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Abstract
The COVID-19 pandemic has had profound global consequences on health,

economic, social, behavioral, and almost every major aspect of human life. There-
fore, it is of great importance to model COVID-19 and other pandemics in terms of
the broader social contexts in which they take place. We present the architecture of
AICov, which provides an integrative deep learning framework for COVID-19 fore-
casting with population covariates, some of which may serve as putative risk factors.
We have integrated multiple different strategies into AICov, including the ability to
use deep learning strategies based on LSTM and event modeling. To demonstrate
our approach, we have introduced a framework that integrates population covariates
from multiple sources. Thus, AICov not only includes data on COVID-19 cases and
deaths but, more importantly, the population’s socioeconomic, health, and behav-
ioral risk factors at a local level. The compiled data are fed into AICov, and thus we
obtain improved prediction by the integration of the data to our model as compared
to one that only uses case and death data. As we use deep learning our models
adapt over time while learning the model from past data.

Key words and phrases: COVID-19, deep learning, prediction, risk factors, co-
morbidities.

1. Introduction

The COVID-19 pandemic has caused an enormous health and humanitarian crisis worldwide.
It is unlike any other single phenomenon that has occurred in modern history since the end of
World War II. The pandemic’s effects have spanned over a range that is so vast over space, and
yet so condensed over time, that the dual blows of intensity and rapidity have exposed myriad
systemic vulnerabilities in many societies around the world.



The first known case was traced back to 17 November 2019. Since the emergence of a cluster
of cases in Wuhan, China, on 31 December 2019, COVID-19 has spread rapidly worldwide. Just
six months later, as of 23 June 2020, there are 8,993,659 COVID-19 cases and 469,587 deaths
globally. On 30 January 2020, the World Health Organization (WHO) [29] declared COVID-19
to be a Public Health Emergency of International Concern and subsequently, on 11 March 2020,
a pandemic.

In the United States, the first case of COVID-19 was confirmed on 20 January 2020 in
Washington State, and as of 23 June 2020, there were over 2.3 million confirmed cases and
121,167 deaths [19]. Although initial efforts to reduce the spread took place, recent data shows
a resurgence at an increased scale. In the absence of a vaccine or treatment to effectively combat
the disease, non-pharmaceutical policy interventions such as social distancing and lockdowns
are recommended by health experts to prevent further transmission. To gain insights into
the possible impact of such measures on COVID-19 outcomes, we depend upon the ability to
accurately forecast the spread of reported cases and confirmed deaths and recoveries. Naturally,
the accuracy of forecasting relies on the availability of current, reliable data and historical data
to determine estimates of uncertainty.

During outbreaks of epidemics, initially data on cases and deaths could be scarce, and
the quality of data annotation, validation, and aggregation might be uncertain. For instance,
changes in clinical data entry, such as the addition of a new category clinically diagnosed to the
existing lab-confirmed category, may likely have been reflected in the reporting [21]. Initial fears
about COVID-19 among the general population with regards to the trajectory of the pandemic
could also affect administrative reporting. Diverse media sources and differences in local and
federal policies may add to the general uncertainty about disease progression. Nevertheless, a
data-driven approach to forecasting can offer valuable insights into the disease dynamics, and
thereby an ability to objectively plan for the near future.

Unlike earlier global outbreaks, during COVID-19, the current worldwide digital ecosystem
allows for real-time data collection, which in turn is used by AI and deep learning systems to
understand healthcare trends, model risk associations, and predict outcomes [25]. In addition to
traditional public health surveillance strategies available to most countries, a variety of static and
dynamic data types may be integrated to model the scale and dynamics of this pandemic [22].
Several organizations, including the Johns Hopkins University’s Center for Systems Science and
Engineering, the New York Times, the Atlantic’s COVID-19 tracking project, among others have
developed real-time tracking maps for following COVID-19 cases around the world using data
from the U.S. Centers for Disease Control and Prevention (CDC), WHO, and other international
health agencies. Notably, the CDC receives forecasts from several modeling groups that use a
wide variety of approaches ranging from SEIR (Susceptible-Exposed-Infectious-Recovered) to
Agent-based to Bayesian models to understand the non-pharmaceutical policy interventions (or
the lack thereof) to predict disease dynamics and its impact on human lives [4].

For precise and contextually relevant modeling of COVID-19 dynamics for a given population
or community, we use data integration to combine community-specific health and behavioral
risk factors, demographic and socioeconomic variables that are available at the local levels
along with the cases and deaths data for COVID-19 while leveraging the recently developed
and increasingly popular deep learning strategies to forecast COVID-19 dynamics using our
model. Towards this, we develop a parallel computing platform called AICov standing for AI-
driven Platform for COVID-19 to implement the different components of our framework and
obtain the needed resources through multi-cloud interfaces in a robust manner.

In this study, while we incorporate information from community and county-specific covari-
ates to inform our forecasting model for each metropolitan area, we want to avoid the so-called
ecological fallacy in drawing inferences about individual disease outcomes based on large area-
level aggregated risk factors. Our objective is also to underscore the nuanced roles played by



pre-existing socioeconomic and other prevailing conditions of a given community that can act
as determinants of its health outcomes and possible disparities, especially under such sudden
stresses to its current systems as those felt during any pandemic. It is important to note that the
underlying models are learned directly from the data instead of being projected by a theoretical
epidemiological model that relies on simulation populations. This allows quick adaptation and
self-adaptation in regards to changing behaviors and regional differences.

