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ABSTRACT

This paper treats several disjointed toﬁics in the study of event ghapes
in e+e- annihilation to hadrons. Firat, we deseribe the calculation of the
shape parameters <H£> in QCD perturbation theory. We show that they suffer
0(#45;;; mass corrections, discuss smearing required near thresholds and con-
sider some effects of hadron formatlon and of higher-order corrections. For
large &, the <H£> computed to lowest order in ag diverge like log(%) or logz(z).
We describe in detail the summation of such leading logarithmic terms to all
orders in perturbation theory and emphasize the appearance of single and double
logarithmic behavior in different kinematic configurations. Our methoda are
of general utility in estimating higher order effects in QCD perturbation
theory. In particular, we apply them in an analysis of the angular spread
of QCD jets and of the transverse momentum distribution of virtual photons
from the Drell-Yan process. The second tople considered is energy correlation
functions, which give the mean energy incident on two detectors around an
e+e~ annihilatlon event. Practical methods for calculating energy correla-
tions from meagsured events are devised, Analytical formulae for energy cor-
relations derived from perturbation theory are presented, but it is Found (as
expected from their infrared instability) that energy corvelations are of

little practical utility at foreseeable energles because of large fragmentation

*Work supported in part by the U.S. Department of Energy under Contract No,
EY76-C-03-0068, Gallimaufry, n. Heterogeneous mixture, jumble, medley [1].

tSupported by a Feynman fellowship.

corrections, In the third part of the paper, correlations between the final
state and the beam direction are considered. We present observables which
allow the angular distributions of planes of final particles with respect

to the beam to be determined without finding the planes explicitly. Finally,
we discuss three-detector energy correlations and their moments, which provide

methods for imvestigating planar structure in e+e_ annihilation events,
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1. Introduction
In a previous paper [2] [Fl.1], we introduced the shape parameters (the

PL are the Legendre polynomials, and the sum runs over all palrs of particles)

AT

T 2y Gy ey (1)

i,1
which describe the distribution of energy in the final states of e+e- annihi-
lation events and whose mean values may be computed from QCD perturbation
theory., In this paper, we develop further the calculation of the <H1> and
also describe other methods for analyzing event shapes.

In Section 2 we conslder corrections to the <Hz> in QCD perturbation
theory., We first deacribe the general picture of e+e_ annihilation events in

QCD and show that the <H > typically probe the structure of final states at

L
+ -
distances less than about ll/; (/; is the e ¢ ¢.m. energy). For small s,
we ghow (in Section 2,3) that the <H£> {and other shape parameters) exhibit
/2 2

Q(/m“/8} mass corrections, as opposed to the ((m"/3) ones found in the total
crogs~-gection. We discusa (in Section 2.2) the smearing of the <H£> required
near thresholds. In Section 2.5 we address higher order terms in the pertur-
bation seriea for the <“E> at low £, while in Section 2.7 we describe some
difficulties assoclated with the calculatlon of the <H1> for processes in which
the initial state contains colored partons.

‘For large &, the <H£> at each order in a develop large logarithms of
2. Section 3 is devoted to a detailed discussion of the summation of the

leading log terms in the <H_ > to all orders in perturbation theory. At large

£
2, the <H£> probe integrals of energy correlation functions for detectors close
to 0° and 180° apart. These give the mean square energy into a small cone in

an event and the mean product of energles incident on two back-to-back cones.

-1.2-

In the first case, single logarithms of the cone opening angle (of order 1/1)
appear at each order in ag while in the second case, double logarithms are
found. In Section 3,2 we use our explicit calculation of energy correlation
functions to O(us) given in Appendix A to find the leading behavior of <HE>
to ﬂ(us). Sections 3.3 and 3.4 describe the formalism required for leading
log summations in the process e e - q3(GG...} [FL.2]. The resules of these
summations are given in Section 3.5; the double logarithmic divergences as
£ -+ = (or 8 + 0) exponentiate to a function which goes smoothly to zero in
this limit. The double logarithms summed in Section 3.5 ave characteristic
of processes in which pairs of jets are produced approximately back-to-back.
When this is not the case, the leading log terms come from the behavior of
the energy correlations between two detectors close in angle, which exhibit
single logarithms at each order., These are summed in Section 3.6 where they
are used to provide an estimate for <H£> in § + GGG(GG...) [FL.2] at large
%. In Section 3.7 we use results in Section 3.6 to discuss the angular spread
of energy in QCD jets. Section 3.8 applies our methods to the caleculation
of the transverse momentum spectrum of lepton palrs produced in hadron-hadron
collisions (Drell-Yan) where double logarithms are found to exponentiate,
Finally, in Section 3.9, we make some brief comments on real photon production
in e+e‘ annihilation.

We define the two-detector energy correlation function by

?5(01’02) = 9,1le 1.2

2 8
where the |31| are the sum of the moduli of the three-momenta of particles
incident on two detectors covering the regions 9 of total solid angle 1615.

The rotationally-invariant observable F2 is formed in each event by averaging
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?& over sll possible positions for the detectors, while maintaining their
relative orfentation, Fz may, therefore, be written as

8113, <EEp

<Bl>o<32>° <El>°<E2>°

F,(x) (1.3)
where y signifies the relative orientation of 9 and Tg» and the averages are
over all positions of % and a, in a particular event which maintain this:

Fz does not depend on the orientation of the final state with respect to the
beam axia. Section 4 1s devoted to a discussion of FZ' First {(in Section
4.1) we give a convenient method for computing the mean value of Fz and the
distribution of events in Fz. We then present (Sections 4,2 and 4.3) some
phencmenclogical estimates for <?2> and 1/¢ dc/d?2 in various typea of events,
We find that hadronic corrections to perturbative results for energy corre-
laticns are very severe a0 that energy correlations are of limited practical
utility at foreseeable energies. MNevertheless, for theoretical purposes, such
as those of Sec. 2 and 3, it is very convenient to the idealized energy cor-
relation ?gt(x) between two point detectors. This has the useful property

that
=1 ' )

The energy correlation functiona Fz described in (2] and in Section 4
are explicitly averaged over the direction of the incoming e+e_ beam axis.
Bowever, QCD also makes definite predictions for the dependence of the shapes
of final gtates on their orlentation with respect to the beam direction. In
Section 5 we give a general treatment of this dependence., We also introduce

the observables :i which allow the analysis of the angular distribution of
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planes of particles [3] in the final state with reapect to the beam axis with~-
out requiring a definite axis for the plane to be found (for example, by min-
imization),

In S$ection 6 we discuss methods for investigating planar structures in
events. Most of the basic results of this section are contained in Ref. [3];
here we give some of the details,

In order to assess to what extent the various predictions presented in
this paper constitute tests of QCD, one should compare them with reaults from
other theories. Appendix C gives some predictions which would follow from a
theory with celored scalar, rather than vector, gluons,

We apoelogize for the length of this paper and hope that any potential
readers will not be deterred by it but will rather r;alize that the various
sections are designed to sult differing tastes. For those interested by the-
oretical calculations in QCD perturbatien theory, we recommend Section 2 and
especially Section 3, where we have tried to present our reasults and me thods
in sufficlent detail that they may be readily assimilated, Those of more
experimental persuasion are directed to Sections 4, 5 and 6 which address more

practical matters [F1.3).
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Section 1 - Footnotes

F1.1 The background and motivation of the present work is discussed in Ref. [2].

F1,2 As in Ref, (2], ete™ » q3(GG...) represents the sum of processes efe” »
a9, e+e- + qqG, e+e_ -+ qqGG and so on, together with virtual (loop) corrections
to these. # denotes a 331 QG heavy quark bound state (such as ¥ or T). An-

other notation from [2] 18 the kinematic definition x, = ZEiI/;.

i

F1.3 Section 6 contains some unusual mathematics which one of the authors con~
giders a quaint relic of darker ages (at least it must be agreed by all that

days of yore were leas colorful},

~2,1=

2. Corrections to the <H£>

2.1 Introduction

In a typical e+e- annihilation event, the wvirtual photon decays into a
q and q, which then travel outwards, emitting gluons at a logarithmically-
increasing rate until they reach a distance of order 1/h ~ 2 Gev-l, at which
time the expanding system of quarks and gluons begins to condense into hadrons.
This transition from a phase consisting of quarks and gluons to one in which
thease appear only clustered into color-singlet hadrons is beyond the perturb-
ative methods that we discuss here. The purpose of constdering infrared stable
observables i3 to avoid these non-petrturbative complications,

The most obvious example of an infrared stable observable is the total
cross-section (o). This 1s the total decay vate of the virtual photon. In
the simplest (Born) approximation, one would compute just the process y* + qq,
using plane waves for the q, g wavefunctions. However, final state interac-
tions modify the q and q wavefunctions even at the moment of the decay. (This
seemingly acausal behavior 1s, of course, a standard feature of quantum mechan-
ical processes.) The modification may be found roughly by solving the Dirac
equation for the q, q wavefunctions in a potential which represents their final
state Interaction. This interaction has two basic parts: at small distances,
it corresponds to the emission and exchange of gluons in a manner amenable
to perturbative treatment, while at distances around 1/A and beyond, it muse
account for the non-perturbative effects by which quarks and gluons are com-
bined into hadrons, Typically, the modification to o due to final state in-
teractions batween the q and q i given by {8 is the square of the e+e- C.Mm.

energy) (4]
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" ds' _&(s"
9(8) = o () jeml] =iz,

2, (2.1}

where §(a') 1s the phase shift for ag scattering. For large s', §({s') will
te domilnated by one-gluon processes and will be of order LA However, when s’

becomes smaller tham about A2, the qq interaction will become very strong,

and §(s8') will be of order one. The contribution to the integral (2.1) from this

2 G111 be of order Azla, while the contribution

second region at energies s >> A
from the first (perturbative) reglon will be of order ag [F2.1}. Hence, be-
cause the wavefunctions of the quarks at the time of the y* decay are not
slgnificantly affected by final state interactions which occur at much later
times, it would be possible to comphte o from éerturbation theory considering
only quark and gluon final states at least up to terms éf order A2/s arising
from interactions in the final state at large times., The perturbative final
state interactlons occurring between the q and E should tend to enhance o over

its O(G:) Born approximation value, since in a color singlet atate, one-gluon

exchange between a q and E will be attractive. To order as the result for

¢ils o= ao(l + as(a)ln), where by uaing the 'running coupling constant’ aa(s) ~

l.Silog(alﬂz), one hes summed up a set of logarithmic terms in higher orders

of perturbation theory which are remnants of infrared divergences that canceled
because of the color singlet nature of the initial state (y*). HNote that if
the qq had been in a calor octet state, the final state interactions would

have been repulsive, giving o = 00(1 - us(s)/6n) to O(as) [F2.2]. When v5

is of order A, us(a) becomesa large and the perturbation series becomes useless
80 that ¢ cannot be estimated reliably [F2.3]., The point at which the pertur~
bation expansion for ¢ breaks down depends on the actual numerical coefficients

at each order in L As discussed in Sec. 2.5, it appears, however, that with

-2,3-

& suitable definition of LI the perturbation series for o should be teliable
until oy becomes of order one. Inasmuch as the reault for o depends on the
definition of ay it is only useful 1f the same definition renders the pertur-
bation series for other processes or other measuremencs similarly reliable,
80 that the value of as may be extracted from experimental data in one case
and then used to make predictions in another.

We argued above that the cross-section o shoﬁld be well approximated
by perturbation theory ignoring hadronic effects for s >>'A2. However
perturbation theory also ceases to be reliable close to thresholds of, for
example, new flavor production. In this cage, the energy denominator in eq.
(2.1) 1is modified toughly by 8 - s - 4 mé, In fact, large distance (non-
perturbative) effects are probably important in ¢ for a range in energy (/3)
of order A above each threshold. (The corresponding range in s is therefore
of order 4 mQA.) Moreover, the perturbation series close to a threshold will

be an expansion in as/v (v is the relative velocity between the primary par-

ticles produced) and so cannot be used. However, as discussed in Sec, 2,2,

both these effects, which afflict the <HL> a8 well as ¢, may be tamed by aver-
aging both experimental and theoretical results over A range of energies.

In cthe calculation of the total crogg=-section, the differential cross-
gsection is integrated over the final state phase space with a uniform welghting,
To obtain more information on the structure of e+e_ annthilation, one must
instead perform the integration using the shape parameters H2 as welghts so
as to obtain the <H£>. The H1 welghting of phase space is sufficiently smooth

that the infrared divergences which canceled in the calculation of g still

«cancel in <H£>. Recalling from (1.1} the definition of the HL’ one sees that

as & increases, the HE vary more rapidly in phase space. For large &, the

Legendre polynomials P, (cos$) may be approximated as 1 for |4] < 2/8, -1*
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for |n - ¢| £ 2/% and zerc elsewhere. Hence, emissions of particles at angles
less than about 2/% will not affect the values of the “L for large %, since

two particles whose momenta are less than an angle 2/% apart will act as one
particle with the sum of their momenta, At a c¢,m.s, time t after the decay of
the virtual photeon, the energies of the quarks and gluons are such that the typi-

cal angles of emissfon are of order 1/(1vs). The values of the i, for an event

should, therefore, remain roughly unchanged by processes cccurring at times greater

than about £/v¥s. Thus the <H£> are sensitive only to the structure of events
at distances smaller than about 1//; and, hence, for small % and large Y8
should be insensitive to the formation of hadrons at diatances of order l/A.
(In practice, a more accurate estimate of the times probed by the <H£> ia
z/(f;¥z>} where <z>» 1s the mean momentum of & parton at a time of ordex 1//;.)
In Sec, 2.4, we make some crude eatimates of the onset of fragmentation effects
in the <H£> at small /3, HNote that our discussion of the distance scales to
which the <Hm> are sensitive is essentially classical whereas quantum mechanics
was required for analogous considerations on d.

At high Vs and sufficiently small % chat fragmentation is unimportant,
the <H£> remain constant with s except for the logarithmic variation of as(s).
As /s decreases (or % increases), this scaling is violated by the presence
of the fixed confinement mass scale A. This introduces correcticns to the
<H£> of order (Azls)p. Another cause of acaling viclationa is the presgence
of effective masses for quarks and gluons which {ntreduce corrections of order
(mz(t)/s)p. For ¢, such corrections are always of order mzls; but for the
mean values of shape parameters, we find in Sec. 2.3 that they are instead
typically of order Az-l.s-.

The sensitivity of the <H£> for high £ to the structure of eventa at large

timea affects perturbative calculations even if the relevant times are less

~2.5=-

than those at which fragmentation occurs. Above we found that the <H£> are
sensitive only to emiasions at angles larger than about 1/f#. For the q and
q produced in the continuum e+e- annihilation process e+e- + qq{(GG...), we
show in Sec. 3 that the probability for deflection of the q or q through an
angle greater than 6 is of order aslogze to O(us) so that the corresponding
<H£> (which in this case receive their deminant contribution from the q and
a via the peak in the P£ cloge to cesf = -1) are of order 1 - caslogzz. For
large &, the logarithms become so large that keeping only a few terms in the
perturbation series for <H£> becomes unreliable, However, the leadipng terms
of order [uslogztln in the perturbation expansion exponentlate, and may be

summed to all orders in @ vielding the result <H,> =~ 1/2 [1 + (-l)zexp(-8us/

£
a (a/2iah P

3z logzx) + 0 2 ) 3]1. The leading log pare of this goes to zero as

a_(s/A%)
I goes to infinigy, reflecting the physical result that the probabilicy for
the 4 and q in ete” o q4(GG...) to emerge exactly back-to-back vanishes: in
this approximation, the q and q are always emitted outside the infinitesimal

cone aampled by the H Of course, our leading log perturbative calculations

e
of the <H1> for large & cannot be trusted unless they probe only times much
ghorter than 1/A; at larger times, hadronization and subleading log effects
are Iimportant. In practice, therefore, the estimates are relevant only for
L << V8/A. The <H,> for ete” o+ qq(GG...) are dominated by the contribution
from the cross~term between the nearly back-to-back q and q in the sum (1.1},
For processes in which the minimum number of particles produced is wmore than
two (e.g., & + GGG(GG...)}, the contribution to the <H£> from pairs of par-
ticles which are-back-to—back within an angle 1/% {(corresponding to the width

of the backward peak in Pg(cose)) no longer appears, and instead the <HL> probe

the fraction of the energy im each jet which is within an angle 1/% about its
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axis (they are chen dominated by cross-terms in (1.1) between particles in the
same jet, and less than an angle 1/% apart). Whereas the probability for
deflection of two back-to-back jets 1s of order aslogze, the probability for
most of the energy of a single jet to be restricted to a cone of angle 9 is
rather of order asloge. As discuased in Sec. 3, the [asloge]n terma at each
order in ag aleo exponentiate to a form {lcg(ﬂzslhz)]p. We find that for

0.61

% + GGG, the <H, > == 0,14 llog(slﬁz)!lasﬁallzhz)] for large 2.

%
As mentioned above, the <H£> for large 2 probe the structure of events
at small angular scales corresponding to large timea, They can, therefore,

provide a characterization of the energy distributions inside jets in a way

that does not require the axis of the jet to be found, The <H,> ghould decreage

2
slowly with 4 as shown in Fig. 3.3 over the reglon for which perturbation theory

(with leading logs summed) is valld and ahould then level off as the intrinsic
scale provided by confinement is probed,

An e+e- annihilation event may be considered to consist of three basic
regiona. At ghort diatances, only a few large-angle gluon emisaions may occur,
and the aystem is well-described by low-order perturbation theory., At larger
distances, the rate of emissions increases and the leading log terms in the
perturbation series must be summed. Finally, when many emissions have degraded
the energies of quarks and gluons until they are of order A, confinement occurs
and the quarks and gluons condense into hadrons. This last stage is entirely
universal to all processes: at least locally there is no trace of the nature
of the subprocess in which the quarks and gluans were produced. The behavior
of the event at the leading log stage ia also to some extent universal. Once
the energies have been degraded so thet leading logs dominate, only small angle
emissions occur and the jets of quarks and gluons in tﬁe events evolve inde~
pendently. (Note that, as discussed in Sec. 3, the details of this depend

critically on the gauge chosen for the gluon propagator.) Their evolution

2.7~

depends only on thelr original energy. This pleture of e+e_ annihilation
events suggests a procedure for estimating their structure (which we begin
to implement in Sec. 3.7). Since the behavior of events at large distances
cannot yet be determined from QCD, one must simply treat it phenomenologically.
Therefore, one should fit the parameters of a phenomenologlcal model for the
development of jets at some value of va by considering the eventa to consist
of jets corresponding to each of the partons produced at 1 < Tor T should
be chosen to be on the boundary between the loweat-order and leading-log re~
glons. Operationally, this may be done by treating particles as being in one
Jet Lf they cannot be resolved as separate by a detector of angular resolution
OCIITOJ;). Then to estimate the structure of events at another value of s,
scale T, 80 that tof: ls fixed, compute the Jets produced at times T < To and
then let each jet evelve according to the phenomenological model fitted to
similar jets of various energles at another value of vs. For single particle
distributions, it is well known that, in fact, T, may be chosen differently
at two values of /s, and the evolution of the Jet during the leading log stage
may be calculated using a renormalization group equation. The work of Ref,
[5] allowe this to be extended to n-particle distributions, from which the
complete evolution of the jet could, in principle, be reconstructed. However,
the leading log approximations necessary are unlikely to be adequate until
very high energies (/s » 100 GeV) are reached.

e+e- annihilation is one of the aimplest processes to analyze in QCD
because its initial state containe no colored particles., Whenever the initial
state containg colored partons {albelt collected into color singlet hadrons),
there are inevitably low-momentum spectator particles in any interaction, whose
effects may become visible beyond the leading log order in perturbation theory,

thereby spoiling perturbative predictions. As discussed in Sec, 2.7, however,
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the <H£> are less sensitive to such effects than is o. The <H.> and <C£) for considering only the cross-section smeared over a range of energies rather

2
deep inelaatic scattering will be discusaed in Ref, [6]. than at a particular /s. If Ni(s) is the vacuum polarization amplitude, then

one sultable smeaving of the cross-section is given by [7]
2.2 Thresholds

At the threshold of each new channel available for e'e” annihilation, — A s'c(s'dsg' 1
so(s,a) = = f —(—l—-—-z 5 = 57 (M(sttd) - M(a-ia)}, (2,2)
the total eross-section and <H,> will exhibit bumps. If the new channel cor- o {s-s")" +a
reaponds, for example, to having just one extra plon, then the bumpa will
where A represents the magnitude of the smearing; typically values of a few
probably be almost lmperceptible, However, the bumps associated with the
GeV (corresponding to us/v ~ 1 for the minimal set of particles at the thresh-
threshold for production of a new flavor will be much larger: their amplitudes
old) are sufficient. The smearing (2.2) amounts to considering the photon
will be of order the asymptotic change in the cross-section associated with
propagator only at complex invariant masses, in which two currents act at times
the threshold, Perturbation theory cannot, of course, describe the details
of order 1/A apart, so that Intermediate particles propagate only for Einite
of the bumps. 1It, however, exhibits its own peculisr behavior at thresholds.
time and, therefore, may not encounter the complicated hadronic effects which
In reglona where the observed cross-section is bumpy, neither it nor the <H£>

should, therefore, be compared directly with perturbation theory predictions

appear at large distances. In this way, all intermediate particles are held

off their mass shells so that no divergences appear. The same avoidance of

at each particular energy. Rather, only when both experimental data and per~

thregshold aingularities by smearing for o may alsc be used for the <H£>.

e depends on how the <H£> are defined,

We usually take the HE to be weighted with the three-momenta of the particles

turbation theory predictions have been suitably averaged over the range of
The precise threshold behavior of the <H

energles where bumps occur may a comparison be meaningful {7].

