation. The host number is fixed to 100, Figure 2 shows the
performance of the M-DSA when the task number increases.
The Task Execution Time increased near-linearly with the
increasing of task number. The task number is fixed to 200,
Figure 3 shows the performance of the M-DSA when the host
number increases. The Task Execution Time also increased
near-linearly with the increasing of host number.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

%#" #!" '#" $!!"!"
#$
%&
'&
()
*
+
,
%*
-
&
%.
#&
(+
,
/
0%

!"#$%,)-1&2%

3456789:%!"#$%;)-1&26<88%

Fig. 3. Performance of the M-DSA when the host number increases

VI. IMPLEMENTATION OF M-DSA IN A SOA

A. SOA Computing Environment with Distributed Virtual Ma-
chine Resources

1) Overview: The SOA computing environment with dis-
tributed virtual machines contains a UDDI server, distributed
host resources and users. Virtual machines are supported by
host resources and installed with various types of application
software. The host resources are interfaced with a specific
Web service that publishes resource information on the UDDI
server. Users search resource information on the UDDI service
and locate proper virtual machines for task execution.

2) Development Environment: The SOA environment was
built with the Java Web Services Developer Pack (JWSDP)
and the Sun Java System Application Server (SJSAS).

We use GridSAM [13] to provide a Web Service for
submission and monitoring jobs that are managed by a variety
of Distributed Resource Managers (DRM). GridSAM Web ser-
vice can be embedded into software applications that requires
job submission and monitoring capabilities.

Currently no public UDDI registry exists, therefore a private
Registry Server should be configured. It is created with Sun
Application Server 8.2 and Java WSDP 1.5. The UDDI service
provides functionality to publish host resource information.

GridSAM is a Web service that can wrap application
software packages. Each virtual machine is installed with
GridSAM and users are allowed to access software packages
for invocation.

In order to register and update the information of the
host on the UDDI Registry Server, a client of Java API
for XML Registry (JAXR) is implemented on the host. The
JAXR client uses the JAXR API, which is a client program
for accessing registries. In this work, the Host Resource
Information includes the CPU performance, memory capacity,
virtual machines with associated host and services (software)
installed, and all the reserved resource units of the host.

B. Resource Broker with M-DSA

!"#$%

!"#$%

%%%%&&&%

'(()%!"#$%

*+,-.$%

/012,$%3%2".,$"4%

5-#6".#-%

5-7,#$-4%

%%%%80-49% %%%5-6+9%

#*:-;0+-4%

#*:-;0+,.7%

%%5-#0+$%

Fig. 4. Scheduler in the SOA with distributed virtual machines

1) Overview: Figure 4 shows the resource broker in the
SOA environment. The Broker module operates as a server for
all the end users and works as a client for the UDDI Registry
Server. When a user submits a parallel task to the Broker,
the Broker queries the UDDI Registry Server and obtains
information about all the resources from the UDDI Registry
Server in XML-based format. The Broker then allocates the
resource for each job with the M-DSA Algorithm and returns
the results to the user.

2) Implementation of Resource Broker: The Broker is a
mediator between Client and UDDI Registry Server. Figure 5
shows the architecture of the Broker.

The Broker consists of 3 components: client interface,
resource requester, and scheduler. The client Interface is
responsible for the communications with clients. The resource
requester queries the UDDI Registry Server to obtain the infor-
mation about all the current suitable resources. The scheduler
uses the M-DSA to allocate resources for parallel tasks.

3) Task Scheduling with Resource Broker: The task
scheduling scenario is described in the following steps:

1 Each Host registers the necessary information on the
UDDI Registry Server with the resource information, for
example, host name, CPU performance, memory size,

7

!"#$%&'

!"#$%&'

#%&$()*+$'

,+-$./"$('

0$,1/(+$'

($2/$,&1('

3445'

-67'

+*""'

($
,7
1
%
,$
'

($,71%,$'

!*""'

-67'

8(19$('

Fig. 5. Resource Broker

VMs of the host: VM Name and software offered by each
VM (including URL information), and all the Occupied
resource units on the host: Start time, End time, Occupied
CPU & memory.

2 A user sends a parallel task in JDSL to the Broker. JSDL
(Job Submission Description Language) is the standard
of Global Grid Form (GGF).

3 The Broker queries the UDDI Registry Server for the
information of required resources.

4 The UDDI Registry Server sends all the information of
the required host resources to the Broker.

5 The Broker organizes the information of host resources
and allocates the suitable resource for parallel tasks by
using M-DSA.

6 The Broker returns scheduling result to the client.
7 The broker sends parallel tasks to scheduled resources.
8 Each host updates its Host Resource Information on the

UDDI Registry Server.

VII. CONCLUSION AND FUTURE WORK

It has been widely accepted that virtual machines can be
employed as computing resources to build a distributed system
for various reasons. SOA is one of the most popular architec-
tures for building a distributed computing environment. This
paper focuses on the research aspect of scheduling distributed
virtual machines in a SOA environment.

We declare our contribution as follows:
• develop a M-DSA for task scheduling in a virtual ma-

chine based SOA environments
• make performance evaluation on the M-DSA by simulat-

ing various use scenarios
• build a SOA environment based on distributed virtual

machines and implement M-DSA in a SOA environment,
• deliver a real use case to justify the M-DSA implemen-

tation in a SOA environment
We plan to continue developing M-DSA with data allocation

considerations, and build a SOA environment on a heteroge-
neous networking, such as D-Grid project in the future.

