
The FutureGrid Testbed for Big Data

Gregor von Laszewski, Geoffrey C. Fox

Abstract In this chapter we will be introducing FutureGrid, which provides a
testbed to conduct research for Cloud, Grid, and High Performance Computing.
Although FutureGrid has only a modest number of compute cores (about 4500 reg-
ular cores and 14000 GPU cores) it provides an ideal playground to test out various
frameworks that may be useful for users to consider as part of their big data analysis
pipelines. We will be focusing here on the use of FutureGrid for big data related
testbed research. The chapter is structured as follows. First, we will provide the
reader with an introduction to FutureGrid hardware (Section 2). Next, we will focus
on a selected number of services and tools that have been proven to be useful to
conduct big data research on FutureGrid (Section 3). We will contrast frameworks
such as Message Passing Interface, virtual large memory systems, Infrastructure as
a Service and map/reduce frameworks. Next we will present reasoning by analyz-
ing requests to use certain technologies and identify trends within the user com-
munity to direct effort in FutureGrid (Section 4). The next section, we will report
on our experience with the integration of our software and systems teams via De-
vOps (Section 5). Next, we summarize Cloudmesh, which is a logical continuation
of the FutureGrid architecture. It provides abilities to federate cloud services and
to conduct cloud shifting; that is to assign servers on-demand to High Performance
Computing and Cloud services (Section 6). We conclude the chapter with a brief
summary (Section 7).

1 Introduction

FutureGrid [27, 11] is a project led by Indiana University (IU) and funded by the
National Science Foundation (NSF) to develop a high performance grid test bed
that will allow scientists to collaboratively develop and test innovative approaches
to parallel, grid, and cloud computing. FutureGrid will provide the infrastructure

Indiana University, laszewski@gmail.com

1

2 Gregor von Laszewski, Geoffrey C. Fox

to researchers that allows them to perform their own computational experiments
using distributed systems. The goal is to make it easier for scientists to conduct
such experiments in a transparent manner. FutureGrid users will be able to deploy
their own hardware and software configurations on a public/private cloud, and run
their experiments. They will be able to save their configurations and execute their
experiments using the provided tools. The FutureGrid test bed is composed of a
high speed network connecting distributed clusters of high performance computers.
FutureGrid employs virtualization technology that will allow the test bed to support
a wide range of operating systems.

2 Overview of FutureGrid

2.1 Hardware Overview

FutureGrid contains a number of clusters of different types and size that are inter-
connected with up to a 10GB Ethernet among its sites. The sites include Indiana
University, University of Chicago, San Diego Supercomputing Center, Texas Ad-
vanced Computing Center, and University of Florida.

2.1.1 Overview of the Clusters

Table 1 provides a high level overview of the clusters currently available in Fu-
tureGrid. The biggest cluster is located at IU. It is called India and contains 128
servers with 1024 cores. In total, we currently have 481 compute servers with 1126
CPUs and 4496 Cores. In addition, we have 448 GPU cores. The total RAM is about
21.5TB. Secondary storage is about 1PB. A more detailed table is provided in Table
2. We found that India is one of the most popular resources on FutureGrid.

2.1.2 Overview of Networking

The significant number of distinct systems within FutureGrid provides a hetero-
geneous distributed architecture. They are connected by high-bandwidth network
links supporting distributed system research [11]. The FutureGrid network used to
have a dedicated network between sites [11]. However, the network infrastructure
has recently changed due to modifications related to the major network operator the
National Lambda Rail. Due to these changes the operation of the network between
the sites has switched from the National Lambda Rail to XSEDE and are no longer
exclusive. However, this is so far no major handicap for the projects conducted on
FutureGrid based on our project portfolio. The current high level network diagram is
depicted in Figure 1. Hence, the core resources to FutureGrid at SDSC, IU, TACC,

The FutureGrid Testbed for Big Data 3

Table 1 FutureGrid Compute Resources

Name System Type N
od

es

C
PU

S

C
or

es

T
FL

O
PS

R
A

M
(G

B
)

St
or

ag
e

(T
B

)

Site
india IBM iDataplex 128 256 1024 11 3072 335 IU
hotel IBM iDataplex 84 168 672 7 2016 120 UC
sierra IBM iDataplex 84 168 672 7 2688 96 SDSC

foxtrot IBM iDataplex 32 64 256 3 768 0 UF
alamo Dell Poweredge 96 192 768 8 1152 30 TACC

xray Cray XT5m 1 166 664 6 1328 5.4 IU
bravo HP Proliant 16 32 128 1.7 3072 128 IU

delta
SuperMicro
GPU Cluster 16 32 192 1333 144 IU

lima Aeon Eclipse64 8 16 128 1.3 512 3.8 SDSC

echo
SuperMicro

ScaleMP Cluster 16 32 192 2 6144 192 IU
481 1126 14696 47 22085 1054.2

and UF are now all connected via the XSEDE network and integrated via the FG
core router in Chicago. Within the IU network additional clusters are integrated and
are described in more detail in Section 2.1.1.

A Spirent H10 XGEM Network Impairment emulator [14] can be collocated with
resources at Indiana University, to enable experiments to include network latency,
jitter, loss, and errors to network traffic.

In addition we have added several components that are related to a special soft-
ware service called Cloudmesh, which we explain in more detail in Section 6.

2.1.3 Overview of Storage

FutureGrid does not provide capacity for long-term storage or long-term experi-
ments. FutureGrid has a limited amount of storage space and users are requested to
remove their storage after use. However, users with special needs may be accom-
modated by special storage setups. The list of storage services is shown in Table
3.

3 Services and Tools for Big Data

FutureGrid offers a very rich environment to its users. We can categorize them in
a stacked service architecture as depicted in Figure 2. We distinguish the following
categories: Cloud PaaS, IaaS, GridaaS, HPCaaS, TestbedaaS, which we will explain
in more detail in the next sections. The services in these categories are integrated in

4 Gregor von Laszewski, Geoffrey C. Fox

Ta
bl

e
2

Fu
tu

re
G

ri
d

cl
us

te
rd

et
ai

ls
.

N
am

e
E

ch
o

A
la

m
o

B
ra

vo
D

el
ta

Fo
xt

ro
t

H
ot

el
In

di
a

L
im

a
Si

er
ra

X
ra

y
O

rg
an

iz
at

io
n

IU
TA

C
C

IU
IU

U
F

U
C

IU
SD

SC
SD

SC
IU

M
ac

hi
ne

Ty
pe

C
lu

st
er

Sc
la

eM
P

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

C
lu

st
er

Sy
st

em
Ty

pe
Su

pe
rM

ic
ro

D
el

l
Po

w
-

er
E

dg
e

M
61

0
B

la
de

H
P

Pr
ol

ia
nt

IB
M

iD
at

a-
Pl

ex
dx

36
0

M
2

IB
M

iD
at

a-
Pl

ex
dx

36
0

M
2

IB
M

iD
at

a-
Pl

ex
dx

36
0

M
2

A
eo

n
E

cl
ip

se
A

64
IB

M
iD

at
a-

Pl
ex

dx
34

0
C

ra
y

X
T

5m

C
PU

Ty
pe

X
eo

n
E

5-
26

40
X

eo
n

X
55

50
X

eo
n

E
56

20
X

eo
n

56
60

X
eo

n
X

55
20

X
eo

n
X

55
50

X
eo

n
X

55
50

O
pt

er
on

62
12

X
eo

n
L

54
20

O
pt

er
on

23
78

C
PU

Sp
ee

d
2.

50
G

H
z

2.
66

G
H

z
2.

40
G

H
z

2.
80

G
H

z
2.

26
G

H
z

2.
66

G
H

z
2.

66
G

H
z

1.
4G

H
z

2.
5G

H
z

2.
4G

H
z

C
PU

s
19

2
32

32
64

16
8

25
6

16
16

8
16

8
Se

rv
er

s
12

96
16

16
32

84
12

8
8

84
1

R
A

M
12

G
B

D
D

R
3

13
33

M
hz

19
2G

B
D

D
R

3
13

33
M

hz

19
2G

B
D

D
R

3
13

33
M

hz

24
G

B
D

D
R

3
13

33
M

hz

24
G

B
D

D
R

3
13

33
M

hz

24
G

B
D

D
R

3
13

33
M

hz

64
G

B
D

D
R

3
32

G
B

D
D

R
2-

66
7

8G
B

D
D

R
2-

80
0

To
ta

lR
A

M
11

52
G

B
30

72
G

B
30

72
G

B
76

8G
B

20
16

G
B

30
72

G
B

64
G

B
D

D
R

3
26

88
G

B
13

44
G

B

N
um

be
ro

fc
or

es
14

4
76

8
12

8
25

6
67

2
10

24
12

8
67

2
67

2
T

flo
ps

8
1.

7
3

7
11

7
6

D
is

k
Si

ze
(T

B
)

2.
8

48
15

20
12

0
33

5
72

33
5

H
ar

d
D

riv
es

50
0G

B
7.

