
Experiences in Deploying Services within the Axis Container

Beytullah Yildiz
1, 2

, Shrideep Pallickara
1
, Geoffrey Fox

1, 2, 3

1
Community Grids Lab, Indiana University

2
Computer Science Department, School of Informatics, Indiana University

3
Physics Department, Collage of Art and Sciences, Indiana University

{byildiz,spallick,gcf}@indiana.edu

Abstract

The Web Services framework, since it leverages the

Service Oriented Architecture model, enables the

development of applications that are loosely coupled

and easier to manage. A Web Service is typically

hosted within a Web Service Container. There are

several choices for these containers depending on the

platform and the language in which the applications

would be developed. In this paper our focus is on

applications built using the Java platform. Here, the

most dominant Web Service container is the open-

source Apache Axis Web Service container. In this

paper we describe our experiences in deploying Web

Services, specifically WS-ReliableMessaging, within

this container. We enumerate the problems and

limitations that we encountered within Axis, and our

solutions to get around this problem. We also have a

set of recommendations that would make this a more

flexible container for sophisticated Web Service

applications.

1. Introduction

Web Services provide a distributed computing

environment to solve interoperability issues. It is an

effort to provide a solution for seamless

communications and interoperability. Perhaps what

distinguishes Web Services from previous attempts is

its leveraging of XML. Support from a large

community of vendors/users is another advantage.

Companies, universities and organizations are also

committing several resources to this effort. This has

hastened the maturity of the Web Services framework.

Furthermore, this has resulted in several specifications

targeting several application domains; with competing

specifications within the same application domain.

Whereas Web Services are very promising, we

encounter a very important side effect. They performed

slower than previous approaches. The cost mainly

results from SOAP message and its processing. SOAP

is an XML base document and it is self-descriptive as a

consequence. Therefore, it contains extra information

and data. This increases the size of message and

requires more bandwidth on transportation. Moreover,

the XML parsing can be quite expensive.

Some specifications lay the foundation for building

the Web Service framework. These include SOAP [1],

WSDL [2] and UDDI [3]. Web services leverage XML

extensively. SOAP is a widely accepted, XML-based

format for messaging in Web Services. In order to

process SOAP messages and provide a good

environment for services; several containers are now

available for different platforms and languages. Of

interest to us in this paper is the open-source Apache

Axis (version 1.2) [4], container for Java-based Web

Service applications. Axis is currently the most

dominant container within the Web Service community

and has a plethora of applications developed around

this container.

Axis basically provides three main interfaces viz.

Remote Procedure Calls (RPC), document/wrapped

and message style communications. In the RPC style, a

Java object is serialized into XML and de-serialized

back into a Java object at the target point. This is very

useful if a Java program, which needs to be deployed,

has been already implemented. Document and wrapped

style are very similar to each other, but differ in their

use of SOAP encoding. The data is encapsulated within

a plain XML document. Although serialization and de-

serialization operations are not required, binding is

needed in this type of deployment. The Message style

is a user-defined style and is typically very flexible.

Since the message is already an XML document,

serializers and deserializers are not needed. There are

several scenarios where message style Web services

have clear advantages.

In addition to the services themselves, several

containers (including Axis) incorporate support for

handlers or filters which facilitate incremental addition

of capabilities at a service endpoint. An example of a

handler is an encryption handler which encrypts

messages originating from a client and an inverse-

handler at the service side which performs the

appropriate decryption. By setting up appropriate

handlers (and inverse handlers) in the request and

response flows originating from a service endpoint, the

endpoint’s capability is enhanced without the need for

making changes to the application. One typically

configures handlers through a deployment descriptor

file that is part of the Web Service container. Finally,

several handlers could be cascaded together to

comprise a handler chain.

Although the Axis architecture provides very good

functionalities, there are several areas where we see a

need for improvement. We enumerate this below.

1. It is based on the request-response paradigm

and does not support message injection in

service side.

2. It does not have the ability to gracefully

terminate processing related to a message

within the handler chain associated with a

service.

3. Handler chain has a static configuration.

Request and response paradigm will be discussed in

section 2. We will elaborate the necessary mechanisms

for a better container and provide test results for a

solution in a current Web Service Container.

Gracefully stopping a message, while passing through

handler chain, is discussed in section 3. Finally, we will

discuss static handler chain issues and suggestions in

section 4.

2. Improving messaging

Axis container is mainly based on the request and

response paradigm. Every message from a client is

considered as a request which should have its

accompanying response within a pre-defined period of

time. This time is set internally by Axis itself and it is

not possible to configure this (see Figure 1).

