
1

FutureGrid Image Repository: A Generic Catalog
and Storage System for

Heterogeneous Virtual Machine Images
Javier Diaz, Gregor von Laszewski, Fugang Wang, Andrew J. Younge and Geoffrey Fox

Pervasive Technology Institute, Indiana University
2729 E 10th St., Bloomington, IN 47408, U.S.A.

Email: javidiaz@indiana.edu, laszewski@gmail.com

Abstract—FutureGrid (FG) is an experimental, high-
performance testbed that supports HPC, cloud and grid com-
puting experiments for both application and computer scientist.
FutureGrid includes the use of virtualization technology to allow
the support of a wide range of operating systems in order to
include a testbed for various cloud computing infrastructure
as a service frameworks. Therefore, efficient management of a
variety of virtual machine images becomes a key issue. Current
cloud frameworks do not provide a way to manage images for
different IaaS frameworks. They typically provide their own
image repositories, but in general they do not allow us to
store the needed metadata to handle other IaaS images. We
present a generic catalog and image repository to store images of
any type. Our image repository has a convenient interface that
distinguishes image types. Therefore, it is not only useful for
FutureGrid, but also for any application that needs to manage
images.

I. INTRODUCTION

FutureGrid (FG) [1] provides a testbed that makes it pos-
sible for researchers to tackle complex research challenges
in Computer Science related to the use and security of grids
and clouds. These include topics ranging from authentication,
authorization, scheduling, virtualization, middleware design,
interface design and cybersecurity, to the optimization of
grid-enabled and cloud-enabled computational schemes for
researchers in Astronomy, Chemistry, Biology, Engineering,
Atmospheric Science and Epidemiology. FG provides a new
experimental computing grid and cloud test-bed to the re-
search community, together with user support for third-party
researchers conducting experiments on FutureGrid.

Recently, cloud computing has become quite popular and
a multitude of middleware has been developed. However, it
is not at all clear at this time which of the cloud toolkits
users should choose. One of the goals of the project is
to understand the behavior and utility of cloud computing
approaches. In this sense, FutureGrid provides the ability to
compare these frameworks with each other while considering
real scientific applications. Hence, researchers will be able to
measure the overhead of cloud technology by requesting linked
experiments on both virtual and bare-metal systems. Due to
the rapid development of new tools, services, and frameworks
within the grid and cloud communities, it is important to
facilitate a multitude of such environments. This includes
access to Infrastructure as a Service (IaaS) frameworks such as

Nimbus [2], Eucalyptus [3], OpenNebula [4], OpenStack [5];
Platform as a Service (PaaS) frameworks such as Hadoop [6]
and Dryad [7]; and additional services and tools like Unicore
[8] and Genesis II [9], that are provided and supported by the
FutureGrid team members. Thus, users will have the ability to
investigate a number of different frameworks as part of their
activities on FutureGrid.

Since we are not only interested in offering pre-installed
frameworks exposed through endpoints, we must provide
additional functionality to instantiate and deploy them on-
demand. Therefore, we need to offer dynamic provisioning
within FutureGrid not only within an IaaS framework, such
as Nimbus [2], Eucalyptus [3] or OpenStack [5], but allow
the provisioning of such frameworks themselves. However, we
use the term “raining” instead of just dynamic provisioning to
indicate that we strive to dynamically provision even the IaaS
framework or the PaaS framework. Thus, this provisioning
subsystem is called RAIN [10].

Most of the previously mentioned tools and services are
based on the virtualization of both resources and software.
Hence, the image management becomes a key component
in supporting these cloud technologies. In fact, each IaaS
framework provides its own local image repository specifically
designed to interact with such framework. This creates a
problem, from the perspective of managing multiple environ-
ments as done by FG, because these image repositories are
not designed to interact with each other. Tools and services
offered by the IaaS frameworks have different requirements
and implementations to retrieve or store images. Hence, we
present in FG the ability to catalog and store images in a
unified repository. This image repository offers a common
interface that can distinguish image types for different IaaS
frameworks like Nimbus [2], Eucalyptus [3], but also bare
metal images that we term distributed raw appliances in
support of HPC. This allows us in FG to include a diverse
image set not only contributed by the FG development team,
but also by the user community that generates such images
and wishes to share them. The images can be described
with information about the software stack that is installed
on them including versions, libraries, and available services.
This information is maintained in the catalog and can be
searched by users and/or other FutureGrid services. Users
looking for a specific image can discover available images

2

fitting their needs, and find their location in the repository
using the catalog interface. In addition, users can also register
customized images, share them among other users, and choose
any of them for the provisioning subsystem [10]. Through this
mechanism we expect our image repository to grow through
community contributed images.

One of the most important features in our design is that we
are not simply storing an image but rather focus on the way
an image is created through templating. Thus it is possible
at any time to regenerate an image based on the template
that is used to install the software stack onto a bare operating
system. In this way, the development of a customized image
repository not only provides functional advantages, but it
also provides structural advantages aimed to increase efficient
use of the storage resources. Furthermore, we can maintain
specific data that assist in measuring usage and performance.
This usage data can be used to purge rarely used images,
while they still can be recreated with the use of templating.
This will obviously lead to a significant amount of space
saving. Moreover, the use of image templating will allow
us to automatically generate images for diverse environments
including a variety of hypervisors and hardware platforms. In
this process, we will include mechanisms to verify that these
requirements are reasonable like for example if the required
IaaS is compatible with the requested hypervisor. In general,
we can employ simple rules such as (a) if we find the image,
we just provide it to the user (b)If not, we generate a new
image to provide that to the user and store it in the image
repository (c) if an image is rarely used it may get purged
and we only keep the image generation template. Obviously,
plugins for the various repositories can be provided in addition
to delivering an AWS style interface.