2K
R

PM
SA

S

6x
2T

B
7.

2K
R

PM
SA

TA
92

G
B

7.
2K

R
PM

SA
S2

50
0G

B
72

00
R

PM
SA

TA

1
T

B
72

00
R

PM
SA

TA
30

00
G

B
72

00
R

PM
SA

TA

1
T

B
72

00
R

PM
,

48
0

G
B

SS
D

16
0G

B
72

00
R

PM
SA

TA
D

riv
e

6T
B

L
us

tr
e

Sh
ar

ed
St

or
ag

e
N

FS
N

FS
N

FS
N

FS
G

PF
S

N
FS

Z
FS

Z
FS

82
.2

T
B

N
FS

In
te

rc
on

ne
ct

M
el

la
no

x
4x

Q
D

R
IB

M
el

la
no

x
4x

D
D

R
IB

M
el

la
no

x
4x

D
D

R
IB

M
el

la
no

x
4x

D
D

R
IB

10
G

bE
M

el
-

la
no

x
C

on
-

ne
ct

X

M
el

la
no

x
4x

D
D

R
IB

C
ra

y
Se

aS
ta

r

IB
=

In
fin

iB
an

d,
X

en
on

=
IN

te
lX

en
on

,O
pt

er
on

=
A

M
D

O
pt

er
on

The FutureGrid Testbed for Big Data 5

Cloudmesh

Peers

Sites

FutureGrid
Core Router

Impairment
Simulator

UF

XSEDE Internet 2

SDSC UCTACC

CM User
Managed
Service

Azure
HP

Cloud KIT
User

Managed Others

Alamo FoxtrotSierra Hotel IndiaBravo EchoDeltaLima

CM

CM FG
Hosted
Service

Indiana GigaPOP

IU

Fig. 1 High level network diagram and conceptual integration of Cloudmesh resources.

Table 3 Storage Resources of FutureGrid.

System Type Capacity(TB) File System Site
Xanadu 360 180 NFS IU
DDN 6620 120 GPFS UC
Sunfire x4170 96 ZFS SDSC
Dell MD3000 30 NFS TACC
IBM dx360 M3 24 NFS UF

our general FutureGrid high-level architecture depicted in 3. More details about the
architecture can be found in [27, 11]. Within this paper we will focus on describing
services that have been explicitly used for big data research in FutureGrid.

3.1 Testbed as a Service (TestbedaaS)

It is a well-accepted paradigm that today a lot of research is carried out by inter-
disciplinary scientific teams. Thus, FutureGrid provides an advanced framework to
manage user and project affiliation and propagates this information to a variety of
subsystems constituting the FG service infrastructure. This includes operational ser-
vices (not explicitly mentioned in Figure) to deal with authentication, authorization
and accounting. In particular, we have developed a unique metric framework that

6 Gregor von Laszewski, Geoffrey C. Fox

Cloud PaaS
Hadoop
Iterative MapReduce
HDFS
Hbase
Swift Object Store

IaaS
Nimbus
Eucalyptus
OpenStack
ViNE

GridaaS
Genesis
Unicore
SAGA
Globus

HPCaaS
MPI
OpenMP
CUDA

TestbedaaS
Infrastructure: Inca, Ganglia
Provisioning: RAIN, CloudMesh
VMs: Phantom, CloudMesh
Experiments: Pegasus, Precip,
 Cloudmesh
Accounting: FG, XSEDE

Fig. 2 FutureGrid high-level user services.

Base Software and Services
OS, Queuing Systems, XCAT, MPI, ...

Access Services

Management Services FutureGrid Operations
Services

Development
Services
Wiki, Task

Management,
Document
Repository

User and
Support
Services

Portal,
Tickets,
Backup,
Storage,

PaaS

Hadoop,
Dryad,
Twister,
Virtual

Clusters,
...

Additional
Tools &
Services
Unicore,

Genesis II,
gLite, ...

Image
Management

FG Image
Repository,
FG Image
Creation

Experiment
Management

Registry,
Repository
Harness,
Pegasus
Exper.

Workflows, ...

Dynamic Provisioning
RAIN: Provisioning of IaaS,

PaaS, HPC, ...

Monitoring
and

Information
Service

Inca,
Grid

Benchmark
Challange,
Netlogger,

PerfSONAR
Nagios, ...

FutureGrid Fabric
Compute, Storage & Network Resources

Development &
Support Resources

Portal Server, ...

IaaS

Nimbus,
Eucalyptus,
OpenStack,

OpenNebula,
ViNe, ...

Security &
Accounting

Services
Authentication
Authorization
Accounting

HPC User
Tools &
Services
Queuing
System,

MPI, Vampir,
PAPI, ...

Fig. 3 FutureGrid high-level architecture.
.

The FutureGrid Testbed for Big Data 7

allows us to create usage reports from our entire Infrastructure as a Service (IaaS)
frameworks. Repeatable experiments can be created with a number of tools includ-
ing Pegasus, Precip and Cloudmesh. VMs can be managed on high level either via
Cloudmesh (see Section 6). Provisioning of services and images can be conducted
by RAIN [9, 10]. Infrastructure monitoring is enabled via Nagios [7], Ganglia [17],
and Inca [22] and our own cloud metric system [29].

3.2 Traditional High Performance Computing as a Service
(HPCaaS)

Within the traditional High Performance Computing (HPC) services FG offers a
traditional MPI/batch queuing system and a virtual large memory system that are
beneficial for big data calculations.

3.2.1 MPI and Batch Queues

The traditional HPC environment provided by queuing systems and Message Pass-
ing Interface (MPI) programs creates a suitable infrastructure not only for simu-
lations, but also for the analysis of large data. However, considerable amount of
work has to be conducted to optimize the available infrastructure to deal with dis-
tributed domain decompositions. Optimized use via traditional HPC has been suc-
cessfully demonstrated for many biological applications. Additionally, the existence
of a queuing system can provide some advantages when the available resources are
over utilized while sharing the resources with other users. This has been especially
useful in FutureGrid to support educational activities for classes with many users
that, for example, want to test map reduce activities controlled by a queuing system
as described in Section 3.5.1.

3.2.2 Virtual Large-Memory System

One of the demands often posed in big data analysis it to place the data as much
as possible into memory to speed up calculations and in some cases to fit the entire
dataset into memory. However, this analysis may come at a cost as, for example, the
use of HPC computing via MPI adds additional programming complexity within
a cluster. Therefore, it is desirable to virtualize the memory from multiple servers
in a cluster to provide one big memory system that can be easily accessed by the
underlying software. One such implementation, vSMP by ScaleMP [21] [11]. vSMP
is installed on the FutureGrid echo cluster that has 16 servers and can access up to
3TB in shared virtual memory.

8 Gregor von Laszewski, Geoffrey C. Fox

3.3 Grid as a Service (GridaaS)

Not surprisingly the demand for computational Grids on FutureGrid has been rel-
atively small. While we saw few requests for Globus we decided to focus on the
installation of more popular systems. The low use can be explained by the avail-
ability of large Grid production infrastructure elsewhere such as in XSEDE and
based on the move of the community away from complex Grid solutions to either
cloud computing or even back to more traditional batch processing solutions. Fur-
thermore, toolkits such as the CoG Kit also known as jglobus [24, 26, 28] have
provided enough abstractions for users that experimenting with such technologies
has become less prominent and can be made on the client side while interfacing to
production Grid services instead of testbeds.

3.4 Infrastructure as a Service (IaaS)

One of the main features of FutureGrid is to offer its users a variety of infrastructure
as a service frameworks [25, 31]. These frameworks provide virtualized resources
to the users on top of existing cyberinfrastructure fabric. This includes but is not
limited to virtualized servers, storage, network, disk, and other IaaS related ser-
vices. In FutureGrid the most common hypervisor that runs the virtual machines as
guest on the underlying operating system is KVM. Some resources also run XEN,
however most recently the demand for KVM has increased and some services will
be switched from XEN to KVM. Through the ability to provide large numbers of
virtual machines to the users, the access mode to utilize resources, in contrast to tra-
ditional HPC, has been changed from a reservation-based service to an on-demand
service. This comes with the benefit that if enough resources are available they will
be immediately allocated to the user. However, if not enough resources can be of-
fered, the system will define the request and return with an error. Based on our
experience with FutureGrid over the last couple of years, it is advantageous to offer
a mixed operation model. This includes a standard production cloud that operates
on-demand, but also a set of cloud instances that can be reserved for a particu-
lar project. We have conducted this for several projects in FutureGrid, including
those that required dedicated access to resources as part of big data research such as
classes [19, 18] or research projects with extremely large virtual machines [20].