We first describe the behavior of perturbation theory close to thresholds.
in an event. In this case, <HL> will exhibit zevos, corresponding to isotropic
Near a threshold, (for example, for the production of a pair of heavy quarks
events, at threshold. However, if one considers either <H£/H°> or <H£> de-
(Q) [F2.4] or for the production of a Qf palr together with, say, four light
fined using energy, vather than momentum weightings, then the <H£> will take

quarks (q)), the long-range nature of the forces in perturbative QCD introduces
on a non-zero and extremely unstable value at thresholds, Since all infrared

{a /v)ilogj(v) terms at each order where v is the relative velocity between
8 congiderationa are for massless particles, these do not determine whether

the outgolng particles. The presence of these terms renders perturbation theory
energy or momentum weighting should be used.

useleas close to thresholds and presumably leads (directly for QED) to the
HWe discuss first the case in which the <H£> are defined using the momenta

existence of rescnances in the cross-section. The effects of these threshold
of the final state particles as weights. Here thresholds will correspond to

divergences may be removed (up to a high order in perturbation theory) by
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zeres of <H£>. The primaty reason for this is that threshold divergencea
appear only when particles have close to zero momentum {so that they ara near
in space for long enough to allow many exchanges), while in the <H£> the con-
tribution of a given particle is weighted by its momentum. Consider first

the process e'e + QJ(GG...) where Q ie a heavy quark, and an arbitrary number
of gluons are emitted. Relative to the cross-section in the absence of strong

interaction corrections, the rate for ete™ » Q3(GG...) near threshold ia

Zuus

v

v= /-4 mzls.

Q

o= o L+ * O(ag)),

(2.3)

In the ladder approximation, the result near threshold to all orders is known

(in analogy to the 'Sommerfeld factor' for QED [3])

z2

2ﬂaB LY Gy 4
%adder ™ %1 ek 7707 - 0a)) = (miﬁ—ﬁ)“o'
(2.4)
4waa
&= v 7

k
Some terms not included in this approximation will contain log (v). On the

other hand, the Hz (with momentum weighting) for the heavy quark pair near

threshold will be given roughly by (here |;Q| =~ my %)
HR. m% v2[1 + Pl(coso)] L vz. (% even) {2.5)

=0 (2 odd),

The presence of extra soft gluons introduces 0(v3) corrections to this, In

e+e‘ + QQ(6G....), thexefore, the 1/v threshold singularities are damped in

2,11~

the <H£>, which go smoothly to zero, corresponding to isotropic particle pro-
duction, as v + 0, The same phenomenon will ¢learly oceur at all other thresh-
olds, such as e'e -+ QQqq(6G...) [F2.5].

Both the pathologies of perturbation theory close to thresholds and
the obvious non-perturbative nature of the bumps in ¢ (and the <H1>) in these
regiona make it imperative to smear both perturbative theoretical predictions
and experimental resules for ¢ and the <H£> in & before comparing them, How-
ever, our results for the <Hz> of continuum e+e_ annihilation in Ref. [2} were
computed for qq(G) with mq = 0 and for Qf preduction (and decay) only to O(a:).
Hence the calculationa were not hampered by (us/v)k threshold singularities,
and the smearing need be applied ounly to the experimental data. 1In higher
orders, the perturbative calculations would also require smearing, Equation
(2.2) gives a possible form for the smeared rotal cross-gection. One can use

a similar definition for the smeared <H£>:

1] L]
<H£(s }=>ds

r— A e
<H >(s,4) = ;{ 5 (2.6)

(s—s')2 + a
It is for these observables that experimental results and theoretical calcu-
lations should be free of complications associated with heavy quark thresholds,
In the case of 0, the smeared ¢ was esgentially the difference batween the
vacuum polarization amplitude evaluated at two points in the complex s plane:
one LA above the teal s axis and one 1A below. Of course, it is trivial to
define a function which 1is analogous in this respect for the :ﬁ;;. However,

unlike N(s), this function will admit no direct physical interpretation and

cannot be computed using ordinary Feynman diagrams.
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2,3 Mass Corrections

In Sec, 2.1 we argued that the <H2> were typically sensitive to the struc-
ture of events at times less than about EI/;, s¢ that for large Ys and small
&, hadronic effects occurring at large distances should be irrelevant, In
the next two sections, we discuss two reaidual corrections of order (Azls)p
to the <H1> from large distance effects. 1In this gection, we consider correc-
tions which arise from the fact that hadronic effects occurring at times of
order 1/A should modify quark and gluon wavepackets even at short distances,
inposing a lower limit on their momenta as if they were confined in a region of
radius 1/A (10]. This phenomenon will give the quarks and gluons effective masses,
and in the remainder of this section, we consider the effects of such masses
on the <H£> and other shape parameters. Most of the effects which we find
arise simply from kinematics, and do not depend on the way in which the effec-
tive masses enter matrix elements.

The infrared finiteness of the total cross-section (o) and of the <H£>
means that when they are computed in QCD perturbation theory, all terms of
the type [log(mzls)]k (which diverge as m + 0) are arranged to cancel. In
this section we considetr the residual effects of finite effective masses for
final state quarks and gluons, which intreduce corrections of order (mzls)p
(or (mzls)pllos(mz/s)]k):o ¢ and the <H£)' These mass corrections cause g
and <H2> to have a (non-acaling) dependence on s over and above that associated
with the effective coupling as(a). We find that, whereas the leading correction
to o is of order (mzls). the leading corrections to the mean values of shaps
parameters tend rather to be of order ¢é§7:. That mass corrections are more
important for shape parameters than for the total cross-gection is to be ex-

pected, since, in the integration over the possible final state configurations,
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weighting with the H£ (ot other shape parameters) will probe to a greater
extent {more for higher &) the reglons of phase space In which the particles
have low energy than will a uniform weighting as used in the calculation of
o. It is, of course, for these low energy particles that a finite mass will
be most important, If the differential cross-section has infrared divergences
when some of the particles become soft, then these regions of phase space will
be further accentuated,

The dependence of the shape parameters <1 - H >, <H

2 3 107
and <35> [F2.6] for the process e+e_ + qqG on the effective gluon mass, /@s,

>, <1 - H <L - T>
iz shown in Fig. 2.1. The introduction of a finite gluon mass makes nearly
back-to-back qa production relatively less probable, so that the events become
more isotropic, and the mean values of shape parameters decrease. All these
parameters (except perhaps spherocity, which has many other problems) are aeen
to exhibit significant /B mass corrections for small B. The total cross-
section o is, however, required from power—counting theorems on the real part
of the vacuum polarization amplitude to suffer only 0(B) corrections. For
example, with quarks of effective mass /;;, the total cress-section fer e+e- -

qq(G) at large s is [11]

o 2
s 4 2 2
oo (L+=2(+12y - —33 (55— - 1 - 210”8 - logs)

2.7
+2(5 - 121ogv)y? + 0(%,8y) + ....) + 0ady).
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(The mass corrections may be obtained by computing diagrama with mass insertions
on the relevant lines; if the modified diagram is infrared divergent, then
logs appear [12],) No such result holds for the mean values of shape param-

eters, and, in fact, for small B:

2a

<H2>n-1+-j“—s-(33—4u2+121r/§+0(fy—)-I-....)
(2.8)
+0Gad),
a
1 8,3 _2n 2
Bpaig-FGp-3 f§+0(/~7)+....)+0(aa) 2.9)
while for thrust
28 3 rogs b b o? 21 2éy L aqe, 3
<> =1+ 55 (Tlogd gzt o8 (3) 2
+ Liz(%ﬂ) -8B O £ ) + 0(u:), (2.10)
0 L o 1
L1, (x) - deallow) g, 0 7 X
u 2
x i=1 i

Note that in moat of these cases, the next order mass corrections contain
0(8logs} and 0{ylogy), as well as Q(8) and O(y) terms. The origin of the /3
terma is in all cases somewhat subtle, Essentially they arise from the fact
that the constraint 2/f < %y <1+ 8 on the gluon energy in a qqC final state
involves /8, (The quark energies satisfy 0 < xl’2 <1 - 8, not involving vB.)

Then, when x, and x2 are close to one, the mean value of almest any obaervable
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which is proportional to particle energies will recelve contributions of order

/8. For <H,>, the integral which gives the VE term 1s

dxg dx, -8 loglxp? + ]

f

~ dx
T (z-2)x; 1
(2.11)
2
- %_ - 7/B + 0(8) + 0(8logg).

In the <“L>’ the leading mass corrections are of order VB for all g » 2, In
Sec, 2.6 we show that for large 4, the O(QB) termg in the <Hz> go roughly aa
1032(1/5). When B # 0, this becomes roughly 1082(1/1 + ¥/8/2), so that the
coefficients of /§ in the 0{a)) terms of the <H,> grow roughly linearly with

£. The /B terms are larger in the <H2L> by a factor arcund 4 compared to those
in the corresponding <H21_1>. VB terms apparently do not appear in the <H

25-17

if one approximates the differential cross—section and the form for Hygup b

those obtained in the limic g = @, This is in contrast to, for example, <H2>,
in which the vB term comes solely from use of the correct (8 # 0) limits for
the xl,2 integratfon. Note that in no case is the /B term affected by the use
of momentum, rather than energy weightings in the definitions of the shape
parameters,

The presence of /; corractions to the mean values of most shape parameters
for final states containing massive quarks is agaln egsentially a consequence
of the fact that the minimum quark energies are proportional to Yy for small

Yt 27y €x <1 (0 =x, <1 - 4y),
1,2

3

+ -
The existence of 2/3 mass corrections to shape parameters for e & -

4q(G) is related to the preaence of infrared divergences in the differential
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crosa-gsection In regions where the energies of some final acate particles atre
dominated by their masses, In procesases such as § -+ GGG, where, to lowest
order, no infrared divergences appear, /8 mass corrections are absent, at least
in <H2>. despite the presence of VB terme in kinematic constraints (2/8 < x <
1 - 38).

It appears that large mass corrections are an inevitable feature of the

mean values of any observables which are sensitive to the structure of final

astates,

2.4 Hadronization Effects

The argument given in Sec. 2.1 for the insensitivity of the <Hz> to the
gtructure of events at large distances was based on the fact that they are sen-
sitive only to large angle (8 » 2/1) emissions, which do not occur at large
times. The condensation of quarks and gluons into hadrons typically leads to
emissions of roughly fixed average transverse momentum (~ A)., These emissions
are therefore at angles 0(A/J§3, leading to corrections to the <H£> of order

(Azla)P. To estimate theae corrections for <H,>, we approximate a jet as a

eylinder of particles distributed symmetrically in azimuth, and all with trans-

verse momentum kT' Then
Zkp
1 3 2 2
Hy, =% | (2, - 5 ¢ 2 )|, (2.12a)
where
2B, 2
2, - =, o S (2.12b)
a2l

To obtain <H,>, one must average over the longitudinal momentum spectrum:
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dz %D(z) ~ 23 <n>/1og(/a/2k) (2.1%)

/ 5
2w/ Vs Zkp

where <n> is the mean multiplicity of the jet, Hence

2 .
k,
<Hy> ~ 1 - SV//;£ <n>llog(f§/2kT). (2.14)

Note that the origin of the fi%/a was similar to the origin of the ¥/ in eq.
(2.7): it came from integration over the angle made by the particle (=-2kT/z/§))

down to the kinematic lower limit., As % Iincreases, the coefficient of 2

/8
increases: for #(E;: £ 0.1 the 6 In the estimate (2.14) becomes roughly
L{2 + 1). This considerably overestimates the effects of fragmentation for
large % found with a more realistic model [2].

For latge £, the <H£> probe the structure of events on angular scales
of order 1/%. 1In perturbation theory, the mean energy in a hadron jet within
an angle & diverges logarithmically as 6 + ¢, However, both fragmemtation
and finite quark/gluon masses introduce an intrinsic scale {cutoff) in the
jet, so that the leg(8) terms are damped at small 8 roughly like log(9 + &)
or log(f + /E), where § 18 the 'tresolution' or angular spread associated with
fragmentation, which is presumably of order J{§7:. From these considerations,
we expect that at large £, the <HL> for hadronie events will tend te a constant
value which characterizes the angular 'resolution' assoclated with the process
of fragmentation into hadrons. This limit should depend only on the energies
of the jets in the events, and not on the details of the subprocess which

produced them. An experimental measurement of the <H,> for large £ can be

2
considered as determining the energy distributions inside jets, but without

explicitly finding their axes.
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2,5 Higher-order Terms in the Parturbation Series

We now discuss the third basic correction to estimates of ¢ and the <H£>
derived from low=-order perturbatlon theory: the effect of higher-order terms

in the perturbation serdies, For the total cross-section, the perturbation

geriea is

2
a (8} a_(a)
E— o)+ O(u:)) {2,15a)

g = ao(l +

where (F 18 the number of active quark flavors) {13]

ca=2.0-01VF (2.15b)

41

(11 - % Blog(a/n?) + (29538, 10g10g(a/07) ]

03(8) - (2.15¢)

The value of ¢ depends on the renormalization prescription used in obraining

it, Equation (2.15b) ie for the truncated minimal subtraction scheme [13] [F2.8].

The parameter A obtained by fitting data to the form (2.12) and ignoring yet
uncaleulated 0(03) and higher terms should be close to the value deduced from
studies of other processes (e.g., deep inelastic scattering) by fitting to
analogous forms, and with the analogous constants ¢ calculated using the same
renormalization prescription, This provides an important teat of perturbative
methods in QCD. Note that the values of A deduced from different processes
using forms such as 2.15) but with the 0(a§) terms ignored need not even be
nearly equal, The effective values of A deduced by this procedure will differ

by exponentials of the O(uz) coefficients, Inatead of considexiag.che effective
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values of A to differ, one may, of course, keep A fixed, but evaluate a_ at
an energy given by some number times s,

By using ua(s) in eq. (2.15a), one has implicitly summed all the leading
logarithmic terms (n'[uslog(s/uz)]k. where u 18 a renormalization mags) in
;he eross-section as calculated by perturbation theory, The form of these
leading logarithmic terms 1s determined by the renormalization group equation
(independence of QZ) once the coefficlent of a (in thie case 1/v) in the
perturbation geries is known. Knowledge of the comstant ¢ (together with the

loglog(slhz) terms in (2.15¢) from B({g) to 0(35)) is sufficient to allow

correct account to be taken also of subleading logarithmic terms {~ a:logk_l(a/uz)),

again using the renormalization group equation,

For the <H£> a similar perturbative calculation may be made, For example,

for <a2> the result is

a (a)

a (s)
R N L S R e 0(a§), (2.16)

where the constant €y is not yet known [F2.9]. A knowledge of cy 18 necessary
to obtain a value of A from measurements of <H2> which can be compared with

values deduced in other ways (for example, from the total cross-~section for
+

e e annihilation). For a perturbative estimate of <H2

1e necesgary that successive terms in the perturbation series be, on average,

> to be reliable, it

smaller. At sufficiently high values of /s, aa(a) will be so0 small that this
is inevitable. Hewever, at practical valuea of s, ua(s) may hot be small
enough that perturbation theory is useful, The numerical size of the coeffi-
cients of a: at each order in the perturbation series determine {ts domain
of applicability. We shall ignore the eventual k! uz divergence of perturba-~

tion theory in very high orders, and hope that precursors of this behavior
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in low orders will net affect our caleulations., The first indication as te
the aceuracy of perturbation theory comes from the coefficient of a_  in the
perturbation series. For <H2>, this coefficient is tolerably small (= ~1,4),
but for the <H£> with large & it becomes uncontrollably large, growing like
1032(1). In the next section, we describe a method for summing the leading

offensive (0((aslogzs)k)) terms in <“E> to all orders in s thereby finding

2) p

1 N 2 ﬂs(sll

>~ (L + (=1)"exp{-8a_/32log" (2}) + O|(——F=—) |, whose leading term
Ly amd 8 a, (s)

goes to zero ag % goes to infinity, quite contrary to the divergent behavier

<K

of each term in the perturbation series, However, as discussed in Sec, 3,

the leading terms do not provide accurate estimates of all higher order effects
as &+ », In addition, we have no flrm guarantee that the higher-order terms
in <H2> do not conspire to be numerically important. The fact that the coef-
flclents of a, and u: in ¢ given in eq, (2.15) are both small in the 'trum-
cated minimal subtraction scheme' {F2.8)] inspires some hope that the relevant
0(«2) and higher terms will also be small, and that the O(u:) estimate for

o will be accurate, Note that the coefficient of u: in ¢ or in the <H£>
dependa on the renormalization prescription used in its calculation. The
'truncated minimal subtraction' scheme waa chosen for o because it gave a
reasonably small value for ¢, so that neglect of higher order terms was gen-
sible. 1If the value of A deduced from experimental measurements of ¢ using
calculations in this scheme is to be used in estimating the <H£>, then it is
necessary that the coefficlents of “2 for the <H£> calculated in the scheme
are small epough that neglect of higher order terms 1s reasomable., Some
indication that the <H£> for emall &t do not receive large G(ai) contributions
comes from the result that O(ai) terms appear to lead only to small modifi-
cations to the O(as) two and three jet structure in e+e- annihilation, In

- - - = 2
particular, calculations indicate that efe™ o 4q4GG and qqq'q’' events at O(as)

are mostly nearly coplanar [15],
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2.4 HL Distributions, Phase Space Final States, QED Radiative Corrections

and An Analogy with Electromagnetic Showers (the Gallimaufry Within)

In Sec, 3, we discuss the <“i> for large £, and show that to O(aa), the
<H£> for e+e- > qa(G) behave like 1 - (4asl3n)log2(£). This decrease in the
<H£> at large L is reflected in a broadening of the distribution of events
in H, (l/oodoldHﬁ) at large . These distributions for & from 2 to 10 were
gilven in Fig. 30 of Ref. [2]; the movement of events from around the peak (at
Hﬁ = 1(0) for 1 even{odd}) to other values of HL a8 L Iincreases is evident there.
This behavior may be understood qualitatively from the fact as £ increases,
the Hg probe the structure of events on smaller and smaller angular scales.

The distributions of events In Hl represent roughly the distributions of energy
within jets (see Sec., 3 for z more precise discussion) [F2.10). As L becomes
larger, the distributions in H2 give a progressively magnified representation

of the jet energy distributions. Despite the increase of the width of the

peak in H2 distributions for e+e- -+ qE(G) at large %, the extreme value of

Hz away from the peak does not change significantly with &. One finds that

for large %, Min[Hzﬁl + 0,18 while Max[sz_l] + 0,61, These limits are approached
quickly as % increagses, They are determined by the extramal values of the
Legendre pelynomials, and, for example, Min[ﬂzz] - (1 + ZMin[PZL(x\]) [F2.11],
These results hold, of course, only for three-particle final states. For
larger numbers of particles, the range of the H1 extends rapidly te fill the
interval {0,}].

In general, the basic structure of the final states from any QCD process
roughly preserves the sttucture obtained at the lowest order in G since
infrared divergences tend to concentrate the higher-order emissions into jets
along the directions of the partons at lowest order., The structure of events

at the lowest order in e 1s usually well-approximated by distributing the
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final state particles uniforaly in the available phase space (appropriate for
their muleciplicity). For two-particle final states, only one point in phase
space 18, of courge, allowed énd, as usual, }I£ = 0{1} for % odd{even), The
processes e+e— -+ qa(GG...) usually lead to two jets and, therefore, roughly
preserve the lowest-order results for the <H£>. However, as £ increases, the
<HL) become progreasively more sensitive to the detalled structure of the
events and probe the internal constitution of the jets so that the lowest order
structure s lost, For three-particle events, a phase space distribution gives

<H,> = (312-29) = 0,61

2

<H> = (7572-740) = 0.22 (2.17)

3

<H_> = 3/8 = 0.375.

Note the extreme similarity between these results and those for ¢ » GGG at

lowest order (<Hz> e 0.62, <H,> = 0,22, <H > =~ 0.3751), In higher orders of LI

3
the <HL> for large & again deviate significantly from the lowest-order results
or from the phase space approximation to them. For an n particle final state
distributed uniformly in phase space, the <H£> sre approximately 1/n so that
as n + «, the vsual result <H£> =0 (2 # 0) for a genuinely isotroplc system
is regaiuned.

For a three~particle final state generated uniformly in phase space, the

energy correlation function is given by (compare the results for QCD processes

given in Appendix A)
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<FBE (0> = ( 2:)5 {0Pr10x413) 10 B + 3(1-0) (k)
-
3
+ oy -0, (2.18)

<F5E(0)> ~ 24(1310g2-9) ~ 0.26.
Hear y = -1, <th(x)> in this case becomes
-3[1og(l§Xa +3+ ..., (2.1%)

This integrable divergence has its origins in the Jacobian from the differen-
tial cross-section in {xl’ x2) to that in (xl, %¥). Near x = +1, the regular
part of <th(x)> tends to 1/10. These results are again very similar to those
for 7 » GGG at lowest order, given in Appendix A. When a phase~space generated
final state contains more than three particles, the Jacoblan divergence at
X = -1 visible in eq. (2.19) (and which becomes §(1+yx)} for a two-~particle final
state) disappears, This occurs even for the rather constrained 6 particle
final state discussed in Appendix A (eq. A.16), <F§t(x)> becomes progressively
flatter as the multiplicity of the final state increases and for a truly iso-
tropic final state containing an infinlte number of particles, th(x) =1,
Although it is unfortunately not especially apposite, we now make a brief
digression regarding electromagnetic radiative corrections. For g, one must
conslder QED corrections due to emission from both the initial (e+e') atate
and from the final state, together with corrections to the virtual photon
propagator [F2,12], For the <H£>, only QED correcticna which change the

configuration of the final state need be considered. These are of two types:
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photon emission from the final state and photon emission from the Initial
state, glving the virtual photon a non-zero three-momentum in the e+e- c,m,
aystem. The Interference between these two processes 18 negligible., The
first type of correction may be computed to first order in direct analogy to
gluon emission correctiens. For e+e~ > qa, photon emission from the final

atate modifies <H2> to <H2> ] + aem(s)/(Zu)(33-&n2) + O(uz), while for large

o
e

8)
2, the <H21> become roughly (see Sec. 3} <H2 > =] - —-%L—— 1032(21). (These

£
estimates are probably less accurate than thoss for gluon emisaions since,
whereas the Einal state is a color singlet, it still contains charged parti-
cles which continue to emit photons at all times.) Photon emission from the
initial state boosts the final atate by giving the y* a non-zero three-momentum

in the e+e- c,m.8. and corrects <H,,> by an amount of order uem(s)log(s/cz) and

2%
roughly independent of %, where € is the energy resolution of the incoming

e+, e beama (c.f., some of the diacussion of colored initial states in the
next section), WNote that all these QED radiative corrections to event shapes
are usually much amaller than the QCD ones.