Despite the fact that the request and response

paradigm have advantages in many scenarios, they do

have limitations. We can classify these scenarios into

two categories, those that need only one way messaging

and those that require asynchronous messaging.

Figure 1. Simple request response paradigm

Axis does not perfectly support one-way messaging.

Most Web Services use HTTP as a protocol for

message transfers, which naturally provides request and

response paradigm. The best way of doing one-way

messaging in the current architecture is to send a

dummy response message and discard the dummy

message upon receipt.

Notification [5] is an example of one-way

messaging; an entity may just need to inform another

entity about an event. Acknowledgments in the Web

Service Reliable Messaging (WSRM) [6] protocol are

another example of notification; there obviously no

need to acknowledge an acknowledgement.

Messages issued in the direction of client-to-service

are a natural way of messaging in Web Services. On

the other hand, a message in the opposite direction is

very hard to accomplish. Service endpoints are

deployed in addressable nodes. These addresses can be

published in a registry. One of the main WS-

specifications, UDDI, deals with address registry issues

of service endpoints. Nevertheless, it is not possible to

create a similar architecture to keep the client

addresses. Hence, there is no mechanism that provides

an environment to send a subsequent (possibly after a

certain amount of time) response message back to a

client. In order to successfully accomplish this task,

Web Service architecture needs addressable clients

which are kept in a registry. However, Axis does not

keep any client addresses. Therefore, the server side

components, handlers or endpoints, are not able to send

a message initiated by them back to the clients.

Axis naturally supports synchronous

communications. Both the client and the service have

to be available during the interaction. A Client also

needs to wait for a response after requesting a service.

The client communication is thus based on blocking

I/O.

There exist many scenarios where there is a clear

need for asynchronous communications [7]. Client

issues a request to a remote service and then continues

its processing without waiting (or blocking) for a

response. The service part lets the client know when

the result is ready. For example, in reliable messaging,

an acknowledgment can be sent back by bundling

several of them together. The acknowledgment interval

is specified so that the client is notified with a set of

acknowledgments instead of sending each of them

individually. This helps to increase network

performance by decreasing the number of

acknowledgments in transit between the endpoints.

We also need to come up with a solution in the

current Axis container for our Service deployments,

which requires one way and asynchronous messaging.

The solution that we utilized is the one used commonly.

Hence, it is important to show the impact of this

approach.

Figure 2. Making asynchronous messaging

The utilized approach is to bypass the

aforementioned limitations by using a client where a

message initiation is required. Since a client can not

call another client, a new service endpoint needs to be

created on the client side. We called these two nodes as

sink and source. The source represents the client-side

while sink represents the server-side. Both the sink and

the source are deployed within the Axis/Tomcat

container [8].

We gathered results from two test environments.

We utilize two types of service request in these

environments. The first type, which we call RPC, is a

regular Remote Procedure Call (RPC) [9] of Axis. The

second type utilizes one-way messaging and achieves

the same result as the RPC call of the first type. One-

way style messaging is utilized in both the directions

viz. client-to-service and service-to-client. To achieve

this messaging style, we also deploy the source within a

container (see figure 2). The Source, at the client side,

sends a message to the sink, at the service side, by

using one way messaging. The service in the sink

processes the message and passes the response to the

client of the sink side and finally the client in the sink

calls the service in the source. This mechanism

basically provides asynchronous messaging. We are

able to request a service from sink while the source can

continue its processing of other tasks. The source is

notified by another service call from the sink when the

response is ready.

Figure 3. LAN Web Service

The first test is performed between two machines

with the Indiana University, Local Area Network

(LAN). One of the machines has Pentium 4 CPU

operating at 2.80GHz with 1 GB memory. It utilizes

Fedora 4 Linux operating system. The other machine,

Sun Fire V880, has a Solaris 9 operating system which

is equipped with 8 UltraSPARC III processors

operating at 900 MHz with 16 GB Memory.

Table 1. LAN Web Service results

Mean Mean
Standard

Deviation

Standard

Error

RPC 34.9216 16.2282 2.2724

One Way 39.4200 15.3691 2.1735

The second test is performed between Indiana

University and University of Southern California, Wide

Area Network (WAN). The first machine has a

Pentium 4 CPU operating at 2.80GHz with 1 GB

memory. It utilizes the Fedora 4 Linux operating

system. The second machine has two Pentium III

processors operating at 731.07 MHz with 512 MB of

memory. It utilizes Red Hat Enterprise Linux as its

operating system.

Although RPC style Web Services can be improved

[10], the results of Local Area Network (see Table 1

and Figure 3) show that one way style messaging costs

more than RPC style messaging. We get similar results

in the Wide Area Network (see Table 2 and Figure 4).