The IaaS services that are offered in FutureGrid contain the following:

OpenStack has become most recently, next to HPC, the most requested service in
FutureGrid based on newly started projects. OpenStack is an open source cloud
infrastructure as a service framework to deliver public and private clouds. It con-
tains a number of components that together build a powerful and flexible set
to create a cloud service offering. Services include a compute service, and ob-
ject storage, an image service, a monitoring service, and an orchestration service.
OpenStack has received considerable momentum due to its openness and the sup-

The FutureGrid Testbed for Big Data 9

port of companies. Within FutureGrid OpenStack clouds are currently deployed
on India, Sierra, Hotel, and Alamo, while currently India provides the most up to
date services.

Nimbus is an open source service package allowing users to run virtual machines
on FutureGrid hardware. Just as in OpenStack users can upload their own virtual
machine images or customize existing ones. Nimbus, next to Eucalyptus is one
of the earlier frameworks that make managing virtual machines possible. Nim-
bus provides a basic set of cloud services including services to orchestrate the
deployment of virtual machines. However, Eucalyptus and OpenStack now also
provide such services.
Nimbus provides a selected subset of AWS protocols such as EC2. Accounting of
Nimbus VMs does not currently provide features for project management. Such
group-based and role based user management is essential for proper administra-
tive resource and project management and is provided by other IaaS frameworks.
In Nimbus it is only conducted on a user-by-user basis. This has significant impli-
cations on user management as in large-scale deployments project management
features are highly desired but are not offered in Nimbus. Although, single users
may not be interested in this feature, it is essential to provide proper project man-
agement of groups of users.

Eucalyptus is an open source software IaaS framework for cloud computing. Eu-
calyptus provides an Amazon Web Services (AWS) compliant EC2-based web
service interface to its users enabling the easy integration between a local cloud
managed with Eucalyptus and AWS. However, as other IaaS frameworks such
as OpenStack also provide EC2 interfaces for many application users OpenStack
has become a viable alternative.

Which of the IaaS frameworks to choose is a question that is not that easy to
answer. Many of our projects evaluate several of them in order to choose the one
best suited for their use case. At other times users chose a framework that they
had previously successfully used. Over time the quality of the IaaS framework has
significantly changed. Within the last year OpenStack has become the most popular
platform on FutureGrid.

3.5 Cloud Platform as a Service (PaaS)

3.5.1 Map Reduce

Map reduce models have been familiar to the programming and distributed com-
puting community for a long time and have been historically associated with the
functional programming’s map and reduce. However the map and reduce frame-
work introduced recently [8] distinguishes itself from such efforts while applying it
repeatedly, with fault tolerance on a very large distributed data set [4].

Instead of bringing the data to the computer in map reduce application we often
use the concept of bringing the computing to the data. This makes a lot of sense

10 Gregor von Laszewski, Geoffrey C. Fox

when we assume that a large number of data is distributed over many servers and
repeated search queries are cast to find results across them (as in the case of Google
motivating map/reduce).

In general, we can define a map step that takes the input problem and divides it
into smaller sub-problems distributing it among worker nodes. The map function is
then executed on the data distributed on the various servers. The reduce step collects
the answers of the subproblem and combines them in some fashion.

Task 1 Task 2 Task 3 Task N
Disk
Data
Data
Data

Compute Intense Calculations

DiskDataDataData

Data Intense Computations

Task 1
Task 2

Task 3
Task N

Task 1 Task 2 Task 3 Task N

Fig. 4 Bring the data to the computation vs. bring the computation to tha data.

Hadoop.

Hadoop [1] is an Apache project delivering an opensource software that uses the
map/reduce framework in a distributed environment while focusing on scalability
and reliability. Its design includes the Hadoop File System (HDFS) which provides
an easy-to-use file system to distribute the data among the servers on which the
calculations will be executed. Hadoop is designed to deal with faults through redun-
dancy which is an important feature when conducting data analysis on very large
distributed databases [1]. Hadoop is written in Java and provides the essential map
reduce functionality and allows the system to be configured for existing hardware.

The FutureGrid Testbed for Big Data 11

myHadoop.

MyHadoop [15][16], which is installed on many of the compute clusters in Fu-
tureGrid, enables users to launch Hadoop clusters via traditional high-performance
compute clusters. For this, it utilizes the underlying batch scheduling system.

The reasons for managing Hadoop jobs via a batch system are manifold. First, the
available infrastructure is resource constrained, and utilization of disks and compute
resources must be specially accounted for to allow shared usage by many users. This
naturally happens in the educational research community quite frequently. Second,
to efficiently utilize the compute and data infrastructure researchers may not run
Hadoop or MPI jobs continuously. At times they may need a Hadoop environment.
At other times they may prefer a traditional message passing environment while at
the same time being under resource constraints.

The idea of myHadoop is to submit a job to the queuing system that sets up a
Hadoop cluster for the length of the reservation and the researcher can then use
it to conduct experiments either via predefined jobs or in interactive mode. This
is achieved by first identifying a number of resources via the scheduler, followed
by the deployment of the Hadoop software across the identified servers. The user
will then be presented with information on how to access this newly provisioned
Hadoop cluster. MyHadoop, in its new version [16] is supported for Oracle Grid
Engine (formerly known as Sun Grid Engine), PBS, and SLURM.

Once Hadoop has been initialized, it can be accessed through regular job scripts
as shown in Figure 5. This example script uses eight nodes. It is important to set
the processor per node to 1 to assure the various Hadoop daemons are scheduled on
different servers. The rest of the script is not depicted as it contains the actual details
on setting up Hadoop via the script and is beyond the scope of this chapter. The user
should replace the text in < ... > to customize the job. As Hadoop is a user level
program, it is also possible to run a usermodified version of Hadoop which helps in
adding new features or trying out newer versions of Hadoop than the default version
that is installed for my Hadoop. The FutureGrid manual provides more details on
how to practically use myHadoop on FutureGrid [13].

#!/bin/bash
#PBS -q <queue_name>
#PBS -N <job_name>
#PBS -l nodes=8:ppn=1
#PBS -o <output file>
#PBS -e <error_file>
#PBS -A <allocation>
#PBS -V
#PBS -M <user email>
#PBS -m abe

... details omitted

Fig. 5 PBS script to start hadoop

12 Gregor von Laszewski, Geoffrey C. Fox

Twister.

Twister [6] is an extension to MapReduce to allow more easily the introduction
of iterative map reduce processes. In addition twister has introduced a number of
concepts including distinction between static and variable data, long running tasks,
publish/subscriber based communication, and various other enhancements. Twister
is developed at Indiana University, and is used as part of classes on distributed sys-
tems and other educational activities; hence, it reaches popularity within FutureGrid.

Virtual Clusters.

In addition to the map/reduce platforms offered on FutureGrid, it is also possible to
deploy virtual clusters. One of the earliest such frameworks has been showcased by
von Laszewski [30] while deploying a SLURM cluster. Such a cluster can then be
used as a teaching tool or provides additional mechanisms to custom create queues
and reservations. However, the most advanced feature of FutureGrid will be via
Cloudmesh, which will allow the deployment of clusters not only in virtual ma-
chines, but on baremetal.

4 FutureGrid Usage

When offering services such as FutureGrid to the community, we have to analyze
and predict which services may be useful for the users. We have therefore estab-
lished a number of activities that monitor external and internal data. Externally, we
look, for example, at information provided by Gartners technology hype curve [2]
or Google trend information as shown in Figure 6. From Google Trend data we ob-
serve that the popularity of Grid computing has been very low in the recent years
and much attention has shifted to cloud computing. Therefore we removed this in-
formation from the figure and focus exemplary on cloud related terms such as Cloud
Computing, Big Data, OpenStack VMWare. From this information we see that all
but VMWare are rising, with Cloud Computing dominating the Google trends in
comparison to the others. This trend is important as it shows a shift in the cloud
computing community buzz away from a traditional commercial market leader in
virtualization technology. We believe that is correlated with a large number of ven-
dors offering alternative products and services while at the same time the novelty
from VMWare is reduced.

To give an informal overview of the more than 300 projects conducted on Fu-
tureGrid, we have taken their titles and displayed them in a word cloud (see Figure
7. Additionally, we have taken keywords that are provided by the project leads and
also displayed them in a word cloud (see Figure 8. Although the images do not give
quantitative perspective about the project it helps to identify some rough idea about
the activities that are ongoing in FutureGrid. As expected the terms cloud comput-

The FutureGrid Testbed for Big Data 13

-20!

0!

20!

40!

60!

80!

100!

120!

20
04

-1
2!

20
05

-1
2!

20
06

-1
2!

20
07

-1
2!

20
08

-1
2!

20
09

-1
2!

20
10

-1
2!

20
11

-1
2!

20
12

-1
2!

20
13

-1
2!

G
oo

gl
e

Tr
en

d!

Cloud Computing!
Big Data!
OpenStack!
VMWare!

Fig. 6 Google Trends.

ing and terms such as mapreduce, OpenStack, Nimbus, and Eucalyptus appear quite
frequently. It is, therefore, worthwhile to analyze this data in a more quantitative
form.

FutureGrid supports a rich set of projects, of which many are principally related
directly or indirectly to big data systems. In Table 4 we list the areas of research
and the number of projects conducted in these areas over a time period identified
between November 2011 and December 2013. One of the focal obeservations is
that the majority of projects are related to computer science research which can be
found in the table in more detail. Domain Science and Education related projects
take on a large portion.

