
Towards Energy Aware Scheduling for Precedence
Constrained Parallel Tasks in a Cluster with DVFS

Lizhe Wang†, Gregor von Laszewski†, Jai Dayal‡ and Fugang Wang†

† Pervasive Technology Institute, Indiana University
‡ Department of Computer Science, Rochester Institute of Technology

Abstract—Reducing energy consumption for high end comput-
ing can bring various benefits such as, reduce operating costs,
increase system reliability, and environment respect. This paper
aims to develop scheduling heuristics and to present application
experience for reducing power consumption of parallel tasks in
a cluster with the Dynamic Voltage Frequency Scaling (DVFS)
technique. In this paper, formal models are presented for
precedence-constrained parallel tasks, DVFS enabled clusters,
and energy consumption. This paper studies the slack time
for non-critical jobs, extends their execution time and reduces
the energy consumption without increasing the task’s execution
time as a whole. Additionally, Green Service Level Agreement
is also considered in this paper. By increasing task execution
time within an affordable limit, this paper develops scheduling
heuristics to reduce energy consumption of a tasks execution and
discusses the relationship between energy consumption and task
execution time. Models and scheduling heuristics are examined
with a simulation study. Test results justify the design and
implementation of proposed energy aware scheduling heuristics
in the paper.

Keywords – Cluster Computing; Green Computing; Task
Scheduling

I. INTRODUCTION

Nowadays, high end computing facilities can consume a
very large amount of power albeit they provide high per-
formance computing solutions for scientific and engineering
applications [1]. For example, operating a middle-sized data
center (i.e., a university data center) demands 80000kW power
[2]. It is estimated that computing resources consume around
0.5% of the world’s total power usage [3], and if current
demand continues, is projected to quadruple by 2020. Energy
consumption for high performance facilities thus contributes to
a significant electric bill. Additionally, high power consump-
tion in general results in higher cooling costs. Furthermore,
to allow computing facilities to operate on high power for a
long time will lead to high temperature of computing systems,
which further harms a system’s reliability and availability.
Therefore, reducing power consumption for high end com-
puting becomes a critical research topic.

Modern processors are equipped with the Dynamic Voltage
Frequency Scaling (DVFS) technique, which enables proces-
sors to be operated at multiple frequencies under different
supply voltages. The DVFS technique thus gives opportuni-
ties to reduce the energy consumption of high performance
computing by scaling processor supply voltages. Our research
is devoted to developing scheduling heuristics which reduce
energy consumption of parallel task execution by using the

DVFS mechanism. A parallel task is a set of jobs with prece-
dence constraints. Jobs in a parallel task may have some slack
time for their execution due to their precedence constraints.

This paper makes a study on scheduling policies and ap-
plication experiences to reduce power consumption of parallel
tasks. An energy aware task scheduling has been developed
where we identify the slack time for non-critical jobs and
scale their supply voltages thus reducing the jobs’ energy
consumption.

The green Service Level Agreement (SLA) is introduced in
this research. By negotiating with users via green SLA, an
energy-performance tradeoff algorithm is developed to reduce
energy consumption with an affordable task execution time
increase. We develop a simulation study on the proposed
scheduling heuristics and make a performance evaluation.We
declare our contribution as follows:
• We develop formal models for parallel tasks and a power

aware cluster and we also define the task scheduling issue.
• We present the green SLA use scenarios and propose

new scheduling heuristics for energy aware parallel task
scheduling, which only considers a best effort scheduling
scenario, but also makes a study on the tradeoff between
the energy consumption and task execution time (perfor-
mance).

• We build a simulation study and performance evaluation
on the proposed heuristics. Test results justify our design
and implementation of energy aware heuristics.

The rest of this paper is organized as follows. Section II
introduces background and related work. Section III presents
the Service Level Agreement with performance metrics of
green computing. Then Section IV discusses the models for
parallel tasks, DVFS and compute clusters and Section V
formally define the research issue of energy aware parallel task
scheduling. We propose the scheduling heuristics in Section
VI. Section VII describes a simulation study on the proposed
scheduling heuristics and finally this paper is summarized in
Section VIII.

II. RELATED WORK

This section discusses background and related work of task
scheduling, DVFS, and power aware cluster computing.

A. Parallel task scheduling
Task scheduling techniques in parallel and distributed sys-

tems have been studied in great detail with the aim of making
use of these systems efficiently.



2

Task scheduling algorithms are typically classified into
two subcategories: static scheduling algorithms and dynamic
scheduling algorithms. In static task scheduling algorithms, the
task assignment to resources is determined before applications
are executed. Information about task execution cost and com-
munication time is supposed to be known at compilation time.
Static task scheduling algorithms normally are non-preemptive
– a task is always running on the resource to which it is as-
signed [4], [5]. Dynamic task scheduling algorithms normally
schedule tasks to resources in the runtime to achieving load
balance among PEs. are based on the redistribution [6], [7].

List scheduling algorithm is the most popular algorithm in
the static scheduling [8], [9]. List based scheduling algorithms
assign priorities to tasks and sort tasks into a list ordered in
decreasing priority. Then tasks are scheduled based on the
priorities.

In this paper, we build a list based scheduling heuristic for
parallel tasks. The task execution information, such as task
execution cost and communication cost, can be obtained by
some profiling tools and compiler aides in advance.