The rest of the paper is organized as follows. In Section
II, we present an overview of image repositories provided by
different cloud frameworks and storage systems. In Section
III we describe briefly the FutureGrid software architecture.
In Section IV, we present the FG Image Repository by
focusing on its requirements, the design and implementation
details. Section V describes the tests performed to compare the
different storage systems supported by the image repository
and Section VI collects the results of these tests. Finally, we
present the conclusions in Section VII and future directions in
Section VIII.

II. BACKGROUND

As previously commented, the images are a key component
in cloud technologies. Therefore, any cloud framework provid-
ing IaaS or PaaS has to manage them. Due to the particularities
of each framework, each one has developed its own image
repository adapted and optimized to its particular software. In
general, IaaS frameworks provide the possibility to interact
with the image repository, while PaaS frameworks hide all
these details to the users. Next, we present an overview of
the image repositories implemented by the most important
frameworks to manage their images.

Nimbus [2], [11] is a set of open source tools that together
provide an Infrastructure as a Service (IaaS) cloud computing

solution. Since version 2.5, Nimbus introduced a storage cloud
implementation called Cumulus [12] as part of its image
repository solution. Cumulus is compatible with the Amazon
Web Service S3 REST API [13] and can be used standalone as
cloud storage. Currently, it is implemented using the POSIX
file system as storage back-end, but the plan to provide access
to distributed file systems.

Eucalyptus [3], [14] is open source software to deploy IaaS
private and hybrid clouds. Eucalyptus provides a distributed
storage system called Walrus which implements Amazon’s
S3-compatible SOAP and REST interface. It is designed to
be modular such that the authentication, streaming and back-
end storage subsystems can be customized. Walrus is used as
storage for user data and images.

OpenNebula [4], [15], [16] is an open source toolkit which
allows to transform existing infrastructure into an IaaS cloud
with cloud-like interfaces. OpenNebula implements an image
repository with catalog and functionality for image manage-
ment. The image repository relies in the POSIX file system
to store the images, and includes compatibility with Network
File System (NFS) and Logical Volume Manager(LVM).

Amazon Web Services (AWS) [17] is a commercial platform
to provide infrastructure web services in the cloud. Amazon
provides a large set of resources, among them it maintains
an abundant number of images covering popular OSs and
architectures. Also, any 3rd party can provide images which
are managed and could be used in similar say. In addition,
users could generate and store their own customized images
which then could be used by themselves or shared with others.
Amazon maintains the image repository using its storage
systems called S3 (Simple Storage Service) and EBS (Elastic
Block Storage).

OpenStack [5] is a collection of open source technologies
to deliver public and private clouds. These technologies are
OpenStack Compute (called Nova), OpenStack Object Storage
(called Swift), and the recently presented OpenStack Imaging
Service (called Glance). The last one, Glance, is a lookup
and retrieval system for virtual machine images. It supports
different back-end configurations: using OpenStack Object
Store, using Amazon S3 or using Amazon S3 with OpenStack
Object Store as intermediate.

Windows Azure platform [18], [19] is a group of cloud
technologies (SQL Azure and Windows Azure including App-
Fabric and Marketplace), each providing a specific set of
services to application developers. Our interest is in Windows
Azure [20], which provides developers with cloud capabilities
through Microsoft datacenters. Since Windows Azure is a
platform as a service (PaaS), it keeps the image repository
hidden behind the scene and invisible to end users. However,
they introduced the possibility to manage an image repository
through Windows Azure applications and the virtual machine
(VM) role, recently. The main difference between both repos-
itories is that in the first one, Microsoft will patch and update
the operating system for you, but with the VM role it is up to
you.

Abicloud, now called Abiquo, [21] is an open source infras-
tructure software for the creation and integral management of
Public, Private, or Hybrid clouds based on heterogeneous en-

3

vironments. Abiquo maintains a public repository where users
can download images. However, it also provides appliance
repositories that can be defined by users. This repository is
a simple NFS shared folder that is mounted by the Abiquo
platform and all the nodes that compose the cloud infrastruc-
ture.

xCAT (Extreme Cloud Administration Toolkit) [22] is a
scalable distributed-computing management and provisioning
tool that provides a unified interface for hardware control,
discovery, and OS disk-full/diskless deployment. xCAT man-
ages images/packages in a central repository at the Man-
agement Node (and also at the Service Nodes when using
hierarchical configuration). The images can be generated,
configured, stored, and accessed from compute nodes via
various command line tools provided. Although this is not
a cloud technology, it is of our interest due to its ability
managing images.

On the other hand, a very important detail to consider
in the development of an image repository is the storage
system because it is essential to provide scalable and fault
tolerant applications. Some of the previous frameworks pro-
vide interesting storage systems like Cumulus [2], Walrus [3]
or Swift [5]. However, there are other tools that can also
be used to store information in distributed systems. In this
sense, we have Google File System (GFS) [23] that was
the first storage system to operate at cloud-scale. GFS is a
proprietary storage system designed and used by Google. This
is an scalable distributed file system for large distributed data-
intensive applications. It provides fault tolerance and delivers
high aggregate performance to a large number of clients. GFS
started a new technology trend that was quite well accepted
by the community. In fact, Hadoop Distributed File system
(HDFS) [6], [24], an open source distributed file system
inspired in GFS, has became very popular. HDFS is highly
fault-tolerant and is designed to be deployed on commodity
hardware. It provides high throughput access to application
data and is suitable for applications that have large data sets.