As part of our project management in FutureGrid, we have designed a simple
project application procedure that includes prior to a project being granted access,
gathers information about which technologies are anticipated to be used within the
project. The list of technologies is fairly extensive and includes Grid, HPC, and
Cloud computing systems, services, and software. However, for this paper we will
focus primarily on technologies that are dominantly requested and depicted in Fig-
ure 9. Clearly we can identify the trend that shows the increased popularity of Open-
Stack within the services offered on FutureGrid. Nimbus and Eucalyptus are on a
significant downward trend. ObenNebula was also at one point more requested than
either Nimbus or Eucalyptus, but due to limited manpower an official version of
OpenNebula was not made available on FutureGrid. As we have not offered it and
pointed it out on our Web page, requests for OpenNebula have vanished. However,
we have internally used OpenNebula for projects such as our Cloudmesh rain frame-
work. All other sixteen technologies are relatively equally distributed over the mon-
itoring period. The lesson that we took form this is that FutureGrid has put recently
more emphasis in offering OpenStack services.

14 Gregor von Laszewski, Geoffrey C. Fox

Big

Day

Fall

High

run Cloud
Computing

Course
DataUsing

FutureGridAnalysis

Class
Testing

Clouds

HPC

Systems

virtual

Grid

2012

Use

test

Open

Fault

Web
Group

Site

GPUs

next

File

2Nimbus

Model

text

Cancer MOOC
VM

P434FG

NGS

CFD

MPI

system

Parallel

View

scale

Apache

area
Distributed

based

B534

tests

Task

performance

MapReduceXSEDE

Spring

applications

Infrastructure

Evaluation

security

Running
Social

aware

power

Hadoop

Resource

resources

public

Tools

Phantom

Scaling

Memory
sharing

Design

Center

Flames
edition

Time

project

Science

Network

Scientific

Development

Framework

Research

Software
Management

Storage

platform

Cyberinfrastructure

Service

Simulation

analytics

Support

Investigation

Environments

information

clusters

Application

Testbed

mining

Services

Scheduling

Dynamic
Provisioning

Tutorial

Elastic

networks

Experiments

Prediction

Workflow

Bioinformatics

Scalable

Shared

Architecture

Online

Metagenomics

Advanced Exploring

Networking

Integrated

OpenStack

comparison

Large
generation

sequencing

hybrid

Education

Experimentation

Pegasus

discovery

computational

Modeling

Mobile

Environment

Dynamics

Improvement

Frameworks
Validation

Processing

Twister

ToleranceScalability

provenance

Community

samples

Graduate Summer
School

Optimizing

Chain

Genomicmapping

Execution

models

Intensive
Workflows

Collaborative

Technology

TeraGrid
ScaleMP

Students

Microbial

Machine

Extraction

Biomedical

Laboratory

Topics

Computation

Investigating

Sensor

medical

Architectures

Languages

Massive

Characterizing

deploymentcluster
Undergraduate

Applied

concepts

Training

Learning

Global

Sensitivity

NonPremixed

Counterflow

multiple

Federated

private

Users

compatibleone

Appliance
Introduction

CometCloudbased

Detection

Intelligence

overlay

Peertopeer

Semantic

platforms

Improve
Operations

Server

Largescale

fluid

Flow

Intelligent

Future

Secure

particle

physics

Supply

BLAST

User

Reduction

Benchmarking

environmental

University

Structure

Sequence

Alignment

Workshop

experiment

Diffusion

analyzing

Genomics

Technologies
Campus

ContentionLeveraging

Automatic

heterogeneous

Initiative

Challenge

Dimension

Comparision

Allocation

DataIntensive

Watermarking
CloudBased

Interoperability

exploration

Endtoend

Infrastructures

Wide

Quality

RealTime

Fig. 7 Project title word cloud.

Big

High

cloud
Computing
course

Data

futuregrid

analysis

class

Testing

Clouds

hpc
systems

virtual

grid

2012

open
fault

webnext

file

2

Nimbus

model

Text

cancer

mooc

VM

ngs

cfd

mpi system

Parallel

scale

Apache

distributed
Performance

mapreduce xsede

Applications

infrastructure

evaluation

security

social

hadoop

resource

resources

tools
Memory

design

Center

time

science

network

scientific
development

research

software

management

storage

cyberinfrastructure

Service

simulation
Analytics

support

Information

clusters

application

testbed

Miningservices

scheduling

provisioning

tutorial

elastic

networks

prediction

workflow

bioinformatics

shared

metagenomics

networking

openstack

generation

sequencing

hybrid

education
pegasus

discovery

computational

modeling

environmentdynamics

validation

processing

twister

tolerance

scalability

provenance

community

chain

execution

models

intensive

workflows

technology

teragrid

scalemp

machine

computation

sensor architectures
languages

deployment

cluster

learning

federated

appliance

detection

intelligence

peertopeer

operations

fluid

flow
future

particle

Physics

supply

user

benchmarking

diffusion

genomics

contention

automatic

dataintensive

Interoperability

endtoend

quality

eucalyptus

throughput
genesis

virtualization

iaas

ii

saga

federation
store

interface
programming

machinesxd

CometCloud

grids

privacy

gene

pipeline
assembly

Transactional

engineering

genome

unicore

twitter

teaching

stream

sky

p2p

osggpu

gis

cuda

climate

natural

monitoring

clustering

biology

Astronomy

api

queue

forecasting

kepler

imaging

Java

genetic

vine

tool

taskparallelism selfoptimization

rest

ray

tracing qos policy

perfromance

opennebula

ogf

products

molecular

mobility

lustre

keyvalue

infrastructureasaservice

io

hbase

Finite

volume

method

dryad localitycumulus

condor

autonomic

administration

genesisii

weathervariations

SNP

smart

Rocks

utilization
reservoir

sensing

healthcare

periodogram

Streams

pairwise

classification

occi

radio

metascheduling

markov

market

compilers

energy

algorithms

Algorithm

striping

event

complex

bigdata

best

Stack

454

1399

xsp

tis

sge

xray

writing
upper

ware

Fig. 8 Project keyword word cloud.

From the overall project information we have also analyzed the frequency of
the number of project members within the project and show it in Figure 10. Here we
depict on the abscissa, classes of projects with varying members. Assume we look at
the abscissa at the value of 10. This means that these are all projects that have project
members between 10 and its previous category, in this case 5. Hence, it will be all
projects greater than 5 and smaller or equal to10. With this classification we see

The FutureGrid Testbed for Big Data 15

Table 4 FutureGrid supports a rich set of projects, of which many are importantly related directly
or indirectly to big data systems.

Discipline Count
Domain Science 44
Education∗ 42
Technology Evaluation 19
Core Virtualization 17
Programming Models 12
Cyberinfrastructure 11
Security and Privacy 10
Data Systems 10
Resource management 9
Distributed Clouds and Systems 8
Artificial Intelligence 7
Cyber-Physical CPS and Mobile Systems 5
Fault-Tolerance 5
Data Analytics/Machine Learning 5
Networking 3
Network/Web Science 3
Interoperability 3
Storage 2
Streaming Data 2
P2P 2
Software Engineering 2

∗ 90% of which on computer science

that the dominant unique number of members within all projects is either one, two
or three members. Then we have another class between 4 and 10 members, and the
rest with more than ten members. One of the projects had 186 registered members
overall for an education class as part of a summer school. Looking at the distribution
of the members and associating them with research and education projects, we find
all projects with larger numbers of projects to be education projects.

When we look in more detail into the map/reduce related technology requests
over the entire period FutureGrid has been active, we identified the distributions
as depicted in Figure 13. We can see that the requests for IaaS together with
map/reduce technology requests dominate. HPC requests are much fewer. The rea-
son why the other category in Figure 13 is that high is because we have a significant
number of other choices, each with a very low total count. Also, we would like to re-
mind the reader that users can chose multiple categories for their projects. Within the
category of map/reduce, users had the choice of Hadoop, Map/Reduce, or Twister
as a technoology. The breakdown of these choices is shown in the right part of Fig-
ure 13 dominated by the choice for Map/Reduce and Hadoop representing 85% of
all choices.

Next we have analyzed all projects that requested either mapreduce, hadoop,
twister, MPI and ScaleMP (147 of all 374 active projects, which is 39% of all
projects) and categorized them by discipline as shown in 11. In contrast to XSEDE,

16 Gregor von Laszewski, Geoffrey C. Fox

0!

5!

10!

15!

20!

25!

10
Q

3!

10
Q

4!

11
Q

1!

11
Q

2!

11
Q

3!

11
Q

4!

12
Q

1!

12
Q

2!

12
Q

3!

12
Q

4!

13
Q

1!

13
Q

2!

13
Q

3!

R
eq

ue
st

s!

Time Period!

HPC! Eucalyptus!
Nimbus! OpenNebula!
OpenStack! Avg of the rest 16!