OQur discussion of the development of a jet 1ln QCD bears many qualitative
similarities to the standard treatment [16] of the development of electromag-
netic showers in matter. Here we make a very brief exploration into this
analogy. An electromagnetic shower i3 initiated by the entry of a high-energy
electron or photon into material. At filrst, electrons lose energy by Brems-
strahlung and photons by palr creation (or Compton scattering, at lower en-
ergles)., The secondary particles produced by thege processes then themselves
radiate, as de theilr progeny, and a cascade or shower of electrons and photons
is formed. Eventually, when the energles of individual electrons or photons

have been degraded by radiations to below some critical energy, governed by

the binding energies (inverse slzes) of atoms in the particular material, but
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independent of the original constitution of the shower, they will be absorbed
(through atomic excitation or fonization) and will disappear from the shower,
The development of a QCD jet as described in Sec. 2.1 is in many respects very
similar to the formation of an electromagnetlc shower in matter. A quark or
gluon produced in the primary (short distance) interaction radiates its energy
into a shower of partons which presumably condense into hadrons in a universal
manner when their energies have been degraded below about A (which gives the
inverse gize of the hadrons formed)., This final step may picturesquely be
considered as the dissipation of the jet's energy in the QCD vacuum. The
longitudinal development of a QCD jet {in the perturbative (or non-dissipative)
region) is described by Altarelli-Parisi or diffusion differential equations
which are extremely similar to those used in calculations of longitudinal
electromagnetic shower shapes (in fact, ‘'anomalous dimensicns' and the method
of moments were introduced for shower analyses [17] long before their use in
QCD}. The transverse distribution of energy in electromagnetic showers is
also roughly analogous to that expected for QCD jets (see Sec. 3), although
there is no direct analogue of the multiple Coulomb scattering of single elec-
trons (which 1a irrelevant for longlitudinal considerations) in the QCD case.
The photons emitted by an electron in Bremsstrahlung usually have wawvelengths
mu¢h smaller than the distance between emiasions, and may, therefore, be as-
sumed independent and incoherent., Similarly, the dominant emissions of gluons
by a quark are independent (leading log approximation), since their energies
are of rough order /;, whereas the Iinvariant mass of the intermedilate quark
line is typically of rough order A or /ng. (The first few gluons emitted

may be at distances ~ 1/v3, and muat therefore be considered coherently.)
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2.7 Processes with Colored Initial States

e+e_ annihilation is probably the simplest process to analyze in QCD,
because there is no color in the initial atate, so that, at least immediately
after the decay of the virtual photon, the final atate will consist only of
a qi pair. (In fact, two other processes with colorless initial states are
also avallable, but are experimentally less accesaible than e+e‘ annihilation.
The first 18 v + v, + hadrona, in which a virtual W rather than a virtual
photon decays to hadrons, and the second 1s yy + hadrong, which should be
accessible from e'e” + ate” + hadrons,} In a process such as deep inelastic
scattering (y*N - hadrons), the initial state contains colored particles,
For a QCD analysis of deep inelastic ascattering, it 1s convenient to make the
idealization that the initial state consists of a single isclated quark, rather
than of a nucleon, sc that it is not a color singlet. Thia idealization leads
to difficulties, however, In e'e annihilation, the total cross-section re-
mains finite when infrared cutoffs ave taken to zero, so long as all possible
final states have been included in its calculation. This is not the case for
the y*q total cross-section: even when all possible final states are included,
infrared divergences remain. They are canceled only if processes with extra
particles in the initial state, such as y*qG + q, are also taken into account.
Any colored object will always develop around itself a polarization cloud which
derves to screen its color. For example, a quark with high energy produced
in, say, y* + qd, will emit gluons which form a 'jet' around its direction,
and spread its energy and color out into & cone of finite angle. Eventually,

at times of order 1/A, many gluoms are exchanged between the q and q jets, so

that thelr color is completely canceled, and the system condenses into hadrons.
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Infrared stable obgervables are, of course, designed to be insensitive to this
large distance behavior.

For deep inelastlc scattering, the idealization that the initial state
conslsts simply of an isolated quark suffices in the caleculation of o or the
<Hz> if one works only to 0(02). However, at O(us(Qz)), one must include
the possibility that the initial quark carried with it a gluon. The ideal-
ization that the initial state has survived as an isolated quark for an infi-
nite time 18 no longer sufficlent. As higher orders of perturbation theory
are considered, so it is necessary to include the possibility that the initial
state congisted of a whole jet of quarks and gluons. This is the best approx~-
imation that perturbation theory can muster to the actual physical cage in
which the initial state i3 a nucleon. Just as at large times, the structure
of a final state jet is governed by nonperturbative hadronic phenomena, so
too will the structure of an initial jet, which has propagated from the infi-
nite past (in the perturbative, plane wave idealization), be determined by
nonpercturbative effects, The typical spread in energies and angles of the
initial state jet which ia supposed to represent a nucleon will be determined
by the size of the nucleon.

If no extra initial particles are considered, then the total cross-section
for y*q scattering at O(as) (obtained by adding real gluon emission diagrams
Y*q =+ qG with virtual corrections to y*q + q) containg terms of order uslog(s/uz),
where y is some finite (say, quark) mass retained to regularize infrared di-
vergences, If new processes involving extra initial particles (such as y*qG + qG)
are included, but the fnitial state is taken to have only a finite spatial
extent (e.g,, ~ L fm), so that particles in it are kept off their mass shells
by a small amcunt pz, then uslog(uzlpz) terms will be introduced, and the

leading terms in the total cross-section become 0(uelog(s/pz)) {F2,13}. The
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1og(pzlu2) terms arise from the propagation of nearly on-shell iIntermediate
particles. Their behavior is approximately independent of the hard scattering
process (the propagation of the particles is unaffected by disturbances at
distances much smaller than thelr wavelength) (F2.14]. Hence, the 103(8/92)
terms in ¢ (whose coefficients are the same as those of the log(pzluz) terms)
are algo independent of the short distance structure of the interaction.
There are G(log(a/pz)) terms associated with each of the initial "jets' of
partons corresponding to each coloted initial particle. These terms depend
only on the energy and nature of the corresponding initial particle and are
unaffected by the short distance structure of the interaction which the par-
ticle undergoes (e.g,, the structure of the y* coupling to the quark in deap
inelastic scattering). The universal log(s/pz) terms may thus be determined
from a study of one reaction at a particular energy and then factorized out
in comparisons with another energy or another process. When cross—sections
at two emergies are compared, log(sllsz) terns appear which may be summed

to all orders using the renormalization group equation,

It hag been proved [18] that all terms in total cross-sections involving
colored initial particles which are singular in the limit 92 {or ¢) tend to
zero are universal and may be factorized out in comparisons between different
processes. One may therefore hope that in comparisons between processes, only
their short distance structure will be probed, and there will be no dependence
(at least up to terms of order pZIQZ) on the detailed conatruction of the
initial hadrons (perhapa represented by boxes of quarks and gluons in pertur-
bation theory), It is clear that because of their close association with
divergent contributions to o, some details of the initial scate will be ir-
relevant. For example, doubling the diameter of the Inifcial box, so that

p2 - p2/6, will lead to log(4) terms which factorize just like the log(Qzlpz)
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terms. However, we cannot prove that all features of the initial state do
not contribute to comparisons between processes [F2.15}; there may still be
terms, even at O(us) (only the uslog(s/pz) terms are known to be universal),
which depend on the comstruction of the incoming wavepackets in a different
way in each process thereby rendering calculations on reactions involving
colored initial states (but taking unaccompanied incoming partons) irrelevant,
Such effects are potentially very damaging since they could depend on the
amplitudes (rather than just probabilities) for quarks and gluons in the
initial state to share thelr momenta in different ways., MNevertheless, one
may hope that such terms are of order pzfqz as they appear to be for deep
inelastic scattering,

For the (H£>' the gtructure of the initial state has s somewhat smalley

effect that on g, 1In ¢, the O(Gs) term in the perturbation expansion for a

process with initial coler already has a divergent coefficient of order log(slpz).

However, in <H£> the O(GS) term remains finite, and only at O(GZ) do diver-

gences appear. Note that because of the infrared stability of the <H,>, these

%
divergent terms should factorize in comparisons between different procesaes,
just as they do in 9. It is the non-logarithmic terms which accompany these
universal divergences that may be sensitive to detaille of the initial state,.

The fact that these appear only at order az in <H > renders them less impor-

2
tant than in ¢, Note that, just as there were JE mass correctlons to the
<Hg> in e+e- annihilation, so now we expect pzls corrections to the <H£> in
deep inelastic scattering. These terms will violate scaling for the <H£>

to a greater extent than the pzis terms in g,
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Section 2 -~ Footnotes

F2.1 Antiquaries (a term of respect according to one of the authors) may object
that rescattering corrections due to pomeron exchange do not fall off with

8. The conventional pomercn should presumably he regarded as a sum of gluon
exchanges, each of which has a sufficiently small momentum transfer that the
effective coupling assoclated with it 1s large. In the e+e- annihilation total
cross—-gection, the same sum of gluon exchanges presumably contributes. However,
gluon exchanges at small times will transfer momenta of order /;. 80 that their
effective couplings will be small, and will not build up the comventional
pomeron behavior. Of course, gluons exchanged at large times will have small
invariant masses and large couplings, but as described in the text, their
contribution is of order Azla. On the other hand, in hadron collisions, there
exist wee partons at all times, and exchanges between them will have large

effective couplings, so that the conventional pomeron behavior is generated,

F2.2 If the final state in the process e+e' + gq(G) is a color singlet, then
the color factor is Cpi vhile if it were a color octet, the color factor would
be cF(cF - cAIZ), whera cp (cA) are the quadratic Casimir invariants for the
quark {gluon) SU(B)color representations, and usually ep = 473, cy = 3. Care
must, of course, be taken to maintain gauge invariance with a color octet qE

source,

F2.3 By employlng the analytic properties of the complete photon propagator,
of which o is the imaginary part, it is, nevertheleas, possible to use pertur—

bation theory to compute integrals of ¢ over s which run right down to s = O.

F2.4 In the actual case of heavy quark pair production, the observed final
staces will presumably consist of the quark's decay producta, as discussed

in detail in [2].
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F2.5 One might guess that in the process efe” o Qqq(GG...) the cross-section
{and <H£>) would exhibit (us/v)k divergences whenever the qq.relative velocity
could be zere, This could oceur in the materialization of a high momentum
gluon with invariant mass &mz into a q and a q with equal three-momenta.
However, in the calculation of the diagrams, one must integrate over all mo-
menta and invariant masses of the gluon, so that the power singularities as-
soclated with process G* + qq when the gluon mass was fixed externally to be

close to ﬁmi (as in y* » Qﬁ) will be damped to the usual logarithmic ones.

¥2.6 For three-particle final atates, thrust (T) and spherceity (S) are given

respectively by (e.g., [9])

T = max(xl,xz,xs)

64 2
LN ,,_2 (1 - xl)(l - x2)(1 - "3)”" .

For an ete” - qq event, T = 1 and § = 0,

¥2.7 1t is clear from Fig. 2.1 that this point 1s only of formal relevance:
the -actual mass corrections in this case are quite as large as for other shape

parameters.

F2.8 Despite the fact that in a renormalizable theory, no physical predictions
can depend on the prescription for facterizing out ultraviolet divergences
(renormalization), it is, of course, first necessary to determine the coupling
constant, This may be done by fitring a theoretical calculation of some cross=-
section, obtalned using a particular renormalizaclion preseription, to an

experimental result for the cross-section. The value of the coupling comstant



=2,32 (footnotes)-

(characterized by A) deduced will depend on the prescription used Eor the
caleulation but should be the same as that obtained from another process uaing
the same method. (In QED, there 1s an obvious definition of a: the low
energy limit of a process auch as Cowpton scattering, where low-energy theo-
rems require that all higher-order terms in the perturbation series vanish.
For massleas fermions, or for a theory with large coupling in the infrared
regime, this convenient definition failla, and one must resort to more arbitrary
methods,) In the truncated minimal subtraction scheme, infrared and ultravi-
olet divergences are regularized by taking the dimensionality of spacetime

as 4 - ¢ {so that the Coulomb potential ezl{&wr] becomes ez(pr)el{(2n3/2-el
r(% = €))r] {where u is a tenormalization mass), which g regular in the
infrared (ultraviolet) region when ¢ is negative (positive)), and then essen-
tially subtracting all results at s = u2 (i.e., factorizing off ultraviolet
logs arising from distances < 1/u). In the usual winimal subtraction scheme,
for which only 1/e¢ terms are subtracted off, terms in y(~ 0.577) and log(4n)
appear, which are absent in the truncated scheme. This usual scheme gives

¢=7.4 ~0,4F,

F2,9 Its calculation would not be particularly simple. The trick of evaluating
the log divergent {0(1/c)} term in the real part of the vacuum polarization
amplitude to obtain the conatant ¢ in eq. (2.15) for ¢ can, of course, not be
used here. Instead one must explicitly integrate over phase space using “2

as a welght for the various possible final states: qq4CG, qqq'q' and qq6G.

One need not consider the qi final state, since it does not contribute to

<H2> - 1. For the qq6 final stace, the amplitude must be known te the one-loop
level, and an infrared cutoff (e.g., € = difference of number of dimensjions
from 4; a gluon mags nalvely introduced will destroy gauge invariance frrepa-

rably at this order) must be retained so as to regularize the divergences
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arising from integration over phase space for the four-particle Final states,
The mass introduced by the regularization procedure (subtraction point, mass
parameter in coupling away from ¢ = 0} will appear as the 'argument' of @
and at 0(u§) there will be an explicit 1og(slu2) term, whose coefficlent cor-
responds te the expansion of us(s) in terms of us(uz) at O(ag(uz)). Setting
u2 = g, the tower of terms O(aslog(s/uz))k are summed to all orders, and the
log at O(QE) disappears.

The calculation required to obtain <y is not beyond the capabilities of
modern algebraic and numerical computer programs. For example, the fully
differential cross-section for the four particle final state written in terms
of dot products of momenta as generated by GAMALG [14] occuples about 300 lines

of FORTRAN.

F2.10 Of course, this interpretation is not precise. For example, the spec-
tacular Jacobilan peaks visible in the Hz distributions do not in any way cor-
respond to features of Jet energy distributions. Note that beyond O(ua), the
complete distributions in Hg become generalized functions, as discussed in
Sec, 4.2 for <th(x)>; only when smeared over a small range are they physi-

cally meaningful.

F2,11 For large &, Min[Pzz(x)] tends to a limit of approximately =-0.40, which

is the value of Jo(x) at the first zero of Jl(x).

F2,12 Most of the QED corrections to o, in fact, cancel out when o(e+e- +
hadrons)/o(e+e_ + yTW7) 1e considered. However, close to the energies of
resonances in the hadron system, there will exist large QED cotrections even
in this case. Juat as for QCD cottections, theoretical predictiona and ex-
perimental results in this region must be smeared over energy before compar-

ison.
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F2.13 Note that in this plcture scaling violationa are a simple consequence

of the fact that the proton 1s a collection of partons whose transverse mo-
menta rather than anglea, with reapect teo the direction of the total momentum,
are bounded (i.e,, it is a cylinder of partons rather than a cone of them). This
leads to terms in the crosa-section of order log(Qzlk%). If only the angles

of the incoming partons were bounded, these would inatead be log(Qzl(Qzéz))

and would not change with Qz. Note that the presence of logs in the first

place arises from the fact that the transverse momenta of particles emitted

in the final atate are limited only by kinematics and may, therefore, run

up to Q2 yielding 1og(Q2I(kT)initin1) terms,

F2,14 Thie is snalogous to the case of ultraviolet logs. Their renormaliza-
tion is similar to the factorization of infrared logs. The structure of the
field around a point charged particle at very short distances is esgentially
unaffected by the interactions of the particle occurtring on much larger dis—
tance gcales. Hence the logarithmic divergences associated with the field

at very short dlstances will be universal to all interactions of the particle,
and may be factorized out, so that they will not appear in suitable comparisons
between processes. (Usually one chooses to take the charge and mass as the
standard 'processes' with which to compare others,) The renormalization mass
(subtraction point) typlcally gives the inverse distance below which log terms

contributing to a process will be factorized out,

F2.15 It is well known that use of different infrared (and ultraviolet)
regularization schemes can lead to different results for a particular process.
However, once the coupling conatant and the necessary distribution or fragmen-
tation functions have been defined, unambiguous predictions for other processes

should be possible, Tt is believed, on the basis of calculations which sum
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over degenerate final, but not initial, states, that comparisons between
proceases are independent of infrared regularization scheme, We point out
that this result has been proved only for infrared divergent terms and could

pethaps fail in a complete calculation which includes & sum over many pessible

initial states,
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Section 2 - Figure Captions

2,1 The mean values of various shape parameters for efe” qq(G) as a function

Dependence of mean shape parameters

+ — - .
of the mass /fs assumed for the gluon, S denotes apherocity and T, thrust for € e I CICI (G) on effeCTlve g |u0n
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3. The <H£> for Large & and their Estimation by Leading Log Summation

3.1 Introduction

As discussed at length in (2], all <(H1)P > are infrared stable: when
_computéd in QCD perturbation theory, they will tremain finite at each order
when infrared cutoffs used to regularize the contributions of individual di-
agrams are taken to zero. (This ia in contrast to, for example, <{Ei> (l.e,,
<th(1)>), which divergeas like 1032(6) as the angular resolution p:rameter
& is taken to zero.) However, the finite numerical resulta for the coefficient
of, say, oy in the perturbation series for the <(H£)P> may be numerically so
large as to vender the expansion useless. That such terms will be larger than
in the total croas-section is to be expected, since, in integration over final
state phase space, the HL give higher weight te regioms in which the differ~
ential cross-section 1s large (corresponding to kinematle configurations close
to those ih which it is divergent) than would the uniform weighting of phase

apace used to calculate ¢, For larger &, the H, vary more rapidly in phase

L
space, and give higher weight to configurations in which particles are nearly
collinear, and for which the differential cross-section is close to a diver-
gence, While this behavior causes the terms in the perturbation series for
<“L> to become very large at large L, it also allows a simple estimate for
the <H£> at all orders in perturbation theory. The reason for this is that
for large %, the <HL> probe the structure of events at very small angular
sceles so that they sample the cores of jets, which may be well deseribed by
a leading logarithmic approximation, Of course, thig gmall-gcale gtructure
is the most sensitive to fragmentation into hadrona, and £t i{s only at very
high energles (see below) that our perturbative calculation of the <a£> for

latge £ will be at all accurate,
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In Sec, 3.2 we obtain an estimate of the <H£> for large & in the process
e+e— + qg{G) (to O(us)) from the form of <th(x)>. We find that <H2£> ~
l-(&ua/3w)logzz for large £ in this case. In Sec., 3.5 we calculate <HL) for
e+e_ + qq{GG...) to all orders in uslogzl and find the exponentiated form <B£> ~
%(1+(-1)£exp(-8a8/3wlogzx)). The leading log techniques used are derived
in the preceding two sections. We also discuss there the gauge dependence
of the physical interpretation described in Sec. 2.1 which underlies the
calculation of Sec. 3.5. The (aslong.)k terms in the <H > for ete™ o qq(CG...)
arise from the region y =~ -1 in <?§t(x)>. In Sec, 3.6, we discuss the (aslogm)k
terms assoclated with the region x = +1, and obtain a leading log estimate
for the <H£> at large & from the decay £ + GGG(GG.,.). Some of these results
have also been derived using the 'jet calculus' of Ref, [5]. Our results
in Sec, 3.6 are used in Sec. 3.7 to discuss the average angular spread of
Jets produced in any process. Unfortunately (see especially Sec. 3.8), un-
certainties concerning subleading logarithmic terms severely limit the pre-
cision of absolutely-normalized predictions. Wevertheleas, in Sec. 3.8 we
apply our methods in estimating the b, spectrum of y* produced in hadron-
hadron ¢ollisions and related processes. Finally, in Sec. 3.9, we glve a
brief discusaion of the use of hard photons to probe the structure of e+e-

annihilation events,

3.2 Estimation of <H,> for efe™ 2 q3(6) from <th(x)>

In eatimating the behavior of the <H1> for large L, it is convenlent to
conagider the point-detector energy correlation function th(x) discussed in
Ref. (2] and defined by eqs. (1.2) and (4.9). We use the relation

1 1 pt
<H£> ol {1 Pl(x)<F2 (x)»dx. {3.1)

For large %, Pz(cosﬂ) may be roughly approximated by
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The third term in eq. (2.19) has two sources. First, it gives the contribution

P, (cosd) = 1 |8| < 2/ + - -
from O(Gﬂ) one~loop corrections to e e + qq, and second, at x = +1, it receives
. contributiona from e’e” + q3G events in which one of the final particles passes
= (=1} fn-8| < 2/2 {3.2)
through both coincident detectors. The constants C+1 both diverge logarithm-
ically as the infrared regulator (e.g., a fictitious gluon mass y) is taken
=0 otherwiae.

to zero, The coefficient C+1 of the delta function at y = +1 is given simply

by
« Hence to obtain an estimate for the <HL> at large i, one requires only the
2
behavior of <Fg:{x)> for % close to %1, cotresponding to energy correlations 251
C+1 - <E —os s (3.6)
between detectors which are either close together or back-to-back (anticol- i

linear). The exact form of <th(x)> for the process e+e— + qq(G) (given in

where the average 13 taken over both qq and qqG final states at O(ua). The
Appendix A) to order a, is

nonlinearity of the form (3.6) in the energles of the final particles means

16a 9 that in averaging over possible final atate configurations, collinear pairs
@005 = (800 + S0} + 2 —SCR
w (L) (L= of particles will be weighted differently from single particles which carry
4 1+ the sum of their momenta, For this reasen, the collinear divergences from
x {4(x +ﬁx+l)1og(—5x9 + 3(1~) (143y) } (3.3

qq and qqG final states will not cancel in (3.5}, and C+1 will diverge like

log(sluz) asg u2 goes to zero, One finda, in fact, that (§ = uzls and z(2) = nzlﬁ)
+ {C_ 8(1+x) + C ,6(1-x)).

