
A Tale of Two Data-Intensive Paradigms:
Applications, Abstractions, and Architectures

Shantenu Jha1, Judy Qiu2, Andre Luckow1, Pradeep Mantha1, Geoffrey C.Fox2∗
(1) RADICAL, Rutgers University, Piscataway, NJ 08854, USA (2) Indiana University, USA

(∗)Contact Author:gcf@indiana.edu

Abstract—Scientific problems that depend on processing large
amounts of data require overcoming challenges in multiple ar-
eas: managing large-scale data distribution, co-placement and
scheduling of data with compute resources, and storing and trans-
ferring large volumes of data. We analyze the ecosystems of the
two prominent paradigms for data-intensive applications, here-
after referred to as the high-performance computing and the
Apache-Hadoop paradigm. We propose a basis, common termi-
nology and functional factors upon which to analyze the two ap-
proaches of both paradigms. We discuss the concept of “Big Data
Ogres” and their facets as means of understanding and charac-
terizing the most common application workloads found across
the two paradigms. We then discuss the salient features of the
two paradigms, and compare and contrast the two approaches.
Specifically, we examine common implementation/approaches of
these paradigms, shed light upon the reasons for their current
“architecture” and discuss some typical workloads that utilize
them. In spite of the significant software distinctions, we believe
there is architectural similarity. We discuss the potential inte-
gration of different implementations, across the different levels
and components. Our comparison progresses from a fully qual-
itative examination of the two paradigms, to a semi-quantitative
methodology. We use a simple and broadly used Ogre (K-means
clustering), characterize its performance on a range of repre-
sentative platforms, covering several implementations from both
paradigms. Our experiments provide an insight into the relative
strengths of the two paradigms. We propose that the set of Ogres
will serve as a benchmark to evaluate the two paradigms along
different dimensions.

I. INTRODUCTION

The growing importance of data-intensive applications is
generally recognized and has lead to a wide range of ap-
proaches and solutions for data distribution, management and
processing. These approaches are characterized by a broad set
of tools, software frameworks and implementations. Although
seemingly unrelated, the approaches can be better understood
by examining their use of common abstractions and simi-
lar architectures for data management and processing. Build-
ing upon this putative similarly, we examine and organize
many existing approaches to Big Data processing into two pri-
mary paradigms – the scientific high-performance (HPC) and
Apache-Hadoop paradigms, which we believe reflects and cap-
tures the dominant historical, technical and social forces that
have shaped the landscape of Big Data analytics.

The HPC paradigm has its roots in supercomputing-class
computationally intensive scientific problems (e.g. Molecular
Dynamics of macromolecular systems, fluid dynamics at scales
to capture turbulence) and in managing large-scale distributed
problems (e. g. data analysis from the LHC). HPC paradigm

has been characterized by limited implementations, but cus-
tomized and tuned for performance along a narrow set of re-
quirements. In contrast, the Apache-Hadoop paradigm, here af-
ter referred to simply as the Apache Big Data Stack (ABDS)
has seen a significant update in industry and recently also
in scientific environments. A vibrant, manifold open-source
ecosystem consisting of higher-level data stores, data process-
ing/analytics and machine learning frameworks has evolved
around a stable, non-monolithic kernel: the Hadoop Filesys-
tem (HDFS) and YARN. Hadoop integrates compute and data,
and introduces application-level scheduling as a means to fa-
cilitate heterogeneous application workloads and high cluster
utilization.

The success and evolution of ABDS into a widely deployed
cluster computing frameworks yields many opportunities for
traditional scientific applications; it also raises many impor-
tant questions, viz., What features of Hadoop are useful for
traditional scientific workloads? What features of the ABDS
can be extended and integrated with the HPC implementa-
tions? How do typical data-intensive HPC and ABDS work-
loads differ? It is currently difficult for most applications to
utilize the two paradigms interoperably. The divergence and
heterogeneity will likely increase due to the continuing evo-
lution of ABDS, thus we believe it is important and timely to
answer questions that will support interoperable approaches.
However, before such interoperable approaches can be formu-
lated, it is important to understand the different abstractions,
architectures and applications that each paradigm utilizes and
supports. It is the aim of this paper to provide the conceptual
framework and terminology, so as to begin addressing ques-
tions of interoperability.

Paper Outline: This paper is divided into two logical
parts: in the first, we analyze the ecosystem of the two pri-
mary paradigms to data-intensive applications. We discuss the
salient features of the two paradigms, compare and contrast
the two for functionality and implementations along the lay-
ers of analysis, runtime-environments, communication layer,
resource management layer and the physical resource layer.
In the second part, we move from a fully qualitative examina-
tion of the two, to a semi-quantitative methodology, whereby
we experimentally examine both hard performance numbers
(along different implementations of the two stacks) and soft
issues such as completeness, expressivity, extensibility as well
as software engineering considerations.

II. DATA-INTENSIVE APPLICATION: BIG DATA OGRES
Based upon an analysis of a large set of Big Data applica-

tions, including more than 50 use cases [1], we propose the
Big Data Ogres in analogy with parallel computing with the
Berkeley Dwarfs, NAS benchmarks and linear algebra tem-
plates. The purpose of Big Data Ogres is to discern common-
alities and patterns across a broad range of seemingly different
Big Data applications, propose an initial structure to classify
them, and help cluster some commonly found applications us-
ing structure. Similar to the Berkeley Dwarfs, the Big Data
Ogres are not orthogonal, nor exclusive, and thus do not con-
stitute a formal taxonomy. We propose the Ogres as a bench-
mark to investigate and evaluate the paradigms for architec-
tural principles, capabilities and implementation performance.
Also we capture the richness of Big Data by including not
just different parallel structures but also important overall pat-
terns. Big Data is in its infancy without clear consensus as to
important issues and so we propose an inclusive set of Ogres
expecting that further discussion will refine them.