Fig. 9 Requested technologies by project

which provides a production HPC system to the scientific community, the usage of
FutureGrid for map reduce frameworks is dominated with 50% by computer science
related projects followed by education with 19%.

Looking further into this data, we present in Figure 12 the number of projects in
a particular category as well as the Fraction of technologies within a discipline. As
we are focusing in this paper on the impact on big data, we have looked in partic-
ular at requests for mapreduce, Hadoop, and twister, while also looking at requests
for MPI and ScaleMP. It is interesting to note that the percentual distribution of the
technologies among these projects is about constant, if we exclude technology eval-
uations and interoperability. As MPI is more popular with domain sciences, we find
a slight increase in projects requesting MPI. However, with the life sciences we see
the opposite as map/reduce and associated technologies are more popular here. MPI
and ScaleMP are not much requested as part of technology evaluations and interop-
erability experimentation as they either project a very stable framework and do not
require evaluation, or the question of interoperability is not of concern for most of
the projects.

5 System Management

The goal of FutureGrid is to offer a variety of services as part of its testbed features,
thereby going beyond services that are normally offered by data and supercomputing
centers for research. This provides a number of challenges that need to be overcome

The FutureGrid Testbed for Big Data 17

Fr
eq
ue
nc
y

0

15

30

45

60

Members
1 2 3 5 10 20 30 40 50 60 70 80 90 10
0

12
0

14
0

16
0

18
0

20
0

Fig. 10 Project Frequency.

1

Pr
oj

ec
ts

0

20

40

60

80

Discipline

C
om

pu
te

r S
ci

en
ce

Ed
uc

at
io

n

Li
fe

 S
ci

en
ce

D
om

ai
n

Sc
ie

nc
e

Te
ch

no
lo

gy
 E

va
lu

at
io

n

In
te

ro
pe

ra
bi

lit
y

2%6%
11%

11%

19%

50%

Computer Science
Education
Life Science
Domain Science
Technology Evaluation
Interoperability

Fig. 11 Distributon of project disciplines.

0!
10!
20!
30!
40!
50!
60!
70!
80!

C
om

pu
te

r S
ci

en
ce

!

Ed
uc

at
io

n
 !

Li
fe

 S
ci

en
ce

!

D
om

ai
n

Sc
ie

nc
e

 !

Te
ch

no
lo

gy
 E

va
lu

at
io

n
 !

In
te

ro
pe

ra
bi

lit
y

 !

N
um

be
r o

f P
ro

je
ct

s!

Discipline!

ScaleMP! MPI!

0!

0.2!

0.4!

0.6!

0.8!

1!

1.2!

C
om

pu
te

r S
ci

en
ce

!

Ed
uc

at
io

n
 !

Li
fe

 S
ci

en
ce

!

D
om

ai
n

Sc
ie

nc
e

 !

Te
ch

no
lo

gy
 E

va
lu

at
io

n
 !

In
te

ro
pe

ra
bi

lit
y

 !

Fr
ac

tio
n

w
ith

in
 D

is
ci

pl
in

e!

Discipline!

Fig. 12 Requests by of technologies by discipline within a project.4 = Map Reduce, Hadoop, or
Twister, 2 = MPI, ◦ = ScaleMP

18 Gregor von Laszewski, Geoffrey C. Fox

390	

332	

203	

489	

0	

100	

200	

300	

400	

500	

600	

IaaS	
 Map/Reduce	
 HPC	
 Other	

N
um

be
r	
 o

f	
 R
eq

ue
st
s	

Requested	
 Technologies	

146	

136	

50	

0	

20	

40	

60	

80	

100	

120	

140	

160	

Hadoop	
 Map/Reduce	
 Twister	

N
um

be
r	
 o

f	
 R
eq

ue
st
s	

Requested	
 Technologies	

Fig. 13 Map reduce related technology requests.

in order to efficiently manage the system and provide services that have never been
offered to users as they exist on FutureGrid.

5.1 Integration of Systems and Development Team

FutureGrid started initially with a model where the systems team and the software
team were separated. An unnecessary wall between teams was erected that resulted
in multiple challenges:

1. The system setup and management were completely separated from the soft-
ware development team focusing mostly on the deployment of existing tech-
nologies. However the technologies deployed were themselves under heavy de-
velopment and required intercorrelations between developers and system teams.

2. The deployed system was complex, but its deployment was documented to a
limited extent, which resulted in developers having insufficient information to
utilize the system properly or to know what had been deployed.

3. Lack of trust by the systems team did not allow the software team to have a
valid development environment as proper privileges were not issued to the de-
velopers. As the development team needed to use privileged system services,
the development could not be carried out.

4. The software developed needed a testbed within the testbed that was not neces-
sarily reflecting the actual system setup.

Together, these issues made it extremely difficult, if not impossible, to further
any development in regards to the design of a testbed infrastructure as proposed by
our original ambitious goals.

To overcome these difficulties it was decided early on in the project that the
systems team must be integrated in some fashion into the software team and become
part of the development process. This integration is not an isolated instance within
FutureGrid, but is also executed in many modern data centers and is now recognized
with its own term called DevOps.

The FutureGrid Testbed for Big Data 19

5.2 DevOps

DevOps is not just a buzzword from industry and research communities. It provides
value added processes to the deployment and development cycles that are part of
modern data centers. It can today be understood as a software development method
that stresses collaboration and integration between software developers and infor-
mation technology professionals such as system administrators.

While using an infrastructure such as clouds we recognized early on that the life-
time of a particular IaaS framework is about 3-6 months before a new version is
installed. This is a significant difference to a traditional High Performance Com-
puting Center that is comprised of many software tools experiencing much longer
life spans. This is not only based on security patches but significant changes, for
example, in the evolving security infrastructure and user services, as well as, the
deployment of new services that become available in rapid procession.

This rapid change of the complex infrastructure requires rethinking how systems
in general are managed and how they can be made available to the development
teams. While previously it may have been enough to install updates on the ma-
chines, DevOps frameworks provide the developer and system administrators a way
to create and share environments that are used in production and development while
at the same time increasing quality assurance by leveraging each others experiences
(see Figure 14).

Development!

Quality
Assurance!Operations!

DevOps!

Fig. 14 DevOps Intersection.

Release	

Deploy	

Operate	

Monitor	

Plan	

Code	

Build	

Test	

Dev! Ops!

Fig. 15 DevOps Cycle.

DevOps Cycle.

While combining the steps executed by the development and operational team from
planning to coding, building and testing, to the release, deployment and operation
and monitoring (see Figure 15), each of the phases provides a direct feedback be-
tween the DevOps team members, thus shortening the entire development phase. It
also allows testing out new services and technologies in a rapid progression. Hence,

20 Gregor von Laszewski, Geoffrey C. Fox

it is possible to roll out new developments into production much faster. This leads
to a much more rapidly integrated cycle than would not be possible without the
correlation between development and operation.

DevOps Supporting Tools.

A number of tools are available that make the introduction of DevOps strategies
more efficient. The first is the need for an simplified communication pathway to
manage tasks not only between developers but also between users. Thus the ideal
system would provide a complete integration of a project management system that
allows managing tasks for both developers and operators, but also to easily inte-
grate tickets and transform them into tasks. In XSEDE and other supercomputing
centers a system called RT [5] is typically used for user ticket management. Other
systems such as jira, mantis, and basecamp are often used to manage the software
and systems related tasks. Unfortunately, personal or organizational constraints of-
ten prevent the integration of the two systems and additional overhead is needed to
move user tickets into tasks and the development cycle. Within FutureGrid, as part
of our opensource development, we experimented extensively with jira as systems
and ticketing system [3] revealing that newest development in such areas motivated
by DevOps teams led to tools that support the overall cycle including user ticket
management in a single system (see Figure 16). However, the integration of Future-
Grid within the overall much larger XSEDE effort made it not possible to switch
from RT to jira for user ticket management. To stress this user integration we term
this framework UseDevOps. Tools to integrate Development and Operation deploy-
ment include puppet, chef, ansible, cfengine and bcfg2. While FutureGrid started
out with bcfg2 we have since switched to other tools due to their prevalence within
the community. Chef, puppet, and ansible have significant amount of traction. Due
to expertise within our group we currently explore chef and ansible.

Development!

Quality
Assurance!

Operations!

User!
Support!

UseDevOps!

Fig. 16 User Support integrated into DevOps leads to UseDevOps.