We can also consider, as storage systems, various NoSQL
databases [25]. These databases that may not require fixed
table schemas, typically scale horizontally and are designed to
manage huge amounts of data. Moreover, some of them also
allow to store BLOBS (Binay Large Objects). The first NoSQL
database was developed by Google and called BigTable [26].
BigTable is a proprietary, scalable database system for man-
aging structured data that is designed to scale to a very large
size. In [25] we can find a list of the most important NoSQL
databases ordered by type. Among them, we would like to
highlight MongoDB [27], CouchDB [28] and Riak [29] as
they support large files and are open source tools. MongoDB
is a document-oriented database that manages collections of
JSON-like documents [30]. MongoDB includes an special
component, called GridFS, designed to store files of any size
in BSON format [31]. CouchDB is another document-oriented
database that store the information in JSON and the large files
are managed as attachments encoded in base64. On the other
hand, Riak is a Dynamo-inspired key/value store [32]. It can
manage large files using Luwak, an application built on top of
Riak, which is bundle with Riak but disabled by default.

Finally, we would like to mention more traditional ap-
proaches used to provide networked and distributed file sys-
tems. Here, early examples are NFS [33] and AFS [34]
with centralized client-server design. More recent approaches
focused on HPC are LUSTRE [35] and PVFS (Parallel Virtual
File System) [36], [37]. Both are parallel distributed file
system, generally used for large scale cluster computing.

III. FUTUREGRID SOFTWARE ARCHITECTURE OVERVIEW

As mentioned earlier, FutureGrid (FG) provides an experi-
mental grid, cloud, and HPC testbed [1]. However, there are
important details that make FutureGrid different from tradi-
tional compute centers such as TeraGrid [38] or well known
IaaS offerings platforms, such as Amazon Web Services.

A big distinction between TeraGrid and FG is that FG pro-
vides a greater breadth of services. Traditional supercomputing
centers, like those that are part of TeraGrid, are focused on
large-scale high performance computing applications while
providing a well-defined software stack. The access to this
systems is based on job management and traditional parallel
and distributed computing concepts. Furthermore, virtual ma-
chine staging on TeraGrid has not yet deemed to be a major
part of its mission. Thus, FG is more flexible in providing user
defined software on-demand.

In contrast to Amazon, FG provides alternatives to the IaaS
framework. The biggest benefit of FG stems from two unique
features:

• Resource awareness. Within FG we intend to allow the
mapping of specific resources as part of the service
instantiation. Thus, we can measure more realistically
performance impacts of the middleware and the services
developed by FG testbed user.

• Dynamic provisioning of distributed raw appliances. Au-
thorized users will have a much greater level of access
to resources by allowing the creation and dynamic pro-
visioning of images that can not only be placed in a VM
but also be run on the bare metal. We name such bare
metal images distributed raw appliances.

To support the FG infrastructure, the software architecture
has been designed to allow expandability by integrating new
resources and services. A simplified architecture view is
depicted in Figure 1. It is based on conceptual layers enabling
us to gradually introduce new features to the users over time
and to assure that development can be conducted by teams
in parallel. Next, we will give an overview of each of the
components that constitute this architecture.

At the bottom of the Figure 1 we have the Fabric layer that
contains the hardware resources, including the FG computa-
tional resources, storage servers, and network infrastructure
including the network impairment device. Next to this layer
we have the Development and Support Fabric/Resources one,
which contain additional resources to help FG with the devel-
opment and support of operational services. In the next higher
level, we provide Base Software and Services that contains
a number of services we rely on while developing software
in support of the FG mission. This includes Software that
is very close to the FG Fabric like MOAB, XCAT, and the

4

Fig. 1. FutureGrid Software Architecture.

OS. This category of services will enable us to build exper-
iment management systems utilizing dynamic provisioning.
In the next layer we find the Management Services. These
services are centered around FG experiments and the overall
system integration, including information services and raining
[10]. This layer also contains the FG Image Management
Components, which manages and provides images to both
users and other FG services. At the same level we have the
Operations Services, which are useful to communicate and
conduct development efforts in FG. Above this we provide a
variety of Access Services including IaaS, PaaS, and classical
libraries that provide a service as an infrastructure to the users
such as accessing MPI and others. Moreover, as part of the
additional services box, we have the User Contributed Services
which are not included in the Figure 1 as it can take place on
any of the different services within the access level. The only
difference to these services may be the level of support offered
in contrast to other FG services.

IV. FUTUREGRID IMAGE REPOSITORY

The image repository is one of two important services
within our image management. The other component is our
image generation tool [10] which deals with the generation
of template images that can be rained onto FG. We have
applied the typical development life cycle to the FG image
repository. Thus, in the following subsections we will talk
about the different phases namely requirements, design and
implementation.

A. Requirements

To specify our requirements for the image repository we
have considered mostly the following four user groups:

• A single user. Users create images that are part of
experiments they conduct on FG [10]. An image repo-
sitory helps to manage their images, to share them or to
create new images from existing ones adding additional
packages configurations through scripts as part of the
experiment environment.

• A group of users. An additional typical use case includes
a group of scientific collaborators that work together in
the same project and images are shared within the group
instead of each collaborator creating an identical image.

• System administrators. They maintain the image reposi-
tory ensuring backups and preserving space. They also
may use it for the distribution of the HPC image that is
accessible by default.

• FG services and subsystems [10]. Different FG services
and subsystems like our rain framework will make use of
the image repository to integrate access and deployment
of the images as part of the rain workflow.

Based on our consideration for the target audience we have
identified a number of essential requirements that we need to
consider in our design:

• Diverse access. The image repository must be accessi-
ble through a variety of access mechanisms such as a
command line, a portal, an API, and a REST service.

• Simple. The image repository must be simple and intuitive
to use by users that are not experts in virtualization
technologies and distributed systems.

• Unifying and integrated. We must provide a unifying
interface to manage various types of image for different
systems. These systems may have their own repositories
and we must be able to integrate with them in some
fashion.

• Extensible. The image repository subsystem must be
extensible. One aspect is to be able to include different
back-end storage systems. Another aspect is to provide an
API to offer the image repository to those cloud frame-
works which allow the use of external image repositories.