The first facet captures different problem architectures.
Some representative examples are (i) Pleasingly Parallel – as
in Blast (over sequences), Protein docking (over proteins and
docking sites), imagery, (ii) Local Machine Learning (ML) –
or filtering pleasingly parallel as in bio-imagery, radar (this
contrasts with Global Machine Learning seen in LDA, Clus-
tering etc. with parallel ML over nodes of system), (iii) Fusion
– where knowledge discovery often involves fusion of multi-
ple methods (ensemble methods are one approach), (iv) Data
points in metric or non-metric spaces, (v) Maximum Likeli-
hood, (vi) χ2minimizations, (vii) Expectation Maximization
(often Steepest descent), and (viii) Quantitative measures for
Big Data applications which can be captured by absolute sizes
and relative ratios of flops, IO bytes and communication bytes.

The second facet captures applications with important data
sources with distinctive features, representative examples of
the data sources include, (i) SQL based, (ii) NOSQL based,
(iii) Other enterprise data systems, (iv) Set of Files (as man-
aged in iRODS), (v) Internet of Things, (vi) Streaming, (vii)
HPC simulations, and (viii) Temporal features – for in addition
to the system issues, there is a temporal element before data
gets to compute system, e.g., there is often an initial data gath-
ering phase which is characterized by a block size and timing.
Block size varies from month (Remote Sensing, Seismic) to
day (genomic) to seconds (Real time control, streaming)

The third facet contains Ogres themselves classifying core
analytics and kernels/mini-applications/skeletons, with rep-
resentative examples (i) Recommender Systems (Collabora-
tive Filtering) (ii) SVM and Linear Classifiers (Bayes, Ran-
dom Forests), (iii) Outlier Detection (iORCA) (iv) Clustering
(many methods), (v) PageRank, (vi) LDA (Latent Dirichlet Al-
location), (vii) PLSI (Probabilistic Latent Semantic Indexing),
(viii) SVD (Singular Value Decomposition), (ix) MDS (Mul-
tidimensional Scaling), (x) Graph Algorithms (seen in neural
nets, search of RDF Triple stores), (xi) Neural Networks (Deep
Learning), (xii) Global Optimization (Variational Bayes), (xiii)
Agents, as in epidemiology (swarm approaches) and (xiv) GIS

(Geographical Information Systems).

III. ARCHITECTURE AND ABSTRACTIONS: HPC AND
ABDS ECOSYSTEMS

In this section we compare and contrast the ABDS and HPC
ecosystems, viz. the underlying architectural assumptions, the
primary abstractions (both conceptual and implementation).
Figure 1 depicts the different layers and architectural design
approaches and highlights some of the primary abstractions.
For the purpose of our comparison we identified five layers:
resource fabric, resource management, communication, higher-
level runtime environment and data processing/analytics. HPC
infrastructure were traditionally built for scientific applications
aimed toward high-end computing capabilities (small input,
large output). Hadoop in contrast was built to process large
volumes of data (large input, small output), resulting in dif-
ferent software stacks.

A. High Performance Computing

In a typical HPC cluster compute and data infrastruc-
tures are separated: A high-end compute environment –
typically a shared nothing many-core environment (poten-
tially adding GPUs or other accelerators such as the Xeon
Phi) – is complemented by a storage cluster running Lus-
tre GPFS [2] or another parallel filesystem connected by a
high-bandwidth, low-latency network. While this meets the
need for compute-intensive applications, for data-intensive
applications this means that data needs to be moved across
the network, which represents a potential bottleneck. Com-
pute resources are typically managed by a local resource
management system such as SLURM, Torque or SGE. Gen-
erally, these system have a focus on managing compute slots
(typically cores).

Compute resources are a typically managed by a local re-
source management system such as SLURM, Torque or SGE.
Generally, these system have a focus on managing compute
slots (typically cores). Storage resources in HPC are shared
resources, where a quota is applied on the data size, but not
on I/O. Data locality and other scheduling constraints are typ-
ically not considered. Lustre and GPFS storage resources are
typically exposed as shared filesystem on the compute nodes.
In addition several specialized higher-level storage manage-
ment services, such as SRM [3], iRODS [4] have emerged.
iRODS is a comprehensive distributed data management so-
lution designed to operate across geographically distributed,
federated storage resources. iRODS combines storage services
with services for metadata, replica, transfer management and
scheduling. In contrast to ABDS, data-management in HPC is
typically done using files and not using higher level abstrac-
tions as found in the Hadoop ecosystem.

Various other approaches for supporting data-intensive
applications on the HPC infrastructures emerged. For ex-
ample, different MapReduce implementations for HPC have
been proposed: MPI-based MapReduce implementations,
such as MapReduce-MPI [5], can efficiently utilize HPC
features, such as low-latency interconnects and one-sided

Compute Resources
(Nodes, Cores, VMs)

Workload Management
(Pilots, Condor)

Orchestration
(Pegasus, Taverna, Dryad, Swift)

Declarative
Languages

(Swift)

MPI Frameworks for
Advanced Analytics &

Machine Learning
(Blas, ScaLAPACK,
CompLearn, PetSc,

Blast)

Applications

MapReduce
Frameworks

(Pilot-MapReduce)

Resource
Management

Cluster Resource Manager
(Slurm, Torque, SGE)

Storage Resources
(Lustre, GPFS)

Data Access
(Virtual Filesystem,

GridFTP, SSH)

Resource
Fabric

Higher-Level
Runtime

Environment

Data Processing,
Analytics,

Orchestration

Compute and Data Resources
(Nodes, Cores, HDFS)

Higher-Level
Workload

Management
(TEZ, LLama)

Advanced Analytics & Machine Learning (Mahout, R, MLBase)

Applications

MapReduce

Cluster Resource Manager
(YARN, Mesos)

Map
Reduce

Scheduler

Data Store &
Processing

(HBase)

In-Memory
(Spark)

Spark
Scheduler

Twister
MapReduce

Twister
Scheduler

SQL-Engines (Impala, Hive, Shark, Phoenix)

Scheduler

MPI, RDMA Hadoop Shuffle/Reduction, HARP Collectives Communication

High-Performance Computing Apache Hadoop Big Data

Orchestration (Oozie, Pig)

Advanced Analytics & Machine Learning
(Pilot-KMeans, Replica Exchange)

Storage Management
(iRODS, SRM, GFFS)

Fig. 1. HPC and ABDS architecture and abstractions: The HPC approach historically separated data and compute; ABDS co-locates compute and data.
The YARN resource manager heavily utilizes multi-level, data-aware scheduling and supports a vibrant Hadoop-based ecosystem of data processing, analytics
and machine learning frameworks. Each approach has a rich, but hitherto distinct resource management and communication capabilities.

and non-blocking communications [6]. Further, various
non-MPI MapReduce implementations have been proposed:
Twister/Salsa [7] to support iterative machine learning
workloads, Pilot-MapReduce [8] to support geographically
distributed data, etc.