The paper is structured as follows. In Section 2, we provide a short overview of deep learning-
based time series forecasting that we use in AICov. In Section 3, we outline our architecture that
enables the user to conduct powerful time series forecasting by integrating static and dynamic
information on population risk factors with time-series disease data. In Section 4, we describe
the input data for AICov. Next, we demonstrate our analysis involving the population risk
factors and identify those that contribute to our prediction accuracy. Finally, we present our
conclusion.

2. LSTM

This section presents a short overview of the recurrent neural network algorithms used in
this work.

2.1 LSTM Background

In this study, we used a Long Short-Term Memory (LSTM) algorithm for our predictions
[16; 12]. An LSTM is a recurrent neural network (RNN) [23] with feedback connections allowing
the use of data input sequences to predict data output sequences. LSTMs have been applied to
many application areas from handwriting [8], image, feature detection, and time series prediction
[24]. LSTM’s have an internal state that is used to prevent the vanishing gradient problem [11]
during the training of RNNs.

Different variants of LSTM algorithms exist. Ours is based on an LSTM cell depicted in
Figure 1. It has an input gate, output gate, and a forget gate. The cell is maintaining how a
subsequent value is calculated. This includes (a) how input values are influencing the cell via
the input gate, (b) how the forget gate influences a memory value within the cell via the forget
gate, and (c) how the output gate influences the output activation of the LSTM unit. A cell
has a number of inputs and outputs that are weighted. During a training step, these weights
are learned to be reused in a prediction process between input and output sequences.

Figure 1: LSTM Unit Diagram

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct)

Figure 2: LSTM Equations



We have summarized the equations used in LSTM in Figure 2. We denote variables in
lower case and matrices in upper case letters. Wq and Uq contain the weights of the input and
recurrent connections, where the subscript denotes either the input gate i, the output gate o,
the forget gate f or the memory cell c. It is important to note that ct ∈ Rh is not just one cell
of one LSTM unit, but contains h LSTM units’ cells, representing a vector. To summarize our
variables we use: ◦ is the Hadamard product, σ is the sigmoid function, d the number of input
features, h the number of hidden units, xt ∈ Rd the input vector to the LSTM unit, ft ∈ Rh the
forget gate’s activation vector, it ∈ Rh the input/update gate’s activation vector, ot ∈ Rh the
output gate’s activation vector, ht ∈ Rh the hidden state vector (e.g., the output vector of the
LSTM unit), c̃t ∈ Rh the cell input activation vector, ct ∈ Rh the cell state vector, W ∈ Rh×d,
U ∈ Rh×h, and b ∈ Rh are the weight matrices and bias vector parameters which need to be
learned during training.

2.2 Covariate Enhanced LSTM

We often think of the laws of physics described by operators that evolve the system given
sufficient initial conditions and in this language, we have shown how to represent Newton’s law
operator by a recurrent network [15]. We expect that the time dependence of many complex
systems: Covid pandemics, Southern California earthquakes, traffic flow, security events can be
described by deep learning operators that both capture the dynamics and allow predictions.

In this paper, we adopt this approach to describe the time dependence of COVID-19 infection
and fatality counts in different regions. We intend to process the two time-series (infections,
fatalities/deaths) associated with each city plus the covariates (fixed in time but dependent on
region) to build a model for the time evolution of the data. There is a nontrivial architecture
design choice as to the method of handling the time-independent covariates. We could combine
a recurrent network for the time series with some fixed network for the covariates. However,
that does not fit with our concept of deriving an evolution operator for COVID-19 data that
naturally depends on the covariates for each city. Thus instead, we feed the covariates into the
recurrent network.

3. AICov Architecture

The motivation for creating this architecture is based on our experience with deep learning
toolkits such as Keras and PyTorch. While these systems provide the necessary APIs to integrate
time series solutions, they target primarily more general user communities. In particular, they
do not consider existing data sets or specific needs and analysis options to evaluate them for the
purpose of COVID-19 risk factor data integration. We describe below the different requirements
that motivate the design of our architecture framework, AICov, and how we address each of
these.

Requirement 1. Ease of Use. A major design criterion for AICov is that the framework
must be easy to use, and extensions can be made to allow usability of both the API as well as
the user interface. To address these requirements, we are devising a specialized but easy to use
time series API for COVID-19 that integrates common tasks such as automated filtering and
normalization of the data.

Requirement 2. Interactive Access. Due to the experimental nature of analyzing the data,
AICov must support the exploration of the data in an interactive fashion. As many data



scientists use Jupyter Notebooks to integrate their work interactively, AICov integrates such
notebooks. Jupyter notebooks allow rapid modification of the analysis workflow through the
ease of Python as programming language. Additionally, they enable us to formulate easily
sophisticated scientific analytics workflows with the help of Python.

Requirement 3. Expandable API. Assuming that new models and other analysis algorithms
will be developed over time, AICov must allow the integration of such APIs. To address this
requirement, we are developed an abstraction API for data, analysis, and metadata parameter
adjustments. External services could be integrated with the help of REST services. The REST
services are automatically generated from function specifications.