The overhead comes from a new service call initiated

in the sink which is not the case for RPC. In RPC, the

only service call happens in the source part, and the

sink responds as soon as it processes the request. On

the other hand, in one way messaging, we need to

create a new service call in the sink side in addition to

the one in the source. Moreover, in RPC style, we may

utilize only one container whereas we have to use two

of them in one way style. Another factor that needs to

be taken into account is thread scheduling; this can

causes spikes, as is shown in the figure 3 and 4. These

spikes are higher in the one-way style messaging

because of using a container in both the sink and the

source side. However, the main contributor to the

performance overheads is the creation of another call in

the sink side.

Figure 4. WAN Web Service

In spite of the fact that we had to utilize a bypass

solution it seems that it is not efficient enough. A Web

Service container should support fully asynchronous

and one-way messaging without compromising too

much on performance. This capability can be provided

to a container by letting the message injection ability

utilized in the service-side internally (see Figure 5).

Additionally, performance improvement strategies can

be applied for better throughput [11].

Table 2. WAN Web Service results

Mean Mean
Standard

Deviation

Standard

Error

RPC 173.7400 53.7359 7.5994

One way 234 64.7274 9.1538

There are several scenarios that indicate the need

for message initiation in the server side. Having

reliable messaging between two endpoints requires

several control message exchanges such as establishing

sequences and acknowledgments. Although the server

can send a response back as soon as it gets a request, it

can not send the same massage more than once when it

is required. A message may need to be retransmitted if

the client has not received it (this is the case in WS-

ReliableMessaging [12]).

Figure 5. Message can be initiated by service

WS-Notification [13] and WS-Eventing [14] are the

other examples where there is a need for message

initiation in the service side. Here, a message may need

to be sent to multiple end points that might have

subscribed to the message. These specifications

provide a solution for publish/subscribe mechanism

[15] in Web Services. Since every subscriber which is

interested in a topic must get the published messages, a

new connection for each subscriber must be initiated at

the server side

3. Terminating Message Propagation in

Handler Chain

In our implementation, we wanted to be able to stop

message propagation in order to eliminate unnecessary

executions while the message is passing through

handler chain (see Figure 6). A good example of this

necessity is acknowledgment in reliable messaging.

Only the reliable messaging handler needs to know

whether the other endpoint has received the message.

After getting an acknowledgement in the reliable

messaging handler, there is no need to pass it to the

endpoint because it is not a message that an end point

needs to know about. This would be a very crucial

performance issue if the endpoint gets a huge amount

of acknowledgements. The reason for sending

acknowledgment is to say that “I got the message you

sent”. If acknowledgement has not been received from

receiver, the retransmission process should be

reinitiated. The important thing is that this is the job of

reliable messaging handler not the service.

In Axis, the current architecture does not allow us

to stop message propagation gracefully. An exception

was thrown whenever we attempted to stop the message

in a handler. Moreover, this exception propagates back

through handler structure and back to the client. This

contributes to network overheads. Another problem is

that the completed tasks are rolled back if an exception

is thrown during message propagation. Therefore, we

wanted to access a mechanism that stops the message

propagation and does not to cause any extra activities.

We come up with the following solution.

Figure 6. Stopping the message propagation

A message can be forwarded to a dummy task

instead of blocking a message. We choose forwarding

because we wanted to stop a propagation of a message

without getting an exception. If we disposed the

message in the blocker handler, we would get

exception because of the reasons we mentioned earlier.

Letting the message reach a dummy task in the service

endpoint prevents this exception. On the other hand,

there is a downside in this solution. Processing the

dummy message can add to a message’s processing.

However, within the Axis architecture we found this

cost to be acceptable.

4. The Flexibility of Handler Structure

A handler is an additional functionality to the

service endpoints. They can be cascaded to constitute a

handler chain. The processing order within this chain is

important. It can be either static or dynamic. Currently,

containers utilize the static approach. However, a

dynamic approach is much more powerful. The

corresponding benefits will be clarified here.

Figure 7. Flexible handler

As we mentioned, the Axis handler chain is

currently static. The chain is setup when a service is

being deployed. A static structure is generally easy to

implement, but harder to customize. A new handler can

not be added, just as an old one cannot be removed

from the chain after deployment. The Axis architecture

only allows for cloning the handler chain. The cloned

chain can replace the running one. This is the way

adding or removing a handler from chain in the Axis

handler architecture.