• Informative. We must provide easy and meaningful access
of information managed through the repository. Users
should be able to query and report the status and attributes
of the stored images.

• Accountable. We need to keep track of the usage of the
images in order to optimize the space needed by removing
unused images.

• Secure. The image repository security must be integrated
in the FG security architecture. Moreover, in case a
security issue is detected in an image, all cloned images
from this image can be easily identified. Information
associated with the repository and its images are protected
through authorized access.

• Fault tolerant. To avoid that the repository is a single
point of failure and presents a performance bottleneck,
the storage mechanism should be distributed.

B. Design

The FutureGrid image repository provides a service to
query, store, and update images through a unique and common

5

interface. In Figure 2, we present its architecture as part of a
layered architectural view.

Clients

Image Repository Service Interface

Image Repository Core

Image Repository Storage Access

FG
 S

ec
ur

ity
 S

er
vi

ce
s

In
te

rf
ac

e
to

 o
th

er
 F

G
 S

er
vi

ce
s

Im
ag

e
G

en
er

at
io

n,
 R

AI
N

, P
er

fo
rm

an
ce

, .
..

Rest API Python API PHP API

Accounting Image & Metadata
Management

CLI

Swift
(OpenStack)

Cumulus
(Nimbus) MongoDB Filesystem

Portal Shell

Triggers

Fig. 2. FutureGrid Image Repository Layers.

To address extensibility in a flexible and modular way, we
have integrated a framework independent Storage and Access
layer. This layer defines an interface to create transparent
plugins in support of different storage systems. Hence, a
bridge between the storage systems and the image repository
core functionality is provided. The Image repository Core
contains the solutions to accounting including usage and quota
management, image management, metadata management. The
image management is focused on managing the image files
and the associated information (metadata) in order to provide
a consistent, meaningful and up to date image catalog. The
separation of this information is done on purpose in order
to support a variety of different storage systems that may
be chosen by the site administrator due to functionality or
integration requirements. Important to note is that the core
also registers the image usage and access. This allows the
repository to record information such as how many times an
image was accessed and by whom. Internally this data may
be used by a trigger service that cleanses the repository from
faulty or less frequently used images. It also allows us to
generate images from templates in case an image is requested
with certain functionality that does not yet exist. Thus instead
of having a passive image repository we move towards an
active image repository that can be augmented with a number
of triggers that get invoked dependent on the data that is
collected within the repository. Thus not only can we trigger
events such as enforcing quota, but automatically updating,
or even distributing images based on advanced reservation
events forwarded to us by the rain service. To access this
functionality, we provide a variety of service interfaces such
as an API, a command line interface, and REST services.
These interfaces are part of the Image Repository Service
Interface layer. Through these interfaces we can easily create
higher-level image repository clients. In particular, we are
immediately interested in provide access through the FG portal
and the FG command line tool. Through the FG command
line tool we can also integrate the repository commands as

workflow scripts. The integration with a Web portal will be
facilitated through REST services. An API library is available
in python, and we intend to provide an API for PHP via the
rest services. We are also designing plugins to allow other
FG services to use the image repository and expose its use
through such integration efforts to authorized users as part of
raining images, IaaS, and PaaS onto the FG resources. The
image repository can be monitored as part of the monitoring
and information services [10]. Other cloud frameworks could
integrate with this image repository by accessing it through
a standard API such as S3 or the development of a back-
end interface that directly accesses the images within our
repository without knowledge to the user of these frameworks.

Finally, the security aspect is an essential component to
be considered in the design. Thus, the image repository will
provide the security functionality needed to integrate the
authentication and authorization with the FG ones (based
on LDAP). Using this approach we reach two important
objectives. On the one hand, we increase the security, because
the FG security is being developed by a group of experts in
the field. On the other hand, we contribute to maintain a single
sign on system for FG, avoiding the duplication of services
and user databases.

C. Implementation

We are gradually implementing the features that are outlined
in our design. The implementation is based on a client-server
architecture like the one shown in Figure 3. This implementa-
tion targets a variety of different user communities including
end users, developers, administrators via web interfaces, APIs,
and command line tools. In addition, the functionality of the
repository is going to be exposed through a REST interface,
which will enable the integration with Web-based services
such as the FutureGrid portal. Hence, users will be able
to initiate the creation and storage of images through the
FutureGrid portal.

Fig. 3. Image Repository Client-Server Architecture.

Currently, our repository supports four different storage
systems including (a) MySQL where the image files are stored
directly in the POSIX file system, (b) MongoDB where both
data and files are stored in the NoSQL database [27], (c) the
OpenStack Object Store (Swift) [5] and (d) Cumulus [12] from
the Nimbus project [2]. For (c) and (d) the data can be stored
in either MySQL or in MongoDB.

6

TABLE I
IMAGE REPOSITORY COMMAND LINE INTERFACE. ARGUMENTS BETWEEN BRACKETS ARE OPTIONALS.

Option Shortcut Arguments Description

--help -h Get help information
--auth -l Authentication/Login
--search -s [queryString] Get list of images that meet the criteria
--access -a <imgId><permissionString> Set image access permission
--get -g <imgId> Get the image file or only the URI
--put -p <imgFile><metaString> Upload/register an image
--modify -m <imgId> <metaString> Update image information
--remove -r <imgId> Remove an image from the repository
--info --img -ii [imgId] Get usage info of the images
--info --user -iu [userId] Get usage info of the users
--user --add -ua <userId> Add user
--user --del -ud <userId> Remove user
--user --list -ul List of users
--user --quota -uq <userId> <quota> Update disk quota of a user
--user --role -ur <userId> <role> Update user role
--user --status -us <userId> <status> Update user status

We have already created a Command Line Interface (CLI)
to manage the image repository called “fg-repo”. Table I
summarizes the main options to the command. Next, we
illustrate the image repository functionality by showcasing the
commands that are listed in Table I.

a) User Management and Authentication: First, users
will have to authenticate to the image repository to access it
(see option --auth). The access is based on roles and project/-
group memberships. As FG provides much of this information
as part of an integrated portal and LDAP server, we can
utilize it to provide authorization to access the repository while
querying the FG account management services for the needed
meta data on project memberships and roles.