Requirement 4. Flexible Data Source Integration. The integration of various sources of
data is a key part of AICov. To achieve this goal, we provide a number of abstractions and
data manipulation functions to extract needed data from established sources. Furthermore, the
data can be combined, and additional data wrangling by external groups can be integrated.
Through such abstractions, it is possible to replace, add, and correct data sets that are part
of the analysis. This allows us to compare different results created from different data sets.
Moreover, we include data selection directly in our framework to easily and quickly reuse them
in a data mashup. An important example is that the data need not be static over the disease’s
progression but can be continuously updated. This also has a significant impact on our analytics
algorithms.

Requirement 5. Automated Update of the Analytics. As the data can change, previous
analyses may have to be updated. Our forecast is not just a single script but includes a
mechanism to register multiple workflows of continuously integrated (CI) analysis that are
automatically rerun when new data are made available to the system. Previous results are
maintained. Metadata with these runs can retrieve the versioned data sets used to calculate
and store the versioned analytics workflow.

Requirement 6. Flexible Model definition. We want to allow experimentation with various
models in AICov that may be easily and flexibly definable as workflows. We give functional
abstraction definitions that enables us to define the models ourselves or integrate third party
models describing the spread of the disease.

Requirement 7. Deep Learning Forecast. As the forecasting models depend on changing
data that are made available daily, it is important for AICov to utilize the newly available data.
Many models can be applied to this, including moving averages based models or models that are
purely derived from deep learning. To address this requirement, AICov allows for the integration
of both. Furthermore, in our deep learning framework, we can integrate an automated search
for important risk factors, which is the focus of this study.

Requirement 8. Model Orchestration. To coordinate the different model predictions and
the generation of the deep learning forecasts, we need the ability to orchestrate them while
applying a number of parameters. To address this requirement, the AICov architecture includes
the ability to integrate parameter sweeps to, for example, identify hyperparameters, or integrate
different data sets as parameters to identify suitable forecast models that can deliver the one
which fits the best.

Requirement 9. Compute Resource Mapping. For other uses of AICov, we need to
integrate a flexible resource utilization framework. To address this requirement, we leverage
from our earlier work and utilize through Cloudmesh and NIST NBDIF definitions cloud services
into the architecture [9]. This includes containers but also infrastructure services in the cloud.
Through these service integrations, we also provide access to GPUs.



Requirement 10. Convenient Interfaces. As we have a wide variety of users, we need to
enable interfaces that are used by the various communities. To address this requirement, we
provide a number of APIs, REST services and make them available via Jupyter Notebooks. In
addition, we developed some custom widgets for the notebooks that are specifically targeted
towards data integration, parameter manipulation, and visualization of the results

Putting all these requirements together results in an architecture as shown in Figure 3.

Figure 3: AICov Architecture

In summary, the AICov architecture allows the inclusion of new data sources and models.
An orchestrator enables modifying parameters and selecting data sources and models used in the
analysis. The framework can be accessed via the interface layer that includes APIs, REST, and
Jupyter Notebooks. Compute interfaces are provided either by direct access of GPUs from local
resources or through the staging of automatically generated REST services via our Cloudmesh
REST Service integrator [10; 28; 27]. Additionally, we can also access through abstractions
cloud services that are offered by the various cloud providers and are targeting our application
domain. Different models can be easily integrated into our framework to verify our forecast or
enhance our forecast based on the users’ models and data.

4. Data for the COVID-19 Analysis

While the U.S. has seen an overall case fatality rate of 5.14%, some U.S. locations have expe-
rienced a disproportionate number of deaths compared to others. This disparity of deaths among
different communities could be attributed to a diversity of local risk factors and socioeconomic
determinants of health that now constitute a very active area of investigation. Researchers are
studying the effects of different community-specific socioeconomic variables, underlying health
conditions and comorbidities, infrastructure, and systemic responses. Given the complexity of
such underlying conditions that can determine individual disease outcomes, where and under
what conditions people get infected by the virus, and then recover or die take place not in iso-
lation but rather in an interplay of diverse factors that are characteristic to a local community,



which need to be synthesized. In other words, a basic requirement for effective modeling of
COVID-19 dynamics is that the information regarding a particular community’s vulnerabilities
and strengths pertaining to the disease must be as comprehensive and integrative as possible.
The regular reporting of accurate Coronavirus outbreaks data from local health departments
has been understandably difficult, especially in the areas that are hardest hit. We use data
on community-specific health and behavioral risk factors aggregated at the county level from
the large-scale longitudinal CDC BRFSS surveys [3], and demographic and socioeconomic data
from the U.S. Census Bureau that are known at the local levels along with the cases and deaths
data compiled by NCHS [5] and integrate them with other data sources.

4.1 Data Collection and Processing

Among the different sources of data on daily cases and deaths data collected and aggregated
at different spatial levels, especially for the US, many are either freely available repositories
such as GitHub or accessible via specifically developed online resources such as the New York
Times [20] and the Johns Hopkins Coronavirus Resource Center [14]. For this study, we gener-
ated two data sets based on the latter resource upon our checking for the locations and times
at which cumulative counts of COVID-19 cases and deaths on any given day were no less than
those on the previous day. This led us to compile daily coronavirus cases and deaths data for
345 US counties from 32 states and the District of Columbia and matched by five-digit FIPS
code or county name to dynamic and static variables from additional data sources.