In addition several runtime environments for supporting het-
erogeneous, loosely coupled tasks, e. g. Pilot-Jobs [9], many
tasks [10] and workflows [11]. Pilot-Jobs generalize the con-
cept of a placeholder to provide multi-level and/or application-
level scheduling on top of the system-provided schedulers.
With the increasing importance of data, Pilot-Jobs are increas-
ingly used to process and analyze large amounts of data [12],
[9]. In general, one can distinguish two kinds of data manage-
ment: (i) the ability to stage-in/stage-out files from another
compute node or a storage backend, such as SRM and (ii) the
provisioning of integrated data/compute management mecha-
nisms. An example for (i) is Condor-G/Glide-in [13], which
provides a basic mechanism for file staging and also supports
access to SRM storage. DIRAC [14] is an example of a type
(ii) system providing more integrated capabilities.

B. ABDS Ecosystem

Hadoop was originally developed in the enterprise space (by
Yahoo!) and introducing an integrated compute and data in-
frastructure. Hadoop provides an open source implementation
of the MapReduce programming model originally proposed
by Google [15]. Hadoop is designed for cheap commodity
hardware (which potentially can fail), co-places compute and
data on the same node and is highly optimized for sequential
reads workloads. With the uptake of Hadoop in the commer-
cial space, scientific applications and infrastructure providers
started to evaluate Hadoop for their purposes. At the same

time, Hadoop evolved with increasing requirements (e. g. the
support for very heterogeneous workloads) into a general pur-
pose cluster framework borrowing concepts existing in HPC.

Hadoop-1 had two primary components (i) the Hadoop
Filesystem [16] – an open source implementation of the
Google Filesystem architecture [17] – and (ii) the MapReduce
framework which was the primary way of parallel processing
data stored in HDFS. However, Hadoop saw a broad uptake
and the MapReduce model as sole processing model proofed
insufficient. The tight coupling between HDFS, resource man-
agement and the MapReduce programming model was deemed
to be too inflexible for the usage modes that emerged in the
Hadoop ecosystem. An example of such a deficit is the lack
of support for efficient iterative computations (as often found
in machine learning). With the introduction of Hadoop-2 and
YARN [18] as central resource manager, Hadoop clusters can
now accommodate any application or framework. As shown
in Figure 1 (right) a vibrant ecosystem of higher-level run-
time systems, data processing and machine learning libraries
emerged on top of resource fabric and management layers, i. e.
HDFS and YARN. Historically, MapReduce was the Hadoop
runtime layer for processing data; but, in response to applica-
tion requirements, runtimes for record-based, random-access
data (HBase [19]), iterative processing (Spark [20], TEZ [21],
Twister [7]), stream (Spark Streaming) and graph process-
ing (Apache Giraph [22]) emerged. A key enabler for these
frameworks is the YARN support for multi-level scheduling,
which enables the application to deploy their own application-
level scheduling routines on top of Hadoop-managed storage
and compute resources. While YARN manages the lower re-
sources, the higher-level runtimes typically use an application-

level scheduler to optimize resource usage for the application.
In contrast to HPC, the resource manager, runtime system and
application are much more tighter integrated. Typically, an ap-
plication uses the abstraction provided by the runtime system
(e. g. MapReduce) and does not directly interact with resource
management.

Spark is a runtime for iterative processing; it is based on
a Scala-based API for expressing parallel dataflow on top of
in-memory, distributed datasets. For this purpose, Spark intro-
duces resilient distributed datasets (RDD) as higher-level API
that enables application to load a dataset into the memory of
a set of cluster nodes. The runtime of Spark automatically
partitions the data and manages data locality during runtime.

Many analytical applications – in particular in enterprise en-
vironments – rely on SQL as data query language. This led
to the development of several SQL-based analytic engines in
the data processing layer: Google’s Dremel [23], Hive [24],
HAWQ [25], Impala [26] and Shark [27] are examples of such
engines. While Hive was originally implemented based on the
MapReduce model, the latest version relies on TEZ as runtime
layer. Similarly, Shark relies on Spark as runtime. Other SQL
engines, such as Impala and HAWQ, provide their own run-
time environment and do not rely on MapReduce or Spark. In
addition, hybrid relational database/HDFS environments have
been proposed. HadoopDB [28] e. g. deploys a PostgreSQL
database on every node on which it distributes the data us-
ing hash partition. Further, it can access data from HDFS via
external tables. Several commercial approaches with similar
features exist, e. g. Polybase [29].

Advanced Analytics & Machine Learning layer application-
s/frameworks typically require multiple iterations on the data.
While traditional in-memory, single-node tools, such R [30] or
Scikit-Learn[31] provide powerful implementations of many
machine learning algorithms, they are mostly constrained to
a single machine. To overcome this limitation, several ap-
proaches that rely on scalable runtime environments in the
Hadoop ecosystem have been proposed, e. g. Apache Ma-
hout [32] or RHadoop [33]. There are well-known limita-
tions of Hadoop-1 with respect to support for iterative MapRe-
duce applications [7]. Thus, increasingly, iterative runtimes are
used for advanced analytics. MLBase [34] is a machine learn-
ing framework based on Spark as lower-level data processing
framework. SparkR [35] allows R applications to utilize Spark.