The FutureGrid Testbed for Big Data 21

5.3 Support for Education

To support the many educational and research projects on FutureGrid, we have pro-
vided, through a portal, a significant amount of material on how to use the discussed
services. In addition, we realized that not every educational project has users with
advanced computer experience, therefore we provide for such projects a streamlined
user interface rather than having the users fight with complex command line syntax
and parameters. For example, we provided for a recent MOOC on big data taught
with resources on FutureGrid the basic functionality not only to start VMs as part
of the IaaS framework, but also to deploy sophisticated images that contain prein-
stalled software and allow services to be hosted by the users such as iPython, R and
much more. This was implemented on top of OpenStack while utilizing the newest
OpenStack services such as Heat. The management of the VMs and starting of the
iPython server was controlled by a python application that provides the user with a
menu system. Thus, the management of them became literally as easy as pressing
1, 2, 3, ... in the menu. For other classes, we have also provided completely sep-
arate OpenStack deployments as the teachers were afraid that students would not
have enough resources due to the shared environment. However, we learned from
this that the teachers overestimated the actual utilization of the project and many
resources were not used. Based on this analysis we now have a model to justify the
creation of more relaxed access policies and can justify that even classes should be
utilizing the public region that are provided by FutureGrid. If resource contention
would become an issue, we could set aside a special region for a limited amount
of time. Reconfiguration needs have also arisen where one day a class may want
to explore traditional MPI, while the next they want to experiment with Hadoop.
Furthermore, we identified that several users wanted to combine various cloud IaaS
platforms in order to avoid resource over-provisioning or were interested in com-
bining all resources.

6 Cloudmesh

At [12] we find an extensive set of information about Cloudmesh that is cited within
this section.

From the experience with FutureGrid we identified the need for a more tightly
integrated software infrastructure addressing the need to deliver a software-defined
system encompassing virtualized and baremetal infrastructure, networks, appli-
cation, systems and platform software with a unifying goal of providing Cloud
Testbeds as a Service (CTaaS). This system is termed Cloudmesh to symbolize

(a) the creation of a tightly integrated mesh of services targeting multiple IaaS
frameworks

22 Gregor von Laszewski, Geoffrey C. Fox

(b) the ability to federate a number of resources from academia and industry. This
includes existing FutureGrid infrastructure, Amazon Web Services, Azure, HP
Cloud, Karlsruhe, using not only one IaaS framework, but many.

(c) the creation of an environment in which it becomes more easy to experiment
with platforms and software services while assisting to deploy them effortlessly.

In addition to virtual resources, FutureGrid exposes baremetal provisioning to
users, but also a subset of HPC monitoring infrastructure tools. Services will be
available through command line, API, and Web interfaces.

6.1 Functionality

Due to its integrated services Cloudmesh provides the ability to be an onramp for
other clouds. It also provides information services to various system level sensors to
give access to sensor and utilization data. They internally can be used to optimize the
system usage. The provisioning experience from FutureGrid has taught us that we
need to provide the creation of new clouds, the repartitioning of resources between
services (cloud shifting), and the integration of external cloud resources in case of
over provisioning (cloud bursting). As we deal with many IaaS we need an ab-
straction layer on top of the IaaS framework. Experiment management is conducted
with workflows controlled in shells [23], Python/iPython, as well as systems such as
OpenStacks Heat, Accounting is supported through additional services such as user
management and charge rate management. Not all features are yet implemented.
Figure shows the main functionality that we target at this time to implement.

6.2 Architecture

The three layers of the Cloudmesh architecture include a Cloudmesh Management
Framework for monitoring and operations, user and project management, experi-
ment planning and deployment of services needed by an experiment, provisioning
and execution environments to be deployed on resources to (or interfaced with) en-
able experiment management, and resources.

System Monitoring and Operations.

The management framework contains services to facilitate FutureGrid day-to-day
operation, including federated or selective monitoring of the infrastructure. Cloudmesh
leverages FutureGrid for the operational services and allows administrators to view
ongoing system status and experiments, as well as interact with users through ticket
systems and messaging queues to inform subscribed users on the status of the sys-
tem.

The FutureGrid Testbed for Big Data 23

Fig. 17 CM Functionality.

The Cloudmesh management framework offers services that simplify integration
of resources in the FutureGrid nucleus or through federation. This includes, for user
management, access to predefined setup templates for services in enabling resource
and service provisioning as well as experiment execution. To integrate IaaS frame-
works Cloudmesh offers two distinct services:

(a) a federated IaaS frameworks hosted on FutureGrid, (b) the availability of a
service that is hosted on FutureGrid, allowing the integration of IaaS frameworks
through user credentials either registered by the users or automatically obtained
from our distributed user directory.

For (b) several toolkits exist to create user-based federations, including our own
abstraction level which supports interoperability via libcloud, but more importantly
it supports directly the native OpenStack protocol and overcomes limitations of the
EC2 protocol and the libcloud compatibility layer. Plugins that we currently de-
velop will enable access to clouds via firewall penetration, abstraction layers for
clouds with few public IP addresses and integration with new services such as Open-
Stack Heat. We successfully federated resources from Azure, AWS, the HP cloud,
Karlsruhe Institute of Technology Cloud, and four FutureGrid clouds using vari-
ous versions of OpenStack and Eucalyptus. The same will be done for OpenCirrus
resources at GT and CMU through firewalls or proxy servers.

Additional management flexibility will be introduced through automatic cloud
bursting and shifting services. While cloud bursting will locate empty resources in
other clouds, cloud shifting will identify unused services and resources, shut them
down and provision them with services that are requested by the users. We have
demonstrated this concept in 2012 moving resources for more than 100 users to
services that were needed based on class schedules. A reservation system will be

24 Gregor von Laszewski, Geoffrey C. Fox

 Management Framework

Pr
ov

is
io

ni
ng

 a
nd

 E
xe

cu
tio

n Platform as a Service
Provisioning & Federation

Compute
Provisioning

Ex
pe

rim
en

t M
on

ito
rin

g
&

 E
xe

cu
tio

n

Se
cu

rit
y

A
ut

he
nt

ic
at

io
n,

 A
ut

ho
riz

at
io

n,
 S

S
O

Hadoop, HPC Cluster, virtual
Cluster, Customization

System,VM,
Hypervisors,
Bare-Metal,
GPU,MIC

R
es

ou
rc

es Federated Nucleus
Internet

Internet2

...AWS

...

Azure
Rack-
spaceGoogle

TACC

Portal, REST, API, command line

Federation Management, Systems Monitoring, Operations

User & Project Services

Experiment Planning and Deployment Services

HP
Cloud

Infrastructure as a Service
OpenStack, Eucalyptus, Nimbus,

OpenNebula, CloudStack, Customization

Network
Provisioning

Storage
Provisioning

Partitions,
Disks,

Filespace,
Object Store

OpenFlow,
Neutron,

ViNe, others

Fe
de

ra
tio

n
Se

rv
ic

es

EGI

XSEDE
Grid
5000

IU UCUF

Fig. 18 CM Architecture.

used to allow for reserved creation of such environments, along with improvements
of automation of cloud shifting.

User and Project Services.

FutureGrid user and project services simplify the application processes needed to
obtain user accounts and projects. We have demonstrated in FutureGrid the ability
to create accounts in a very short time, including vetting projects and users allowing
fast turn-around times for the majority of FutureGrid projects with an initial startup
allocation. Cloudmesh re-uses this infrastructure and also allows users to manage
proxy accounts to federate to other IaaS services to provide an easy interface to
integrate them.

The FutureGrid Testbed for Big Data 25

Accounting and App Store.

To lower the barrier of entry, Cloudmesh will be providing a shopping cart which
will allow checking out of predefined repeatable experiment templates. A cost is
associated with an experiment making it possible to engage in careful planning and
to save time by reusing previous experiments. Additionally, the Cloudmesh App
Store may function as a clearing-house of images, image templates, services offered
and provisioning templates. Users may package complex deployment descriptions
in an easy parameter/form-based interface and other users may be able to replicate
the specified setup.

Due to our advanced Cloudmesh Metrics framework, we are in the position to
further develop an integrated accounting framework allowing a usage cost model
for users and management to identify the real impact of an experiment on resources.
This will be useful to avoid over-provisioning and inefficient resource usage. The
cost model will be based not only on number of core hours used, but also the capa-
bilities of the resource, the time, and special support it takes to set up the experiment.
We will expand upon the metrics framework of FutureGrid that allows measuring of
VM and HPC usage and associate this with cost models. Benchmarks will be used
to normalize the charge models.

Networking.

We have a broad vision of resource integration in FutureGrid offering different levels
of control from baremetal to virtual machine and platform management. We also
offer the ability to utilize resources in a distributed environment. Likewise, we must
utilize networks offering various levels of control, from standard IP connectivity to
completely configurable SDNs, as novel cloud architectures will almost certainly
leverage NaaS and SDN alongside system software and middleware. FutureGrid
resources will make use of SDN using OpenFlow whenever possible, however, the
same level of networking control will not be available in every location.

Monitoring.

To serve the purposes of CISE researchers, Cloudmesh must be able to access em-
pirical data about the properties and performance of the underlying infrastructure
beyond what is available from commercial cloud environments. To accommodate
this requirement, we have developed a uniform access interface to virtual machine
monitoring information available for OpenStack, Eucalyptus, and Nimbus. In the fu-
ture, we will be enhancing the access to historical user information. Right now they
are exposed through predefined reports that we create on a regular basis. To achieve
this we will also leverage the ongoing work while using the AMPQ protocol. Fur-
thermore, Cloudmesh will provide access to common monitoring infrastructure as
provided by Ganglia, Nagios, Inca, perfSonar, PAPI and others.