As part of the user management, we maintain information
related with users such as the quota determining the amount
of disk space available for a particular user, the user status
(pending, activated, deactivated) and the user role (admin or
user). Thus, we have detailed user-based and role-based access
control.

Users can be administered with the --user option which his
only accessible to repository administrators allowing them to
add, remove and list users. It also includes the ability to update
the user quota, the users role, and the user status.

b) Image Management: To manage the images we main-
tain a rich set of information associated with each image
(metadata). This includes the operating system, architecture, or
image type. The current set of metadata information is shown
in Table II including default values where applicable. It also
shows which fields can be modified by users.

We provide the ability to upload an image using the --put
option while its arguments define the location of the image
and its associated metadata. Defaults are provided in case the
values are not defined. The metadata includes also information
about access permissions by users. We can define if an image
is private to the user uploading the image, or shared with the

public. Additionally, we are going to implement the ability
to share an image with a selected number of users or a
group/project as defined through the FutureGrid portal.

Modifications to the metadata can be accomplished by
authorized users with the --modify and specifying new values.
Some metadata however cannot be changed by the user, such
as the last time an image was accessed, modified, and used.

To retrieve the image from the repository we are using
the option --get. We can get images by name or by Uniform
Resource Identifier (URI). Nevertheless, as some of our back-
ends may not support URI’s, such as MongoDB [27], the URI
based access is not supported uniformly.

To remove an image we can use the --remove option.
Users can also query the image repository using the --

search option. It uses SQL style queries to retrieve a list
of images matching the query. Currently, we provide a very
simple interface that allows us to conduct searches on the
to the user exposed metadata with regular expressions. For
example, to retrieve a list of images that match the OS to be
Redhat and it is tagged with hadoop, we can use the query
string * where os=redhat, tag=hadoop. Additionally, we can
restrict the attributes of the returned metadata by using queries
such as field1,field2 where field3=value, which returns only
field1 and field2 of all images where field3 equals to the value.
To return all information, users can simply pass a *, which is
also the default in case no search string is provided. The use of
this query language allows us to abstract the back-end system
delivering a uniform search query across the different systems.

One additional very important property is the ability to sup-
port an accounting services while monitoring image repository
usage. Usage data is accessed through the --info option and
is available for users and images (e.g. --info --img and --
info --user options). Important information that is returned
by this command relates to the number of times that an
image is requested, the last time that an image was accessed,

7

TABLE II
INFORMATION ASSOCIATED TO THE IMAGES (METADATA).

Field Name Type Predefined Values Description Access

imgId String Unique identifier Read-Only
owner String Image’s owner Read-Only
os String Operating system Read-Write
description String Description of the image Read-Write
tag String list Image’s keywords Read-Write
vmType String none, xen, kvm, virtualbox, Virtual machine type Read-Write

vmware
imgType String machine, kernel, eucalyptus, Aim of the image Read-Write

nimbus, opennebula, openstack
permission String public, private Access permission to the image Read-Write
imgStatus String available, locked Status of the image Read-Write
imgURI String Image location Read-Only
createdDate date Upload date Read-Only
lastAccess date Last time the image was accessed Read-Only
accessCount long # times the image has been accessed Read-Only
ttl date Date when the image will be completely Read-Write

deleted
ttg date Date when the image will be replaced

by its generation description
size long Size of the image Read-Only

number of images registered by each user, disk space used by
each user. Additionally we are going to implement automatic
triggers that react upon certain conditions associated with the
metadata. This includes the time to live (ttl) and the time to
(re-)generate (ttg). The ttl specifies a time that allows users to
automatically remove the image from the repository entirely.
The ttg specifies when the image should be removed, but the
metadata and the way the image is generated is preserved in
the repository so that it can be recreated upon request. This
feature will be helpful to manage many images by lots of
users.

c) Command Shell: Finally, we have also developed a
command shell for FutureGrid to unify the various commands
and to provide a structured mechanism to group FG related
commands into a single shell. Shells are very important as
part of the scientific program development and have been
popular with tools such as R, matlab, and mathematica. Hence,
in addition to just exposing a single command line tool.
We also provide a shell through fg-shell. The shell provides
the advantage of defining more easily a set of commands
in a script that need to be invoked to manage images and
other FG related activities. It also provides the ability to log
experiments conducted within the shell for replication. Thus,
users will obtain a convenient mechanism to manage their
own experiments and share them with other users through
the FutureGrid shell. As scripts, pipes and command line
arguments can be used to pass commands into the shell, it
provides a very convenient way to organize simple workflows
as part of experiments within FutureGrid.

To reduce the amount of typing we have included the
concept of a command context. With the use command we

can load a particular command context allowing subsequent
command lines to be executed within the command that has
been loaded. Additionally, it allows us to support just in time
loading of features in the shell and making it an extensible
framework. To illustrate this concept let us inspect a typical
session in the shell as depicted in Figure 4. Here, a user
uploads a new image and then queries the repository. All
options provided as part of the “fg-repo” command, listed
in Table I, are also available in the shell in a much more
convenient form.

fg> use repo
fg-repo> auth gregor

Passphrase: **************
logged in as administrator. ok

fg-repo> put /home/gregor/myimage.img \
imgtype=opennebula & vmtype=kvm & \
description=one image

Checking quota
Registering the Image
The image has been uploaded and registered with
id 4dc07d9ea79ea25aef000000

fg-repo> search * where vmType=kvm
1 image found
imgId=4dc07d9ea79ea25aef000000, os=, arch=,
owner=gregor, description=one image,
tag=, vmType=kvm, imgType=opennebula,
permission=private, status=available

Fig. 4. The FG shell provides a convenient way to interact with the repository.