C. Resource Management

Table I summarizes different architectures for resource
management: centralized, multi-level and decentralized. HPC
schedulers are centralized and designed for rigid applications
with constant resource requirements. HPC applications, such
as large, monolithic simulations spawning a large number of
cores, typically utilize tightly-coupled, often MPI-based par-
allelism. MPI applications are tightly-coupled and highly la-
tency sensitive. While these applications have fixed resource
demands (with respect to number of cores, memory and wall-
time), which does not change during the lifetime, they need
to be scheduled in a way that they simultaneously execute

Centralized Multi-Level Decentralized
Examples Torque, SLURM YARN, Mesos, Pi-

lots
Omega, Sparrow

Workloads large, parallel jobs medium-sized tasks fine-grained tasks
Latency high medium - low low
Application
Integration

Submission only Application-Level
Scheduling

Application-Level
Scheduling

TABLE I
SCHEDULER ARCHITECTURES: CENTRALIZED, MONOLITHIC RESOURCE

MANAGERS ARE BEING REPLACED WITH MORE SCALABLE
ARCHITECTURES EMPHASIZING APPLICATION-LEVEL SCHEDULING.

on a system e. g. using Gang scheduling. Scheduling is done
on job-level, i. e. application-level tasks (e. g. the execution
of the individual processes on the compute nodes) are not
exposed to the resource manager. Thus, scheduling heteroge-
neous workload consisting of small, short-running tasks and
longer running batch-oriented tasks represents a challenge for
traditional monolithic, centralized cluster scheduling systems.
Often, Pilot-Jobs are used to overcome the flexibility limita-
tions and support dynamic applications comprising of hetero-
geneous tasks. Data locality is not a primary concern in HPC:
most HPC applications are write heavy, while data-intensive
applications are read heavy.

Data-intensive workloads in contrast can be decomposed
into fine-grained, loosely-coupled parallel tasks. By schedul-
ing on task-level rather than on job-level, the utilization
of resources and fairness can be improved [36]. Multi-level
schedulers, such as YARN [18] and Mesos [37], efficiently
support data-intensive workloads comprised a data-parallel,
loosely-coupled tasks and allow the dynamic allocation and
usage of resource through application-level scheduling. De-
central schedulers aim to address scalability bottlenecks and
low latency requirements of interactive workloads. Google’s
Omega [38] and Sparrow [36], an application-level scheduler
for Spark, are examples of decentral schedulers. In the fol-
lowing we focus on investigate the evolution of the Hadoop
schedulers focusing on the central and multi-level approaches.

Hadoop-1 utilizes a centralized scheduling approach using
the Job Tracker as resource manager. Not only represented
the Job Tracker a scalability bottleneck, it also tightly coupled
the MapReduce framework significantly constraining flexibil-
ity. In particular in the early days this was not an issue:
Hadoop was often used on top of HPC clusters using Hadoop
on Demand [39], SAGA Hadoop [40] or MyHadoop [41] or
in clouds (Amazon’s Elastic MapReduce [42] or Microsoft’s
HDInsight [43]). A limitation of these approaches is the lack
of data locality and thus, the necessity to initially move data
to the HDFS filesystem before running the computation.

Despite the limitations of Hadoop-1, many different re-
sources usage modes for Hadoop clusters emerged. However,
with the increasing size and variety of frameworks and ap-
plications, the requirements with respect to resource manage-
ment increased, e. g. it became a necessity to support batch,
streaming and interactive data processing. Often, higher-level
frameworks, such as HBase or Spark, were deployed next to
the core Hadoop daemons making it increasingly difficult to
predict resource usage and thus, performance. YARN [18], the
core of Hadoop-2, was designed to address this need and to

efficiently support heterogeneous workloads in larger Hadoop
environments. Another multi-level scheduler for Hadoop is
Mesos [37]; While there are some mostly syntactic differences
– Mesos e. g. uses a resource offer model, while YARN uses
resource requests – it is very similar to YARN providing multi-
level scheduling for heterogeneous workloads.

An increasingly larger ecosystem evolved on top HDFS and
YARN. As shown in Figure 1 applications frameworks typi-
cally rely on a runtime system that embeds an application-level
scheduler that tightly integrates with YARN (e. g. MapReduce,
Spark and HBase all provide their application-level scheduler).
Increasingly, common requirements are integrated into higher-
level, shared runtime systems frameworks, e. g. the support
for long-running or interactive applications or multi-stage ap-
plications using DAGs (directed acyclic graph). For example,
Llama [44] offers a long-running application master for YARN
application designed for the Impala SQL engine. TEZ [21] is
a DAG processing engine primarily designed to support the
Hive SQL engine.

As described, typical data-intensive workloads consist of
short-running, data-parallel tasks; By scheduling on task-level
instead on job-level, schedulers, such as YARN, are able to
improve the overall cluster utilization by dynamically shifting
resources between application. The scheduler can e. g. easily
remove resources from an application by simply waiting un-
til task completion. To enable this form of dynamic resource
usage, YARN requires a tighter integration of the application.
The application e. g. needs to register an Application Mas-
ter process, which subscribes to a set of defined callbacks.
The unit of scheduling is referred to as a container. Contain-
ers are requested from the Resource Manager. In contrast to
HPC schedulers, the Resource Manager does not necessarily
return the requested number of resources, i. e. the application
is required to elastically utilize resources as they become allo-
cated by YARN; Also, YARN can request the de-allocation of
containers requiring the application to keep track of currently
available resources.

D. High-Performance Big Data Stack: A Convergence of
Paradigms?

While HPC and Hadoop were originally designed to sup-
port different kinds of workloads: high-end, parallel comput-
ing in the HPC case versus cheap data storage and retrieval
in the Hadoop case, a convergence at many levels can be ob-
served. Increasingly, more compute-demanding workloads are
deployed on Hadoop cluster, while more data-parallel tasks
and workflows are executed on HPC infrastructures. With the
introduction of YARN and Mesos, the Hadoop ecosystem has
matured to support a wide range of heterogeneous workloads.
At the same time a proliferation of tools (e. g. Pilot-Jobs) to
support loosely-coupled, data-intensive workloads on HPC in-
frastructures emerged. However, these tools often focus on
supporting large number of compute tasks or are constraint to
specific domains; thus, they do not reach the scalability and
diversity of the Hadoop ecosystem.