26 Gregor von Laszewski, Geoffrey C. Fox

6.3 Cloud Shifting

We have already demonstrated via the RAIN tool in Cloudmesh that it is possible to
easily shift resources between services. We are currently expanding upon this idea
and developing more easy to use user interfaces that assist administrators and users
through role and project based authentication to move resources from one service to
another (see Figure 19).

FG Move

FutureGrid Fabric

FG
Provisioning
Component

(Teefaa)

FG
CLI

Component

FG
Metrics

Component

OpenStack

FG Move
Controller

HPC

FG Move
Controller

Eucalyptus

FG Move
Controller

FG
Scheduler

Component

1
2

CM CM CM CM

CM CM CM

Plugin

Fig. 19 Shifting resources makes it possible to offer flexibility in the service distribution in case
of over or underprovisioning.

6.4 Graphical User Interface

Despite the fact that Cloudmesh was originally a quite sophisticated command shell
and command line tool, we have recently spent more time in exposing this function-
ality through a convenient Web interface. Some more popular views in this interface
are depicted in Figure 21 hinting at how easy it is with a single button to create
multiple VMs across a variety of IaaS. This not only includes resources at IU but
also at external locations, making it more practical for users.

Hence, this easy management provides a more sophisticated experience for the
user while associating one-click deployments. These deployments include the abil-
ity to instantiate virtual clusters, Hadoop environments, and other more elaborate
setups. We provide an early prototype screenshot in Figure 22.

The FutureGrid Testbed for Big Data 27

Fig. 20 Monitoring the Service distribution of FutureGrid with Cloudmesh.

6.5 Command Shell and Command Line Interface

Cloudmesh contains the ability to access much of its functionality through a com-
mandline interface. This is enabled through a command shell that can function both
as regular Linux command as well as command shell. The command shell can be
invoked with cm on the regular Linux shell, or by specifying a number of parame-
ters to call it without starting the interactive shell. The commands accessible to the
users allow the management of virtual machines, and bare metal provisioning. To
find out the detailed option of each command one can invoke a help command. An
important property of this shell is that it can be easily extended and plugins can be
distributed not only in a system wide plugin directory, but also in one provided by
the user. This makes it possible to customize the shell commands available based on
user needs by either removing unnecessary commands or introducing new ones. For
example it would be possibly for users only interested in virtual machine manage-
ment to remove the commands related to baremetal provisioning. Figure 23 shows
the startup of the command shell and the invocation of the help command to list
the available commands for this user. Please note that all commands are yet imple-
mented. We have categorized some of the commands as cloud commands listed in a
special section in the help. Figure 24 shows the use of the first command in that list

28 Gregor von Laszewski, Geoffrey C. Fox

Fig. 21 Screenshot demonstrating how easy ot is to manage multible VMs accross various clouds.

Fig. 22 One click deployment of platforms and sophisticated services that could even spawn mul-
tiple resources.

called cloud that lists the available clouds for the user. Important to note is that
Cloudmesh can be set up as a server so that the GUI and the command shell share
variables that are managed in a jointly used database. Thus, it is possible to register
new clouds with the command shell, and have them show up also in the GUI that

The FutureGrid Testbed for Big Data 29

is managed through a hosted web server. Through this combination Cloudmesh can
be seemlessly used as command shell or as GUI.

____ _ _ _
/ ___| | ___ _ _ __| |_ __ ___ ___ ___| |__
| | | |/ _ \| | | |/ _‘ | ’_ ‘ _ \ / _ \/ __| ’_ \
| |___| | (_) | |_| | (_| | | | | | | __/__ \ | | |
____|_|___/ __,_|__,_|_| |_| |_|___||___/_| |_|
==

Cloudmesh Shell

cm> help

Documented commands (type help <topic>):
==
EOF defaults graphviz keys metric py script var
banner dot2 help label open q storm verbose
clear edit info list pause quit timer version
cloud exec init login plugins rain use vm
count exp inventory man project register user

Cloud Commands
==============
cloud exp inventory list rain storm vm project
defaults init label metric register user keys

Fig. 23 The cloudmesh shell

cm> cloud list
+--------------------------+
| Clouds |
+--------------------------+
| alamo |
| aws |
| azure |
| devstack_icehouse |
| hp |
| hp_east |
| india_eucalyptus |
| india_openstack_havana |
| sierra_openstack_grizzly |
+--------------------------+

Fig. 24 Listing the clouds

7 Summary

In this chapter, we have described FutureGrid and provided a general overview. In
addition, we have analyzed the many projects executed on FutureGrid while paying
attention on those requesting and using technologies relevant for big data analysis.
Based on the discussion, it is clear that systems such as FutureGrid is extremely
complex but provides to its users the benefit to offer multiple services within the
same infrastructure. This includes bare metal provisioning. Thus, performance ex-
periments can not only be conducted on virtual machines, but on a variety of IaaS
and PaaS environments. Moreover, these experiments can directly be compared to
bare metal provisioned services. Hence, users can evaluate what impact such tech-
nologies have on their codes. Comparisons of different programming frameworks

30 Gregor von Laszewski, Geoffrey C. Fox

can be achieved and future activities in regards to efficiency and usability can be de-
ducted. The lessons learned from FutureGrid are motivating a toolkit, Cloudmesh,
that currently allows managing virtual machines on a variety of infrastructure as
service frameworks. The easy deployment of sophisticated setups with one-click
has been validated as part of an infrastructure designed for a MOOC. Furthermore
the novel concept of shifting resources [29] between services to support services that
need more resources is a significant contribution by Cloudmesh. Image management
and creation under security restrictions [10] is furthermore an important aspect. We
will continue to develop the Cloudmesh environment and make it available to our
users.

Acknowledgement

Some of the text published in this chapter is available form the FutureGrid portal.
The FutureGrid project is funded by the National Science Foundation (NSF) and
is led by Indiana University with University of Chicago, University of Florida, San
Diego Supercomputing Center, Texas Advanced Computing Center, University of
Virginia, University of Tennessee, University of Southern California, Dresden, Pur-
due University, and Grid 5000 as partner sites. This material is based upon work sup-
ported in part by the National Science Foundation under Grant No. 0910812 [11].
If you use FutureGrid and produce a paper or presentation, we ask you to include
the references [27, 11] as well as this chapter. We like to thank Fugang Wang for
the development of the framework that allowed us to produce the statistical data and
Hyungro Lee for assiting in the creation of the data tables that lead to the creation of
Figures 11 and 12. Furthermore we like to thank Barbara O’Leary for proofreading
this paper.

References

1. “Apache Hadoop Project.” [Online]. Available: http://hadoop.apache.org
2. “Gartner’s 2013 hype cycle for emerging technologies maps out evolving relationship

between humans and machines,” Press Release. [Online]. Available: http://www.gartner.com/
newsroom/id/2575515

3. “Jira ticket system,” Web Page. [Online]. Available: https://confluence.atlassian.com/display/
JIRAKB/Using+JIRA+for+Helpdesk+or+Support

4. “Map reduce,” Wikepedia. [Online]. Available: http://en.wikipedia.org/wiki/MapReduce
5. “Rt: Request tracker,” Web Page. [Online]. Available: http://www.bestpractical.com/rt/
6. “Twister: Iterative mapreduce,” Web Page. [Online]. Available: http://www.

iterativemapreduce.org
7. W. Barth, Nagios. System and Network Monitoring, u.s. ed ed. No Starch Press, 2006.