B. Energy reduction via DVFS technique

Dynamic voltage and frequency scaling (DVFS) has been
proven to be a feasible solution to reduce processor power con-
sumption [10], [11]. By lowering processor clock frequency
and supply voltage during some time slots, for example, idle or
communication phases, large reductions in power consumption
can be achieved with only modest performance losses. A
DVFS-enabled cluster [1] is a compute cluster where compute
nodes can run at multiple power/performance operating points.
The DVFS techniques have been applied in the high perfor-
mance computing fields, for example, in large data centers, to
reduce power consumption and achieve high reliability and
availability [12], [13], [14]. Popular DVFS-based software
solutions for high end computing include:
• Scientific applications can be modeled with Directed

Acyclic Graph (DAG) and the critical path is identified in
for applications. Thus, it is possible to reduce energy con-
sumption by leveling down the processor supply voltage
during non-critical execution of tasks [15].

• Some work [16] builds online performance-driven run-
time systems to automatically scale processor supply
voltages.

• Some work applies DVFS during the communication
phases of high performance computing, for example MPI
[17], [18].

• In addition to parallel applications, virtual machine
scheduling can also use DVFS [1].

Our research in this paper falls into the first category:
scheduling DAGs on multiple processors in a cluster with
DVFS techniques.

C. Power aware task scheduling

A lot of work has developed DVFS for task scheduling.
For example, [19], [20] discuss scheduling independent tasks
with DVFS on a single processor, [21], [22] use DVFS to

schedule dependent tasks on multiple processors, [23], [24],
[25] developed power aware task scheduling algorithm for real
time systems. As our work is devoted to developing power
aware scheduling algorithms for dependent tasks, we compare
our work with related research in this topic.

[26], [23], [27], [24], [25] schedule dependent tasks on
real time, where the tasks normally are assigned with arrival
time, deadline and max power consumption. In our research
of energy aware high end computing, we don’t have these
restrictions on the tasks to be scheduled.

[28] employs the similar DAG model and resource model
with us and developed energy-aware duplication scheduling
algorithms. This work however did not use DVFS technique
to reduce power consumption, therefore their implementation
certainly has some room to further reduce energy consumption
if DVFS technology is employed when scheduling parallel
tasks.

[22] proposes a list based low energy scheduling algorithm –
LEneS. It smartly introduces enhanced task-graphs (ETG) and
energy gain in the list based scheduling. [23] develops a hybrid
global/local search optimization framework for DVFS with
simulated heating. LPHM [29] is a low power scheduling of
DAGs to minimize task execution time. LPHM combines the
heterogeneous earliest finish time with the DVFS technique.
Compared to the above related research, our work not only
considers minimizes the energy consumption in the scheduling
algorithm, but also uses the concept of slack time for jobs in
power Gantt chart to discuss the trade off between energy
consumption and scheduling length.

[30] proposes an energy-conscious scheduling (ECS) heuris-
tic for parallel tasks on heterogeneous computing systems.
[31] uses the same idea of extending task execution time by
reclaiming slack times for non-critical jobs. In our paper, we
give a clear formulation of energy aware scheduling algorithm
and a detailed discussion of slack time computation. Our
scheduling algorithm also concerns reducing voltages during
the communication phases between parallel jobs. None of
above research work discusses this aspect.

III. SLA MANAGEMENT FOR GREEN COMPUTING

Green computing is a research topic to make computing
with environmental concerns [32], for example, reduced en-
ergy consumption and reduced CO2 emissions. We develop
power aware scheduling for parallel task in the context of
green SLA (Service Level Agreement for Green Computing).
Users can specify not only performance requirements for com-
puting services, but users can also specify green computing
requirements for executing their jobs. We define the green SLA
in three phases:
• Green SLA contract definition

Our previous work [32] has summarized a number of
green computing metrics, such as Data Center Infras-
tructure Efficiency (DCiE) [33], [34], Power Usage Ef-
fectiveness (PUE) [34], Data Center energy Productivity
(DCeP) [35], Space Watts and Performance (SWaP) [36],
storage, network, and server utilization. The green SLA
contract definition phase creates various green SLA tem-
plates based on above green computing metrics. Typical



3

metrics includes task response time, CO2 emission, and
power consumption. This phase also contains green SLA
template publication and discovery.

• green SLA negotiation & monitoring
Users develop their green SLA specification based on
SLA templates and make a negotiation with computing
resources, for example, a high performance cluster. Here
are some examples of green computing service specifica-
tions:

– Establish an execution service for x minutes if the
total carbon emission of the service is below y tons.

– I would like to accept z% task execution time
increase to reduce w energy consumption.

• green SLA enforcement
When a green SLA is reached, computing resources
then execute the specified green services. For example,
schedule tasks based on specified task execution time,
CO2 emission and power consumption. In Section VI, we
develop energy aware scheduling algorithms for parallel
tasks based on user’s green SLA specifications.

Figure 1 shows the conceptual framework for green SLA
based on energy aware scheduling in a cluster. Before a
resource consumer submits a parallel job to a cluster, she/he
firstly negotiates with a resource provider with normal perfor-
mance metrics, like job response time, as well as with green
metrics, for example, power consumption or CO2 emission.
After an agreement is reached, the user then submits his/her
job to the resource. The resource provider then schedules the
incoming job to an energy aware cluster to guarantee the green
metrics and computing performance.

!"#$%&'()*++++++++++++++

,'*-.(/#0+++++

12+

12+

12+

12+

12+

12+

"'&3/$.+

1,.,''$'+/,34+

5$3-&."$++

6.-7(%$.+

5$3-&."$++

"-)3&0$.+

8.$$)+!9:++

)$*-;,;-)+

<-
=
+3&

=
0
(33(-

)
+

>
(/#

+*
.$
$
)
+!
9:
+

!$.7$.+3(%$+?'($)/+3(%$+

<-
=
+$
@$
"&
;
-
)
+

Fig. 1. Concept framework for green SLA based energy aware scheduling
in a cluster

IV. SYSTEM MODEL

This section provides the formal description for a DVFS-
enabled cluster, parallel tasks, and performance models, which
are employed as basis of the formal problem definition in
Section V and the scheduling algorithm in Section VI.