8

V. METHODOLOGY

Since the image repository supports different storage sys-
tems, we need to know the expected performance of each sys-
tem while working with the image repository. Therefore, we
have conducted several performance tests to evaluate all these
storage back-ends for the image repository. The back-ends
include MongoDB, Swift, Cumulus, MySQL and an ext4 file
system. To distinguish the setup in our Results’ Section, each
configuration is labeled as image storage+metadata storage.
With this convention we have seven configurations: Cumu-
lus+MongoDB (Cumu+Mo), Cumulus+MySQL (Cumu+My),
Filesystem+MySQL (Fs+My), MongoDB with Replication
(Mo+Mo), MongoDB with No Replication (MoNR+MoNR),
Swift+MongoDB (Swi+Mo) and Swift+MySQL (Swi+My).

Figure 5 shows how we have deployed the image repository
(IR) and the storage systems for our experiments. Within the
experiments we have used 16 machines that are equipped with
the image repository client tools. The image repository has
been configured on a separate machine containing services
such as the IR server, the Swift proxy, MySQL server and
the MongoDB scheduler and configuration services (only used
by MongoDB with replication). We have also used three
additional machines to store the images and to create a
replication mechanism. However, only Swift and MongoDB
made use of the three machines, because they are the only
ones that support replica service. In the case of Cumulus and
the normal file system, we have only used one machine to
store the images. Moreover, to allow comparison, we have
also deployed MongoDB using a single machine without
the replication service and therefore without the scheduler
and configuration services. This deployment is labeled with
MoNR+MoNR. However, in the case of Swift we could not
avoid the use of replication since it needs a minimum of three
replicas.

Fig. 5. Test deployment Infrastructure. Each gray box is a different machine.

We have considered five different image sizes: 50MB,
300MB, 500MB, 1GB and 2GB in order to covers realistic
image sizes in use by FutureGrid users. We have compared
both read and write performance for each storage system
by uploading and retrieving images using a single client. In

addition, we have tested a distributed scenario that involves 16
clients retrieving images concurrently. We have measured the
average time that the clients need to retrieve or upload their
images while running the test five times.

Tests have been carried out on FutureGrid while using the
FG Sierra supercomputer at UCSD (University of California,
San Diego). This cluster is composed by 84 machines with
quad-core Intel Xeon processors and 32GB of memory. The
cluster is connected using Infiniband DDR and 1 Gb Ethernet
networks. The operating system is RHEL 6 and the file system
format is ext4. The software used is Cumulus from Nimbus
2.7, Swift 1.4.0 (OpenStack Object Storage), MongoDB 1.8.1,
and MySQL 5.1.47. Since the image repository is written in
python, we use the corresponding python APIs to access to the
storage systems. Thus, we use Boto 2.0b4 to access Cumulus
[39], Rackspace cloudfiles 1.7.9.2 for Swift [40], Pymongo
1.10.1 for MongoDB [41], and pymysql 0.4 to access MySQL
[42].

VI. RESULTS

First, we uploaded images to the repository to study the
write performance of each storage system. The results are
shown in Figure 6. We observe that the Cumulus configura-
tions offer the best performance, which is up to 4.5% and 54%
better than MongoDB with no replication (MoNR+MoNR) and
Swift, respectively. Unfortunately, Cumulus does not provide
any data-scalability and fault tolerance mechanism, which was
in our experiments not a notable drawback. On the other
hand, if we use MongoDB with replication (Mo+Mo), its
performance degrades significantly resulting in a 70% worse
performance for the 2GB case. This is due to two main factors,
(a) the needed to send the same file to several machines and (b)
the large amount of memory that this software requires. In fact,
doing the same tests in machines with only 8GB of memory,
the performance started to decrease even in the 300MB case.
The reason of this performance degradation is that the memory
usage is that MongoDB uses memory-mapped files to access
data and is naturally memory bound. Once we hit the memory
limitation, performance drastically declines. Finally, we had
many problems with Swift due to errors when trying to upload
larger files. In fact, starting with the 600Mb case, the failure
rate was more than 50% and for the 2GB case we were not
able to upload a single image using the Python API. For this
reason, we performed the last two tests by calling directly the
command line tool included in Swift called st. It demonstrated
that the documentation of the API is not yet sufficient and that
the utilization of the provided command line tools is at this
time a preferred choice for us.

Next, we study the performance of the different storage
systems retrieving images. Since this is the most frequent use
case for our image repository, we have performed two set of
tests involving one or multiple clients.

Figure 7 shows the results of requesting images from a
single client. We observe that Cumulus provides us with the
best performance. It is up to 13% better than MongoDB with
no replication (MoNR+MoNR). Once again, by introducing
replication to MongoDB (Mo+Mo), its performance degrades

9

Fig. 6. Upload Images to the Repository. Asterisks mean that those tests
were done using the command line tool instead of the Python API.

around a 30% due to the higher complexity of the deployed
infrastructure. Finally, we can see that Swift performs quite
well considering that it has to manage a more complex
infrastructure involving replication and it is only 15% worse
than Cumulus.

Fig. 7. Retrieve Images from the Repository.