The static data in this repository was collected from the US Census Bureau and the Centers
for Disease Control and Prevention (CDC). The different fields cover the domains of behavioral
and health risk factors, hospital capacity, and socioeconomic and demographic conditions. Data
on health outcomes, prevention measures, and unhealthy behaviors were extracted from the
CDC’s 500 Cities Local Data for Better Health program [6] in the form of crude or age-adjusted
prevalence of conditions such as respiratory disease, obesity or smoking. These values were
aggregated from the census tract to the county level using the first five digits of the eleven-digit
tract FIPS code. Because a single county may consist of multiple individual cities, we include
the list of all city labels within each aggregate group to represent a greater metropolitan area.
110 of such metropolitan areas that had more than 500 reported cases of COVID-19 by April
15, 2020, were selected for this study.

Notably, a greater metropolitan area such as New York City could be spread across more
than one county, which can lead to the complexity of aggregating counts and other variables.
Time series data for the 5 individual counties (boroughs) in New York City were not available in
the Johns Hopkins CSSE data set. Rather, the total number of cases and deaths for the entire
city of New York are reported and assigned the FIPS code of New York County (Manhattan).
To ensure consistent geography across the static and dynamic data, we compute the population-
weighted sum or median of each covariate over the assigned counties.

Demographic variables were gathered from the Census QuickFacts [26] online resource using
an automated web scraping algorithm and cover relevant areas such as age, race, income, and
population density. Additional socioeconomic variables include the Gini Index, which measures
economic inequality and CDC Social Vulnerability Index (SVI) [7]. The SVI was created to
guide public health officials and disaster response efforts by identifying the communities across
the United States most likely to need support during a crisis. Census tracts and corresponding
counties are ranked across 15 social factors, which are grouped into four themes: socioeconomic
status, household composition and disability, minority status and language, and housing and
transportation.

Lastly, the total number of general acute care, critical access, and military hospitals within



each county are included in the data. Such variables included the number of relevant hospitals
per county, and the estimated number of beds (total known bed counts added to the number
of hospitals in the county with missing data times the average number of beds per hospital in
that state) per 1,000 people using the American Hospital Directory [1].

The list of covariates is presented in Table 1.

Table 1: Covariate Risk factor abbreviations as used in this study.

Risk Factor Description

None no risk factor used

ARTHRITIS Percent of arthritis

BINGE Percent of binge drinking

BPHIGH Percent of high blood pressure

BPMED Percent of taking blood pressure medication

CANCER Percent of cancer patients

CASTHMA Percent of current asthma

CHD Coronary heart disease

CHECKUP Percent of health checkup

CHOLSCREEN Percent of cholesterol screening

COPD Percent of Chronic obstructive pulmonary disease

CSMOKING Current smoking in percent

DIABETES Percent of diabetes

Estbeds Number of estimated beds in hospitals

HIGHCHOL Percent of high cholesterol

Insurance Percent of Insurance

KIDNEY Percent of kidney disease

LPA Percent of No leisure-time physical activity

MHLTH Percent of not good mental health

Nbeds Number of beds in hospitals

Nbeds per1000 Number of beds per 1000 people

Nhosp Number of hospitals

OBESITY Percent of population that is obese

PHLTH Percent of Physical Health

PVI Pandemic vulnerability index

Percentblacks Percent of Blacks in the population

Percenthispanics Percent of Hispanics in the population

STROKE Percent of stroke

black percent Percent of blacks in the population

poverty percent Percent of poverty in the population

senior percent Percent of seniors in the population

svi minority Percent of social vulnerability index in the minority population

svi overall Percent of social vulnerability index in the overall population



5. Analysis

We have conducted a number of analysis efforts to evaluate the validity of our approach.
We focus on the following questions:

Question 1. Can we apply deep learning strategies that self-learn the behavior of a model in
order to provide future predictions? See Section 5.1.

Question 2. Can we use real time data as input and apply deep learning strategies instead of
models that self learn and provide future predictions? See Section 5.2.

Question 3. Does the inclusion of covariates improve the prediction quality while including
geospatial and socio-economic risk factors? See Section 5.2.

Question 4. What impact do we see when we introduce many risk factors? See Section 5.3.

5.1 Deep Learning Predictions of Model-based Empirical Fits

To establish the feasibility of using deep learning, we have, in our analysis, verified that
through deep learning we can recreate the predictions identified by a model-based approach
using empirical fits. In this comprehensive analysis, we obtain predictions through deep learning
while using data generated from epidemiological models as discussed in [18]. The time series
we used was 100 days long, and a multi-layered Long Short-Term Memory (LSTM) recurrent
network was used. Our prediction approach differs by learning not only from the demographics
(fixed data for each city) and time-dependent data but by integrating the population model
for the underlying prediction, as shown in Fig. 4. Such model predictive integration capability
is important in any application with multiple time scales. For example, this allows us to
integrate multi-scale time effects into the forecast, which could address the combination of
general forecasts and the next time steps of choice, such as days, weeks, months, or longer. For
this analysis, we used 37 of the 110 cities with reliable empirical fits (that we derived from an
epidemiological model and not deep learning [18]) for the cases and deaths data up to April 15,
2020. Our analysis identified a sophisticated single deep learning time evolution operator that
can describe these 37 separate data sets, and smooth fitted data leads to very accurate deep
learning descriptions via LSTM as depicted in both Figure 4 that are smaller than 1% from the
model predictions.

Figure 4: Cumulative empirical fits can be very accurately predicted with LSTM. The data is

taken from 37 US Cities. Our comparison showcases that given a model, we can replicate the

prediction of such models using the model data over time. The x-axis represents the days since

the first data was fed to the model.