=]

.o - Cyy =22 [log(d) + 2
The firat term here arises from the lowest-order process e € -+ qq. The second

3.7
term accounts for the three-particle final state process ete™ qq6. For

2a 8
2
y = -1, this term becomes + 52 [610g” (B) + 21 log(8) -~ 12¢(2) - 411 + 0(8)),
]
Zas 2103(1%10 3 However, the integral over y of the second term imn eq. (3.3) (regularized by

'W(—ﬁ?x')‘—"'(ﬁif‘”“”}’ {3.4)

the incroduction of a finite B) for <th(x)>, which arises from qEG final
states, also has a logarithmic divergence in 8 close to ¥ = +1, This diver-
while for yx =~ +1, the term is approximately pt

gence cancels against C+l when <F2 (x)> is integrated over x with a {(non-

singular) weight function, such as Pl(x). This is, of course, necessary in

a4
2 1 1. (3.5)

(1-x) ~ 30
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order that the <Hz> obtained from <Fgc(x)> using eq. (3.1) should be infrared
finice a8 u » 0.
The coefficient of the 0(08) delta function in the backward direction

(x = =1) is given by

2E,E,,
¢, = <] —1L, (3.8)

where 1' 18 a particle exactly back-to-back with i. This receives contribu-
tione only from loop corrections to e+e' + qq; in fact, it is aimply the total
eross-section for the process e+e_ + qE {or, equivalently, the quark electro-

magnetic form factor) {F3.1]:

=2a

C o=

=52 (1eg?®) + 3 10®) - L+ 202))

3.9
fagd 2 2
(+ =5~ (2og"(8) + log() ~ 1 - 2g(2)] + 0(8%)).

Once again, in integrals of <th(x)>. these divergences are canceled by cor-
responding divergences in integrala of the qqG contribution (3.4) to <th(x)>
around ¥ = -1, The presence of a 1032 divergence in the individual terms
around ¥ = ~1 18 a consequence of the fact that a qqG final state becomes
indistinguishable from qq if either one of the particle; becomes soft or a
pair of them are collinear. The intreduction of a finite quark mass regular-

izes the collinear divergences to 0(«3), a0 that c+ would then exhibit no

1
divergence, However, a siﬁgle log divergence would remain in C_l, which could
only be regularized by taking a finite gluon mass- (see [F3.1]).

Using the approximation (3.2) for the Legendre polynomials in eq. (3.1),

we obtain for large &
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<H, > o % fl

2 2
- ~142/2
, <F‘2’t(x)>dx + .K_;Lf / <th(x)>dx. (3.10)
a1

1-2/4

To O(G:), this gives for e+e_ + qq{(GG...) as usual

<HL> -1 {2 even)

(3.11)
=0 (£ odd).

The O(us) corrections to this are found by taking the O(as) terms in <th(x)>.
The integral of <th(x)> over ¥ with unic (Po(x)) weight 18 simply 2 (= 2Ho)

and has no O(us) corrections. We may, therefore, evaluate the integrals re-
quired in (3.10) by computing the integral of <th(x)> only up to x = #1 ¥ 2/12.
and subtracting the result from 2, thereby avoiding complications assoclated
with the cancellation of divergences at x = %1 and allowing us to use only

the second term in (3.3) for the calculation. The most singular terms in
<th(x)> are at x = -1; we keep only these terms, since they will dominate

in the limit £ + = with which we are here concerned. (In Sec. 3.7 we give

the exact result for the integral,) Then using eq. (3.4), we obtain simply

4a
<Hz> ™} o- 3;1 10321 + 0(uslog£) (% even)

(3.12)
da

8 2
T log™% + 0(331031) {4 odd}
for large %. This leading behavior for the <H£> at large L came from the terms
in <th(x)> which dominate for small angle emissiona, Thege terms have a
simple structure at O(QE) and in higher orders. Below, we make use of their

simplicity to obtain an approximation to the <H£> for large £ summed to all
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orders in o At O(GH), subleading terms in the large % limit arise both from
retaining the complete form of <th(x)>, rather than slmply the part most
singular as % + «, and from using exact forms for the Legendre polynomials
rather than the simple approximation (3.2). 1In fact, it turne out that, at
least for even £, the approximation (3.12) gives an accurate result for the
variation of the <Hg> with £ right down to &£ = 2, 1In Table 6§ of {2], we gave

numerical results for the <Hg> in the process e+e- + an with £ up to 10.

For even &, the formula
<Hp> =1 - (L.32 +0.43 log’e), (% even) (3.13)

provides a good f£it to these results. For odd i, a significant logt is also

required to obtain a satisfactory fit, although

<H

,> = a,(0.07 + 0.30 log?t) (1 odd) (3.14)

glves a rough fit. According to the leading log approximation (3.12), the
coefficient of 10321 should, in both cases, be ~ (.42 cs. The fact that the
<H.

2).f'> are better approximated by leading log terms than the <H > ias presum-

28-1
ably because the subleading log terms D(uslogl) cancel between the backward

{x = -1) and forward (x = +l) direction in the former but not the latter case.
From eq. (3.13), one sees that the leading log terms in <H1> dominate for

2 210. This indicates that the leading log approximation to perturbative

results should be reasonable for emigsions at angles & 10°.

3.3 Choices of Gauge in e+e— + qqG

The picture of e+e- annihilation events introduced in Sec, 2.1 took the

evolution of the various jets in an event to be independent at times sufficiently
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large that the leading logarithmic terms, which correspond to soft or collinear
emiasions, dominate, This picture emerges naturally from the relevant Feynman
diagrams when evaluated in an axial gauge. In this section, we discuss how

the details of the picture depend importantly on the particular gauge chosen
for the gluon propagator using the example of the process ete” 446.

In Table 3.1 we give the differential cross-section derived from each of
the three classes of diagrams for the square of the amplitude in the process
e+e_ + qqC with various choices for the gluon polarization sum (gauge). Of
course, the gauge invariance of the complete amplitude implies that the com-

plete cross-section (x; , = 2E; 2//;, where 1 2and 2 are the q and q):
E] H]

2, 2
g0 My TR (3.15)
& dx, T 31 (Tex) (1-xp)

obtained by summing the contributions from each diagram which should be inde-
pendent of the form chozen for the glucn polarization sum. Nevertheless, the
choice of gauge affects the diagrammatic interpretation of the results [20].
For example, in some gauges (e.g., gauge vector n = q-pllxl), the gluon may
be viewed in the leading log approximatfon as being emitted solely from one
of the quarks, whereas in other gauges (e.g., n = q), it appears to be emitted
with equal probability from each of the quarks, In e+e- + qqG (as in any
quantum mechanical process) interferences between amplitudes do not allow
one to determine unambiguously from which quark the gluon was emitted. The
choice of gauge may be considered to assoclate {at least to leading log ac-
curacy) each emitted gluon with a particular quark, (Note that, to obtain
positive partial cross-sections in Table 3.1, we have not included axial
gauges such as n = P Py in which n.k changes sign in the physical reglon,)
Physical predictions are obtained by integrating the differential cross-

seccion (3.15) over the regiea 1 - Xy %y = 1, 0 = x = 1. For example, the
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energy diatribution of quark 1 is given by integrating over Xps inserting a
guitable cutoff near the collinear divergence %y = 1. The leading terma found
will be of order los(aluz). where p 18 the cutoff. It is possible to choose
a gauge in which all such leading log terms come from diagrams containing gluon
emigsions only from quark 2, allowing a simple probabilistic interpretation
of the process. As discussed in Sec., 3.4, the total probability for the q and
3 in the process e'e” + q36 to be emitted more than an angle 8 from back-to-
back 18 of order 1032(0). Once again, it is possible to choose gauges in which
all contributions to these double logarithmic terms come only from a single
term in the squared amplitude.

The gauges which admit the clea;est physical interpretation are axial
gaugesa, in which n.e = 0, where n is some fixed four-vector which specifies
the gauge, and ¢ is the gluon polarization vector. In these gaugea, the gluon

polarization sum (numerator of propagator) is

z

nk +nk nk k
P~ ] eereg, - JJE'“ kJ)" + (3.16)
W oools, ¥ " : (n.k)

where k is the gluon momentum. MNote that kupuv = 0, indicating that one may
congider the gluon polarization vector ¢ to be orthogonal to the hyperplane
defined by n and k, so that the gluen has only its rightful two transverse
polarization states [F3.2]. This 1f, of course, manifest in the fact that at
kz =0, Pnﬂ = 2 in axial gauges, recording the two polarization states. {In
c@ntrast, Peynman gauge gives Puu = 4,) It 1s clear that the third term in
tﬁe axial propagator (3.16) cannot give a leading log contribution; however,
since all but one of the axial gauge entries in Table 3.1 have n2 =0, it
appears only in one case, for which we have given results obtained wicth and

without the term.
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The amplitude for an off-shell quark with invariant maas Yt to emit a
physical massless spin 1 gluon vanisghes like vT as t + 0. The spin non-flip
nature of the Yy coupling implies that the emission of a helieiry +1 gluon
from an on-shell massless quark is forbidden. 1In axfal gauges, only such
helieity +1 gluons appear so that collinear divergences are suppressed, In
the emission of unphysical helicity 0 (Coulomb-like) gluons, the collinear
divergences are not damped [¥3,3]. In gauges (such as Feynman gauge)} where
the sum over peolarization states includes conctributions from helieity 0 gluons,
spurious divergences are introduced into individual diagrams although these
naturally cancel out in the complete gauge-invariant cross-section, This
discussion allows one to understand the singularity structure of the partial
crosg-sections for e+e‘ > an contributed by the varlous diagrams given in
Table 3.1, Three types of singularities, which we denote Cl’ C2 and G, are
apparent. (:1'2 has the form l/(k+pl’2)2 o ll(l—xz’l) and corresponds to the
collinear infrared divergence sssociated with the emission of the gluon nearly
parallel to quark 1 or 2. € is a 'gauge' aingularity arising from the (n.k)
denominator in the definition (3.16}, Let us consider first a gemeral axial
gauge in which the vector n 18 not parallel to the four-momentum which either
of the quarks in the final state has when the gluon becomes collinear {two-
jet limit). The choices n = q and n = ¢q - palx3 made in Table 3.1 are examples
of this case, Here, the dlagrams D11 and D22 (which correapond to the squares
of the amplitudes for the gluon to be emitted from quarks 1 and 2, respectively)
exhibit the singularities ClG and CZG' The appearance of Ci, rather than (Ci)2
(= l/(l-xj)z) is a congequence of the suppression of collinear physical gluon
emission mentioned above. This same suppression insures that the interference
diagram D12 exhibits only the gauge singularity G. Now consider cholces of n

that become parallel to the q or q direction in the collinear gluon limit
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('collinear gaugea'). Examples of this in Table 3.1 aren = Py for which

G coincidea with Cl, and n = q - pllxl, for which 02 and G are the same, For
definiteness, we discuss the latter case. It is clear that in this gauge,

D11 exhibits boch C1 and C2 {i.e., G) aingularities while D12 and D22 exhibit
only 02 singularicies, One might naively have expected a (Cz)2 (from the
propagator and gauge singularities) slogularicy in D22' but this cannot be
present because 1t is absent in the sum of the dlagrams (3.15). In this gauge,
therefore, the double singularity appearing in the total cross-section is
completely accounted for by the single diagram Dll‘ The partial cress-section
Dll here, in fact, represents the complete leading log estimate for the e+e' >
498 cross-section; the gauge cholce n = q - pllxl allows the gluon to be
considered as emitted only from quark 1 in the leading log approximation.

A 'non-collinear' choice of axlial gauge, asuch as n = q, associates leading

log contributions with emissions from both the outgoing quarks (diagrams Dll
and 022). This is perhaps more natural physically (especially when n 1is chosen
te be symmetric in 12 and pz) but is more complicated in calculations, (The
caleulations of Sec. 3.4 involve more complicated integrals in such a gauge

but require no conceptual changes.} On the other hand, in Feynman gauge, the
diagram D

, and D__., C.C,. The appear-

exhibits the singularity Cl' D 1S9

11 220 & 12

ance of the double singularity in the interference diagram D 2 ig due to the

1

inclusion of unphysical helicity 0 gluons in the polarization sums, as discussed

above.

The extraction of singly-logarithmic predictions, such as the single quark
energy discribution, from the partial cross-sections in Table 3.1 is in all
cases simple. One may immediately identify which terms will lead to single
logarithms of the infrared cutoff when integrated over Xy OF X Howaver,

one must note that Xy dencminators may lead te log terms whose coefficients
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contain 6(1-x1 2). One might naively expect that only terms proporticnal to
¥

1 and xz. However,

it 18 clear that these terms do not give the complate lug2 resules (e.g., they

ll(l-xl)(l-xz) would contain log2 when integrated over x

appear to differ in the various gauges of Table 3,1), To obtain the correct
1032 resules, one must also retain 1/[(1-x1'2)x3] terma whenever the region of
integration includes the point L 1 in the limit that any infrared
cutoffs go to zero.

In investigations of the dlagrammatic structure of deep ilnelastic scat-
tering, it is often convenient to choose an axial gauge so that leading log
contributions (away from x = 1) come only from the squares of amplitudes in-
volving gluon emissions from the incoming rather than the outgoing quark [21].
One possible gauge for this purpose is defined by n = xp + q, where p is the
incoming quark momentum, q is the photon momentum, and x = |q2|/2p.q. The an-
alogue of this gauge in e+e- annihilation ia n = q - pljxl (forn=g¢q - pzlxz),
for which the leading log contributions will come solely from diagrams involv-
ing gluon emissions from quark 1 (or 2)., We will often use this gauge below
since it is convenlent for calculations. The resule that it identifies all
gluon emissions as being from one of the outgoing quarks survives to all orders
in LI although the proof that essentially uncrossed ladder diagrams dominate
the squared amplitude (necessary to derive our exponentiation results} is
slightly complicated but quite analogous to the case of deep inelastic scat-

tering [21].

3.4 The Leading Log Approximation for e+e‘ -+ gé!GG...!

We congider first the O(us) process ete™ & 946 in order to introduce the
methods to be used in higher orders, Let the q, q and G momenta ba Py Py and

Py respectively, and take ®y = 2Ei/f;. Then the differential cross-gsection
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for y* + qqG 1is given by

2,2
2a (x,4x.)
da - 8 1 "2 . (3.17)
dxldx 3 (l—xl)(l—xz) :

This can be cast into a form suitable for extension to higher orders by defin-

ing the Sudakov (light cone) variebles (with the J-axis defined by ;2 + 33)

-] 3
Pi + pi 4 J;

i
{3.18)
o
Py Py ™ yil;.
The Sudakov variables for particles 2 and 3 satisfy
2, ¥ 2, " 1
- - 2 2 .
Fpt 7y tm (=), Q7 = {pytpy) (3.19)

2,¥y % Zg¥y ™ 22{1-22)E - k%/s
z, = x, - E(1-x2)/(1-€),

vhere kT.is their tranaverse momentum with reapect to 32 + 33, which here ia
simply the direction of particle 1. Then the differential c¢ross-section (3.17)

A 2
may be rewritten in terms of zZy and the 23 invariant mass squared tQ as

28, (12d)  2Q1-2,(1-2,)) E(1+(1-z2)2)

dg 8 + 5.
dzzde I (l—zz) (l-zz) :

” (3.20)
t(l—zz)

This differential crogs-section is largest when the gluon is emitted with_small

transverse momentum and in this region the first term in eq. (3.20) dominates.
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Por any weighting of phase space which is not especially insensitive to the
small kT region, the differential cross-section (3,20) may, therefore, be
approximated by its first term. This is 2 convenient approximation because

at higher orders in as terms with the form of the first term in eq., (3.20)
iterate in a simple manner (at least when a prudent gauge is chosen) represent-
ing the independent emissions of many gluons from the q, q or both. The second
two terms in eq. (3.20) are important for large kp gluon emission and are the
precursors of correlations between gluons emitted at higher orders in a.

These terms may be dropped if only small kT emissiona are considered,

From Table 3.1 and the discussion in the previous section, it is clear
that one may choose a gauge for the gluon propagator {(e.g., an axial one with
n=gq - pzlxz) in which the leading log (i.e., first) term in eq. (3.20) arises
only from the diagram (022 in Table 3.1} where the gluon is emitted from quark
2. Terms in the cross-section arising from diagrams involving gluon emissions

from quark 1 do not contribute to leading log accuracy. One may then identify

‘the leading log part of the crosa-section (3.20) as the probability that a

quark of invariant mass Yt8 will propagate from its producticn in the y* decay
and emit a gluon so that its final energy is approximately 24 times its orig-
inal energy. Integrating over the possible invariant masses t=~g tol for
the virtual quark, the total prebability for its energy to be degraded by a
factor z in the emission of the gluon becomes

20 2
s 1+ 2z 8
-5 () leslSy, (3.21)

u
where y is an infrared regulator which imposes a lower iimit on the wirtual
quark invariant mass {e.g., allows only propagation for a Einite time). The

probability (3,21) is the standard Altarelli-Parisi [22] kernel which deacribes
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the degradation of the energy of a quark by gluon emissions., When more than
one gluon is emitted, eq. (3.21) gives the probability that at each emission
(of a nearly collinear gluon) the quark energy will decrease by a factor z.

Inatead of using an axial gauge in which all gluons may be taken to be
emitted from g single quark, one may choose a gauge (such as those specified
Y n=qorn=gq - palxa) in which diagrams involving emission from both of
the quarks contribute leading log terms. This makes for a more difficult
analysis but allows the physical interpretation of sowe radiation from each
of the quarks.

The crogs-section {3,20) is only for the process e+e_ + qqG. However,
at 0(08) there can alasoc be one-loop corrections to ete” > qq which contribute
to the total e+e- + qq(¢) cross-section only at t =0, z, = 1 (in higher
= £, and the relative longitudinal Sudakov

1+l i
= 1). By introducing Sudakov variables analogous to (3.19) in

orders, they contribute at &
variablg i
the internal loop integrations in these diagrams, one may write this leading

contribution to the total cross-section as

2a » 2
syl s L h iz, (3.22)
In ~8 [ 1 -2

where B is an Infrared regulator (e.g., § = uzfs, with p a fictitious gluon
mass). It is often permissible to include the virtual corrections by modifying
the form of the differential cross~gection (3.20). The leading part of the

modified crosa-section 18 simply
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da 321 l+z§ } EEE [(1+z§) N
iz,/, Ty, © 7 821

dzsz nt 2 It
as
2P (2 (3.23)
2nt 92

1
[ ), f2daz = [1 w2 (ECer-£ 0))dz.
Q ]

This modified form suffices in most practical cases. The form {3.23) will
only give the correct result for the contribution of virtual diagrame (involv-
ing ne explicit gluon emission) at zy " 1 if £ at this peint 1s permitted to
run right up to 1. For our applications, and for any case in which only the
kT of the gluon, rather than its angle, is considered, this condition will
be satisfled, and the form (3.23) may be used without reservation.

The leading log approximation to cross-sections for e+e- »qq +n gluons
(and the associated virtual diagrams) may be obtained by simple iteration of
the result (3.23). First, however, we must define the Sudakov variables for

the process, We take the ith

1(2)
ot

gluon emitted from the q(q) to have momentum
and the quark after the emission to have momentum pi(z) {see Fig, 3.1)

and invariant mass LFESER Then the Sudakov variables are given by the formulae

analogous to {3.19) where now 31_1 defines the 3-axis. The transverse momen-
tum of the ith gluon emitted with respect to the i-lth quark link is given
by

2
()

1= sl-z)(z, Ei-éiﬂ), €3.24)

with zg = (p:+pi)/(p:_1+pi_1). For our leading logarithmic approximations

to be valid, we must require at least
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Mle << (kp)re << 1, (3.25)
We now choose a gauge {e.g., n = q - plfxl) in which only diagrams involving
gluon emissions from one of the outgoing quarks give leading logarithmic con-—
tributions. TIn this case, it 1s clear that the differential cross—section
for the emfssion of n gluons may be written to leading log accuracy (independent

emission approximation) in the simple product form

)
1 dg 2, 1 8 1
= — G 5D ..
[+ dz}_....dzndtl...dtn tl
2 €3.26)
1+z )
0 s'n
[§S yamgy] ——]
n t

For our double logarithmic applications, it will be formally sufficient to
approximate all the “s(ti) by us(s). The crosa-gsection (3.26) is the standard
result for independent small angle emissions and also describes, for example,
the radiation of many photone by an electron (c.f., Sec. 2.6).