The ABDS ecosystem provides a wide-range of higher-
level abstractions for data storage, processing and analytics
(MapReduce, iterative MapReduce, graph analytics, machine
learning etc.) all built on top of extensible kernels: HDFS and
YARN. In contrast to HPC schedulers, a first-order design
objective of YARN is the support for heterogeneous work-
loads using multi-level, data-aware scheduling. For this pur-
pose, YARN requires a higher degree of integration between
the application/framework and the system-level scheduler than
typical HPC schedulers. Instead of a static resource request
prior to the run, YARN applications continuously request and
return resources in a very fine-grained way, i. e. applications
can optimize their resource usage and the overall cluster uti-
lization is improved.

While YARN is currently not an option for HPC resource
fabrics, trends and demonstrated advantages have lead to pro-
posals for integrating Hadoop/YARN and HPC. The following
aspects need to be addressed: (i) integration with the local re-
source management level system, (ii) integration with HPC
storage resources (i. e. the shared, parallel filesystem) and (iii)
the usage of high-end network features such as RDMA and ef-
ficient abstractions (e. g. collective operations) on top of these.

Resource Management Integration: To achieve integration
with the native, system-level resource management system,
the Hadoop-level scheduler can be deployed on top of the
system-level scheduler. Resource managers, such as Condor
and SLURM, provide Hadoop support. Further, various third-
party systems, such as SAGA-Hadoop [40], JUMMP [45] or
MyHadoop [41], exist. A main disadvantage with this ap-
proach is the loss of data-locality, which the system-level
scheduler is typically not aware of. Also, if HDFS is used,
data first needs to be copied into HDFS before it can be pro-
cessed, which represents a significant overhead. Further, these
systems use Hadoop in a single user mode; thus, cluster re-
sources are not used in an optimal way.

Storage Integration: Hadoop provides a pluggable filesys-
tem abstraction that interoperates with any Posix compli-
ant filesystem. Thus, most parallel filesystems can easily be
used in conjunction with Hadoop; however, in these cases the
Hadoop layer will not be aware of the data locality maintained
on the parallel filesystem level, e. g. Intel supports Hadoop on
top of Lustre [46], IBM on GPFS [47]. Another optimization
concerns the MapReduce shuffling phase that is carried out via
the shared filesystem [48]. Also, the scalability of these filesys-
tem is usually constraint compared to HDFS, where much of
the data processing is done local to the compute avoiding data
movements across the network. Thus, HDFS is less reliant on
fast interconnects.

Network Integration: Hadoop was designed for Ethernet en-
vironments and mainly utilizes Java sockets for communica-
tions. Thus, high-performance features such as RDMA are not
utilized. To address this issue, RDMA support in conjunction
with several optimizations to HDFS, MapReduce, HBase and
other components for Infiniband or 10 Gigabit networks has
been proposed [49]. HARP introduces an abstraction for col-
lective operations with Hadoop jobs [50].

Implementation Execution Unit Data Model Intermediate Data
Handling

Resource Man-
agement

Language Hardware

(A.1) Hadoop Process Key, Value pairs
(Java Object)

Disc/Local (and net-
work)

YARN Java HPC Madrid: 16 cores/node, 16
GB memory, GE

(A.2) Mahout Process Mahout Vectors Disc (and network) Hadoop Job
Tracker

Java EC2: cc1.4xlarge, 16 cores, 23 GB
memory, 10GE

(B) MPI Process (long
running)

Primitive Types, Ar-
rays

Message Passing
(network)

Amazon/
mpiexec

C EC2: cc1.4xlarge, 16 cores/node,
23 GB memory, 10GE

(C.1) Python-Script
(Pilot-KMeans)

Process Key/Value (Text) Disk/Lustre Pilots, SLURM Python, Java HPC Stampede: 16 cores/node, 32
GB memory, Infiniband

(C.2) HARP Thread (long
running)

Key/Value (Java Ob-
ject)

Collectives (net-
work)

YARN Java HPC Madrid: 16 cores/node, 16
GB memory, GE

(C.3) Spark Thread Key/Value (RDD) Spark Collectives
(network)

YARN Java, Scala EC2: cc1.4xlarge, 16 cores/node,
23 GB memory, 10GE

TABLE II
K-MEANS – COMPARISON OF DIFFERENT IMPLEMENTATIONS AND INFRASTRUCTURES

IV. EXPERIMENTS

In the following we run different implementations of one
of the Ogres of Section II; we choose the K-Means clustering
algorithm. Table II summarizes these different implementa-
tions. We categorize these into three categories: (A) Hadoop,
(B) HPC and (C) hybrid implementations. For (A) we investi-
gate (A.1) an Hadoop MapReduce implementation and (A.2)
Apache Mahout [32]; for (B) an MPI-based K-Means imple-
mentation [51]. We examine the following hybrid approaches:
(C.1) Python Scripting implementation using Pilots [8] (Pilot-
KMeans), (C.2) a Spark K-Means [52] and (C.3) a HARP im-
plementation [50]. While (C.1) provides an interoperable im-
plementation of the MapReduce programming model for HPC
environments, (C.2) and (C.3) enhance Hadoop for efficient
iterative computations and introduce collective operations to
Hadoop environments.

We use Amazon EC2, the Madrid YARN/Hadoop cluster
and the Stampede clusters (which is part of XSEDE [53]) as
the different resources. On EC2 we utilize the cluster compute
instance type, which provides a HPC-style environment. We
utilize Elastic MapReduce [54] for managing the Hadoop clus-
ter in scenario (A.1) and the spark-ec2 tool for scenario
(C.3). Madrid uses YARN as resource manager; SLURM is
deployed on Stampede. We run three different K-Means sce-
narios: (i) 1,000,000 points and 50,000 clusters, (ii) 10,000,000
points and 5,000 clusters and (iii) 100,000,000 points and 500
clusters. Each K-Means iteration comprises of two phases that
naturally map to the MapReduce programming model: in the
map phase the closest centroid for each point is computed; in
the reduce phase the new centroids are computed as the aver-
age of all points assigned to this centroid. While the computa-
tional complexity is defined by the number of points × number
of clusters (and thereby a constant in the aforementioned sce-
narios), the amount of data that needs to be exchanged during
the shuffle phase increases gradually from scenario (i) to (iii),
in proportion to the number of points.