A. DVFS Model

A DVFS-enabled processor can be operated on a set of
supply voltages V and a set of processor frequencies F .

V =
⋃

1≤m≤M

{vm} (1)

F =
⋃

1≤m≤M

{fm} (2)

where,
vm is the m-th processor operating voltage;
fm is the m-th processor operating frequency;
vmin = v1 ≤ v2 ≤ ... ≤ vM = vmax;
fmin = f1 ≤ f2 ≤ ... ≤ fM = fmax;
1 ≤ m ≤ M , M is the total number of processor operating
points.

B. Energy Model

The energy consumption of modern processor for job ex-
ecution, ξ, can be divided into two parts, dynamic energy
consumption ξdynamic, and static energy consumption ξstatic
[37]:

ξ = ξdynamic + ξstatic (3)

According to [38], the dynamic power consumption Pdynamic

is computed as follows:

Pdynamic = A · C · v2 · f (4)

Where,
A is the percentage of active gates;
C is the total capacitance load;
v is the supply voltage;
f is the processor frequency.

Then, we have:

ξdynamic =
∑
4t

Pdynamic · 4t (5)

where,
Pdynamic is the dynamic power;
4t is a time period.

ξdynamic is normally proportional to Edynamic [39], [40]:

ξstatic ∝ ξdynamic (6)

Therefore the whole power consumption could be estimated
as follows [37]:

ξ ∝ ξdyanmic (7)

In conclusion, we have the performance model:

ξ =
∑
4t

(δ · v2 · f · 4t) (8)

Where,
δ is a constant determined by the PE.
v is the processor operating voltage during 4t;



4

f is the processor operating frequency during 4t;
4t is a time period.

C. Resource Model

A compute cluster normally contains multiple compute
nodes, which are formally termed as Processing Elements
(PEs) in a context of parallel computing. This paper makes
a study on homogeneous clusters: all PEs of the cluster have
the same processing speed or provide identical processing
performance in term of MIPS (Million Instruction Per Second).
A homogeneous cluster, C, contains K PEs. The k-th PE pek
has two properties:
• pek.v

op ∈ V is the processor operating voltage
• pek.f

op ∈ F is the processor operating frequency
1 ≤ k ≤ K, K is the total number of PEs.

A cluster C is defined by its set of processing elements

C =
⋃

1≤k≤K

{pek} (9)

D. Parallel Task Model

A parallel task with precedence constrains is modeled as a
Directed Acyclic Graph (DAG) – T = (J,E):
• J : a set of jobs (nodes in a DAG)

J =
⋃

1≤n≤N

{jobn} (10)

where,
jobn is a job in the parallel task J .
N is the total number of jobs.
A job, jobn, has 3 properties:

– weight is the instruction number of jobn.
– tst is the starting time of jobn.
– t is the execution time of jobn. if jobn is executed on
pek, the job execution time is calculated as follows:

jobn.t =
jobn.weight · CPI

pek.fop
(11)

where, CPI is the number of cycles per instruction
of pek. It is determined by both the hardware and
software of the cluster C, for example, computer
architecture and instruction set (ie, RISC or CISC).
jobn.t

0 is the jobn’s execution time when PE is run-
ning with the maximum frequency fmax. Equation
11 calculates job execution based on PE’s operating
frequency.

– tend is the ending time of jobn. We have:

jobn.t
end = jobn.t

st + jobn.t (12)

Based on Equation 11 and Equation 8, the energy con-
sumption to execute jobn can be calculated as follows:

ξn = γ · v2 · jobn.weight (13)

where, γ is a constant determined by the cluster C, and
irrelevant with the parallel task T . v is the PE supply
voltage during the jobn’s execution.

• E: a set of precedence constraints (edges in a DAG)
E defines partial orders ( operational precedence con-
straints) on J . eij is an edge between jobi and jobj , it
means that jobi must be completed before jobj can begin,
1 ≤ i, j ≤ N , jobi, jobj ∈ J . eij sometime can also be
represented jobi < jobj .
e has one property:
eij .cost ≥ 0, is the amount of data required to be trans-
ferred from jobi to jobj , 1 ≤ i, j ≤ N , jobi, jobj ∈ J .
Data are transferred from the PE where jobi is executed
to the PE where jobj is executed.
As we are studying a homogeneous cluster, without
loss of generality, ei,j .cost can also be normalized as
communication time. Now we discuss the relationship
between ei,j .cost and PE’s operating frequency. Figure 2
shows the energy consumption and communication cost
as processor frequency varies for four common MPI calls
when different size of data are transferred among PEs
[18]. From the experiment results we can see energy can
be saved up to 31% with at most 5% communication time
increase. In this paper, we ignore the communication time
increase. In other words, when a PE’s supplied voltage
is scaled down, the data communication time remains
unchanged.

V. RESEARCH PROBLEM DEFINITION

This paper focuses on two research issues:

• best effort scheduling
The objective of scheduling is to minimize task execution
time. Without damaging the performance of parallel task
execution (task execution time), the best effort scheduling
algorithm tries to reduce the energy consumption for task
execution.

• energy-performance tradeoff scheduling
The research issue is based on the green SLA negotiation
between users and resource providers, which is discussed
in Section III. Users agree to accept a tolerable perfor-
mance loss, for example, additional 10% of task execution
time, to reduce more energy consumption and make
their computing more green. Therefore, the objective of
the energy-performance tradeoff scheduling is to reduce
energy consumption for task execution with an acceptable
performance punishment.

Before we bring up the formal definition of the above
research issues, the following term definitions are introduced.