5.2 Real time-Data Covariate LSTM Prediction

In this section, we establish that using deep learning can not only be applied to model
predictions from real time data. As we want to evaluate the influence of the risk factors on our
prediction framework using not only models but deep learning algorithms, we have devised a
parameter sweep framework based on LSTM that conducts the prediction for the 110 cities while
also considering the risk factors as listed in Table 1. This framework can query any combination
of risk factors as well as not including any, in which case it defaults to the traditional LSTM
algorithm as introduced in Section 2. Hence, we will answer Questions 2 and 3.

To answer these questions, we chose for our next analysis a date range between 2020-02-01
and 2020-05-25. We start with a basic LSTM operator with two layers of LSTM, and initial
and final fully connected layers [15]. For LSTM, we have selected the activation function based
on Rectified Linear Units (RELU). For the last layer sigmoid is chosen. A drop out rate of 0.2
is used, we use 16 input nodes, and have a batch size of 110. The maximum epoch is chosen to
be 200. The number of nodes internally is 32. The maximum total number of Samples is 12540
when using 3 days as input length. We use a two-layer LSTM, as shown in Table 2. Within our
system, we have the ability to set a number of input days. For this analysis, we have chosen
three different input lengths, namely 3, 4, and 5 days.

We have run the training on all 110 cities from our data that represented each FIPS while
not including any risk factors (Question 2) and running them with a single risk factor while
iterating over all risk factors (Question 3). We then summed up all absolute errors for the
predicted data points over the same time period and repeated each experiment 10 times. We
summarized all the results in the form of a box-whisker diagram each for deaths and for cases.
We sorted the diagram in such a fashion that the risk factor that has the model with the lowest
error appears first. We preceded the graph with the None experiment that does not use any
risk factors to provide a comparison. The graphs are depicted in Figures 5 for cases, and 6
for deaths. Further, the obtained sorted order of the best prediction models by minimum error
based on the risk factors for cases and deaths are as follows:

Order for cases sorted by minimum model error: None, pop density 2010, PHLTH, In-
surance, Percentblacks, Percenthispanics, Nhosp, INSURANCE, CHOLSCREEN, DIA-
BETES, STROKE, CHD, CHECKUP, Nbeds, svi overall, KIDNEY, CASTHMA, black
percent, BPMED, LPA, CSMOKING, ARTHRITIS, poverty percent, Estbeds, MHLTH,
senior percent, COPD, CANCER, Nbeds per1000, BPHIGH, HIGHCHOL, BINGE, OBE-
SITY, svi minority

Order for deaths sorted by minimum model error: None, svi overall, CSMOKING,
Percenthispanics, pop density 2010, senior percent, CHOLSCREEN, CASTHMA, In-
surance, INSURANCE, MHLTH, LPA, poverty percent, OBESITY, CANCER, black
percent, Nbeds per1000, Percentblacks, DIABETES, ARTHRITIS, Nbeds, Nhosp,
BPHIGH, CHECKUP, PHLTH, CHD, STROKE, HIGHCHOL, Estbeds, KIDNEY,
BINGE, BPMED, COPD, svi minority

We show the errors and the association with a risk factor in Table 3, where cum error
represents the cumulative error of the prediction. We sorted it by the cumulative error for cases.
We see that in our experiment, almost all risk factors lead to an increased model prediction
accuracy. As a result, we note that by including factors such as population density, physical
health Insurance, population breakdown by ethnicity, number of hospitals, and diabetes, it leads
to better overall predictions for cases. We also see that many of these factors perform better on
average.

We observed a different scenario for deaths, in which we only identified two risk factors,
namely the Social Vulnerability Index (SVI) and chain-smoking, that, when integrated into our



deep learning model, leads to better prediction results. However, the accuracy of the overall
prediction of deaths is far less precise than that of the cases. To showcase this, we have included
Figures 7 and 8 that show the respective errors. This is following our input data distribution
in which we noted higher fluctuations relative to the overall value. A mitigation to this issue
would be using a seven day average over the analyzed period. However, we have not done
this on purpose for this analysis as we wanted to identify how a covariate enhanced LSTM
behaves that includes risk factors based on the daily fluctuations. This was done to avoid
and showcase any needed preproccessing on the data and to identify the capability of the deep
learning framework while adapting to the fluctuations without any special activities. Previously,
we have already shown in Section 5.1 that for smooth data inputs the prediction is very accurate.
Using fluctuation data allows our framework for an automated ingest of data on a daily basis to
enable data fusion of new cases and death information. Hence, we can re-train the model with
new incoming data every day. Through repeated training experiments, we found the LSTM
hyperparameters such as epochs and dropout values that work well for our experiments.

We conducted one additional analysis and plotted the best risk factor prediction model er-
rors, the five best, and the ten best from our experiments to identify if we have better predictions
than by including no risk factor. The best result found with no risk factor is depicted with the
black horizontal line. Figures 9 to 14 show the results sorted by the minimized error. Notably,
we identified that a jump occurs when we sort the top 10 model predictions at around 330
models from a total of 3400 automatically generated models. This also underscores the need to
run our deep learning model multiple times to obtain best parameter candidates.