Figure 2 shows the results of experiments. Both Hadoop im-
plementations of K-Means (Hadoop MR (A.1)/Mahout (A.2))
perform significantly worse than the MPI-based implementa-
tion. The Map Reduce model – the predominant usage mode of
Hadoop-1 – has several disadvantages with respect to support-
ing iterative machine learning algorithms: The shuffle phase,
i. e. the sorting of the output keys and the movement of the

data to the reduce task, is optimized for use cases, such as data
grouping, but introduces a significant overhead where sort-
ing is not needed. In the case of larger amounts of shuffle
data, data needs to be spilled to disks; sorting is not essen-
tial for K-Means. In addition to the inefficiency with each
MapReduce, for every iteration a new job needs to be started,
which means that in addition to the job launching overhead,
data needs to be persistent and re-read to/from HDFS. The
MPI implementation in contrast loads all points into memory
once. For communication the efficient collective layer from
MPI (MPI_Allreduce) is used.

The Python Scripting implementation (C.1) is based on the
Pilot-MapReduce framework, which is an interoperable im-
plementation of the MapReduce for HPC, cloud and Hadoop
environments. The framework utilizes Pilots for resource man-
agements. For each map and reduce task, a CU inside the Pilot
is spawned. For data-exchange between the tasks the shared
filesystem (e.g., Lustre on Stampede) is used. While C.1 out-
performs Mahout, it performs significantly worse than MPI,
or other hybrid approaches. In particular for larger amounts
of shuffle traffic (scenario (ii) and (iii)), Hadoop shuffle im-
plementation is faster. Also, Spark by default compresses the
shuffle data, which improves the performance.

Both Spark and HARP are designed to efficiently sup-
port iterative workloads such as K-Means. While these ap-
proaches cannot entirely reach the performance of MPI, they
introduce a unique way of combining the advantages of MPI
with Hadoop/MapReduce. Spark performs slightly worse than
HARP. However, it must be noted that Spark operates at a
higher-level of abstraction, and does not require to operate on
low-level data structures and communication primitives. The
RDD abstraction provides a consistent key/value-based pro-
gramming model and provides flexible API for manipulating
these. However, since RDD are designed as immutable enti-
ties, data often needs to be copied in-memory; in each itera-
tion our K-Means implementation generates two intermediate
RDDs. For MPI in contrast only a single copy of the data is
stored in memory and manipulated there.

V. DISCUSSION: CONVERGENCE OF PARADIGMS

Even though a vibrant ecosystem has evolved to support
ABDS objective of providing affordable, scale-out storage and
compute on commodity hardware, the increasing processing/-
computational requirements, there is a need for convergence

1000000 points
 50000 centroids

10000000 points
 5000 centroids

100000000 points
 500 centroids

●
●

●

● ● ●
● ● ●●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

● ●● ● ●
●

●

●

● ● ● ● ●

●

● ●
●

● ●
●

● ●
●

●
●

●

● ● ●

1

10

100
200
400

1000
2000
4000
8000

16000

1

T
im

e
(in sec)

E
ffi−

ciency

24 48 96 24 48 96 24 48 96

Number of Cores
 Hadoop MR Mahout Python Scripting Spark Harp MPI

Fig. 2. Runtime of different K-Means Implementations: While MPI clearly outperforms the Hadoop-based implementations, the performance of K-Means
can significantly be improved by using hybrid approaches, such as Spark and HARP. By introducing efficient collective and iterative operations known from
HPC to Hadoop, the runtime can be improved while maintaining a high-level abstraction for the end-user.

between HPC and ABDS ecosystem [55]. Our experiments
were designed to expose important distinctions and relevant
considerations for integrated ecosystem.

While our micro-benchmark shows that MPI outperforms
the Hadoop-based implementation, it must be noted that the
second generation Hadoop frameworks, such as Spark, have
improved performance significantly by adopting techniques
previously only found in HPC, such as effective collective op-
erations. Nonetheless important distinctions remain: Hadoop-
based frameworks still maintain a very high and accessible
level of abstraction, such as data objects, collections etc.,
and are typically written without a tight coupling to resource
specifics, e.g., the user can modify some parameters, such as
the HDFS or RDD chunk size, which also controls the par-
allelism. In general, frameworks and tools utilize application-
level scheduling to manage their workloads and provide pow-
erful abstractions for data processing, analytics and machine
learning to the end-user while hiding low-level issues, such re-
source management, data organization, parallelism, etc. HPC
applications operate on low-level, communication operations
and application-specific files that often lack a common runtime
system for efficiently processing these data objects.

Functionalities available in the ABDS ecosystem (more than
110 implementations) typically exceed those available in the
HPC ecosystem, thus reiterating the need for consilience be-
tween the two. Several approaches for convergence of the two
ecosystems have been proposed. Often, these focus on run-
ning Hadoop on top of HPC. However, a lot of the bene-
fits of Hadoop are lost in these approaches, such as data lo-
cality aware scheduling, higher cluster utilization etc. Thus,
we believe that this is not the right path to interoperabil-
ity and integration. Furthermore, YARN has been designed

to address the needs of data-intensive applications and sup-
port application-level scheduling for heterogeneous workloads,
there is some ways to go way before YARN can enable both
HPC applications and data-intensive applications on the range
of resource fabrics found in HPC ecosystem. A possible and
promising approach for interoperability that emerges and will
be investigated is the extension of HPC Pilot-Job abstraction
to YARN, and the usage of Pilot-Data [12] for data-locality
aware scheduling.