• TST : Task Starting Time of T

TST = min
1≤n≤N

jobn.t
st (14)

• TFT : Task Finish Time of T

TFT = max
1≤n≤N

jobn.t
end (15)

• makespan: the schedule length of T

makespan = TFT − TST (16)



5

cation regions. In addition, we use a simple metric—
operations per unit time—to determine the proper p-
state for each region. Next, we designed the shifting
component, which includes the mechanics of reduc-
ing the p-state at the start of a region and increasing
it at the end.
Because our system is built strictly with code ex-

ecuted within the PMPI runtime layer, there is no
user involvement whatsoever. Thus, the large base of
current MPI programs can utilize our technique with
both no source code change and no recompilation of
the MPI runtime library itself. While we aim our
system at communication-intensive codes, no per-
formance degradation will occur for computation-
intensive programs.
Results on the NAS benchmark suite show that we

achieve up to a 20% reduction in energy-delay prod-
uct (EDP) compared to an energy-unaware scheme
where nodes run as fast as possible. Furthermore,
across the entire NAS suite, our algorithm that re-
duces the p-state in each communication region
saved an average of 10% in EDP. This was a sig-
nificant improvement compared to simply reducing
the p-state for each MPI communication call. Also,
importantly, this reduction in EDP did not come at a
large increase in execution time; the average increase
across all benchmarks was 2.1%, and the worst case
was only 4.5%.
The rest of this paper is organized as follows. In

Section 2, we provide motivation for reducing the
p-state during communication regions. Next, Sec-
tion 3 discusses our implementation, and Section 4
discusses the measured results on our power-scalable
cluster. Then, Section 5 describes related work. Fi-
nally, Section 6 summarizes and describes future
work.

2 Motivation
To be effective, reducing the p-state of the CPU
should result in a large energy savings but a small
time delay. As Figure 1 shows, MPI calls provide an
excellent opportunity to reduce the p-state. Specifi-
cally, this figure shows the time and energy as a func-
tion of CPU frequency for four common MPI calls at
several different sizes. (Function MPI File write is
included because it is used in BT and it communi-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 2 KB

time
energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 40 KB

time
energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 800 KB

time
energy

(a) MPI Recv

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 2 KB

time
energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 40 KB

time
energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 800 KB

time
energy

(b) MPI Send

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 2 KB

time
energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 40 KB

time
energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 800 KB

time
energy

(c) MPI Alltoall

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 2 KB

time
energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 40 KB

time
energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 800 1200 1600 2000
Frequency (MHz)

Size = 800 KB

time
energy

(d) MPI File write all

Figure 1: Micro-benchmarks showing time and en-
ergy performance of MPI calls with CPU scaling.

cates with a remote file system, which is a different
action from other MPI communication calls.) For all
MPI operations, at 1000 MHz at least 20% energy
is saved with a time increase of at most 2.6%. The
greatest energy savings is 31% when receiving 2 KB
at 1000 MHz. In addition, For the largest data size,
the greatest time increase was only 5%. In terms of
energy-delay product, the minimum is either 1000 or
800 MHz. Overall, these graphs show that MPI calls
represent an opportunity, via CPU scaling, for energy
saving with little time penalty.
However, in practice, many MPI routines are too
short to make reducing the p-state before and in-
creasing the p-state after effective. Figure 2(a) shows
a cumulative distribution function (CDF) of elapsed
times of all MPI calls in all of the NAS benchmark
suite. This figure shows that over 96% of MPI calls

2
Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on March 26, 2009 at 16:59 from IEEE Xplore.  Restrictions apply.

Fig. 2. Energy performance of MPI calls [18]

• Schedule: Task Schedule
The schedulen of jobn is a mapping from jobn to a PE
pek with task starting time jobn.tst.

schedulen : jobn → (pek, jobn.t
st) (17)

The schedule of parallel task T , Schedule, is defined as:

Schedule =
⋃

1≤n≤N

schedulen (18)

A feasible schedule of parallel task T keeps the partial
orders between jobs in T .

Based on the above definitions, the best effort scheduling
issue is defined as: given parallel task T and a cluster C,
find a feasible schedule Schedule, which 1) gives the min-
imum schedule length makespanbest of T , and 2) reduce
as much energy consumption as it can without increasing
makespanbest.

The energy-performance tradeoff scheduling issue is defined
as: given parallel task T , a cluster C, and the schedule length
makespanbest, of a best effort schedule, find a feasible sched-

ule which tries to minimize energy consumption by giving
Task Execution Time makespan ≤ (1 + η)×makespanbest.
η > 0 is the accepted task execution time extension, which is
determined by the green SLA negotiation.

VI. POWER AWARE SCHEDULING ALGORITHM FOR
PARALLEL TASKS

A. Rules of Thumb for Scheduling

We summarize several obvious rules to guide the design of
power aware scheduling algorithms for parallel tasks.

1) Equation 13 shows that given a certain task, a PE’s
supply voltage could be scaled down to a proper voltage
to reduce the task’s energy consumption. Certainly, this
action may lead an increase of task execution time.

2) Figure 2 indicates that during the communication phase,
the PE’s supply voltage should be scaled down to the
lowest level.

3) When a PE is idle (there is no task execution and data
communication), its supply voltage should be leveled
down to the lowest level.

B. Best Effort Scheduling Algorithm

This subsection discusses the best effort scheduling algo-
rithm, which aims to minimize energy consumption of task
execution without extending a task’s makespan. The best effort
scheduling algorithm (shown in Algorithm 1) firstly employs
the ETF (Earliest Task First), a list-based scheduling algorithm
(shown in Algorithm 2), to find the best effort task response
time for T . Then, it tries to reduce the energy consumption
with the following methods:
• scale down PE’s voltages to a proper level, thus extend-

ing the execution time of the non-critical jobs without
affecting the critical path.