While this study focuses on if and which risk factors can improve the predictions, we do
not focus on why. Such analysis could provide insights into causal relationships. For example,
information such as health insurance and the number of hospitals and beds are often related
to the quality of services that affect early detection and treatment. Furthermore, population
parameters such as density can determine the rate of spread and the number of cases. Similarly,
distributions of comorbidities in a given population such as physical health, cholesterol screening,
diabetes, etc., are found to be insightful in predicting outcomes [17]. Identifying such risk factors
and correlating them to the prediction accuracy provides valuable candidates for future studies.

5.3 Impact and Design of a Multi-Covariate-LSTM

In our next comprehensive analysis, we try to answer Question 4 if all risk factors impact
the analysis. Thus we feed the covariates into the recurrent network as additional features. In
addition to cases and deaths, this leads to 35 variables, including 33 unique covariates. We
looked at two related ways of doing this:

(a) Have covariates fixed in time (static)

(b) Multiply the covariates by the times series (we used the average of cases and deaths)

We expected the second choice to be the most natural as it gives all 35 input streams similar
time dependence. However, in our initial tests, we found these choices gave very similar results,
and so we focused on the simpler choice (a) in this paper. In the experiments discussed here,
we either used 0, 1, or 33 covariates. Choosing 33 gives the best description (reducing loss by
about 1%) while using each covariate as a solitary extra feature allows us a rather sensitive
study of the importance of each individual covariate as we noted in Section 5.2.

The final choice was the quantities to predict and train on. We choose this to be both
the cases and deaths values at the time value following the sequence combined with the same
quantities for the following 14 days. This gives us 30 different output features for each sequence.



Table 2: The deep learning parameters used for the model sweep creation in as exported by

Keras using 1 risk factor. The activation function is RELU and the recurrent activation function

is sigmoid.

Layer (type) Output

Shape

Parameters

for 0 risk

factor

Output

Shape

Parameters

for 1 risk

factor

Output

Shape

Parameters

for 33 risk

factors

Output

Shape

Parameters

for 37 risk

factors

dense (Dense) (None,1,32) 96 (None,1,32) 128 (None,5,32) 1152 (None,5,32) 1280

lstm (LSTM) (None,1,16) 3136 (None,1,16) 3136 (None,5,16) 3136 (None,5,16) 3136

lstm 1 (LSTM) (None,16) 2112 (None,16) 2112 (None,16) 2112 (None,16) 2112

dense 1 (Dense) (None,32) 544 (None,32) 544 (None,32) 544 (None,32) 544

dense 2 (Dense) (None,30) 990 (None,30) 990 (None,30) 990 (None,30) 990

The LSTM contains a total of 6,910 trainable parameters in case we include one risk factor. In the case, we do

not use any risk factor it is 6878, and when we include 33 risk factors, it is 7934.

Table 3: Best models for each risk factor and their respective errors. The model that uses no

risk factor is highlighted in grey.

rmse cases rmse death cum error cases cum error death days in risk place

0.055443 0.067617 7.94 22.74 5 pop density 2010 0

0.054795 0.068529 8.01 20.55 3 PHLTH 1

0.055199 0.067641 8.07 20.43 4 Insurance 2

0.055028 0.067207 8.12 20.17 4 Percentblacks 3

0.056061 0.067489 8.22 19.04 5 Percenthispanics 4

0.054621 0.068255 8.26 20.10 3 Nhosp 5

0.054557 0.068572 8.34 24.61 3 INSURANCE 6

0.054712 0.069121 8.37 21.70 3 CHOLSCREEN 7

0.054586 0.067636 8.40 20.50 5 DIABETES 8

0.054160 0.066906 8.45 20.16 4 STROKE 9

0.054027 0.067642 8.46 21.93 5 CHD 10

0.054927 0.067652 8.51 20.42 5 CHECKUP 11

0.054146 0.067536 8.54 21.15 5 Nbeds 12

0.054795 0.067676 8.58 19.94 5 svi overall 13

0.054600 0.067565 8.61 21.86 5 KIDNEY 14

0.055089 0.068248 8.63 22.58 5 CASTHMA 15

0.054547 0.068266 8.68 20.49 3 black percent 16

0.054685 0.068920 8.74 21.69 3 BPMED 17

0.054323 0.067149 8.75 19.54 5 LPA 18

0.053716 0.066898 8.75 19.01 5 CSMOKING 19

0.054053 0.068716 8.83 20.94 3 ARTHRITIS 20

0.055029 0.068672 8.84 22.02 3 poverty percent 21

0.054545 0.067267 8.86 21.22 4 Estbeds 22

0.054864 0.068742 8.90 19.53 3 MHLTH 23

0.055079 0.069024 8.93 21.23 3 senior percent 24

0.055589 0.068250 8.93 23.26 4 COPD 25

0.054500 0.068363 8.99 19.70 3 CANCER 26

0.054397 0.068491 9.05 21.89 3 Nbeds per1000 27

0.054609 0.067346 9.13 21.29 4 BPHIGH 28

0.054868 0.069432 9.26 25.88 3 None 29

0.056429 0.069345 9.28 20.98 3 HIGHCHOL 30

0.054317 0.067638 9.32 21.00 5 BINGE 31

0.054469 0.068540 9.50 20.65 3 OBESITY 32

0.055094 0.067443 9.54 21.53 4 svi minority 33
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Figure 5: Influence of risk factors on the accuracy of the prediction of COVID-19 cases. The

y-axis represents the cumulative error over all input data for the cities.
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y-axis represents the cumulative error over all input data for the cities.