Our analysis shows that there are technical reasons that
drive the convergence between the HPC and ABDS paradigms,
e. g. rich and powerful abstractions like collective communi-
cations and direct-memory operations, long the staple of HPC
are steadily making their presence felt in the ABDS. We an-
ticipate the convergence of conceptual abstractions will soon
lead to an integration of tools and technology, e.g., integration
of specific capabilities, especially in the form of interoperable
libraries built upon a common set of abstractions. In fact, we
are working towards such an interoperable library – Scalable
Parallel Interoperable Data-Analytics Library (SPIDAL) – that
will provide many of the rich data-analytics capabilities of the
ABDS ecosystem for use by traditional HPC scientific appli-
cations. This will be an incremental but important step towards
promoting an integrated approach – the high-performance big-
data stack (HPBDS) – that brings the best of both together.
Author Contributions – The experiments were designed primarily by AL
and JQ, in consultation with and input from SJ and GCF. The experiments
were performed by AL, PM and JQ. Data was analyzed by all. SJ and GCF
determined the scope, structure and objective of the paper and wrote the
introduction, applications and conclusion. AL wrote the bulk of the remainder
of the paper.

Acknowledgement This work is primarily funded by NSF OCI-1253644. This
work has also been made possible thanks to computer resources provided by
XRAC award TG-MCB090174 and an Amazon Computing Award to SJ.

REFERENCES

[1] NIST BigData Working Group, http://bigdatawg.nist.gov/usecases.php,
2014.

[2] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large
computing clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, ser. FAST ’02. Berkeley, CA, USA:
USENIX Association, 2002.

[3] A. Sim et al, “GFD.154: The Storage Resource Manager Interface Spec-
ification V2.2,” Tech. Rep., 2008, oGF.

[4] A. Rajasekar et al., iRODS Primer: integrated Rule-Oriented Data Sys-
tem. Morgan and Claypool Publishers, 2010.

[5] S. J. Plimpton and K. D. Devine, “Mapreduce in mpi for large-scale
graph algorithms,” Parallel Comput., vol. 37, no. 9, pp. 610–632, 2011.

[6] T. Hoefler, A. Lumsdaine, and J. Dongarra, “Towards efficient mapre-
duce using mpi,” in Proceedings of the 16th European PVM/MPI.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 240–249.

[7] J. Ekanayake et al., “Twister: A runtime for iterative mapreduce,” in
Proceedings of the 19th ACM International Symposium on High Perfor-
mance Distributed Computing, ser. HPDC ’10. New York, NY, USA:
ACM, 2010, pp. 810–818.

[8] P. K. Mantha, A. Luckow, and S. Jha, “Pilot-MapReduce: An Exten-
sible and Flexible MapReduce Implementation for Distributed Data,”
in Proceedings of third international workshop on MapReduce and its
Applications. New York, NY, USA: ACM, 2012, pp. 17–24.

[9] A. Luckow, M. Santcroos, A. Merzky, O. Weidner, P. Man-
tha, and S. Jha, “P*: A model of pilot-abstractions,” 2012
IEEE 8th International Conference on E-Science, pp. 1–10, 2012,
http://doi.ieeecomputersociety.org/10.1109/eScience.2012.6404423.

[10] I. Raicu, I. T. Foster, and Y. Zhao, “Many-task computing for grids and
supercomputers,” in IEEE Workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS08) 2008.

[11] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Gener. Comput. Syst., vol. 25, no. 5, pp. 528–540, May 2009.

[12] A. Luckow, M. Santcroos, A. Zebrowski, and S. Jha, “Pilot-Data: An
Abstraction for Distributed Data,” Submitted to: Journal of Parallel and
Distributed Computing, Special Issue on Big Data, 2014, http://arxiv.
org/abs/1301.6228.

[13] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-g:
A computation management agent for multi-institutional grids,” Cluster
Computing, vol. 5, no. 3, pp. 237–246, Jul. 2002.

[14] A. Tsaregorodtsev et al., “DIRAC3: The new generation of the LHCb
grid software,” J.Phys.Conf.Ser., vol. 219, p. 062029, 2010.

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” in OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation. Berkeley,
CA, USA: USENIX Association, 2004, pp. 137–150.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-
tributed file system,” in Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), ser. MSST ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles, New York, NY, USA.

[18] V. K. Vavilapalli, “Apache Hadoop YARN: Yet Another Resource Ne-
gotiator,” in Proc. SOCC, 2013.

[19] D. Borthakur et al., “Apache hadoop goes realtime at facebook,”
in Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’11. New York, NY,
USA: ACM, 2011, pp. 1071–1080. [Online]. Available: http:
//doi.acm.org/10.1145/1989323.1989438

[20] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing,” in Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012.

[21] “Apache TEZ,” http://hortonworks.com/hadoop/tez/, 2014.
[22] “Apache Giraph,” https://giraph.apache.org/, 2014.
[23] S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets,”

in Proc. of the 36th Int’l Conf on Very Large Data Bases, 2010.
[24] “Apache Hive,” http://hive.apache.org/, 2011.
[25] I. Szegedi, “Pivotal Hadoop Distribution and HAWQ Re-

altime Query Engine,” http://architects.dzone.com/articles/
pivotal-hadoop-distribution, 2014.

[26] M. Kornacker and J. Erickson, “Cloudera impala: Real-time queries
in apache hadoop, for real,” http://blog.cloudera.com/blog/2012/10/
cloudera-impala-real-time-queries-in-apache-hadoop-for-real/, 2012.

[27] R. S. Xin et al., “Shark: Sql and rich analytics at scale,” in Proceedings
of the 2013 ACM SIGMOD Int. Conference on Management of Data,
ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp. 13–24.

[28] A. Abouzeid et al., “Hadoopdb: An architectural hybrid of mapreduce
and dbms technologies for analytical workloads,” Proc. VLDB Endow.,
vol. 2, no. 1, pp. 922–933, Aug. 2009.

[29] D. J. DeWitt et al., “Split query processing in polybase,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp.
1255–1266.

[30] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2013. [Online]. Available: http://www.R-project.org/

[31] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] “Apache Mahout,” http://mahout.apache.org/, 2014.
[33] “RHadoop,” https://github.com/RevolutionAnalytics/RHadoop/, 2014.
[34] T. Kraska et al., “Mlbase: A distributed machine-learning system,” in

CIDR. www.cidrdb.org, 2013.
[35] “R on spark,” http://amplab-extras.github.io/SparkR-pkg/, 2014.
[36] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Scalable

scheduling for sub-second parallel jobs,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2013-29, Apr 2013.