If instead we considered the radiation of gluons from a gluon line {form-
ing a gluon jet), then in eq. (3.23), qu is replaced by the G + G kernel which,

for cur doubly logarithmic purpeses, may be taken as
Z
- (i W2
PGG(Z) 3(l-z)+' (.27

This will be relevant for estimates of the <H£> in events containing gluon

jets (e.g., decays of QJ bound atates; see eq. (3.42) et seq) .,
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3.5 Leading Log Estimates for <th(x)> near x = -1 and <H;> in ete” qq(GG...}

In this section, we shall use the approximation (3.26) to the differential
cross«section for e+e- + qq{GG...) to obtain leading log estimates for the
behavior of <th(x)> around ¥ = -1 and hence for the <H£> at large %. <F;t(x)>
for x close to -1 is given in the leading log approximation simply by the
probability that the q and q produced in ete™ o qq{GG...) should be at angle
X» Gluons do not contribute to <F§t(x)> {except inasmuch as they are vespon-~
sible for the deflection of the quarks) since their energles may be neglected
in the leading log approximation; they give subleading log terms which we must
ignore in view of our other approximations.

Recall the definition (1.1) of the Hg. Since we ignore the energies of
the gluons, the <H£> for efe™ » qq(6G....) is given simply by (see also (3,1},

(3.2)
U= F R x>~ (1t L f 359 dx = (3.28)

where xqa is the cosine of the angle between the final directions of the gq
and E, and the second equality follows on using the‘approximation (3.,2) for
PL(X) a2t large &. Note that our leading log approximation for the efe” >
qq(GG..} differential croas—-section is valid only for small angle emissions
so that it could not give the <HL> at small & even 1f a more exact form for
Pl(x) were used., Equation (3,28) fmplies that at large £ the <H£> in e+e_ >
349(6G...) are approximately proportional to the total probability SB(O) that
the q and q produced are back-to-back (anticollinear) within an angle 68 = 2/2,
This condition implies that the emission of glucns by the q and q produced

in y* > qq must radiate a transverse momentum less than < 623/&. This requires
that any gluons emitted must be both soft and nearly collinear with the g,

q and, therefore, leads to double-log O(Iaalogzolk) terms in SB(B) and <H£>.
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In calculating sn(a) from the differential cross-section (3.26), it is
convenient to compute the total probability that gluon emissions deflect the
q and by an angle more than & away from the anticollinear configuration and
then to subtract this from one, In this way, one avoids the infrared diffi-
culties associated with a direct calculation in the small angle region. Such
a procedure is satisfactory for the caleulation of any infrared finite observ-

able, To 0(38). then SB(G) nay be obtained from the differential cross-gsection

(3.23):
20, 1 g 1-0%/4E x %, (42D
33(8) =1l-g= fz E—g ‘-‘m-;)—'— CIz2 (3.29)
8°/4
Baa 2
=] - I log™8,

in agreement with eq. (3.12). (The exact form is given in egs. (3.67) and
(3.69).) The energy correlation (3.4) near x = -1 is given (to leading log
accuracy) simply by the derivative of SB(G) with respect to x = -cos(6). In

eq. (3.29) we could have taken the numerator in the z_ integral to be simply

2

2; only terms singular in the limit z, + 1 contribute to our leading double

2
log approximation for 83(3). Note that 1 -~ z, gives the energy of the gluon
emitted, while £ glves its angle {dE/E = 2dn/n, where n 1s the angle between
the initial quark and the emitted gluon) so that the region z, -1, te=0
corresponds to emissions that are both soft and nearly collinear. In eq. (3.29)
we lgnored the variation of the coupling constant as(t) across the region of
the € integration since the corrections introduced at each order by allowing

a logarithmic variation of LN with t are of order log(ez)llog(slhz) relative

to the leading terms and may, therefore, formally be neglected in our leading

double log approximation. When we treat <th(x)> near ¥ = +1 in Sec. 3.5,
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the leading terms in each order will be singly logarithmic so that the wvari-
ation of a with t must be included.

We now extend the estimate (3.29) to all orders in a_ using the leading
log approximation (3.26) for the efe” » qq(GG...) differential cross-section.
To do this, we integrate the cross-section over 2, and Ei with the constraint

(dropping the irrelevant factor 4 dividing 02)
4 - 2
P -z, <8, (3.30)
i=]

where n is the total number of gluons emitted. Equation (3.30) is the condi-
tion that the transverse momentum radiated by the q, g £s less than 623. (As
discussed above, one may choose a gauge so that only diagrams fnvolving gluon
emigsions from one of the quarks need be considered in the leading log approx-

imation.) Equation (3.24) shows that in the region z, =~ 1 relevant for our

i
leading log approximation, the Ei gatisfy €1~1 - Ei' In fact, our approxima-
tions should only be wvalid if Aei_l 2 Ei where A << 1. However, the difference
between choosing these two kinematic constraints will be of order log(i)/log(8),
which ias formally of subleading log order, although in practice perhaps not
particularly small (see below), We may, therefore, use the simpler constraint
Ei-l -3 Ei to the level of our approximations. The integration over the kine-
matic region (3,.30) must be done with care, Conslder the ith emission and
define

2 i-1

02 =92 - T (1-z

. Wby Tt

g (3.31a)

Then, according to eq. (3.30), the required integration region is bounded by
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: 2 ” -
0 <2, =1, AMie st <ty ) (3.31b)

(l-zi)Ei < ai (3.31c)

which includes the point z, = 1, where virtual diagrams (involving virtual
corrections to gluon emisslon, or to the propagation of the quarks) as well

as real gluon emisaions, contribute. To integrate over the kinematie reglon
(3.31b,¢), correctly accounting for these virtual diagrams, 1s somewhat com—
plicated. It is simpler to use the analogue of the method of eq. (3.29) for
one gluon emission, which avolds direct integration over the difficult region.
For this purpose racall that, by the arguments given above, the leading double
log contributions from the 1t gluon emission cancel their 'soft' logarithms
agalnat those from the virtual correctiona to the correasponding quark line
when integrated over the full kinematic region (3.31b), without the restriction
(3.31c), leaving only single cellinear log terms, Hence the double log con=
tribution subject to the restriction (3.30) is given simply by minus the in-
tegral of the differential crose-section (3.26) over the region (3.31b), but

outside the boundaries (3.31c). The limits of this complementary region are

Juat
2 A ~
0«2 &1 -9 /¢, b, <ty <t ). (3.314)

In fact, one may take the ﬂc in these constraints as 6 to leading double log
accuracy, Now one may easily integrate the differential cross-section (3,26)
over the reglons (3,31d) for each gluon emiesion., Then, introducing the req-
uisite (-1)n to account for the fact that the integrals weré done over the
reglons (3,31d), complementary to the required region (3.30), the probability
that the q and q will be deflected from anticollinearity by an angle less than
8 by the emission of n gluons (with possible virtual corrections to these or

to the propagation of the quarks) becomes
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0" 4 2n, 2
(37- log”™ (87). (3.32)

2"t

Note that the 1/nt factor in this result 1s due to the kinematical ordering
of the 6y which restrices the phase space for gluon emission (operationally,
each double integral of 1032k(t1) glves a factor 1/(2k+1}). When summed over
n to account for all possible numbers of gluon emisatons, the form (3.32)

becomes an exponential, giving

8as 3
35(8) = exp[- 3 log (8)]. (3.33)

The leading log approximation to the energy correlation is determined from
this to be [F3.4)
%s 1

4
t
FE0> = 810 - 3B i log(l4y)

(3.34)
20

x exp[- 3,,—8 1032(1+x)] + §(1-x).

We have added here the 0(0:) contribution of e+e' +qraty =1, In higher
orders, the deminant terms in <th(x)> for e+e— o> qa(GG...) around x = +1 are
of subleading logarithmic order compared to those around X = -1, The expansion
of the leading log result (3.34) clearly agrees with the leading log term in
the exact O(GB) regult (3.4). In the O(as) result, the logarithmic term is
log[(1+x)/2] rather than log(l+y) as suggested by (3.34). (The argument of

the logs In (3.34) would have been (1+y)/2 1f we had not dropped a factor

of 4 in {3.30).) Of course, there is no difference between these forms at
leading log order {i.e., for ¥ very clese to -1 8o that |log(1+x)| >>» 1).

Nevertheless, one might spaculate that by replacing log(i+x) with logl{1+x}/2],



-3.22-

one might be able to account for much of the subleading log corrections te
(3.34) near x = -1. However, the explicit O(us) result {3.4) ahows that this
is not the case; the subleading log term appearing there is not dominated

by the log(2) from the difference of these forms and, in fact, the complete
correction is opposite in sign to it. The leading log result (3.34) gives
higher-order corrections to any qq final state tregardless of how it was pro-
duced. However, the subleading log terms depend on the process by which the
qq were produced (y* -+ qg, Yy* * qq, W* + gq, ete.) and so cannot be univer-
gsally included {F3.5). 1t would be of great Interest toc compute the sublead-
ing log terms at 0(«3) in order to investigate whether, for example, they
obey some simple differential equation, perhaps with the appearance of a
renormalization group equation in €, Another subleading log contribution is
asgoctated with the choice of the 'argument' of G Although formally negli-
gible, the numerical difference between taking aa(s) and, say, us(sllﬁ), or
worae as(s(l+x)), is rather large at couceivable values of 8, These diffi-
culcies ave discussed further in Sec. 3.7,

The O(Gs) result (3,29) for the total probability that the q and a from
ete™ + q3(GG....) are produced back-to-back within an angle ® (or equivalently,
to leading log accuracy, the integral of the energy correlation function
<F§t(x)> around x = ;1) exhibits a double leogarithmic divergence as @ + 0,
However, the exponentiated form, in which the double logarithmic divergences
appearing at each order in a have been summed up, goes smoothly (faster than
any power.of 8) to zero as 8 + 0, reflecting the fact that the q and q will
never be produced exactly back-to-back: they will always emit some gluons
and be deflected. While this result implies that a susmmation of leading log
perturbative terms is apparently sufficient to obtain a physically reasonable
form, one should not forget that in practice the small 8 region will be dom-
inated by non~perturbative and subleading log QCD effects and, in fact, the

behavior of leading log perturbation theory there may well be entirely irrelevant.
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In addition, the damping exhibited by the summed leading log terms will
probably not be shared by subleading perturbative terms which may well even
diverge like as(azs) as 8 - 0,

The exponentiated double log form (3.33) is reminiscent of several well-
known results in QED (e.g., [24]) and of some in QCD [25]., However, it appears
that none of these are exactly equivalent to (3.33)., The usual results come
from fnvestigating exclusive reactions and requiring a fixed kinematic config-
uration for the final (and initial) state but inserting & non-zero mass for
some of the particles involved in the scattering Iin such a way as to avold mass
singularities (infrared divergences). 1In our result {3.33), all regularization
masses have been taken to zero, and we do not consider a fixed kinematic con-
figuration: we derive the total probability for inclusive qq production with
the q and q deviating from anticollinearity by an angle less than 6. The sim-
plest example of a fixed angle result is probably the 'Sudakov' form factor

for an electron in QED:
2 2
|® 2 (a)]° = exp(- % log (a/pz)], (3.35)
(")
which gives the probability that a massless electron initially off-ghell by
an amount 92 will emit no photons, however gsoft, when it is struck by a hard
photon of invariant mass /s, Alternatively, one may find the form factor for

an on-shell massless electron (p2 = (0), taking a small regulavization mass ¥

for the photons:
|F( 2)(s)|2 = exp[- %; 1ogz(s/u2)]. (3.36)
¥ .

The difference in the coefficients of log2 in eqa. (3.35) and (3,36) reflects
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the different infrared regularization schemes used (see [F3,1]). Equation
(3.36) (with the substitution o -+ e, = 4ua/3) gives the cross-gection for
the proceas ete” » qq when no real gluons are produced, which 1s the form
factor for a quark in the timelike reglon [F3.6]. The 0(08) term in the ex-
panalon of (3.36) was obtained in the explicit 0(08) calevlation of e+e- + qq
given in eq. (3.9). Any form factor or fixed angle scattering cross-sectlon
in QCD will be given to leading double log accuracy by the lowest order (Born)
term, multiplied by an exponential like those in egs. (3.35) and (3.36). The
coefficient in the exponent is propertional to Eci, where the ¢, are the color
Casimir invariants (4/3 for quarks, 3 for gluon:) aggoclated with each of the
incoming ot outgoilng partons in the exclusive reaction. (There is a further
factor assoclated with the method of infrared vegularization,) Several exclu~
glve processes in QCD have been calculated in detaill to subleading log order;
the resulting cross-sections are found to obey 'infrared renormalization group
equations' in the regularization ﬁass. The equations contain 8 function terms
[25] which suggest the use of a running coupling aa(s) in the exponentiated
forms (3,35) or (3.36) tc account for some of the subleading (single) log terms
in the perturbation series,

In our derivation of <th(x)> for e+e_ Ll qa(GG--) near Y = -1, we require
the inclusive cross-section for qq production rather than an exclusive cross-
gsection, For exclugive processes, there can be no extra real gluon emissions,
and a0 only virtual exchanges contribute to the cross-section. However, in
obtaining the integral of <th(x)> for y > % " cosln-9) == -1, real emissions
make the dominant contribution. Since the Eotal cross-gection integrated over
all y must be finite, one might expect that the leading contribution of the
relevant real emissions could be cbtained simply by replacing the infrared
cut=off in the results (e.g., (3.7)) for the virtual exchanges by the cut-off

o 623 on the real emisaiona. However, this cannot be done directly because the
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cut-offs provided by the introduction of non-zere particle masses are somewhat
different than those imposed by a minimum transverse momentum cut (zee {F3.17).
(At the leading log level, a translation between the results may be possible
but at the subleading log level, they will differ in a fundamental way.)
We do not understand the kinematic cut=-offs used in Ref. [20], and our results
differ from those obtained there.

Equation (3.34) gives the leading log form for <th(x)> summed to all
orders in @, which is equivalent (in the leading log approximation) to the
qq inclusive cross-section in e+e~ + qq{6CG...) as a function of the qa angle,
cos-l(x). This is plotted in Fig. 3.2 together with the exact lowest-order
tesule (3.3). At each order in L <th(x)> diverges like 1ogk(1+x)/(l+x)
as x + -l. However, the sum (3.34) of the leading log terms in <th(x)> around
X = =1 no longer diverges as x » -1 (ignoring, of course, the lowest order
§(l4x) term). Instead, it rises steadily roughly 1like 1/(1+y) until y becomes

of order

AZ 25/16
1+ Xpeak = exp[~ 3n/(4a_(s))] =~ G (3.3
at which point
ot . 25/32
Fy Opeax)> = exp[3n/(8a (8))] ~ (:2—) , {3.38)

where we have taken the unsupported liberty of replacing ag by as(s). In
deriving (3.34), we specifically limited our discussion to the reglon B2 >
Aals since for smaller &, us(t) becomes so large that our perturbative methods
and neglect of subleading logatithmic and genuinely non-perturbative terms can

no longer be trusted. The damping of the qq inclusive crogs-section which (3.34)
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implies for x < xpeak should, therefore, probably not be taken seriously.
In this region, entirely non-perturbative effects will undoubtedly swamp our
perturbative terms. This 1s very clear from the <F2(x)> for simulated hadronic
events given in Sec. 4. In fact, the vanishing of <F§t(x)> at ¥ = =1 when
summed to all orders in perturbation theory is an example of the common phe-
nonencn of radiation damping. Another example 1s the suppression of the high-
energy end of the electron apectrﬁm in muon decay [26]. Here, the infrared
astability of the QED coupling with finite electron mass means that the result
may be trusted [F3.7], but the smallness of c means that it appears only in

2 =l/a

a reglon {of order ASEDImu ~ e

relevant for practical congiderations.

from the kinematic boundary) entirely ir-

In Fig. 3.2, we show the summed leading log result (3.34) for <th(x)>
in ete” + q4(GG...) together with the explicie 0(a,) resule for ete” » qq{G).
Note that at intermediate angles, the two forms agree rather well especially
at small o However, inspection of the results in Sec, 4 (e.g., Fig. 4.2)
shows that until very high energles are reached, the form of <th(x)> will
be entirely dominated by hadronic (and subleading log) effects, and 1t will
certainly not be possible to distinguish the summed and 0(“5) results close
to the backward direction. (We discuss thils in more detail in Sec. 3.8.)
At energles where hadronization is unimportant, as(s) will be sufficiently
small that no higher order correctiomns to the 0(63) regults will be visible.
In fact, the result (3.37) for the position of the backward peak in the summed
form of <th{x)> shows that this will always be loat in the region hidden by
the 'resolution' associated with fragmentation to hadroms.

1f one attempted to extend the curves for <th(x)> beyond 0(05) or beyond

the leading log approximation, one would find that, as explained in Sec. 4.2,

they would become undefined at each value of ¥, and would only have a meaning

=-3.27-

when smeared in yx (as for the caleulation of <HL>)’ However, the contribu-
tions to ¥ lnregrals of <th(x)> from the terms responsible for the difficul-
ties are of subleading log order and thus formally insignificant. It Is prob-
ably best to use <th(x)> only as an incermediate in finding the infrared
finite <H£> and not to consider ita own properties in detail,

From the result (3.,34) for <th(x)>, we may now estimate the <H,» in

) A
ete” + qq{CG...) at large % using the approximation (3.10). We find

<H£> P % {1+ (—1)Eexy[-(8qa/3ﬂ)logzll} (3.39)
for large t. The O(Gs) tesults in eqs, (3.13) and (3.14) suggest that a cor-
rection term Cas should be added to (3.39), where C = =1.32 a {2 even), =0

(2 odd). 1In Fig. 3.3 we show the form (3.39) with this correction added for
even &, ag a function of £ and in Fig. 3.4 as a Function of ag- We also show
the corresponding O(GS) result (3,12). The cross-hatched barriers represent
very rough (and optimiscic) limits of applicability of our perturbative approx-
imation. Beyond them, the typical angles of 2/% probed by the <H£> are smaller
than the angular spread of order A/(<z>/3) associated with the formation of
hadrons, Hadronic effects should be uniwmportant only when /s >2 55 GeV.

(3.39) implies that when £ + =, <H > »> 1/2 in the leading double log approxi-

13

mation. This limit is approached when & >> 1/(l+y (s/Az), so that the

peak) -
<H£> are sensitive only to the behavior of the qa inclusive cross-section at
angles so small that the exponentiated doubly logarithmic terms are strongly
damped. In this region, the gingly logarithmic terms in <th(x)> both around
x = -1 and also around ¥ = +1 should become impertant in determining the <H£>

through eq. (3.10), and leading log methods no longer suffice. In the next

section we discuss the behavior of <F2t(x)> for x close to +1 where the singly
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logarithmic terms are leading. For y == -1, a treatment of the subleading
singly legarithmic terms does not appear to be easy,

Using the methods deacribed above, we may estimate the <H£> for a final
state consisting of two gluen jets as might arise, for example, from the decay
of a spin 0 or spin 2 Q] state. We use the differential cross-section (3.26)
but with the longitudinal kernel (3.27). The doubly logerithmic estimate for
the probability that the leading gluons in the two jets will be back-to-back
within an angle & is then

Bag
Bp(0) = exp[- — log" (08} ]. {3.40)

The larger exponent in this case than in the case of qq jets (3.34) implies
that the leadlng GG are more likely to be found at larger angles than the qg
by a factor of order 9/4 (= cAIcF). Tt has been suggested [27] that thia
result implies that gluon jets are broader than quark jets, A mors relevant
treatment of this point, based on the angles between particles in the same
jet rather than with reapect to & recoil jet, is given in the next section,
The result turns out to be numerically very similar. The leading logarithmic

energy correlation function for two gluon jets is

i1 3“& 1 3“; 2
<ByT(X)> = 81 - = e log{L+y)exp[~ 52= log" (1+x)}

(3.41)
+ 6{1-x).

This yields a large % estimate for the <H,> in this case:

L
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<Hy> =3 (14 (-1 Fexpl-(6a /) logR]} + 0(a ). (3.42)

The explicic O(Gs) term depends on the short-distance (large-angle) structure
of the final state and for a QF decay will be affected by the spin of the

initial state. The <HL> to O(Gs) for the decay of a scalar QQ bound state
(x} may be obtained from the differential cross-sections for the decays x + GGG,
Gqq from a acalar (vava) source given in [28), We find

a
3 2 F
<Hp =1~ ((3n7-20) + 55 (212-211%) ]

>1 - (3.1%0.1F)a,

(3.43)
[+
2, , L45F
Hy> = 35 [(2230-22507) + 25E (1512.148))

« (1.040,1F)a_,

where F is the number of light quark flavors. These may be compared with
the results for qqG production from a scalar photon [F3.8)
%g 2
<H2> EO 3y (83-877)

=1 -0.43 a
s

(3.44)

20ax
8

(5n2-49)

<H,_ > =

3 3r

= (.74 a .
8
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In Sec. 3.8, we consider briefly the application of metheds and results
in this section te the transverse momentum spectrum of masgive photons produced
in the Drell-Yan process where we algo give a discussion of their region of

validity,

3.6 Leading Log Estimates for <F§t(x)> near x = +1 and the ‘H£> in £ =+ GGG(GG,...)

Recalling the definition (1.1} of the Hz, the approximation (3,2) for
the Legendre polynomials implies that for large &, the Hz may be computed by
lumping together all assemblies of particles with an angular spread less than
about 2/% and treating them as single 'jets'. Then the vanishing of the Pg(cose)
outside an angle 2/ (in the approximation (3.2)) means that there are only
diagonal and 'back-to-back' contributions (Ei and 2131,) to the “£ for the

system of Jets. Hence the <H ,> for large % may be written as (the sum over

L

'jecs' 1s over all assemblies of particles separated by angles much greater

than 2/%)
1 2
<Hy> o= 5 ($p02/2) + (G178, 2/}, L > 1
2 (3.45)
E
where B~ 2 3 —225 (85(2/2))

jets i

and (SF(B))1 is the mean aquare fractional energy which is not radlated outside
a cone of half-angle 8 around a jer i [F3.9] while 33(9) was defined in Sec.
3.5 as the mean product of the epnergles, for all pailrs of back~to-back (anti-
collinear) jets 1 and i', at angles less than # from the axls of the jets.