The last set of tests shows the average time that each of the
16 clients spent to retrieve an image from the repository, see
Figure 8. In this case, the Fs+My configuration has the best
performance which is up to 53% better than any of the others.
This is because Fs+My, unlike the other implementations,
does not suffer form any performance degradation due to the
overhead introduced by the software itself. We observe that the
performance of Cumulus degrades when requesting the largest
files. Hence, Swift provides a better performance in this case.
However, Swift experienced significant reliability problems
resulting in 31% and 43% of the clients not to receive
their images. With respect to MongoDB, both configuration
(MoNR+MoNR and Mo+Mo) had problems to manage the
workload and in the 2GB case any client got the requested
image due to connection errors. Therefore, only Cumulus and
the Filesystem+MySQL configurations were able to handle the
workload properly.

A. Discussion about the implemented Storage Back-ends

We implemented four different storage systems based on
MySQL, MongoDB, Cumulus and Swift, respectively and

Fig. 8. Retrieve Images from the Repository using 16 client concurrently.

discuss the advantages and disadvantages of each approach
next.

d) Filesystem+MySQL approach.: MySQL is mature
database and provides good security, scalability and reliability.
The problem of relational databases is that they offer a rigid
data model and we cannot provide solutions where each
register has a different number of parameters. Moreover, since
this approach uses the file system to store the images, it
requires additional effort to explicitly provide mechanisms that
ensure replication and fault tolerance. However, using the file
system as storage back-end, we can potentially obtain good
scalability and performance as we could use one of the HPC
storage solution mentioned in Section II.

e) MongoDB approach.: MongoDB has implemented a
sharing feature that distributes the database among different
machines while maintain replicas in other machines. Through
this mechanism, it provides good horizontal storage scalability
and fault tolerance, although, in our tests, it degraded the
performance due to resource starvation when reaching mem-
ory limitations. In addition, since MongoDB is a document-
oriented database, it allows us to store documents containing
different number of fields. Thus, we could offer users the
possibility to enhance the metadata by including their own
fields. Another advantage of MongoDB is that we can use
a single framework to store both metadata and image files.
Nevertheless, MongoDB has some drawbacks. It stores binary
files in BSON format and therefore the serialization procedure
could be one of the responsible of the low performance offered
in some cases. Finally, as we commented in Section VI,
MongoDB uses large amounts of memory which strongly
determines its performance when replication is used.

f) Swift approach.: Swift is a new framework as part of
the OpenStack project designed to be highly scalable and fault
tolerant. Its design is is specifically aimed to object storage in
the cloud. However, we observed that the Python API needs to
be improved to get a better reliability and is better documented.
Additionally, we need to use an external database to store the
metadata associated to the images, because Swift does not
allow to store it.

g) Cumulus approach.: The Nimbus Cumulus cloud
storage system is a recent development. As we commented
previously, it showed a good performance for our tests. The
main problem is that the current version does not yet provide

10

mechanisms to address good scalability and fault tolerance.
For this reason, the Nimbus team is working to provide
compatibility with other storage systems that will bring these
features to Cumulus. Moreover, plans of developing a cloud
database to allow data storage are underway. If these features
are made available to us the need to use an external databases
to store the metadata associated to the images would be
eliminated.

VII. CONCLUSIONS

In this paper we have introduced the FutureGrid Image
Repository. We focused on the requirements and design to
establish the important features that we have to support. We
present a functional prototype that implements most of the
designed features. We consider that a key aspect of this image
repository is the ability to provide a unique and common
interface to manage any kind of image. Its design is flexible
enough to be easily integrated not only with FutureGrid but
also with other frameworks. The Image Repository features
are enclosed and offered through a command line interface to
provide an easy access to them. Additionally, we provide an
API to develop applications on top of the image repository.

We have studied the performance of the different storage
back-ends to support storage needs by the image repository
and to determine which one is the best for our users in
FutureGrid. Although none of them was a perfect match
because of performance problems and high memory use in the
case of MongoDB, too many errors in Swift or missing fault
tolerance/scalability like in Cumulus. Despite of the previous
problems, we think that the candidates to be our default storage
system are Cumulus because is still quite fast and reliable
and Swift because has a good architecture to provide fault
tolerance and scalability. Furthermore, we have an intense
relationship with the Cumulus group as they are funded in
part by FutureGrid and we can work with them to improve
their software. We will have to monitor the development of
swift closely due to the rapid evolution of OpenStack as part
of a very large open source community. Our work also shows
that we have the ability to select different systems based on
future developments if needed.

VIII. ONGOING WORK

We are presently developing a REST API to the image
repository and are integrating the automatic image generation.
We would also like to provide compatibility with the Open
Virtualization Format (OVF) to describe the images using this
format.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. 0910812 as part
of FutureGrid.

REFERENCES

[1] “FutureGrid Portal,” Webpage. [Online]. Available: http://portal.
futuregrid.org

[2] “Nimbus Project,” Webpage. [Online]. Available: http://www.
nimbusproject.org

[3] “Open Source Eucalyptus,” Webpage. [Online]. Available: http:
//open.eucalyptus.com/

[4] “OpenNebula,” Webpage. [Online]. Available: http://www.opennebula.
org/

[5] “OpenStack,” Webpage. [Online]. Available: http://openstack.org/
[6] “Apache Hadoop!” Webpage. [Online]. Available: http://hadoop.apache.

org/
[7] “Microsoft Dryad,” Webpage. [Online]. Available: http://research.

microsoft.com/en-us/projects/dryad/
[8] “UNICORE,” Webpage. [Online]. Available: http://www.unicore.eu/
[9] “Genesis II Project,” Webpage. [Online]. Available: http://www.cs.

virginia.edu/∼vcgr/wiki//index.php/The Genesis II Project
[10] G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge, A. Kulshrestha,

G. G. Pike, W. Smith, J. Voeckler, R. J. Figueiredo, J. Fortes, K. Keahey,
and E. Delman, “Design of the futuregrid experiment management
framework,” in GCE2010 at SC10, IEEE. New Orleans: IEEE, 2010.