[37] B. Hindman et al., “Mesos: a platform for fine-grained resource sharing
in the data center,” in Proceedings of the 8th USENIX conference on
Networked systems design and implementation, ser. NSDI’11. Berkeley,
CA, USA: USENIX, 2011, pp. 22–22.

[38] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,” in
Proceedings of the 8th ACM European Conference on Computer Sys-
tems, ser. EuroSys ’13. New York, NY, USA: ACM, 2013, pp. 351–364.

[39] Apache Hadoop Project, “Hadoop on demand,” http://hadoop.apache.
org/docs/r0.18.3/hod.html, 2008.

[40] SAGA, “SAGA-Hadoop,” https://github.com/drelu/saga-hadoop, 2014.
[41] myHadoop, “myhadoop,” https://portal.futuregrid.org/tutorials/

running-hadoop-batch-job-using-myhadoop, 2013.
[42] Amazon Web Services, “Elastic Map Reduce Service,” http://aws.

amazon.com/de/elasticmapreduce/, 2013.
[43] Microsoft Azure, “HDInsight Service,” http://www.windowsazure.com/

en-us/services/hdinsight/, 2013.
[44] “Llama,” http://cloudera.github.io/llama/, 2013.
[45] W. C. Moody, L. B. Ngo, E. Duffy, and A. Apon, “Jummp: Job un-

interrupted maneuverable mapreduce platform,” in Cluster Computing
(CLUSTER), 2013 IEEE International Conference on, 2013, pp. 1–8.

[46] O. Kulkarni, “Hadoop mapreduce over lustre – high perfor-
mance data division,” http://www.opensfs.org/wp-content/uploads/2013/
04/LUG2013 Hadoop-Lustre OmkarKulkarni.pdf, 2013.

[47] P. Zikopoulos et al., Understanding Big Data: Analytics for Enterprise
Class Hadoop and Streaming Data. McGraw-Hill Osborne Media.

[48] “MapReduce and Lustre: Running Hadoop in a High Performance
Computing Environment,” https://intel.activeevents.com/sf13/connect/
sessionDetail.ww?SESSION ID=1141, 2013.

[49] Y. Wang et al., “Hadoop acceleration through network levitated merge,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 57:1–57:10.

[50] B. Zhang and J. Qiu, “High performance clustering of social images in a
map-collective programming model,” in Proceedings of the 4th Annual
Symposium on Cloud Computing, ser. SOCC ’13. New York, NY, USA:
ACM, 2013, pp. 44:1–44:2.

[51] W. keng Liao, “Parallel k-means data clustering,” http://www.ece.
northwestern.edu/∼wkliao/Kmeans/ index.html, 2005.

[52] AMP Tutorial, “Spark kmeans,” http://ampcamp.berkeley.edu/
big-data-mini-course/machine-learning-with-spark.html, 2013.

[53] “XSEDE: Extreme Science and Engineering Discovery Environment,”
https://www.xsede.org/, 2012.

[54] “Amazon elastic mapreduce,” http://aws.amazon.com/elasticmapreduce/.
[55] G Fox, J Qiu and S Jha, High Performance High Functionality

Big Data Software Stack, in Big Data and Extreme-scale Computing
(BDEC). 2014. Fukuoka, Japan. http://grids.ucs.indiana.edu/ptliupages/
publications/HPCandApacheBigDataFinal.pdf.

http://bigdatawg.nist.gov/usecases.php
http://arxiv.org/abs/1301.6228
http://arxiv.org/abs/1301.6228
http://doi.acm.org/10.1145/1989323.1989438
http://doi.acm.org/10.1145/1989323.1989438
http://hortonworks.com/hadoop/tez/
https://giraph.apache.org/
http://hive.apache.org/
http://architects.dzone.com/articles/pivotal-hadoop-distribution
http://architects.dzone.com/articles/pivotal-hadoop-distribution
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real/
http://www.R-project.org/
http://mahout.apache.org/
https://github.com/RevolutionAnalytics/RHadoop/
http://amplab-extras.github.io/SparkR-pkg/
http://hadoop.apache.org/docs/r0.18.3/hod.html
http://hadoop.apache.org/docs/r0.18.3/hod.html
https://github.com/drelu/saga-hadoop
https://portal.futuregrid.org/tutorials/running-hadoop-batch-job-using-myhadoop
https://portal.futuregrid.org/tutorials/running-hadoop-batch-job-using-myhadoop
http://aws.amazon.com/de/elasticmapreduce/
http://aws.amazon.com/de/elasticmapreduce/
http://www.windowsazure.com/en-us/services/hdinsight/
http://www.windowsazure.com/en-us/services/hdinsight/
http://cloudera.github.io/llama/
http://www.opensfs.org/wp-content/uploads/2013/04/LUG2013_Hadoop-Lustre_OmkarKulkarni.pdf
http://www.opensfs.org/wp-content/uploads/2013/04/LUG2013_Hadoop-Lustre_OmkarKulkarni.pdf
https://intel.activeevents.com/sf13/connect/sessionDetail.ww?SESSION_ID=1141
https://intel.activeevents.com/sf13/connect/sessionDetail.ww?SESSION_ID=1141
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://ampcamp.berkeley.edu/big-data-mini-course/machine-learning-with-spark.html
http://ampcamp.berkeley.edu/big-data-mini-course/machine-learning-with-spark.html
https://www.xsede.org/
http://aws.amazon.com/elasticmapreduce/
http://grids.ucs.indiana.edu/ptliupages/publications/HPCandApacheBigDataFinal.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/HPCandApacheBigDataFinal.pdf

	Introduction
	Data-Intensive Application: Big Data Ogres
	Architecture and Abstractions: HPC and ABDS Ecosystems
	High Performance Computing
	ABDS Ecosystem
	Resource Management
	High-Performance Big Data Stack: A Convergence of Paradigms?

	Experiments
	Discussion: Convergence of Paradigms
	References