• scale the PE’s voltage when it is idle or when it is in the
data communication phase.

Algorithm 1 Best effort power aware scheduling algorithm

1. schedule tasks via the ETF scheduling algorithm 2
2. scale down PE’s voltages for all non-critical jobs with

Algorithm 3

Given a parallel task T , the ETF algorithm [41], [42] is
described in Algorithm 2. The Algorithm 2 allocates each
job with a priority which be calculated via different methods,
for example, bottom level and top level [43], [44]. In our
implementation, we use the bottom level. Then, Algorithm 2
selects ready jobs with the highest priority and schedules it on
the PE with earliest task starting time.

The output of Algorithm 2 is a so-called Gantt chart, which
displays time slots for job execution and data communication
on multiple PEs. Figure 3 is an example parallel task to
be scheduled. In Figure 3, job IDs and job execution costs
are marked inside the jobs and the communication costs are
labeled on the links. The scheduled task graph is shown in



6

Algorithm 2 The ETF scheduling algorithm
1 jobn.level: priority of task jobn ∈ J
2 ready job list: list of jobs that are ready to be executed
3 PE list: list of PEs
4 pek.tavailable: PE’s available time.

5 BEGIN

6 FOR each job jobn ∈ J DO
7 compute jobn.level
8 ENDFOR

9 put all ready jobs into ready job list
10 sort all jobs jobn ∈ ready job list in decreasing order
of jobn.level

11 put all PEs into PE list
12 sort all PEs pek.tavailable = 0

13 REPEAT
14 IF (ready job list 6= ∅ ) THEN
15 get a job, jobn, from ready job list
16 get a PE, pek, which has the earliest available time
pek.t

available

17 schedule jobn on pek
18 arrange the communicate phase, calculate starting time
and finish time of jobn on pek
19 delete the task from ready job list
20 update PE list with increasing order pek.tavailable

21 ENDIF
22 update ready job list
23 UNTIL (every job jobn ∈ J has been scheduled)

24 END

!"

#"

$"

#"

%"

&"

'"

&"

("

#"

)"

#"

#" #"

#"

&"#"

#"

Fig. 3. An example DAG

Figure 4 as a Gantt chart. The Critical Path (CP) of scheduled
task graph in a Gantt chart is defined as follows:

a set of time slots of job execution and data com-
munication from the first job to the last job, of which
the sum of computation costs and communication
costs is the makespan.

!"#$% &'()% )% *% *'(+% !"#$% !"#$% !"#$%

&% ,% -% +%

./0$%

./0$%

1-2%

1-3%

4#567%80$%9:%*%

4#567%80$%9:%)%

Fig. 4. An example Gantt chart

The CP in Figure 4 is “A → C → E → F ”. It should be
aware that a CP may across multiple PEs. As the best effort
scheduling algorithm does not extend the makespan, supplied
voltages of PEs during the time slots of task execution and data
communication in the CP is not changed. Supplied voltages
of other time slots in a Gantt chart are considered be scaled
down. For example, in Figure 4 jobs B and D have chance to
extend their execution time and scale down supplied voltages.

To discuss the Algorithm for scaling voltages on non-critical
time slots, we need to compute the slack time for a non-critical
job. We have jobn’s earliest start time is:

jobn.
←−
tst = max

{jobm|jobm<jobn}
{jobm.tend + em,n.cost} (19)

jobn’s latest finish time is:

jobn.
−−→
tend = min

{jobl|jobl>jobn}
{jobl.tst − el,n.cost} (20)

{jobm|jobm < jobn} and {jobl|jobl > jobn} are jobn’s
precursor set and successor set respectively. Then jobn’s slack
time can be calculated as:

jobn.slack = jobn.
−−→
tend − jobn.

←−
tst (21)

We can find in Figure 4 the slack time of job B and D.
Assume jobn is a non-critical job and is executed on pek.

Then jobn’s execution time can be extended to jobn.slack
without violating precedence constraints (without changing the
finish time of its precursors and the start time of its succes-
sors). pek’s operating frequency can be scaled to pek.fop,

pek.f
op = fmax ×

jobn.t
0

jobn.slack
(22)

Where, jobn.t0 is jobn’s execution time when pek is operated
with fmx. jobn.t0 is discussed in Section IV-D and can be
calculated in Equation 11.

Algorithm 3 shows how to scale down non-critical jobs. For
each PE, it scans all time slots (line 2–3). When the PE is idle
or transfers data in a time slot, Algorithm 3 scales the PE’s
operating frequency to the lowest (line 4–6). When a time slot
executes a non-critical job, it calculates its slack time, extends
the job’s execution time to the slack time, and scales down
the PE’s operating frequency to a proper value (line 7–9).

C. Energy-Performance Tradeoff Scheduling Algorithm

Now we discuss the energy-performance tradeoff problem:
if a user agrees to tolerate an increase of his/her job execution
time, for example, η of schedule length of the best-effort



7

Algorithm 3 Non-critical time slot voltage scaling algorithm
1 BEGIN

2 FOR each PE pek DO
3 FOR each time slot in pek’s Gantt chart DO
4 IF pek is idle or it executes a communication phase

THEN
5 scale down pek’s operating frequency to lowest
6 ENDIF

7 IF pek executes a non-critical job jobn THEN
8 calculate jobn.slack as Equation 21.
9 scale pek’s frequency to pek.fop as Equation 22.
10 ENDIF
11 ENDFOR
12 ENDFOR

13 END

!"#$% &'()% *'(+%
*%

!"#$%

&% ,% -% +%

./0$%

./0$%

12#345$%

12#345$%

6-7%

6-8%
)%

Fig. 5. Example power Gantt chart

scheduling algorithm, how to schedule jobs to save more
energy?