ACKNOWLEDGMENT

Work conducted by Gregor von Laszewski and Lizhe Wang
is supported (in part) by NSF CMMI 0540076 and NSF SDCI
NMI 0721656.

REFERENCES

[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul,
A. Matsunaga, M. Tsugawa, J. Zhang, Mi. Zhao, L. Zhu, and X. Zhu.
From virtualized resources to virtual computing Grids: the In-VIGO
system. Future Generation Comp. Syst., 21(6):896–909, 2005.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 164–177, New York, U. S. A., Oct. 2003.

[3] D. E. Irwin, J. S. Chase, L. E. Grit, A. R. Yumerefendi, D. Becker,
and K. Yocum. Sharing networked resources with brokered leases. In
Proceedings of the 2006 USENIX Annual Technical Conference, pages
199–212, 2006.

[4] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces:
achieving quality of service and quality of life in the Grid. Scientific
Programming, 13(4):265–275, 2005.

[5] Y. Lee and A. Y. Zomaya. Practical scheduling of bag-of-tasks
applications on grids with dynamic resilience. IEEE Trans. Computers,
56(6):815–825, 2007.

[6] G. Liu, K. Poh, and M. Xie. Iterative list scheduling for heterogeneous
computing. J. Parallel Distrib. Comput., 65(5):654–665, 2005.

[7] A. Mtibaa, B. Ouni, and M. Abid. An efficient list scheduling algorithm
for time placement problem. Computers & Electrical Engineering,
33(4):285–298, 2007.

[8] E. Newcomer and G. Lomow. Understanding SOA with Web services.
Addison-Wesley, 2004.

[9] H. Park and B. Kim. Optimal task scheduling algorithm for cyclic
synchronous tasks in general multiprocessor networks. J. Parallel
Distrib. Comput., 65(3):261–274, 2005.

[10] B. Shirazi, M. Wang, and G. Pathak. Analysis and evaluation of
heuristic methods for static task scheduling. J. Parallel Distrib. Comput.,
10(3):222–232, 1990.

[11] A. Shoykhet, J. Lange, and P. Dinda. Virtuoso: a system for virtual
machine marketplaces. Technical Report NWU-CS-04-39, Northwest
University, July 2004.

[12] J. Smith and R. Nair. Virtual machines: versatile platforms for systems
and processes. The Morgan Kaufmann, 2003.

[13] GridSAM: Grid Job Submission and Monitoring Web Service [URL].
http://gridsam.sourceforge.net/, access on Nov. 2007.

[14] OpenNEbula Project [URL]. http://www.opennebula.org/.
[15] VMware virtualization technology [URL]. http://www.vmware.com.
[16] Lizhe Wang, Wentong Cai, Bu-Sung Lee, Simon See, and Wei Jie.

Resource Co-allocation for Parallel Tasks in Computational Grids.
In International Workshop on Challenges of Large Applications in
Distributed Environments (CLADE 2003), pages 88–96, 2003.

[17] Lizhe Wang and Marcel Kunze. On the design of virtual environment
based workflow system for grid computing. In Proceedings of the Fifth
International Conference on Grid and Cooperative Computing Work-
shops, pages 212–218, Washington, DC, USA, 2006. IEEE Computer
Society.

[18] Lizhe Wang, Marcel Kunze, and Jie Tao. Performance evaluation
of virtual machine based Grid workflow system. Concurrency and
Computation: Practice and Experience, 20(15):1759–1771, 2008.

[19] Lizhe Wang, Marcel Kunze, and Jie Tao. Scientific cloud computing:
early definition and experience. In Proceedings of the IEEE International
Conference on High Performance Computing and Communications,
pages 795–803, Dalian, China., Sep. 2008.

[20] M. Wang, R. Kotagiri, and J. Chen. Trust-based robust scheduling and
runtime adaptation of scientific workflow. Concurrency and Computa-
tion: Practice and Experience, 2009.

[21] S. Wang, D. Xuan, R. Bettati, and W. Zhao. Providing absolute differ-
entiated services for real-time applications in static-priority scheduling
networks. IEEE/ACM Trans. Netw., 12(2):326–339, 2004.

	INTRODUCTION
	RELATED WORK
	Virtual Machine
	Web Service and SOA
	Task Scheduling Algorithm in Parallel & Distributed Systems

	Scheduling distributed virtual machines in a distributed system: problem definition
	What's new?
	Target System Model
	Parallel Task Model
	Problem Definition

	Multi-Dimension Scheduling Algorithm
	Why is static scheduling algorithm used?
	How does the M-DSA Differ from Existing List Based Scheduling Algorithms?
	Task Sorting Algorithm
	Resource Allocation Algorithm

	Simulation and Performance Evaluation
	Simulation Environment
	Simulation results and Evaluation

	Implementation of M-DSA in a SOA
	SOA Computing Environment with Distributed Virtual Machine Resources
	Overview
	Development Environment

	Resource Broker with M-DSA
	Overview
	Implementation of Resource Broker
	Task Scheduling with Resource Broker

	Conclusion and Future Work
	References