Figure 7: Model prediction error for cu-

mulative cases when including one risk fac-

tor - pop density 2010 in the features, in

addition to the past number of cases and

deaths.

Figure 8: Model prediction error for cumu-

lative deaths when including one risk fac-

tor - pop density 2010 in the features, in

addition to the past number of cases and

deaths.
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Figure 9: Best predictions for cases over all

risk factors.
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Figure 10: Best predictions for deaths over

all risk factors.
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Figure 11: Top 5 predictions from all cases

over all risk factors.
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Figure 12: Top 5 predictions from all

deaths over all risk factors.
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Figure 13: Top 10 predictions from all

deaths over all risk factors.
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We renormalized, so the two basic features (following day) contributed 50% of the loss function.
We supported this in TensorFlow with a custom mean square error (MSE) loss function that
dropped training values that were not available for time sequences near the end of the exam-
ined period. While one can not train on future values, we can predict them, as seen in our
sample outputs. We extensively studied both 2 and 30 output features, and they give similar
descriptions of the observed data with the 30 feature choice enabling 14-day predictions.

We performed an extensive hyper-parameter search and we show the values in Table 2 that
give robust results without overfitting. Furthermore, we looked at four different activation
functions for this analysis in the LSTM and fully connected layers. Selu, Relu and Tanh
activations gave very similar results while Sigmoid activation was much worse. However we
still use a Sigmoid function in the last stage just as we did in Section 5.2. We also looked at
the number of hidden units (separately for LSTM and fully connected layers), the number of
LSTM layers and the dropout values. Only the latter produced a significant change and, for
example, removing dropouts decreased the loss by about 16% but we retained them to provide
a robust environment. We chose randomly 20% of the data for validation and testing and this
had similar loss values to the training data (the other 80%) with our chosen dropout.

The final technical issue concerns the data normalization where each feature is transformed
by a feature dependent – but city independent – way to lie between 0 and 1. Further all
extensive (proportional to size) covariates were first divided by the city population except for
the population itself where we took the logarithm; intensive covariates were just rescaled to lie
between 0 and 1. The basic COVID-19 daily data is extensive but compared two approaches
with and without renormalization, but in this case, we took the square root of the data value.
This is natural if there are counting (square root(N) for N observations) errors as the deep
learning loss function is (predicted − observed)2 without the error traditional in χ2, namely
((predicted − observed)/error)2. This approach with standard deep learning MSE appears
sound instead of dividing by the population. That will emphasize the error contribution of
smaller cities but is still interesting to look at due to the presence of many systematic errors.

6. Direct Deductions from Deep Learning Data Representation

The deep learning model contains a lot of information much of which we have already
analyzed and discussed in Section 5.2 and Figures 4 and 7. In addition, we have looked at
the sensitivity of the results as measured by the predicted daily rates and the value of the
loss function. In Table 4, we present one way of looking at it. We calculate the correlation
coefficients of many of the covariates from an accurate LSTM model fit to the data. We divide
the time series into three regions

• Past or all days up to 14 days before the final observed date (May 25, 2020)

• Now or the 14 days from May 12 to May 25, 2020

• Future or the 14 days after May 25, 2020 predicted by the model

These results are different between population normalized or direct non-normalized data.
We have kept the square-root used in the model but divided the model values by the square
root of the population when computing the correlation. Significant positive correlations are seen
for CASTHMA, HIGHCHOL, DIABETES, OBESITY, CSMOKING, CHD, and CHECKUP ,
while negative correlations for PVI and norm pop. We also looked at the impact of these
covariates on the evolution function. As this operates on data at previous time values, this is



sensitive to variations across cities and times. The evolution operator is intuitively the time
derivative of the absolute values of daily rates seen in the correlation in Table 3. Nhosp and
Estbeds have the most significance in impacting (as a reduction) the values of both the infection
and fatality rates from the evolution operator. The fatality rates are also significantly impacted
by Insurance and norm pop (reduction) and senior percent and OBESITY (increase) from the
evolution operator. norm pop impacts infection values as an increase. We can also identify
which covariates have the most significant impact on the loss function. Here Nhosp, CHD,
KIDNEY, BINGE, and PHLTH give 5% or more reduction in loss function while norm pop,
svi overall, CASTHMA, DIABETES, and BPHIGH have small (1%) effects.