In the leading log approximation, BB(S) is simply the probability that the
leading partons in the jets are anticollinear within an angle €. This prob-
ability goes like [uslogzeln in each order of perturbation theory but expo-

nentiates to the form (3.33) when summed to all orders. However, the SB(B)
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term in eq. (3,43) contributes to the <H£> only for processes which give
dominantly two-jet final states such as e+e- + qa(GG..A). In other processes
(auch as f + GGG), pairs of anticollinear partons are not usually produced,
and the Ss(e) term in eq. (3.43) may be ignored leaving only the diagonal sF(a)
term. It is, therefore, the energy distribution inside a single jet which
determines the large £ behavior of the <H£> for final states usually containing
more than two jets,

The estimate (3.43) for the <H£> may be rewritten in terms of integrals
over the energy correlation function <th(x)> around ¥ = *1 as in eq. (3.10).
The first terms in eqs. (3.10) and (3.45) probe the behavior of <th(x)> for
x close to +1, ‘The result for <th(x)> in the O(us) process e+e- + qq(G) is
given by eq. (3.3). 1Its behavior clese to x = +1 given by eq. (3.3) ylelds
(the exact form 1s in eq. (3.67))

2“9
SF(G) =1 + -~ log(B) {3.46)

in this case. This result is to be compared with the SB{B) for e+e- + qq{G)
given in eq. (3,26) which exhibits a logz(e) divergence as € +~ 0. In faet,
we find that in general the leading log terms in SF(B) are of order [aslogﬁln
in contrast to the [aslogzeln terms in SB(B).

We now discuss the calculation of SF(B) (or equivalently, the integral
of <th(x)> for x = +1) for a quark-initiated jet [F3.9]. We shall refer
ta the leading particle fn the jet as the quark and consider the succesgive
emission of gluons from it {although, in Ffact, one must account for "mixing"®,
in which the role of leading particle is transferred from a quark to a gluon
and so on}. A typical jet, together with some of the kinematlics to be used,

is depicted in Fig. 3,1, Consider the contribution to SF(B) from emissions
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at angles of about ¢ = cos-l(x) (giving directly a smeared result for <Fgc(x)>).

If the kth gluon emitted 1s at an angle ~ ¢ £ 8 to the leading quark, then
ita contribution to SF{O) will be given by the product of its fractional
energy with that of the quark. In terms of the variables Ek and 2, introduced
in Seec. 3.4, we may express the angle Ty batween the quark and gluon as

ne = b & /a2 (g ). (3.47)

Here we see the critical difference from the calculation of SB(S) given in

Sec. 3.4, In the present calculation of BF(G), M vanishes only when £, + Q,

k
vhereas in the computation of SB(B) the relevant angle was preportional

to /(l-zk)ék and so vanished when the emitted gluon was either soft (zk + 1)

or ¢ollinear (Ek > 0), 1In SB(B), constraints on L therefore, implied con-

straints on zk. For SF(S), constrainta on e do not prevent Zy from running

up to 1, thus allowing virtual loop corrections to cancel soft gluon emission
divergences and leading only to single rather than double logarithms of § at

each order in us. Since we only retain leading logarithmic terms (in E).

eq. (3.47) may be approximated by

A

2
My ™ Bye {3.48)
It is certainly disturbing that eq. (3.47) and (3.48) differ by a large factor
(~ 20 for k = 1 and more for larger k). However, it would not be consistent
with our leading log approximations to insist on the complete eq. (3,47); the
resulting factor could be canceled by other subleading terms that we have

neglected. This point will be discussed further in Sec. 3.7,
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The approximation (3.48) leads to a simple algorithm for calculating SF(B).
First note that the kinematic ordering of the Ei (c.f. eq. (3.32)) implies

in this case that the emission angles n; are also ordered:
My 2 Mg vvae 2N 20 20y (3.49)

Hence 1if Ty = $, then all previous emissions must have been at angles » ¢,

Moreover, all emissions after the kth mugt be at angles smaller tham ¢ so that

h

they may be neglected. The contribution to SF(S) from the x* gluon emission

which 15 at an angle ¢ <8 (which is approximately <th(x = cosd)>)

- ¢ .
ot 1 de; a_(c)) k=2 dty ) e ()
<Fx)> =~ [ — T e — S5
¢2 tl ¢2 tk-l
! ! (3.50)
X f dzlP(zl)....f dzk—lp(zk-l) .
o 0
' 2 5, (tm09%) af,
% f dsz(zk)(zlzz....zk_l) zk(l-zk) — 3;_
° 2wtk

where we have used the form {3.26) for the differential cross-section and
multiplied by (twiqe) the product of the final quark and gluon fractional
energles (zl...zk and zl"'zk-l(l-zk)’ respectively)}, The P(z) are the stan-
dard longitudinal evolurion {Altarelli-Parisi) kernels in the relative 'lon-
gltudinal Sudakov variable' z (as in e.g., eq. (3.23)). Note that in eq.
(3.50), we have retained the variation of o, in the t integrations; for the
calculation of SB(B) this could be dropped to double logarithmic accuracy.

On summing eq. {(3.50) over k, we find that the contributions of the first

(k-1) emissions exponentiate, giving, to leading log accuracy,
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o, (e(1-x}) 1 9
T V exp[~ f dz 2°P(z)log(T{x))/2nb]},
o

<F§t(x)> -
1

v = f dz 2(0-2)P(z),
o

(3.51)
a_(a8)

- ———
T = G

b = (33-2F)/12x.

To find the corresponding Sr(e), we use the same method as for SB(O) above,
computing the energy radiated outaide a cone of angle 8 and then subtracting

this from one, and write

1—e212

1
go(0) = [  f(orax -1 - <FB (0)>ax. (3.52)

1-8%/2 ~
In the calculation (3.51), we have not fincluded any contribution due to

the emissions of the glucns after the kth one. These serve to spread out the
energies of the quark and gluon we consider into cones but with opening angles
wuch less than ¢, so that all thelr component particles may be lumped together
for our leading log purposes, Nevertheless, if one explicitly multiplies the
erogs-section (3.50) by the differential cross-section for the (k+l),....
emissiona and then integrates over their possible angles and energies, one,

of course, finda that they contribute a factor of one [F3.10].

To order ey the exponential factor in (3,48) does not contribute and

a
t
<rg 0> _-_n(lfx) v, (3.53)
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where we have dropped the argument of a, since formally it cannot affect the

0(33) regult, The corresponding sF(B) is then

a  1-8%/2
Bo00) =1 - =2 [ v 3.
¥ T o l-x
(3.,54)
2a

"1+_1}“§'V log(8).

To 0(&8), the spreading of a quark jet arises solely from the emission of a
single gluon from the quark so that the corresponding V is given by

1 1 2
- - -8 (L42” - -
¥ raG f Pq(2)2(1l-2)d2 = 3 c{ (l—z )+z(1 z)dz = 1,  (3,55)

o
glving, to leading log accuracy,

2a
Bpen), =1+ T” logh. (3.56)

This is in agreement with eq. (3.46) which was derived by integrating the
<th(x)> for e+e_ + qq(G) given in eq. {3.4) from x = 1 to y =~ 1 - 6212. Since
B << 1, eq, (3.56) implies that, as expected, the emisslon of gluons depletes
the energy contained in a cone of angle & around a jet. To O(GB), a gluon

jet can spread by the gluon emitting either a gluon or a qq pair, giving

1
vG*GG = %'i PGG(x)x(l—x)dx = %%
(3.57)
1 F
Vorag = (J: ch(x)x(l-x)dx =35
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where F is the number of quark flavors with masses << 6/s. Hence for a gluon
Jet
2as
(SF(B))G =14-2= (VG+GG + VG*qE)loge
{3.58)

[
=1 + (&%%Eﬂ ;i logs,

On comparing this with eq. (3.56), we see that gluon jets should be broader
than quark jets by a factor of order (42+4F)}/20 = 2,3. Note that this result
is numerically very similar to the ratio 9/4 = 2.25 found in eqs. (3.41) and
(3.34) for the mean deviation from anticollinearity of pairs of gluons and
of quarks produced in back~to-back jets, WNotice that eq. (3.58) implies that
qa production contributes negligibly to the spreading of a gluon jet. 1In our
later numerical estimates, we take F = 4 although all our results are extremely
inaengitive to thias cholce.

The result (3.58) allows us te obtain an estimate for the <H£> in the

procesa ¢ + GGG(GG..,) at large 2 to O(aa). In this case, the first term in

aq. (3.45) contributes, and we obtain (for both even and odd &)

[+3
Hp=3a- (5%-3’-"-) =2 log(1))

{3.59)
=~ 0,375(1 - 0.73 uslog(l)).

Here we have approximated the O(a:) result for z (Eils) by the phase space
jets

value (see Sec, 2.6)., The result (3.59) is to be compared with the correspond-

ing O(a ) results (3.12) for the process eTe™ > 4q(GG...) which contains a

palr of back-to-back jets, leading to a logz(l) term at 0(&5). The two cases
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are plotted in Fig. 3.3 where the slower variation of the <H£> for £ + GGG(GG.,.)
than for e+e" + qq{GG...) is evident., One may be concerned that the quantum
numbers of the z state (381) might invalidate our analysis based on the ave-
lution of individual jets. However, as mentioned elsewhere, ¢ + GGGG 1s not
forbidden (as would the decay of orthopositronium to YYYY) because the gluans
can be antisymmetric in color, l

In going beyound O(as), we must consider mixing., 1In a jet initiated by
a quark, any of the gluons emitted by the quark may carry off much of its
energy thereby taking icts place as the leading particle in the jet. The spread-
ing of the jet energy will then be determined by emissions from the gluons,
and so on. To account for these effects, the longitudinal evolution (Altarelli-
Parisl) kernels P in eq. (3.51) must be taken as matricea, and the V as vectors
(with component; Vq»K’ VG+X) in the basis q, G (q here represents a 'singlet
quark' {l.e., El(qi+ai)); 'non-singlet quarks' do not contribute to jet spread-
ing. After th: exponentlal factor appears a two-component vector (1,0} or
(0,1) for a quark or gluon jet, respectively. The integrals over P appearing
in the exponential faceor in eq. {3,51) give simply the matrix of n = 3 anom-
alous dimensions familiar from analyses of deep Inelastic scattering. Using

standard methods (e.g., [29]), we find for a quark jet

o, (s(1-x))
n{l-x)

0.61

<F5° (> = (1480100 1%% - 0.48110011 3%, Gueo)

while for a gluon jet

a_(s{l-x))
FE0> w2 (1841001 Y + 0661100 1% 8. (3,61
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These results are plotted in Fig. 3.2 where they are cowpared both with form
obtained in the backward direction and, for quark jets, with the complete O(as)
regulta. Figure 3,5 gives the corrections to the 0(08) leading log result (3.5)
due to the inclusion of higher order terms. Results for two cholces for the
argument of as {see next section) are given. The cross-hatched barriers in
Pig. 3.2 indicate the angles beyond which our perturbative methods can defi-
nitely not be trusted. In practice, inspection of Fig. 4.2 shows that had-
ronic effects will entirely swamp our perturbative calculations for all x
until rather high values of Ya are reached , where higher order corrections

are probably irrelevant, Note that, as discusged in Sec. 3.5, subleading

log delta functions at all values of y do not appear in the approximations

used for Figa. 3.2 and 3.3. From eqs. (3.60) and (3.61), we obtain leading

log approximations for sF(e):

(), ~ e et (10017 % - 222 (rooit )
(3.62)
=1.17[1(0 178 - 01717001
(3000 = 0.641TG0 1M + 0.36(1¢0 1% (3.63)

When 6§ = 1 so that T(x) = 1, these results reduce aimply to SF(e) = 1, the
total energy of the jets [¥3.11], exhibiting the consistency of our approxima-
tions. The consequences of the results (3.60) through (3.63) for the size

of jeta will be discussed in the next section. Here, we use eq, (3.45) to
obtain a leading log eatimate for the <H£> at large £ in & + GGG(GG...). We

find
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<> = 0.2007(1-211 %% 4+ 0.1401(1-2%10-8
1.39 o.61 (3.64)
2.2 2.2
~o0.24 (RRBEIEAD 4y, (oals/t A))
log(s/A") lag(s/A")

This estimate should be rellable for 1 << % << Ya/A., MNotice that whereas for
e+e— > qa(GC...) the <HL> weat to zero as 4 + « in the summed loading double
log approximaticn, the <H£> for ¢ » GGG(GG...) diverge logarithmically as

%2 =+, In neither case can our perturbative methods be used as a reliable
gulde, The divergence for £ -+ GGG(GG...,) reflecta the infinite value of a,
found at S/R-2 = A2 in perturbation theory. In practice, this divergence is
presumably avoided by the non-perturbative hadronic effecta which dominate

at such values of 5112 and perhaps give as(t) ~ 1/10g((t+A2)IA2). The result
(3.64) 1s plotted in Fig. 3.3, Note that the variation with £ of the <“L> for
¢ + GOG(GG...) is expected to be much less rapid than for e'e” + qq(GC...}.

From eq. (3.61) one may also, in principle, find <th(x)> for ¢ + GGG(GG...)}
by convoluting this with the lowest order result given in eq. (A.A2). However,
it is clear that in this procedure, the unknown region around x = 1 in eq.

{3.61) will be sampled at all peints. As expected from the discusaion in

Sec, 4,2, divergences appear in <th(x)> to O(u:) at all valuea of x which

were populated at O(a:_l). For e+e- + qi(GG.,.) these divergences potentially
appear only at ¥ = 1 in the leading log approximation, but for § + GGG(GG...)
they inevitably appear at all values of x rendering a direct result for <th(x)5

in this case meaningless. Of course, when one integrates over x as in the

construction of the <H£>, the divergences are suitably tamed,
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3.7 The Width of QCD Jets

The results in Sec. 3.6 can be used to obtain leading log estimates for
the average energy distributions inaide jets. Since in the leading log approx-
imation, the structures cf jets do not depend on the processes by which they
waere generated but only on thelr total energies, our resules are also appli-
cable to jetsa produced in reactions othetr than ete” annihilation, In practice,
it turns out that our predictions are rather sensitive to asubleading logarithmic
effects which have not yet been calculated and will not be entirely univeraal,
The Hz were designed to study the digtridbution of energy in events in
their center of mass gystem, In investigating the structure of single jets,

it is convenlent to use observables similar to the Hg:

AN
I(E,n) E --——-1- £(4, )8 (cost ,-n)
{3.65)

1
= [ <8 x)>E(eos™ (x))dx,
n

where angles are measured in the rest frame of the complete event, not of a
particular jet., The 8 function is designed to sample only pairs of particles
'in the same jet', For proceasea guch aa ete” - 9q(GG...) 1in which only two
jets are produced, it is convenient to take n = 0 thereby sampling only pairs
of particles in the same hemisphere. PFor leading log estimates, the precise
choice of n will be irrelevant.

The asimplest observable based on the definition (3.65) is

- 13,113, |
#p(cos 111) = «J(ln)> = <] *'-'is——i"' 8(cos$, ,-n)>
1,3 i

(3.66)
1
=/ <F§t(x)>dx~
n
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This gives essentially the fraction of the energy squared in a Jjet contained
within the cone of full angle cos_l(n) about its 'axis', (Of course, no axis
need actually be found.) For the process efe” o qq(G), one finda [F3.12}:

o
<I(1,m> = 1 - 2= (3610g°2-163210524959]

o =t (- L, D - 2ot )4z 2))]
a-
- Log(5H201-n" (1og APy - 210g(25D) (3.67)

= an* +and - 18e? - 1240 - 33

201-n) (n°=330-4) - 310835 (1-m*)

where Liz(x) is the dilogarithm function defined (for our purposes) in eq.

(2.10), For m = +l1, eq, (3.67) becomes

o
<J{1,n)> = sF(cos—ln) =i + ;3 {log{l-n) + ¢ 315610 zlgg z —211
+ .0} (3.68)

=~ 1+ (0.32log(l—n)-0.l3+...)aa.

The leading term here agrees with the leading log result (3.46). Notice that
in this case, the subleading log terma could be roughly accounted for by re-
placing log(l-n) with log((i-n)/1.5}. In the backward direction, eq. (3.67)

givea an exact result for SB(G) to O(GG)' For n = -1, one finds
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SB(coa-ln) ~2 - <£(l,n)> = 2 - Sp(co:-ln)

Za

2, 1+ 1+
=1 3—"3' {log (*-i‘n') + 3108(-2—")
+ (40310 2+3 2 -206) F .01 (3.69)

=1~ (0.21108” D) + 0.64108HD) + 216 + ...3a,

=1 - (0.2110g2(1+n) + 0.%log(l+n) + 1.82 + e

The leading log term here was given in eq. (3.10)., It is clear that no replace-
ment for (l+n} in the logarithms of eq. (3.69) can remove all the subleading
terms (the relevant quadratic equation, in fact, has no real roots), In
particular, a8 mentioned below (3.34), use of (1+n)/2 is not better than l+n

as the argument of log. Finally, we give <J3(1,0)> which represents roughly

the average fraction of energy squared produced in one hemisphere of e+e_ *

qa(G) events:

a
163210g2-1103, s
B(r/2) = <(1,0> = 1 + (632108201103, Zs

(3,70)
GS
=1+0.17 7~

The rather small deviation from 1 indicates that the gluon is rarely produced
at a large angle to both of the quarks so that nearly all the energy which
could possibly be attributed to one of the quark jets is contained in one
hemisphere of the event.

In Sec. 3.6 we obtained leading log estimates for SF(S) (or <J(1,co88)>)
to all orders in a valid for small 8. These results for quark and gluon jets

together with the exact 0(a ) result for a 'quark' jat produced in ste™ + qa(®

=3.43-

are ghown in Fig. 3.6 for Vs = 20 GeV, corresponding to cs(s) =~ (.2, In the
summed leading log estimates, we only account for terms with the form of the
tog(i-n) in the 0(“3) rvesult (3.68). However, it 1s clear from eq. (3,68) that
terms which are formally subleading in the limit n + )| may, nevertheless, ef-
fectively serve to change the scale of the argument of the logarithm and have
important consequences for nymerical estimates, 1In higher ovders, lack of
knowledge of such terms prevents the determination of the correct 'argument'
of a, to be used in the integrals (3.50). This uncercainty 1s just the inde-
terminacy in the effective value of A2 without subleading terms diascussaed in
Sec. 2,5 for the <H£> and ¢. It can only be resolved by calculations of sub-
leading terms which must be done for each particular process since they are
not universal to Jets produced in different reactions, One might suspect
(although for little reason) that the correct srgument for a4y in the integrals
(3.50) would be exactly t. To leading log accuracy, this may be approximated
juat by s(l-x), but 1if one attempts to account for some subleading terms, one
must include the numerical factor in ¢, implying that the al appearing in

eg. (3.61), etc,, should be = as(s(l-x)/20) rather than us(s(l-x)) as discussed
in Sec, 3.6. The difference between these two choices may be considered as

a difference in the effective value of Az chosen in the absence of exact cal-
culations, The O(as) result (3.68) perhaps favors as(s(l-x)ll.S), but the
O(ug) result would be necessary before claiming that this would give accurate
eatiyates. It is clear from Fig, 3.6 that the choice of the argument of L
has a rather large numerical effect, MNote that the curves in Fig. 3.6 depend
on 8 only in the combination s{l-y) so that other values of s may be found
from the curves by rescaling x. It is clear from Fig., 3.6 that gluon jets
should ba broader than quark jets. Wote that the convergence of the leading

log curves at x = 0 is artificlal - it results from the assumption of & form
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proportional to {1-y) in the argument of a_- This cannot be justified past
the leading log approximation.