[Online]. Available: http://www.amazon.de/gp/redirect.html%3FASIN=1593270704%26tag=
ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/1593270704%
253FSubscriptionId=13CT5CVB80YFWJEPWS02

http://hadoop.apache.org
http://www.gartner.com/newsroom/id/2575515
http://www.gartner.com/newsroom/id/2575515
https://confluence.atlassian.com/display/JIRAKB/Using+JIRA+for+Helpdesk+or+Support
https://confluence.atlassian.com/display/JIRAKB/Using+JIRA+for+Helpdesk+or+Support
http://en.wikipedia.org/wiki/MapReduce
http://www.bestpractical.com/rt/
http://www.iterativemapreduce.org
http://www.iterativemapreduce.org
http://www.amazon.de/gp/redirect.html%3FASIN=1593270704%26tag=ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/1593270704%253FSubscriptionId=13CT5CVB80YFWJEPWS02
http://www.amazon.de/gp/redirect.html%3FASIN=1593270704%26tag=ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/1593270704%253FSubscriptionId=13CT5CVB80YFWJEPWS02
http://www.amazon.de/gp/redirect.html%3FASIN=1593270704%26tag=ws%26lcode=xm2%26cID=2025%26ccmID=165953%26location=/o/ASIN/1593270704%253FSubscriptionId=13CT5CVB80YFWJEPWS02

The FutureGrid Testbed for Big Data 31

8. J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1327452.1327492

9. J. Diaz, G. von Laszewski, F. Wang, and G. C. Fox, “Abstract Image Management and
Universal Image Registration for Cloud and HPC Infrastructures,” in IEEE Cloud 2012,
Honolulu, Jun. 2012. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/
12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf

10. J. Diaz, G. von Laszewski, F. Wang, A. J. Younge, and G. C. Fox, “Future-
Grid Image Repository: A Generic Catalog and Storage System for Heterogeneous
Virtual Machine Images,” in Third IEEE International Conference on Coud Com-
puting Technology and Science (CloudCom2011), Athens, Greece, 12/2011 2011,
paper, pp. 560–564. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/
11-cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf

11. G. C. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes, R. Figueiredo, S. Smallen,
W. Smith, and A. Grimshaw, Contemporary HPC Architectures, draft ed., 2012, ch. Future-
Grid - a reconfigurable testbed for Cloud, HPC and Grid Computing. [Online]. Available:
http://cyberaide.googlecode.com/svn/trunk/papers/pdf/vonLaszewski-12-fg-bookchapter.pdf

12. Gregor, “Cloudmesh on Github,” Web Page. [Online]. Available: http://cloudmesh.github.io/
cloudmesh/

13. S. K. Gregor von Laszewski, “Using hadoop on futuregrid,” Web Page, Manual, 2013.
[Online]. Available: http://manual.futuregrid.org/hadoop.html

14. “The Network Impairments device is Spirent XGEM,” 2012. [Online]. Available:
http://www.spirent.com/Solutions-Directory/ImpairmentsGEM.aspx?oldtab=0&oldpg0=2

15. S. Krishnan, M. Tatineni, and C. Baru, “myHadoop - Hadoop-on-Demand on Traditional HPC
Resources,” Tech. Rep., 2011. [Online]. Available: http://www.sdsc.edu/∼allans/MyHadoop.
pdf

16. G. K. Lockwood, “myhadoop 2.” [Online]. Available: https://github.com/glennklockwood/
myhadoop

17. M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience,” in Journal of Parallel Computing, April 2004.

18. J. Qiu, “Course: Fall 2013 P434 Distributed Systems Undergraduate Course.” [Online].
Available: https://portal.futuregrid.org/projects/368

19. ——, “Spring 2014 CSCI-B649 Cloud Computing MOOC for residential and online
students.” [Online]. Available: https://portal.futuregrid.org/projects/405

20. L. Ramakrishnan, “FRIEDA: Flexible Robust Intelligent Elastic Data Management.” [Online].
Available: https://portal.futuregrid.org/projects/298

21. “ScaleMP,” 2012. [Online]. Available: http://www.scalemp.com/
22. S. Smallen, K. Ericson, J. Hayes, and C. Olschanowsky, “User-level grid monitoring

with inca 2,” in Proceedings of the 2007 workshop on Grid monitoring, ser.
GMW ’07. New York, NY, USA: ACM, 2007, pp. 29–38. [Online]. Available:
http://doi.acm.org/10.1145/1272680.1272687

23. G. von Laszewski, “Cmd3,” Github Documentation and Code. [Online]. Available:
http://cloudmesh.futuregrid.org/cmd3/

24. ——, “Workflow Concepts of the Java CoG Kit,” Journal of Grid Computing, vol. 3, pp.
239–258, Jan. 2005. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/
anl/vonLaszewski-workflow-taylor-anl.pdf

25. G. von Laszewski, J. Diaz, F. Wang, and G. C. Fox, “Compari-
son of Multiple Cloud Frameworks,” in IEEE Cloud 2012, Honolulu,
HI, Jun. 2012. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/
12-cloud12-cloudcompare/laszewski-IEEECloud2012 id-4803.pdf

26. G. von Laszewski, I. Foster, J. Gawor, and P. Lane, “A Java Commodity Grid
Kit,” Concurrency and Computation: Practice and Experience, vol. 13, no. 8-9, pp.
645–662, 2001. [Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/anl/
vonLaszewski-cog-cpe-final.pdf

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-imagemanagement/vonLaszewski-12-IEEECloud2012.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/11-cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/11-cloudcom11-imagerepo/vonLaszewski-draft-11-imagerepo.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/pdf/vonLaszewski-12-fg-bookchapter.pdf
http://cloudmesh.github.io/cloudmesh/
http://cloudmesh.github.io/cloudmesh/
http://manual.futuregrid.org/hadoop.html
http://www.spirent.com/Solutions-Directory/Impairments GEM. aspx?oldtab=0&oldpg0=2
http://www.sdsc.edu/~allans/MyHadoop.pdf
http://www.sdsc.edu/~allans/MyHadoop.pdf
https://github.com/glennklockwood/myhadoop
https://github.com/glennklockwood/myhadoop
https://portal.futuregrid.org/projects/368
https://portal.futuregrid.org/projects/405
https://portal.futuregrid.org/projects/298
http://www.scalemp.com/
http://doi.acm.org/10.1145/1272680.1272687
http://cloudmesh.futuregrid.org/cmd3/
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-taylor-anl.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-taylor-anl.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-cloudcompare/laszewski-IEEECloud2012_id-4803.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/12-cloud12-cloudcompare/laszewski-IEEECloud2012_id-4803.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-cog-cpe-final.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-cog-cpe-final.pdf

32 Gregor von Laszewski, Geoffrey C. Fox

27. G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge, Kulshrestha, G. G. Pike,
W. Smith, J. Voeckler, R. J. Figueiredo, J. Fortes, K. Keahey, and E. Deelman, “Design
of the FutureGrid Experiment Management Framework,” in Proceedings of Gateway
Computing Environments 2010 (GCE2010) at SC10. New Orleans, LA: IEEE, Nov. 2010.
[Online]. Available: http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/
vonLaszewski-10-FG-exp-GCE10.pdf

28. G. von Laszewski, M. Hategan, and D. Kodeboyina, Workflows for E-science: Scientific
Workflows for Grids. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007, ch. Grid
Workflow with the Java CoG Kit. [Online]. Available: http://cyberaide.googlecode.com/svn/
trunk/papers/anl/vonLaszewski-workflow-book.pdf

29. G. von Laszewski, H. Lee, J. Diaz, F. Wang, K. Tanaka, S. Karavinkoppa, G. C. Fox, and
T. Furlani, “Design of an Accounting and Metric-based Cloud-shifting and Cloud-seeding
Framework for Federated Clouds and Bare-metal Environments,” in Proceedings of the 2012
Workshop on Cloud Services, Federation, and the 8th Open Cirrus Summit, ser. Federated-
Clouds ’12. New York, NY, USA: ACM, 2012, pp. 25–32.

30. G. von Laszewski and X. Yang, “Virtual cluster with slurm,” Github repository. [Online].
Available: https://github.com/futuregrid/virtual-cluster

31. A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu, and G. C. Fox,
“Analysis of Virtualization Technologies for High Performance Computing Environments,”
in Proceedings of the 4th International Conference on Cloud Computing (CLOUD
2011). Washington, DC: IEEE, July 2011, pp. 9–16. [Online]. Available: http:
//cyberaide.googlecode.com/svn/trunk/papers/10-fg-hypervisor/10-fg-hypervisor.pdf

http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/vonLaszewski-10-FG-exp-GCE10.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/10-FG-exp-GCE10/vonLaszewski-10-FG-exp-GCE10.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-book.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/anl/vonLaszewski-workflow-book.pdf
https://github.com/futuregrid/virtual-cluster
http://cyberaide.googlecode.com/svn/trunk/papers/10-fg-hypervisor/10-fg-hypervisor.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/10-fg-hypervisor/10-fg-hypervisor.pdf

Index

Cloud Shifting, 26
Cloudmesh, 21

GUI, 26
Shell, 27

DevOps, 19

Eucalyptus, 9

FutureGrid, 1
Hardware, 2
Networking, 2
Services, 3
Storage, 3
Usage, 12

Grid, 8

Hadoop, 10

IaaS, 8

Map Reduce, 9
MPI, 7
myHadoop, 11

Nimbus, 9

OpenStack, 8

Testbed as a Service, 5
Twister, 12

Virtual Cluster, 12
Virtual Large-Memory, 7

33

	The FutureGrid Testbed for Big Data
	Gregor von Laszewski, Geoffrey C. Fox
	Introduction
	Overview of FutureGrid
	Hardware Overview

	Services and Tools for Big Data
	Testbed as a Service (TestbedaaS)
	Traditional High Performance Computing as a Service (HPCaaS)
	Grid as a Service (GridaaS)
	Infrastructure as a Service (IaaS)
	Cloud Platform as a Service (PaaS)

	FutureGrid Usage
	System Management
	Integration of Systems and Development Team
	DevOps
	Support for Education

	Cloudmesh
	Functionality
	Architecture
	Cloud Shifting
	Graphical User Interface
	Command Shell and Command Line Interface

	Summary
	References

	Index