The energy-performance tradeoff algorithm is shown in
Algorithm 4. It firstly gets the best effort scheduling length
via Algorithm 2. Then, it scales both the critical time slots in
Algorithm 5 and non-critical time slots in Algorithm 3.

Algorithm 4 Energy-performance tradeoff scheduling algo-
rithm

1. schedule tasks via the ETF scheduling algorithm 2
2. scale down PE’s voltages for critical jobs with Algorithm

5
3. scale down PE’s voltages for non-critical jobs with

Algorithm 3

The Algorithm 5 firstly extends the critical time slots.
Assume jobn is a critical job and it is executed on pek. It has
been proved in [45] that distributing the free slack time evenly
is optimal as the power consumption is a convex function of
PE frequency. Therefore jobn’s slack time can be calculated
as:

jobn.slack = jobn.t
0 × η (23)

Where,
jobn.t

0 is jobn’s execution time when pek is operated with
fmx.
η is the agreed extension of parallel task’s execution time.

pek’s operating frequency can be scaled to pek.fop,

pek.f
op = fmax ×

jobn.t
0

jobn.slack
(24)

!"#$% &'()% *'(+% !"#$%

,-.$%

/0#123$%

/0#123$%

456%

457%

)%

&% 8% 5% +%

,-.$%

*%

Fig. 6. Energy-performance tradeoff power Gantt chart

Algorithm 5 Algorithm of voltage scaling for all time slots
1 BEGIN

2 FOR each PE pek DO
3 FOR each time slot in pek’s Gantt chart DO
4 IF pek executes a critical job jobn THEN
5 calculate its jobn’s slack time as Equation 23
6 scale pek’s frequency to pek.fop as Equation 24.
4 ENDFOR

3 FOR each time slot in pek’s Gantt chart DO
4 IF pek is idle or it executes a communication phase

THEN
5 scale down pek’s operating frequency to lowest
6 ENDIF

7 IF pek executes a non-critical job jobn THEN
8 calculate jobn.slack as Equation 21.
9 scale pek’s frequency to pek.fop as Equation 22.
10 ENDIF
11 ENDFOR
12 ENDFOR

13 END

VII. PERFORMANCE STUDY WITH SIMULATION

We make a simulation study on the proposed best ef-
fort scheduling algorithm and energy-performance tradeoff
scheduling algorithm. Several task sets are generated with the
Synthetic DAG generation tool [46]. We simulate a cluster
with multiple Turion MT-34 processors, whose operating
points are shown in Table I.

In this simulation for best effort scheduling, we are in-
terested how much energy is saved given various parallel
tasks and PE numbers in the cluster. We define the resource
competition to execute a parallel task, ζ(T ), in a cluster as
follows:

ζ(T ) =
N

P
(25)

where, T is the parallel task, N is the job number of T , and P
is the PE number for executing T . Resource competition shows



8

TABLE I
OPERATING POINTS FOR THE TURION MT-34 PROCESSOR

Frequency (GHz) Supply Voltage (V)
1.8 1.20
1.6 1.15
1.4 1.10
1.2 1.05
1.0 1.00
0.8 0.90

the task execution situation, like how many precedences exist
between jobs, how many jobs are scheduled, and how many
jobs are executed on each PE.

TABLE II
COMPARISON OF ENERGY SAVINGS BETWEEN DIFFERENT ENERGY AWARE

SCHEDULING ALGORITHM

Energy aware DAG Maximum
scheduling algorithm energy saving

EADUS & TEBUS [28] 16.8%
Energy Reduction Algorithm [31] 25%

LEneS [22] 28%
ECS [30] 38%

Our algorithm 44.3%

Our best effort scheduling algorithm can achieve up to
44.3% energy saving in the simulation. Table II compares our
algorithm with other energy aware DAG scheduling algorithms
in term of max energy saving. EADUS & TEBUS [28] uses
the duplication strategies for scheduling DAG based parallel
tasks in a cluster to reduce power consumption. However,
EADUS & TEBUS do not use DVFS to reduce energy
consumption, thus leading less energy savings. Compared with
LEneS [22], Energy Reduction Algorithm [31], and ECS [30],
our algorithm can achieve more energy saving as 1) it reduces
the energy consumption during the communication phase, 2)
it reduces power consumption when a PE is idle, and 3) it
tries to extend job slack time whenever it is possible.

Figure 7 shows the energy savings in different scenarios of
numbers of PEs and resource competition. From Figure 7 we
can see that the energy saved increases as the number of PEs
increases. This can be explained as follows: when the number
of PEs increases, intuitively there are less jobs executed in
a PE, then the jobs have more of a chance to scale their
execution time and PE supply voltages. If we fix the number of
PEs, the energy saving firstly increases, achieves it maximum
value, and then deceases. This can be explained by the fact
that the percentage of jobs on the critical path firstly increases
then decrease. The length of critical path gives the limit that
non-critical jobs can extend to.

In the simulation for enery-performance tradeoff scheduling,
we are more interested in the relationship between the energy
saved and the extended task execution time, as shown in Figure
8. From Figure 8 we can see that:

!"

#"

$"

%"

&"

'"

("

)"

*"

!+"

!+" #+" $+" %+" &+" '+" (+" )+" *+" !++"

!"
#$
%&
'"
('
$)

*"
+
+
$,

(

-%)."&($/(01#(

1,"&23(#456,2#(

+,+-.!+,+-" !+,+-.#+,+-" #+,+-.$+,+-" $+,+-.%+,+-" %+,+-.&+,+-"

Fig. 7. Energy savings of best effort scheduling algorithm

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

!# $!"# %!"# &!"# '!"# (!"# )!"# *!"# +!"# ,!"# $!!"#

!
"
!
#$
%
&'
(
)
*"
$
&

+(',&!-!./01"&02!&!-+!"'*1"&

Fig. 8. Energy savings vs. makespan extension

• When the makespan extension increases, the energy sav-
ings also increase.