Table 4: Correlation Matrix

Risk Factor Past Case Now Case Future Case Past Death Now Death Future Death

PVI -0.425 -0.292 -0.124 -0.434 -0.373 -0.239

Insurance 0.018 0.017 0.012 0.018 -0.002 0.001

Nbeds 0.136 0.131 0.217 0.089 0.080 0.109

Nbeds per1000 0.138 0.121 0.209 0.092 0.069 0.088

Nhosp 0.074 0.119 0.165 -0.009 0.028 0.021

Estbeds 0.136 0.131 0.217 0.089 0.08 0.109

senior percent 0.104 0.028 0.033 0.152 0.164 0.156

black percent 0.209 0.099 0.208 0.216 0.085 0.116

Percenthispanics -0.072 -0.032 -0.064 -0.091 -0.068 -0.046

pop density 2010 -0.302 -0.21 -0.175 -0.272 -0.231 -0.216

poverty percent 0.128 0.059 0.2 0.148 0.031 0.08

svi minority 0.029 0.069 0.081 0.01 0.006 0.087

svi overall 0.14 0.158 0.238 0.125 0.113 0.179

CASTHMA 0.238 0.271 0.307 0.205 0.288 0.309

HIGHCHOL 0.202 0.185 0.131 0.192 0.243 0.224

DIABETES 0.200 0.200 0.178 0.206 0.232 0.23

OBESITY 0.199 0.205 0.194 0.191 0.229 0.212

CANCER -0.145 -0.102 -0.129 -0.138 -0.058 -0.059

STROKE 0.123 0.125 0.117 0.167 0.143 0.135

MHLTH 0.11 0.161 0.186 0.076 0.175 0.222

CSMOKING 0.189 0.258 0.249 0.16 0.289 0.323

CHOLSCREEN 0.164 0.001 -0.026 0.187 0.07 0.038

INSURANCE 0.018 0.017 0.012 0.018 -0.002 0.001

CHD 0.225 0.284 0.233 0.178 0.327 0.337

CHECKUP 0.206 0.221 0.28 0.201 0.272 0.343

KIDNEY 0.045 0.028 0.032 0.022 0.071 0.053

BINGE 0.031 0.044 0.009 0.083 0.03 0.022

LPA 0.191 0.187 0.197 0.147 0.22 0.214

ARTHRITIS 0.046 0.013 -0.021 0.061 0.089 0.079

BPMED 0.060 0.080 0.124 0.056 0.073 0.09

PHLTH 0.064 0.132 0.104 0.022 0.129 0.114

BPHIGH 0.056 0.051 0.048 0.058 0.084 0.068

COPD 0.163 0.163 0.153 0.175 0.22 0.24

norm pop -0.305 -0.258 -0.218 -0.193 -0.218 -0.099



7. Conclusion

A variety of mathematical and computational models have been used for predicting COVID-
19 outcomes [13]. It includes compartmental models such as the SIR (Susceptible-Infected-
Recovered) and SEIR (Susceptible-Exposed-Infected-Recovered) which are relatively easy to
compute, and thus, commonly used in epidemiology. However, their simplistic assumptions,
such as homogeneous mixing within populations, might make them less realistic for pandemics
such as COVID-19. For instance, such models often assume a closed population that does not
change. However, COVID-19 dynamics have prominently included massive migration, deaths
due to comorbidities temporarily conferred immunity, and notably, major disparities in terms
of socio-economic determinants of health.

In terms of implementation, SIR and SEIR models are fitted with point estimates, which may
not adequately reflect the disease dynamics. For instance, it is difficult to account for behavioral
changes (e.g., human mobility) or systemic inadequacies (e.g., availability of hospital beds) that
may appear in specific subpopulations. Finally, the compartmental model estimates do not
allow for quantification of uncertainty, which makes it harder to use them in policy-making. A
comparison of modeling approaches concluded that while SEIR model performed better for a
couple of states in the U.S., alternatives have performed better for the other states [2]. AICov
has addressed most of the above modeling issues in its design, as per the requirements of its
forecasting objectives.

We present AICov as an integrative deep learning framework for COVID-19 forecasting with
the help of population covariates. Thus, its objectives are different from those of traditional
compartmental models. One of the important features of the architecture for AICov is that
it is by design targeting Cloud and HPC resources to conduct parameter sweeps to leverage
sophisticated deep learning toolkits. The architecture allows the integration of various data
sources that can update the data from its sources on demand and update its model predictions
based on newly introduced data. Parameters can easily be adjusted via Jupyter notebooks that,
in turn, call the computational backends on HPC and cloud resources.

In addition to this architecture, we used data collected from multiple public sources and
agencies, and integrated the same across spatially contiguous units such as cities or metropolitan
areas. In our analysis, we have focused on 110 selected cities of the U.S., but the framework is
general and can be used to analyze similar data on pandemics from anywhere in the world.

The comprehensive analysis showcases the feasibility of our approach. Based on the out-
comes reported it can lead to an improved prediction once we integrate risk factors in addition
to the time-dependent data such as cases and death resulting from COVID-19. While the im-
provements observed were modest, they do present a concrete way of improving the forecast
models. Inclusion of further putative factors from the ongoing worldwide studies on Covid-19
will only strengthen the future applications of our integrative framework.

We have shown that deep learning can return very good results while using smooth data,
which we used in our empirical fits. For real data as presented to us for the daily changes, it
still produced good results and even was able to predict changes based on weekly fluctuations.
This is typically not achieved by other non-data based model approaches. Also, we have used
in our data only cases and deaths, but we intend to expand this by using data about recovery
and, in the future, immunization.

We have experimented with different hyperparameters and included in this study a selection
of hyperparameters that have worked well for this data set.

As we have set up the first version of our AICov software, we have used cloud and high-
performance computers. All of our sophisticated analyses were run in a day on at most 16
computers. All deep learning algorithms that were run on GPUs were run on NVIDIA K80s.
However, our framework is on purpose generalized so that other compute resources can be



integrated and leveraged. This includes local, HPC, and cloud computing resources, as well
as different GPUs. Naturally, we also need to take into consideration not only the compute
time but also the time it takes for the researcher to derive the models. As our approach is
self-learning based on automated data updates, the time to prepare an updated model can be
automatized and minimal input is needed. Thus the overall effort is very competitive.
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