A good measure of the width of jets is provided by [30]

J{4,0)
<¢>E - < ETTTBT >, (3.71)

which gives the mean angle between paira of particles in the same hemisphere

weighted by the product of their energies. 1In Fig. 3.7 we give <¢>E together

; / a0 ?
<4 rp » <63ff:639 > (3.72)

for quark and gluon jets as a function of thelr ensrgy. We give the results

with

obtained from the leading log approximation (3.62, 63} using both us(s(l-x)) and

as{0.0S 8(1-x)} where we choose s = 4E° _, together with the exact 0(us) result

2
{et
for e'e” + q3(G) obtained from the form (A.l) for <th(x)> in this case. It

1s clear that until very high energles are reached, formally subleading terms
are cricical in determining the numerical reaults for <¢>E and fé;i:;. Never-
theleas, even these uncertainties are probably insignificant compared to those
asgsoclated with the non-perturbative process of hadron formation which correct
our leading log eatimates at large timea, In Fig. 3.7 we also give the predic-
tiona of the Fleld-Feynman model [31] for hadron production in jets, which are
based on fits to avallable data, and take a fixed intrinsic average transverse
momentum of order 0,35 GeV with no account of QCD scaling vielation effects.
The resulting <b>gs therefore, falla roughly as kT/(/E§z>) where <2> is the

average fractional energy of a hadron produced in the jet and is typically

of order 0.15. In contrast, the “4’p contributed by perturbative QCD effects
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falls roughly like aa(s) ~ 1flog(s/A2). The Fleld-Feynman model was obtained
by fitting transverse momenta in jets at comparatively low energies; some of

the tranaverse momentum found should, however, probably be attributed to per-
turbative QCD effects rather than to hadron formation. One approach to treat-
ing this overlap is suggested by the pleture described in See, 2,1. We choose

some definite angle ecu to delineate the reglon for which the perturbative

L
estimates (3.62) or (3.63) will be applied. For smaller angles, we use the
phenomenological model, while at larger angles we assume that the perturbative

results ave exact, Qur choice of Bcu was twice the mean value of <¢>E in

t
the Field-Feynman model (f.e., twice solid line in Fig. 3.7). In Fig. 3.7

we show the perturbative estimates for <¢>E and IC;EZ; obtained by congidering
only ¢ > ecut and thereby introducing a cutoff ~ Biuts >> A2 into the necessary
integrals, Tt 18 clear from Fig., 3.7 that hadronization effects will swamp
those of perturbative QCD until very high jet energles (2 50 GeV) are reached.
Nevertheless, jets of such energles should be available from the FNAL collider-
doubler and LEP thus allowing the QCD predictions for their properties to be
teated. For phenomenological applicationa, such as those indulged in Ref, {2],
it should be sufficient to use the Field-Feynman fit for jet structure until
very high energies are reached [F3,13]. Note that, even when an estlmate of
fragmentation has been included, Fig. 3.7 still predicts that gluon-initiated
jets should be broader than quark-initiated ones.

Degspite the uncertainty regarding the argument for LN in eqs. (3.62) and
(3.6359 the 'correct' argument 1s presumably proportiomnal to s and probably
also to (1-y), at least for y near 1, Hence, although it may not be possible
to obtain accurate absolutely-normalized predictions for <th(x)>, ete., with-

out a knowledge of subleading terms, the leading log estimates should be suf-

ficient to describe the dependence of these abservables on s at fixed x and
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probably on x at fixed s, It should eventually be possible to measure the
anomalous dimenaions appearing in the exponents of eqs. (3.62) and (3.63} by
analyses of jet structure, thereby providing an important test of QCD, In
Ref. {51, the production of pairs of hadrons with definite relative transverse
momentum was considered by convoluting (evolving) fragmentation functions for
the quark and gluon produced according to eq. (3.51) to generate particular
hadrona. In that case, no attempt was made to obtain infrared finite results:
the divergences associated with the large distance behavior of the final state
were factorized off and absorbed into fragmentation functions at some value

of g8, Hence there was no restriction to consideration of quantities linear

in the mwomenta of the cbserved particles: any moment of their energies could
be used, for which the analogue of eq. (3.51) contains anomalous dimensions
with n > 2, We have concentrated on observables which are infrared finite

and whose mean values should, therefore, be computable purely from QCD pertur-

bation theory.

3.8 Application to the Drell-Yan Proceas

In Sec, 3.5 we obtained a leading (double) log approximation for the
probabilicy that a qq palr produced from a y* would be deflected through an
angle & from the anticollinear configuration by the emission of gluons, Our
results may be applied almost directly to yield a leading log estimate for
the transverse momentum spectrum of y* produced in hadron-hadron c¢ollisions
(Drell-Yan process) by qi annihilation,

The lowest-order subprocess, qq + y*, for y* production gives rise ta
photons having no transverse momentum with respect to the incoming q, i axis,
To obtain the cross-section for y* production in hadronic collisions, one must

convolute the results for qq collisions with the probabllity distributions
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q(xl), 6(x2) for the q, E to carry fractions X %y of the momenta of their
parent hadrons., Then, i1if ¥s is the ¢.m, energy for the hadron-hadron cottision
and /3 = fxlxzs that for the qa subprocess, the cross-section for the hadro-

production of a virtual photon with invariant mass Q is

o = 3,(v) = ¥ [f a(x)30x,)8(1-07/8)ax ax,, (3.73)

where N 1s an overall normalization factor (= % Zei) which will be irrelevant
for our purposes,

At O(a ), the 2 > 2 subprocesses qq + Y*G and Gq » y*q lead to y* with
non-zero transverse momenta (pT). We consider first qq * Y*G since this will
turn out to be most relevant, To 0(&8), the differential crogs-section for
qa » ¥RG ig

sy o [;E- 2;2+;a-;212]

- = : (3.74)
dat 352 tu

where 5, t and a are the subprocess kinematic invariants. We require the

differential cross-section for y* production as a function of Py where p% L

ut/a, For small pg, s is close to its O(a:) value of Qz, and one finds [32]

[F3.13]
&
o~ N ] alyity
de
il : ol
X (Q-Qz) [108(8(1-1)) + 0(s-Q )]dxldx2 (3.75)
ba, o (1) 2pEA

=3 7 loEGhm) 06y,
1
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This leading term arises from the region of phase space in which s = Qz where
the outgoing gluon 18 both soft and nearly collinear to the incoming ¢, i.
The correctiona to the leading term will not be proportional to ao(1) but will
rather depend on new convolutions of the structure functions (E)(xi) which
may be written as integrals on derivatives of the s-dependent leading log forms
for (E)(xi) with respect to 8 at a8 = Qz. As expected, the result (3.75) has
the same structute as eq. {3.3) which gives the probability thet the q and q
produced in y* + qqG should be an angle & from anticollinear, with yx = coa{m-8},
so that they have a relative transverse momentum p% = % (1+y}). HNote that the
subproceas Gq + y*q doea not give a leading contribucion for small P

In Sec. 3.5 we obtained the leading log approximation {3.35) for the prob-
abllity that the qq produced in y* =+ 4q{(GG...} should have a relative trans-
verse momentum p% - §I2(1+x). This result may now be used directly to yleld
the leading log tranaverae momentum spectrum for y* produced in hh' + qq +

Y*(6G,..) [F3.151]:

2

4a 2a P
'G-Tlﬁ 10—2' o - 3—"% 1—2 loz(gl)exp[- _j“_a 1032(;.!)1. (3.76)
o dp, p
T

where we have dropped the irrelavant G(p%) terms which arige from loop correc-
tions to qq + yY*, Wote that the appearance of s rather than Qz, perhaps mul-
tiplied by some function of 1, in eq. (3.76) cannot be justified in the leading
log approximation. Subleading correctiona te eq. (3.76) will involve non-
trivial convolutions of the q, q distributlion functions, These must be con-
sidered in order to determine the correct arguments for the logs and for ag
in eq. (3.76).

Regardless of non-perturbative complicationa, the leading double log

approximation used to derive eq. (3.76) can only be valid if the subleading
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log corrections to it are small, The rough form of the perturbation geries
2 2
for pT/o da/de is

2

uB[m+1} + az{w3+m +utkl] + a:[w5+w4+...] F oaaa,

(3.7

w ~ Iog(s/p%).

It is the first terms at each order in a, which sum up to the exponential in

eq, (3.76). We must now estimate in which regions the terms in (3.77) thus
neglected are unimportant, At lowest order, thete is a term 0(us) compared

o O(QSm) which arises from consideration of all parts of the differential
cross-section (3.74) rather than just those which diverge as t, u + 0. This
term 1s absent from (3.76) but may easily be calculated and includad explicitly.

However, it will be unimportant so long as

10g(s/p$) > 1, (3.78)

We may take the exponential factor in eq. (3.76) to be 0(l) for our presgent

estimates (see below for juetification). Then the requirement that the sub-

leading log term 0(32&2) should be unimportant becomes
' 2
as(s ) 1og(s/pT) << 1. (3.79)

It iz c¢lear that the constraints (3.78) and {(3.79) for the validity of the
leading double log approximation (3.76) overlap only at very high energles.
In particular, if we require that the corrections due to O(us) and 0(u:m2)

terms be of rough order £ (say 10%), then eqs. (3.78) and (3.79) imply
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p2 & ae”M (3.808)
sl-E(AZ)f (s' = &)

p.f. » (3.801)
(1 (1HE) (2 £/ (1) (" = 5D,

where we have made two plausible choices for the optimal argument of us(s‘);
its best value can, of course, only be determined by a complete subleading
log calculation, Equation (3,80) shows that at present energles, there is
no reglon iIn which all corrections to (3.76) should be small,

How let us consider the atill higher order terms in (3.77) demanding that
all subleading log corrections be amall. At 0(02), we then require a§w3 << 1,
while, in general, at 0(0:), the condition for 0(f) subleading log corrections

becomes {F3.16}

- - 3.81
“E 1w2k 3 < f k > 1). ( )

Then in the limit k + =, this implies,
aalogz(a/p,i) < % .y, (3.82)

This constraint is essentlally the requirement that the series (3.77) be con-
vergent, It justifies the statement made earlier that the exponential in

(3.76) must be Q{l) and implies the condition

p% ?s exp[- 1/”5;]. (3.83)
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Equation (3.80a) then implies that an accuracy hetter than f A'JE: can never
be expected from eq. (3.76).

The discussion of the last two paragraphs implies that eq. (3.76) (and
corresponding results for <th(x)> in ete” annihilation) should suffer rather
large corrections even in perturbation theory in accessible kinematic reglions,
The failure of (3,76) at large pT may be cured without difficuley simply by
including the complete O(us) result. In fact, one of the most aignificant
conclusions from our discussion of <Egt(x)> apove 1s that at large angles (pT),
higher order corrections te the lowest-order result are small. To improve
the approximation (3.76) at small Pp is more difficult, The main reason for
the inadequacy of the leading double log result there 1s that at small Ppo
these terms suffer radiation damping, and subleading contributions may become
important as implied by eq. (3.80b). Of course, these subleading terms may
also exponentiate and be damped as Pp ™ 0 so that we may have overestimated
their contribution by conaldering only their lowest-order member, We suspect,
however, that, like the <th(x)> for ¥ = 41, but unlike the Pp spectrum in
QED, the subleading log terms will probably diverge as [u.s(p,%)]p for amall
Pps thereby pracluding complete perturbatlve treatment. The best hope for
controlling subleading term appears to be in the derivation of a differential
equation analogous to that from the renormalization group, but in pT rather
than u. A complete treatment of subleading log terms cannot entirely remove
the condition (3.82) but would increase the size of the right-hand side.

At each order perturbatilon theory, the y# tranaverse momentum spectrum
diverges as Pr * @, TFor moderate Prs the leading log sum (3.76) exhibits the

usual llp% behavior found at 0(08), put for pr = (pT) K’ where

peal



=-3,52~

(p,f.)peak = 3 expl-3n/4a,]

(3.84)
a (AZ 25/16

2467

radiation damping occurs, and the spectrum goes rapidly to zers. This is all
very jolly; however, just as in the case of y* + gqq(GG...), the leading log
perturbative methods used to derive eq. (3.76) become entirely invalid at such
small Pps where subleading log perturbative contributions and non-perturbative
hadrenic effects undoubtedly dominate. The behavior of the hadroproduced y*
Pp Spectrum at small Pr implied by eq. (3.76) is, In fact, probably even less
to be believed than the correapoending result in e+e- annihilation. In the
above discussion, we have tacitly aesumed that any transverse momentum carried
by the y* must be a result of gluon emlssions by the annihilating qﬁ. This
would presumably be the case if the Pp Were measured with respect to q and E
which had propagated from infinity to the interaction, However, as discussed
in Sec. 2.7, the incoming colored q and q must inevitably carry with them a
cloud of gluons whose tranaverse momenta are determined by the size of the
hadron state which was, in reality, the true incoming wavepacket. In pertur-
bation theory, it is approximated by an incoming jet of limited tranaverse
momentum ~ llrﬁ ~ Az. It 12 with respect to this composite system which rep~-
regents the incldent hadron that the y* tranaverse momentum must be measurad.
The resulting Pr will differ from that measured with respect to the quark
direction by the deviation of the quark momentum from the total momentum of
its accompanying jet.  This deviation will typically be of order the transverse
momentum spread of the incoming jet which is very roughly ~ Az. The prediction

(3.76) of the y* p_ spectrum with respect to the incoming quark direction must,
T
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therefore, be smeared by this 'primordial transverse momentum' before it can

be compared with experimental results obtained with incident hadrons wvather
than quarks. As a perturbative approximation, this smearing can be viewed

as the result of including not only diagrams in which the incoming q, q emit
gluons but also in which they absorb gluons from the initial jet and are thereby
deflected through angles determined by the epread of the jet, From this aapect,
the role of the in}tial jet may be viewed as follows. Consider calculating not
the probability that the y* should be produced with some definite Pps but

rather finding the integrated probability for production with a Pp lass than

q- This 1s analogous to cobtaining SB(G) rather than <F§t(x)> in the ete”
annihilation case. In calculating 33(9), we simply subtracted from one the
integral of <th(x)> from y = cos® to y = 0, Here, however, it is convenient

to discugs direct evaluation of the integral of the Pp spectrum from Pp = 0

to pp = qp. In any order of perturbation theory, the contribution to this
integral from gluon emlssions by the q, q will diverge like [aslogz(q%/uz)]k
where u is some infrared regularization parameter (e.g., gluon mass)., However,
the integral also receives a contribution from ﬁ(pi) terms arising from loop
corrections to qq + Y*. These corrections give simply the quark alectromagnetic
(Sudakov) form factor whose leading terms are of order [ualogz(ﬁ/pz)]k. Adding
this contribution, the double logs in the integral of the Pp Spactrum are
rendered finite and are of order [aalogz(qilﬁ)]k. However, the addition of

the processes qg + Y*(GG...) and q = y* (loop corrections) serves only to
cancel che logz(uz) terms at each order; log(uzl(qi,a)) termg still remain
uncanceled, (In contrast, in y* + qq{GG...) + loop corrections, no log(nz)
terms appear.) The existence of such (collinear) divergences is a consequence
of the presence of colored particles in the initial state, They are canceled

by the ineclusion of processes in which the quark absorbs a gluon from the
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initfal jet; the logarithme are then tamed to the form log(kil(Q§,s)) where

kT i1s the spread asscciated with the initial jet. Hence, in perturbation
theory, the effects of 'primordial transverse momentum' {(the spread of the
inlcial jet) are at least formally of subleading order relative to the terms

in eq. (3,76) for the Py spectrum, Nevertheless, any discusslon based on
perturbation theory is entirely inadequate at very small Pps a8 discussed above.

Above, we have conaidered the process qi + y*{(GG..,) which, for our lead-
ing log purposes, is essentially a simple crossing of the case y* + qq(GG...)
diecussed at length in previous sections. In the same vein, we may uae our
results (3.42), etc., on x »+ GG(GG...) {(where x 1s a spin 0 Q§ bound state)
to estimate the tranasverse momenta of ¥ produced in hadron-hadron collisions
through GG » X(GG...}. Since a large fraction of the f (¢, T, ...) produced
in hadron interactions presumably arises from the decay y -+ gy of the x pro~
duced, the § transverse momenta should reflect those of the x. Comparisen
of eq. (3.42) with (3.76) auggests that the transverse momentum distributions
of haedroproduced 7 should be broader than those of direct y* by roughly a
factor 9/4. The qualitative aupport of this result from dimuon production
data is again encovraging,.

The methods applied here to the Drell-Yan process may alse be used in
other cases of experimental relevance. Thelr results for deep inelastic
lepton-hadron scattering will be discussed in Ref. [6] [F3.17]; here we con-
sider very briefly the case of hadron-hadron collisions involving large trans-
verse momenta. The most convenient observables for this process are probably

the Ci’ defined by [2]

2 (pp) (pp)
- 7 ——I~§-E—l coa[£(¢i-¢j)]. (3.85)
i,

-3.55-

To lowest order, a 2 + 2 subprocess (e.g., 99 + qq) gives <02£/c°> a1,
<C2£-1/Co) = 0. In this case, Co = (Zpr/;)2 - x%. For large {4, the effects
of higher orders may be estimated by a leading log approximation. 1In the
leading log approximation, emissions from the incoming partons will have small
Py and will, therefore, not contribute to <C£>. The dominant corrections to
the <Cz> will thug come from deflections of the final high—pT partons by
emisgiona, We make the rough approximation that any parton deflected by

an angle 2 1/4 does not contribute to <C£>. Then the <C£/C°> are given by

formulae analogous to these derived for the <H,>» in Sec. 3.5. To 0(«8) we

£

find, for example,

608 2
€y, /0> =1 = 5= log™e (aq + qq{G))
(3.86)

3°s 2
(CZE.IC0> =1 - - log™2

(GG + GG(G)).

Since gluon distributions tend to be softer than quark ones, the second behav-
ior should be prominent at small CO (xT) while the first result should dominate
at large C0 (x

and will exponentiate as described for the <H£> in Sec. 3.5.

3.9 Real Photon Production in e+e- Annihilation

Photon production in ete” annihilation events provides another test of
their structure. By measuring suitable observables, one can probe photons
which were emitted by quarks at early times before hadronization has smeared
thelr energies. The angular correlation between two final photons would be
a particularly clean measure of the angular distribution of the partons at
early times, but it is probably inaccessible experimentally. Instead, let us

consider complete final states consisting of hadrons and a single ldentified

T)' Of course, the results (3,86) may be summed to all orders in o,
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photon of momentum k. Defining z = 2]ﬁ|//;, we require z to be sufficiently
large that the photon is constrained to be a relic of early times (F3.18} and
not to have been generated in the hadronization process (e.g., by 7% > vy,

We consider the angular distribution of energy in events with respect to the

photon direction using the ebservables:

dr |7,
% 1 .
- ; —/;-Pm(pi'k), (3.87)

where the sum runs over all hadrons in the event, Then droldz = (2-z) a0 that
the distribution of events in Po glves gsimply the photon enetgy spectrum.

Thias suffers collinear divergences wherever the photon direction comes close
to one of the quark directions, which would usually be canceled by final states
containing no photons. However, as usual, one may extract this divergent
(leading log) term and ther compare results obtained at two different valuea
of 8, so that the infrared divergences factorize off between them, This pro-
cedure has been used to predict the leading log s dependence of the photen
energy spectrum {'quark fragmentation function into photons') [34, 35]. Here,
we consider the infrared finite observables d(rl *TL Y/dz, where £1 and ”o

are trelatively even. By performing this subtraction? we explicitly remove

the contribution of the collinear region by weighting it with zero so that

we obtain a definite finite result at each value of &, rather than having to

compare two values of &, The procedure of subtraceing two T', removes 0(a)

£
QED infrared divergences; QCD infrared divergences cancel juat as in the total
crosg=-sectlon, Similarly to the purely hadronic observables Hz and Bl’ the
mean values and distributions in drzldz way be calculated., We find, for ex-

anmple
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4t I .
« —2 5 o ﬂ_“ 2_2 .(_Q.ZL_E).. ((z=2)Llog(l-2)~z], (3.88)
e 2
i

where the e, are the charges of quarks with masses much less than /s, and we
have normalized the mean with the total hadronic e+e- annihilation rate. Other
intereating observables available using real.photons in the final state include
ones sensitive to angular correlations between the beam direction and the

outgoing y.
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N .- the limit x + 1 is taken for the fragmentation function.
f -~|% Eq
~ ~ ch T-l‘ g
,I"" :N >'eN :ﬂ :‘_‘: :_‘ E}:" F3.2 In addition to the direct gauge constraint n.c = 0, the equations of
> - |1 = |1 < |10 t W
petll [ bl b} — §.E‘ motion for the gluon (or photon) field introduce the further constraint an(k.e)
©
¢ = 0 which may be satisfied by taking k.c = 0. Feynmen gauge corresponds to
]
44 integrating over all possible values of k.g,
i i
aow

F3.3 Note, however, that for genuine scalar gluons, the collinear singularities

are damped. Here D), glves (l—xl)/(l-xz), o,, (1-x2)/(1-xl) and D), 2, yield-

e
mom

Table 3.1

ing a total of xgl(l-xl) (l-xz) witich exhibits no double-logarithmic ('soft and

collinear') singularity as %y, %y > Lo
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F3.4 This form was recently conjectured in Ref. [23] on the basia of an explicit

O(ag) calculation.,

F3.5 One contribution to these subleading log terms comes from the 'two-loop
anomalous dimensions’, and is process ilndependent. The proceas~dependent part
comes from a product of 'constant (non-logarithmic) terms’' with leading log

iterations.

F3.6 Such a form factor is not directly amenable to measurement. One may
roughly consider it to give corrections to dimensional-counting results for

the plon form factor. However, in this case, one should not only include
virtual gluon exchanges but alsoc real gluon emission up to transverse momenta
which may no longer be supported in the pilon wave~function, leading to a single
log at each order in L In fact, in all exclusive processes involving hadrons,
an infrared cutoff 92 is presumably provided by the size of the hadrons; real
emissions at transverse momenta up to this cut-off ghould, therefore, be in-

cluded.

F3,7 For the massive QED of relevance to muon decay, all subleading logs (which
must here come from soft, rather than collinear, divergences) also exponentiate

and are presumably unimportant close to the kinematic boundary.

F3.8 Thie is defined to couple directly only to the q and 4, in contrast te
the acalar source X, which couples only to GG, The relevant differeatial cross-

gaction is then simply

2 2
do_ % TN Lo
dxldx2 in (1-x1)(l-x2) -
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F3.9 The definition of SF(B) for a single jet must be made carefully. We take

the corresponding energy correlation function to be
E.E
t i
(¢? oy, = 1L §(x-cosd, .},
2 J Z 13
i, EJ
where 1 and j are particles in the same jet J of energy EJ. This definition
differs from our usual definition (1.2) of th(x), which contains an extra
factor of 2, and is thus normalized to 2 rather than 1 when integrated over
X from -1 to +1., We take the Qingle jet SF(B)i to be the integral of (th(x))J
from x = 1 to x = cos(8). This must be summed over the number of jets and
welighted by ZEiet/s to obtain the complete SF(B) {from which the <Hl> will
be derived) for an n-jet event.