• Then energy savings increase much when the makespan
extension is less then 30%.

• The energy savings become saturated when the maskspan
extension is more than 70%.

These observations can conclude that the green SLA nego-
tiation is feasible. When users pay additional tolerant task
execution time, which is less than 30%, significant energy
savings can be achieved. This is a win-win game.

VIII. CONCLUSION AND FUTURE WORK

Recently, the need for efficient algorithms to minimize
wasted server energy has become increasingly important.
Dynamic voltage and frequency scaling (DVFS) technique
has proven to be a highly effective technique to achieve
low power consumption for high performance computing by
dynamically scaling processor speed. We develop our research
on minimizing energy for precedence-constrained parallel task



9

execution. This paper proposes a scheduling algorithm in
DFVS-enabled clusters for executing parallel tasks. The pro-
posed algorithm finds slack time for non-critical jobs without
increasing scheduling length. We also develop green SLA
based mechanism to reduce energy consumption by return
users tolerant increased scheduling makespans. The proposed
scheduling algorithm is examined via a simulation study. Test
results show that the scheduling algorithm is efficient to reduce
the power consumption of a DVFS-enabled cluster. Future
work includes the deployment of the power aware scheduling
algorithm in some real applications, for example, the the sparse
Cholesky decomposition.

REFERENCES

[1] G. von Laszewski, L. Wang, A. J. Younge, and X. He,
“Power-Aware Scheduling of Virtual Machines in DVFS-
enabled Clusters,” in IEEE Cluster 2009. New Orleans:
IEEE, 31 Aug. – Sep. 4 2009. [Online]. Available:
http://code.google.com/p/cyberaide/source/browse/trunk/papers/09-
greenit-cluster09/vonLaszewski-cluster09.pdf

[2] L. Wang, G. von Laszewski, J. Dayal, X. He, and T. R. Furlani, “Thermal
Aware Workload Scheduling with Backfilling for Green Data Centers,”
in Proceedings of the 28th IEEE International Performance Computing
and Communications Conference, Arizona, U.S., Dec 2009.

[3] W. Forrest, “How to cut data centre carbon
emissions?” Website, December 2008. [Online]. Available:
http://www.computerweekly.com/Articles/2008/12/05/233748/how-to-
cut-data-centre-carbon-emissions.htm

[4] V. M. Lo, “Heuristic algorithms for task assignment in distributed
systems,” IEEE Trans. Computers, vol. 37, no. 11, pp. 1384–1397, 1988.

[5] V. Sarkar, Partitioning and scheduling parallel programs for multipro-
cessors. Cambridge, MA, USA: MIT Press, 1989.

[6] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing in
homogeneous distributed systems,” IEEE Trans. Software Eng., vol. 12,
no. 5, pp. 662–675, 1986.

[7] Y. Wang and R. J. T. Morris, “Load sharing in distributed systems,”
IEEE Trans. Computers, vol. 34, no. 3, pp. 204–217, 1985.

[8] R. Li and H. Huang, “List scheduling for jobs with arbitrary release
times and similar lengths,” J. Scheduling, vol. 10, no. 6, pp. 365–373,
2007.

[9] A. Mtibaa, B. Ouni, and M. Abid, “An efficient list scheduling algorithm
for time placement problem,” Computers & Electrical Engineering,
vol. 33, no. 4, pp. 285–298, 2007.

[10] C.-H. Hsu and W. chun Feng, “A Feasibility Analysis of Power Aware-
ness in Commodity-Based High-Performance Clusters,” in CLUSTER,
2005, pp. 1–10.

[11] C. Hsu and W. Feng, “A power-aware run-time system for high-
performance computing,” in Proceedings of the 2005 ACM/IEEE con-
ference on Supercomputing. IEEE Computer Society Washington, DC,
USA, 2005.

[12] I. Gorton, Greenfield, P., Szalay, A., and R. Williams, “Data-Intensive
Computing in the 21st Century,” IEEE Computer, vol. 41, no. 4, pp.
30–32, 2008.

[13] W. chun Feng, A. Ching, and C.-H. Hsu, “Green supercomputing in
a desktop box,” in Proceedings of the 21th International Parallel and
Distributed Processing Symposium (IPDPS 2007), 2007, pp. 1–8.

[14] W. chun Feng and T. Scogland, “The green500 list: Year one,” in
Proceedings of the 23rd IEEE International Symposium on Parallel and
Distributed Processing, 2009, pp. 1–7.

[15] G. Chen, K. Malkowski, M. Kandemir, and P. Raghavan, “Reducing
power with performance constraints for parallel sparse applications,” in
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 11. Washington, DC,
USA: IEEE Computer Society, 2005, p. 231.1.

[16] R. Ge, F. X., F. W., and K. Cameron, “CPU MISER: A Performance-
Directed, Run-Time System for Power-Aware Clusters,” in Proceedings
of the 2007 International Conference on Parallel Processing. IEEE
Computer Society Washington, DC, USA, 2007.

[17] V. Freeh and D. Lowenthal, “Using multiple energy gears in MPI
programs on a power-scalable cluster,” in Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel
programming. ACM New York, NY, USA, 2005, pp. 164–173.

[18] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transparent
frequency and voltage scaling of communication phases in mpi pro-
grams,” in SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. New York, NY, USA: ACM, 2006, p. 107.

[19] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
cpu energy,” in FOCS ’95: Proceedings of the 36th Annual Symposium
on Foundations of Computer Science. Washington, DC, USA: IEEE
Computer Society, 1995, p. 374.