Handler chains should be customizable on the fly. A

Web Service needs to have the ability to select its

handlers from the pool of handlers (see Figure 7). For

instance, we have a service that sometimes receives

signed messages and the verification of the signature is

done by handler DS. If we would have the capability to

insert DS to the current handler chain for only signed

messages, the deployment would be much easier. On

the other hand, a handler may need to be removed for

specific messages. For example, we have a Web

Service with two handlers, H1 and H2. The task of

handler H1 is to increment a variable by 1 in SOAP

message. The result would be inconsistent if we

retransmitted a message by applying handler H1 second

time. To prevent this inconsistency, we need to remove

handler H1 from the chain that processes the

retransmitted message. The second transition must have

only handler H2.

5. Conclusion

Web Services are a promising technology to

implement scalable [16] and interoperable distributed

systems. Its potency is primarily a result of using

XML-based messaging. Currently there is a lot of effort

related to Web Service standardizations. While the

standardization continues, containers, which are the

hosts for services, have matured significantly to

provide a better SOAP processing environment.

Among the Web Service containers, Apache Axis is the

most popular one. It is not only the most dominant but

also provides the base for other containers. Moreover,

efforts within Axis provide guidance to the Web

Service community. This work identifies issues that

will further contribute to its maturity. These issues are

related to messaging, stopping propagation of messages

and the flexibility of the handler architecture. We

suggest that containers should support one way and/or

asynchronous messaging. In addition, there should be a

mechanism to ensure that a message can be gracefully

stopped while traversing though the handler chain.

Moreover, handler chain should employ the handlers

dynamically. A flexible and dynamic handler structure

will provide many advantages to Web Services. By

considering these suggestions, the Axis Web Service

container will provide an even better environment for

service deployments.

6. References

[1] M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging

Framework," June 2003. http://www.w3.org/TR/ 2003/REC-

soap12-part1-20030624/

[2] Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl

[3] Bellwood, T., Clement, L., and von Riegen, C. (eds)

(2003), UDDI Version 3.0.1: UDDI Spec Technical

Committee Specification., available from

http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.

[4] Apache Axis. http://ws.apache.org/axis.

[5] Shrideep Pallickara, Geoffrey Fox. "An Analysis of

Notification Related Specifications for Web/Grid

Applications," itcc, pp. 762-763, International Conference on

Information Technology: Coding and Computing (ITCC'05) -

Volume II, 2005.

[6] Web Services Reliable Messaging

ftp://www6.software.ibm.com/software/developer/library/ws-

reliablemessaging200502.pdf.

[7] Marco Brambilla, Stefano Ceri, Mario Passamani,

Alberto Riccio. "Managing Asynchronous Web Services

Interactions," icws, p. 80, IEEE International Conference on

Web Services (ICWS'04), 2004.

[8] Apache Tomcat. http://jakarta.apache.org/tomcat/

[9] Andrew D. Birrell , Bruce Jay Nelson, “Implementing

remote procedure calls”, ACM Transactions on Computer

Systems (TOCS), v.2 n.1, February 1984 , p.39-59

[10] Satoshi Shirasuna, Hidemoto Nakada, Satoshi

Shirasuna, Satoshi Sekiguchi. "Evaluating Web Services

Based Implementations of GridRPC," hpdc, p. 237, 11th

IEEE International Symposium on High Performance

Distributed Computing (HPDC-11 '02), 2002.

[11] Shengru Tu, Maik Flanagin, Ying Wu, Mahdi

Abdelguerfi, Eric Normand, Venkata Mahadevan, Jay

Ratcliff, Kevin Shaw. "Design Strategies to Improve

Performance of GIS Web Services," itcc, p.

444, International Conference on Information Technology:

Coding and Computing (ITCC'04) Volume 2, 2004.

[12] Shrideep Pallickara, Geoffrey Fox, Beytullah Yildiz,

Sangmi Lee Pallickara, Sima Patel and Damodar Yemme.

“On the Costs for Reliable Messaging in Web/Grid Service

Environments.” To appear in Proceedings of the 2005 IEEE

International Conference on e-Science & Grid Computing.

Melbourne, Australia.

[13] Web Services Notification (WS-Notification). IBM,

Globus, Akamai et al. http://www-

106.ibm.com/developerworks/library/specification/ws-

notification/

[14] Web Services Eventing. Microsoft, IBM & BEA.

http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

[15] Patrick Th. Eugster , Pascal A. Felber , Rachid

Guerraoui , Anne-Marie Kermarrec, “The many faces of

publish/subscribe”, ACM Computing Surveys (CSUR), v.35

n.2, June 2003 , p.114-131

[16] Ken Birman. "Can Web Services Scale Up?" Computer,

vol. 38, no. 10, pp. 107-110, October, 2005.