[11] K. Keahey, I. Foster, T. Freeman, and X. Zhang, “Virtual workspaces:
Achieving quality of service and quality of life in the grid,” Scientific
Programming Journal, vol. 13, no. 4, pp. 265–276, 2005.

[12] J. Bresnahan, K. Keahey, T. Freeman, and D. LaBissoniere, “Cumulus:
Open source storage cloud for science,” SC10 Poster, 2010.

[13] “Amazon Web Services S3 REST API,” Webpage. [Online]. Available:
http://awsdocs.s3.amazonaws.com/S3/latest/s3-api.pdf

[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” 9th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Com-
puting, pp. 124 – 131, 2009.

[15] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, no. 5, pp. 14–22, 2009.

[16] I. M. Llorente, R. Moreno-Vozmediano, and R. S. Montero, “Cloud
computing for on-demand grid resource provisioning,” Advances in
Parallel Computing, vol. 18, no. 5, pp. 177–191, 2009.

[17] “Amazon Web Services,” Webpage. [Online]. Available: http://aws.
amazon.com/

[18] “Microsoft Azure,” Webpage. [Online]. Available: http://www.microsoft.
com/windowsazure/

[19] D. Chappell, “Introducing the windows azure platform,” David Chappell
& Associates White Paper, 2010.

[20] ——, “Introducing windows azure,” David Chappell & Associates White
Paper, 2010.

[21] “Abiquo Project,” Webpage. [Online]. Available: http://www.abiquo.
com/

[22] “xCAT Extreme Cloud Administration Toolkit,” Webpage. [Online].
Available: http://xcat.sourceforge.net/

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
19th ACM Symp. on Operating Systems Principles (SOSP03), 2003.

[24] “Hadoop Distributed File System,” Webpage. [Online]. Available:
http://hadoop.apache.org/hdfs/

[25] “NoSQL Databases,” Webpage. [Online]. Available: http:
//nosql-database.org/

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” 7th Symp. on Operating System
Design and Implementation (OSDI’06), 2006.

[27] “MongoDB,” Webpage. [Online]. Available: http://www.mongodb.org/
[28] “Apache CouchDB Project,” Webpage. [Online]. Available: http:

//couchdb.apache.org/index.html
[29] “Basho Riak,” Webpage. [Online]. Available: http://www.basho.com/

Riak.html
[30] “Introducing JSON,” Web Page, 2009. [Online]. Available: http:

//www.json.org/
[31] “BSON - Binary JSON,” Webpage. [Online]. Available: http:

//bsonspec.org/
[32] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” Proc. of the 21st ACM
Symp. on Operating Systems Principles, 2007.

[33] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and implementation or the sun network filesystem,” Proc. of the Summer
1985 USENIX Conference, pp. 119–130, 1985.

[34] J. H. Howard, M. L. Kazar, S. G. Menees, A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West, “Scale and performance
in a distributed file system,” ACM Transactions on Computer Systems,
vol. 6, no. 1, pp. 51–81, 1988.

http://portal.futuregrid.org
http://portal.futuregrid.org
http://www.nimbusproject.org
http://www.nimbusproject.org
http://open.eucalyptus.com/
http://open.eucalyptus.com/
http://www.opennebula.org/
http://www.opennebula.org/
http://openstack.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://research.microsoft.com/en-us/projects/dryad/
http://research.microsoft.com/en-us/projects/dryad/
http://www.unicore.eu/
http://www.cs.virginia.edu/~vcgr/wiki//index.php/The_Genesis_II_Project
http://www.cs.virginia.edu/~vcgr/wiki//index.php/The_Genesis_II_Project
http://awsdocs.s3.amazonaws.com/S3/latest/s3-api.pdf
http://aws.amazon.com/
http://aws.amazon.com/
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
http://www.abiquo.com/
http://www.abiquo.com/
http://xcat.sourceforge.net/
http://hadoop.apache.org/hdfs/
http://nosql-database.org/
http://nosql-database.org/
http://www.mongodb.org/
http://couchdb.apache.org/index.html
http://couchdb.apache.org/index.html
http://www.basho.com/Riak.html
http://www.basho.com/Riak.html
http://www.json.org/
http://www.json.org/
http://bsonspec.org/
http://bsonspec.org/

11

[35] “LUSTRE ,” Webpage. [Online]. Available: http://www.lustre.org/
[36] W. Ligon and R. Ross, “Implementation and performance of a parallel

file system for high performance distributed applications,” Proc. of the
5th IEEE Int. Symp. on High Performance Distributed Computing, 1996.

[37] “PVFS,” Webpage. [Online]. Available: http://www.pvfs.org/
[38] “TeraGrid,” 2001. [Online]. Available: http://www.teragrid.org/
[39] “Boto: python interface to Amazon Web Services,” Webpage. [Online].

Available: http://code.google.com/p/boto/
[40] “Rackspace interface for Swift,” Webpage. [Online]. Available:

https://github.com/rackspace/python-cloudfiles
[41] “MongoDB python API,” Webpage. [Online]. Available: http://api.

mongodb.org/python/
[42] “Pymysql: Pure Python MySQL client,” Webpage. [Online]. Available:

http://code.google.com/p/pymysql/

http://www.lustre.org/
http://www.pvfs.org/
http://www.teragrid.org/
http://code.google.com/p/boto/
https://github.com/rackspace/python-cloudfiles
http://api.mongodb.org/python/
http://api.mongodb.org/python/
http://code.google.com/p/pymysql/

	Introduction
	Background
	FutureGrid Software Architecture Overview
	FutureGrid Image Repository
	Requirements
	Design
	Implementation

	Methodology
	Results
	Discussion about the implemented Storage Back-ends

	Conclusions
	Ongoing Work
	References