[20] A. Manzak and C. Chakrabarti, “Variable voltage task scheduling
algorithms for minimizing energy,” in ISLPED ’01: Proceedings of the
2001 international symposium on Low power electronics and design.
New York, NY, USA: ACM, 2001, pp. 279–282.

[21] G. yeon Wei, J. Kim, D. Liu, S. Sidiropoulos, and M. A. Horowitz,
“A variable-frequency parallel i/o interface with adaptive power-supply
regulation,” IEEE J. Solid-State Circuits, vol. 35, pp. 1600–1610, 2000.

[22] F. Gruian and K. Kuchcinski, “Lenes: task scheduling for low-energy
systems using variable supply voltage processors,” in Proceedings of
Asia and South Pacific Design Automation Conference, 2001, pp. 449–
455.

[23] S. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic
voltage scaling and adaptive body biasing for lower power micropro-
cessors under dynamic workloads,” in Computer Aided Design, 2002.
ICCAD 2002. IEEE/ACM International Conference on, Nov. 2002, pp.
721–725.

[24] J. Luo and N. Jha, “Power-efficient scheduling for heterogeneous
distributed real-time embedded systems,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 6,
pp. 1161–1170, June 2007.

[25] J. Luo, N. K. Jha, and L.-S. Peh, “Simultaneous dynamic voltage
scaling of processors and communication links in real-time distributed
embedded systems,” IEEE Trans. VLSI Syst., vol. 15, no. 4, pp. 427–437,
2007.

[26] Y. Zhang, X. S. Hu, and D. Z. Chen, “Task scheduling and voltage
selection for energy minimization,” in Proceedings of the 39th annual
Design Automation Conference. New York, NY, USA: ACM, 2002,
pp. 183–188.

[27] M. T. Schmitz and B. M. Al-Hashimi, “Considering power variations of
dvs processing elements for energy minimisation in distributed systems,”
in In Proc. ISSS, 2001, pp. 250–255.

[28] Z. Zong, A. Manzanares, B. Stinar, and X. Qin, “Energy-aware dupli-
cation strategies for scheduling precedence-constrained parallel tasks on
clusters,” in Proceedings of the 2006 IEEE International Conference on
Cluster Computing, 2006.

[29] S. Baskiyar and K. K. Palli, “Low power scheduling of dags to minimize
finish times,” in 13th International Conference on High Performance
Computing, 2006, pp. 353–362.

[30] Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for
precedence-constrained applications using dynamic voltage scaling,” in
CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 92–99.

[31] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi, “Emprical
study on reducing energy of parallel programs using slack reclamation
by dvfs in a power-scalable high performance cluster,” Cluster Comput-
ing, IEEE International Conference on, vol. 0, pp. 1–10, 2006.

[32] G. von Laszewski and L. Wang, “GreenIT Service Level Agreements,” in
Service Level Agreements in Grids Workshop, colocated with IEEE/ACM
Grid 2009 Conference, Banff, Canada, 13 Oct. 2009. [Online].
Available: http://cyberaide.googlecode.com/svn/trunk/papers/09-greenit-
sla/vonLaszewski-greenit-sla.pdf

[33] G. Verdun, “The Green Grid metrics: Data center infrastructure effi-
ciency (DCiE) detailed anaysis,” The Green Grid, Tech. Rep., Feb. 2007.

[34] C. Belady, “The Green Grid Data center Efficiency Metrics: PUE and
DCIE,” The Green Grid, Tech. Rep., Feb. 2007.

[35] J. H. et. al., “A Framework for Data Center Energy Productivity,” The
Green Grid, Tech. Rep., Feb. 2008.

[36] “SWaP (Space, Watts and Performance) Metric,” Web Page. [Online].
Available: http://www.sun.com/servers/coolthreads/swap/

[37] K. H. Kim, R. Buyya, and J. Kim, “Power Aware Scheduling of
Bag-of-Tasks Applications with Deadline Constraints on DVS-enabled
Clusters,” in CCGRID, 2007, pp. 541–548.

[38] R. Ge, X. Feng, and K. Cameron, “Performance-constrained distributed
dvs scheduling for scientific applications on power-aware clusters,” in
Proceedings of the 2005 ACM/IEEE conference on Supercomputing.
IEEE Computer Society Washington, DC, USA, 2005.

[39] J. Li and J. F. Martı́nez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in HPCA, 2006, pp. 77–



10

87.
[40] C. Piguet, C. Schuster, and J. Nagel, “Optimizing architecture activity

and logic depth for static and dynamic power reduction,” in Circuits
and Systems, 2004. NEWCAS 2004. The 2nd Annual IEEE Northeast
Workshop on, 2004, pp. 41–44.

[41] B. A. Shirazi, K. M. Kavi, and A. R. Hurson, Eds., Scheduling and
Load Balancing in Parallel and Distributed Systems. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1995.

[42] Q. Wang and K. H. Cheng, “List scheduling of parallel tasks,” Inf.
Process. Lett., vol. 37, no. 5, pp. 291–297, 1991.

[43] I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, evaluation, and
comparison of algorithms for scheduling task graphs on parallel proces-
sors,” in Proceedings of the 1996 International Symposium on Parallel
Architectures, Algorithms and Networks. Washington, DC, USA: IEEE
Computer Society, 1996, p. 207.

[44] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list
schedules for parallel processing systems,” Commun. ACM, vol. 17,
no. 12, pp. 685–690, 1974.

[45] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems,”
in Proceedings of the 2002 Asia and South Pacific Design Automation
Conference. Washington, DC, USA: IEEE Computer Society, 2002, p.
719.

[46] F. SUTER, “Synthetic dag generation,” Web Page. [Online]. Available:
http://www.loria.fr/∼suter/dags.html