F3.10 This requires use of the quark number conservation (Adler) sum rule:
1

I (qu(z) + ch(z))dz = 1, together with the corresponding sum rule for gluons
o 1

2 I (P..(z) +P _(z))dz = 1. (One could integrate here from 0 to 1 using

/2 %€ a6
suitable kernels regularized at z = 0 ag well as z = 1),
F3.11 To prove this result directly from egq. (3.51), let Q be the matrix that
diagonalizes the matrix A of n = 3 anomalous dimensions: Q-lAQ =D. Integrat-
ing (3.51), one finds that SF(G ~ 1) is —ZVQD'IQ_l L] —ZVA-l so that the result

required becomes

qq_,q4,,6q_,Gq
vq_>x . Ayt-Ag A, TAg
*7
GG_,GG, . q6_,qG
Vorx Ay Ay A, oAy
qq, ,Gq qq ,Cq
Y Ag HA, 1 a3 Ay 1
2 2
4564496 PSS AN

3 3 3 3
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F3.12 Extreme care must be exercised in the derivation of this result; in most
parts of the caleulation, the regularizer B = uzls must be retalned until the
very end, The contribution of the q, q term in <th(x)> is, however, quite
simple since it exhibita no divergence as ¥y +~ 1, For this term, one may explic-
itly integrate the <th(X))qﬁ obtained after setting 8 to 0 from n to 1. One
finds at. n = 0

2a
s
IqE(O) =1+ e [269+95(2)-40810g(2}] = 0,074 a,.

The integral of <th(x)> up to x = 1 for the (E)G terms exhibits a logarithmic
divergence which must be canceled against the one appearing in C+1 (the coef-
ficient of ${1-x) in <F§t(x)> at 0(a8) given in eq. (3.7)). In intermediate
atages, the integral must be regularized by retaining all terms proportiocnal
to B, Usually this leads to entirely intractable integrals. However, it is
possible to compute IqG(O) directly by integtating LT dd/dxldx3 for ete” »
qqG over the region 1 - x - Bl(l—xl) < %y 3 2(148-x))/(2-%,), 0 s %y <1 = YB.
(The apparently 0(f) terma in do/dxldx3 give (1) contributions by virtue of

end=point singularities.) This is then added to C+ to obtain the complete

1
ch(°)° Then, having set $ to zero, one may evaluate the integral of <F§t(x)>
from x = 0 to x = n. It is in this laat step that dilogarithm functions are

introduced. Note that the masa corrections to I(n) appear always to be 0{(8).

F3.13 In Ref, [2] we used the preseription for treating fragmentation and
independent (leading log) jet evolution advocated in Sec, 2.1, We defined

the time or rasolution which delineated twe or three jet events by making a

cut on the H2 of the partons. The partons which existed at the time correspond-

ing to the cut were then taken to form hadrons according to a phenomenclogical

model which accounts both for the hadronle effects and for some perturbative
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QCD effects., The model does not, however, treat correctly the violations of
scaling associated with these; in fact, as discussed in Sec, 2.1, some non-—
scaling component, reflecting the results given in Fig. 3.7, must be added,
A simple phenomenclogical improvement [30] of the Field-Feynman model is to
use an energy dependent transverse momentum distribution adjusted to glve a

<¢>p which includes estimated perturbative QCD effects.

F3.14 If we consider the cross-secticn alsoc as a function of the c.m. rapidity
y of the y*, then the argument of the log becomes (p%/[a(l+r-2/?hoah 1.

The rapidity clearly does not enter the leading log estimate (3.76) which,
therefore, suggests that, as observed, the y* Py spectrum should be roughly
independent of rapidity, at least away from the boundaries of phase ap;ce,

where the leading log approximation fails.

F3.15 This form has also been obtained in Ref, [33] where it ia viewed as an
eikonal approximation. It differs in leading log order at 0(35) from tha

results of Ref., [20]. We do not understand the phase space boundaries used

in [20].

F3.16 An analogous condition exists for the validity of leading single log

results (e.g., <th(x)> near ¥ = +1 as discussed in Sec. 3,7): a:—lmk-zl[as]Y
€ f (v 1s the relevant anomalous dimension) so that, as usual, aslog(ii) 1

P
in this case. T

F3.17 One might imagine that our analysis could be applied directly to aL/oT e
Ak%/Qz in deep inelastic scattering. Howaver, integrating a suitable double

log form like eq. (3.76) over Py with this weight function reduces it to a
single log form which must be handled by other techniques (renormalization group

wmethods analogous to those in Sec, 3.6).
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F3.18 It {3 also prudent to consider photons at large angles to the incoming
beam direction so as to avoid background processes in which the photon is

emitted by the initial e+, ¢” rather than from the final state [34].
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Seetion 3 - Figure Captions

3.1 The schematic form of part of an e+e_ -+ qE(GG...) event showing some

kinematic definitions,

3.2 Forms for the energy correlation functions <th(x = cogfd)> in e+e- -
qq{GG...) events found explicitly at O(us) and summed to all orders in us in
the leading log approximation. The leading log results for the region 8 =~ 180°
are discussed in Sec. 3.5 while those at 6 a 0° are derived in Sec. 3.6,

The cross-hatched barrier represents the angles beyond which perturbative
methods should definitely fail, WNote the proximity of the 0(«8) and summed
leading log results for as(s) = 0,2; they are still closer for smaller e

The smallness of the leading log form around § =~ 90° suggests that in this
region, the G(as) resule should be accurate, Beyond the order shown here,
<th(x)> will develop § functions at all values of x, whose effects cancel

in suitable integrals of <th(x)> over .

3.3 The O(us) and summed leading log results for the <H£> at large £ in the
proceases e+e— > qi(GG...) and § » GGG(GG...). (For { + GGG(GG...) only the
leading log part of the D(us) term is known.) Beyond the cross-hatched bar-
riers, our perturbative results will be completely invalidated by hadronic

effects,

3.4 <H£> as a function of a_ for the process e+e- > qa(GG..) with the notation

of Fig. 3.3.

3.5 The ratics of various approximate results for the mean square energy

into a cone of full angle B (SF(B)) around quark and gluon jets,

3.6 The mean square energy into a cone of full angle § around quark and gluon

jets, using various approximations.
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3.7 The mean and r.m.s. energy-weighted angle <¢>E for quark and gluon jets
as a function of the total jet energy. The angular cut for the dashed curves
is taken to be at twice the mean angle of hadrons produced according to the

Field-Feynman phencmenolegical jet fragmentation model [31}.
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4. Rotationally-Averaged Two-Detector Energy Correlationg
4,1 Formalism and Calculational Techniques

In this section we discuss the rotationally invariant observable F2 de-~
fined in eq. (1.2) {36}. The two detectors used in this definitfon occupy areas
01(1 = 1,2) which are, in general, of arbltrary ehape., However for simplicity,
we ghall restrict ourselves in this paper to the case in which the o, are
congruent circular patches of angular radius cosﬂl(d). Hence 101| = 2x(l-8)
and FZ ia a function only of x and 4, where coa-l(x) is the angle between the
centers of the two detectors 0y- The arrangement is illustrated in Fig., 4.1.
The generslization of our treatment to detectors of arbitrary shape is stralight-
farward. The best method of calculating F2 from events appears to be the use

of the formula
FAIFN
Folxs) =2 § ——1 Ulx;85cond, ) (6.1)
1,3 °® 3

where the sums on 1 and j run over all the particles in the event (including

the case i » §). The smearing function U is given by

1
Ulx38;cond, ) = lo{1a,| fdﬂdle(ndl,npi;ndz,npj;ﬁ). (4.2)

Here ﬁdk 1s & unit vector in the direccion of detector kX and ﬁpi the unit

vector in the direction of particle 1, If ﬁdl rung over all elements of the

rotation group, se that f dﬁdl = an, then

(4.3)

-4, 2=

where Z 18 a unit vector in the z direction and R(x) a rotation through cos—l

x)
about the y axis, Finally in (4.2), the function O takes on the values 1 or

0, and i3 zero unless both the pairs ﬁdl’ ﬁpi and ﬁd2’ ﬁpj lie within an angle
coa-l(ﬁ) of each other, so that particle 1 is incident on detector 1 and par-
ticle j on detector 2. The rotatlonal invariance of F2 i3 exhibited by the

fact that it has the same value for any choice of particle directions ﬁpi’

ﬁpj so long as the angle ¢1j between them remains fixed. For some purposes,

it is more convenient to write U in the symmetrical form

U{x;8;co84, ) = ———— [ 48, d@
S TAIEA R
(4.4)
e(ﬂdlz,ﬂpiz;ﬁdlk(x)z,ﬁpik(coa¢ij)z;6).
Wote that
+1
[ Uxibscospy ddx = 2 (4.5)
-1
which implies rhe same normalization for FZ:
+1
[ F(xs8)dx = 2, (6.6)
-1

independent of the value of §.
In the 1limit § » 1, o and o, become point detectora separated by an angle

cos-l(x). We define [F4.1)

5T (x) = Lim[F,(x;8)]. 4.7
&+1
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In this case, U becomes simply

U(x;l;coa¢15) - G(x—cos¢1j), 4.8

and we may rewrite

17,115,
Ppht0 = 2 § ——d- s(x-cont,) (4.9)
1,3
and
+1 ¢
Fo(x;8) = Il A 'FET (X" Ulxiix ). (4.10)

F, may be expresaed in terms of the Hy, defined in eq. (1.1) as

+ 15,112
- A1 m i
H, = (5=2) I 2 T(,) ——
L | I A i
13,113, ] (-
i
1)Ij —4— By (cos, )

where the indices 1 and ] run over the hadrons which are produced in the event,
and ¢lj 13 the angle between particles 1 and i, When the first form for the
Hz is used, a particular set of axis must be chosen to evaluate the angles

(91) of the momenta, but the values of the H, deduced will be independent of

£
the choice, The Legendre expansion of Fz is

Fy(x3$) = §(2s+1)ﬂg(d)rz(x) {4.12)

where the H, as defined in {4.11) are “!.(1)' and correspondingly,

b4
R0 = J(2e+DBP (1) (4.13)
2 i i % b )
The relation between HL(S) and Hl is
13,13,1 +1
Hy(9) = T AL [ axp, (00(xs85c080 ) (4.14)
1,3 -1 3
*
so that {(for circular detectors)
12¢8)
H,(§) = H,, (4.15)
. (a-6% *

ot equivalently

(2£+1)Ii(ﬁ)ngx)Pg(c°s¢LJ)
2(1-6)2

Ulx;é5c089,,) = ) {4.186)
L
which clearly illustrates the symmetry between y and cos¢1j also visible in

(4.4). IL(x) was defined in [2] as
t 2 =1
L) =J P, (y)dy = /1-x P, (%), (4.17)
x

Wote that as & » o, Hz ~ 1 but H£(6 < 1) ~ 1/13. Thus the series (4.12)
is always absolutely convergent whereas (4.13) diverges (for point particles).
Fz(x;d) recelves a contribution from events in which the same particle
passes through both detectors. Although this is of little practical interest,
it must be kept if the normalization condition (4.6) 1s to be maintained,
In the point detector limit, &§ = 1, this configuration contributes to th(x)

a term
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> 2
P
?;ame(x) - 2 E—-—i‘— §(1-x), {4.18)

where the coefficlent of the delta function is related to the asymptotic limit

of the H£ by

+ 2
L Lin ()40 = ] 7, (4.19)
L . _ ‘
2 4 28 2841 i s

The result (4.18) reveals an important difficulty of th(x). In (2],
we argued that for observables to be infrared atable when computed in QCD
perturbation theory, they should not discriminate between the various final
gtate configurations for which the differential cross-section 1s divergent,
so that when their mean values are calculated, the divergences will cancel

just as in the total cross—section. This i3 clearly not true for the coeffi-

same
2

the momenta of collinear particles, configurations containing pairs of nearly

clent of §(1-x) in F (x) with point detectors: aince it is not linear in
collinear particles are weighted differently depending on the partitioning

of momentum hetween them. Hence, the coefficient of §{1-x) in Fgame(x) will
be divergent as found at 0(aa) in eq. (3.7), As discussed in Sec. 3.1, this
divergence at O(us) ia canceled by a 1/(1-x) term in <th(x)> away from y = +1
when <th(x)> is integrated over x with a smooth function, such as the Pﬂ(x)
uged to obtain <H£>. The form of <th(x)> calculated from perturbation theory
is therefore a generalized function or distribution. Only when integrated
over y with some smooth test function (such as ?z(X)) does it yield phyaical
results. This behavior is familiar [2] from the form of, for example, the

q energy spectrum or l/¢ do/dH, i ete™ + q3(GC...). The <th(x)> obtained
from perturbation theoty may be smeared by considering instead the energy

correlation <F2(x;5)> for detectors of non-zero area, <F2(x;6)> then takes

on a definite value at each yx, but, for example, <F2(1;6)> diverges like -

=4, 6=

log(1l-8) to O(Gs) a8 the detector size is taken to zero. The presence of a
divergence in <th(x)> at some value of y 1s a consequence of the fact that

the <th(x)> there can recelve contributions from final states in which, for
example, one of the final gluons is soft go that the differential cross-section
1a divergent. At a given order in L this can occur at any value of y for
which <th(x)> 18 non~zero in lower ovders, At O(as), e+e_ +> qq(6) gives
divergences only at x = :l1, where <th(x)> for e+e— + qq is non-vanishing.
However, at O(az), <th(x)) will exhibit divergences at all values of y and
will have no definite value at a particular yx; it will only be defined when
smeared over ¥.

In practice, the <th(x)> for actual events are finite at all x. The
intrinsic resolution asgoclated with the fragmentation of gquarks and gluons
into hadrons provides the angular smearing of the perturbative result for
<th(x)>. Unless the size of the hadron decectors is very large, it will be
the angular smearing assoclated with the Eragmentatfon which provides the
dominant contribution to the effecrive Eoi| which determine Fz(al,az). Since
the angular resolution introduced by fragmentation cannot at present be deduced
directly from QCD, the strong dependence of Fz(al,az) on it is undesirable.
Nevertheless, if one adopts a phenomenological model for the fragmentation
of guarks and gluons into hadrons, then one obtains definite predictions for
the distributions of events in FZ' although their violent dependence on param-~
eters discussed in Sec. 4.2 probably rendevs them worthless in practice. We
use the model developed by Field and Feynman [31] to simulate the fragmentationr
of quarks and gluons into jets of hadrona. Our methods were described in
Ref, 2. We investigated there the consequences of various cuts on the hadronic
final state and found that the effects of fragmentation were lessened if one

used only particles whose momentum was greater than a cutoff value P In
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the present paper, we follow this prescription with the choice P, = 0.5 Gev,

In addition, we consider only events containing four or more final particles;
lower multiplicity events contain little information on the underlying dynamics,
and their inclusion often induces spurious effects,

In the next section, we present predictions for <P,> and l/c dg/dP., for

2 2
two and three jet eventa,

We discuss there the processes e'e” =+ q3, e'e - 43¢ and eTe” > £ > GGG
in the approximation of free final quarks and gluons and also simulated had-
ronic events resulting from these subprocesses. In Sec, 4.3 we give <F2> for

various clagsses of heavy quark and lepton production events; we do not give

the distributions l/e¢ da/d?2 for these cases.

4.2 <!2> and 1/c da/dF2 fot Two- and Three-Jat Events

In this section we discuss the processes ete” 24, 99(G) and e > g
GGG, The final state qq(G) repreaents the 0(32) QCD prediction for ete” an-
nihilation to free quarks and gluons away from resonances, as discusged in
detail in [2]. It consists of a sum of qq and q4G final states. As described
in Ref. [2], there are difficulties in estimating the effects of hadron frag-
mentation in the qq(G) case and we were forced to use a rather ad hoe prescrip-
tion, However, tests contained in Ref. [2) suggested that our results are
not gensitive to this prescription, Our method for calculating the hadron
final states from qq(G) consists in generating true three-jet events when the
qq6 produced in the subprocess satisfy H2 < 0.8, and two jet events otherwise
in such a way as to give the correct total 0(32) crosg-section; o ao(l+us/ﬂ).
The cut on H2 repregents the resolution of the hadron final state to changes
in the subprocess final state:! the hadrons do not reflect the presence of
the extra gluon if its transverse momentum is too small. Note that QCD pre-

dicts that the two-jet process e+e' + qq should never occur in isolation and
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that only the combination ete™ » qq{G) should ever be observed away from res-
onances. QCD suggests that heavy resonances (r) produced in e+e- annihilation
should decay dominantly to GGG.

In Appendix A we give analytical forms for <th(x)> for the two and three
jet processes discussed above in the free quark and gluon approximation.
<F2(x,6)> may be obtained from these formulae using eq. (4.10). The resules
are shown as curves marked "free quark and gluon approximation" in Figs. 4,2
and74.3. These figures also give our estimates for the <Fy> of realistic had-
ronlc events in which the quarks and gluons have fragmented into hadrons [F4.2].
At high enough energy, the effects of this fragmentation (which decreases like
(Azfs)p) should become negligible. However, even in the energy range 20 < /3 =
40 GeV of PEP and PETRA, fragmentation cannot be neglected, Figure 4.4 shows
in more detail the comparison between qq and qqG final states at /s = 20 GeV.

In Fig, 4.2 we present <F2(x;0.95)> for detectors with an angular radius
of = 18° (4§ = 0.95). Although the modifications to the free quark and gluon
predictions are large even at /s = 40 GeV, we believe that one can estimate
the effects of fragmentation sufficiently well [F4.3] that <F2(x,6)> can be
used to study the underlying production mechanism, In Ref. [2] we alsa found
that the <H£> suffered significant changes due to fragmentation. However,
the distributions l/¢ da/dﬂz of events in the H, did become close [2] to the
free quark and gluon approximation at v¥s = 40 GeV at least for £ = 2 or 3.
Later in this section, we shall discuss the distributions of events in Fz(x),
and show that an extremely high center-of-mass energy is required for fragmen-
tation to become unimportant for these distributions.

In the free quark and gluon approximation, the <F2(x;6)> for e+e' + qq
events is symmetrical under x + -y. Fragmentation destroys this symmetry.

Near ¥ = 1, <F2(x;8)> probes energy correlations within a single jet, while



-4.9-

near ¥ = -1, it receilves contributions only from pairs of particles in oppesite
jets, If § » 1, then <F2(x;6)> would contain a term proportional to §{(1 - x)
arising from eventa in which the same particle passed through both (point)
detectors, but for hadronic events, there would be no corresponding §(L + x)
term. The most significant breakdown of y + -x aymmetry in <F2(x;6)> occurs
for the process e+e- + ¢ + GGG, and this may allow the <F2> to be used to
isolate eventa of this type. However, the H2 [2] and “1 (3] distributions

of events probably provide better discrimination. Homentum conservation re-

quites
1 1 pt
Hy> = 3 {1 X<FE(x)>dx = 0, (4.20)
but a measure of the asymmetry in <F(x)}> may be obtained by using
Ay -t fl P, (%) <FE S (x)>d (6,21)
¥ T a ) hesh e '

Figure 4.3 givea a comparison between the <F2> obtained with detectors
of gize & = 0,95 (18°) and § = 0.9 (26°) for simulated hadronic events at
Y8 = 20 GeV and in the free quark and gluon approximation, It is clear that
these two values of & give very similar <F2(x;6)>. For 6 = 0.9, the effects
of fragmentation are slightly less important than for & = 0.95. This 1s to
be expected since the larger (1 - §) 18, the more the energy correlation func-
tion is smeared, and the less evident are the infrared divergences which appear
in 1ts calculatlon for free quarks and gluonz as § > L. The fact that the
change shown in Fig.4.3 between § = 0.95 and § = 0.9 is gso small indicates
that the smearing of the free quark and gluon esnergy correlation by fragmen-

tation to hadrons occurs over much larger angles than those by which the use
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of detectors even with & = 0,9 would smear. Much smaller values of § (larger
detectors) are necessary to obtain significantly better agreement with the
free quark and gluon approximation. When § becomes very small, however, the
smearing 18 so great that little information on the events remailns in Fz.
In fact, one must then introduce weight functions into the smearing thereby
reducing to a calculation of the <HE> [2].

In Figs. 4.5 and 4.6 we present calculations for the distributions
1/o do/sz. These are rather disappointing. In our study of the Ha [2], we
found that the distributions L/o dald!l’. (at least for & = 2 and 3) were not
seriously affected by hadron fragmentation and provided very distinctive tests
of the basic dynamics. In the case of F,, the free quark and gluon calcula-
tions show striking structure (see, for example, the lower right-hand graph in
Fig. 4,5); however, hadron fragmentation is a huge effect even for the case
§ = 0.9 shown in Fig. 4.6, It ia worth remembering here that whereas knowledge
of <th(x)> (as a function of x) and <H£> (as a function of L) are esaentially
equivalent, the distributions 1l/g dn/dF2 and 1/g do/dHL contain Inequivalent
information, It appears that the shape information contained in 1/c dalt:llvlz'3
is less sensitive to hadron fragmentation than that in l/o du/sz. The figures
include the case y = 0, corresponding to two detectors at right angles. As
expected, two-jet events give a distribution in l/o du/sz sharply peaked at
Fz(x = 0,8) = 0 whereas 3 jet final states give a broader distribution, On
comparing e+e- + [ + GGG and e+e- +> qa(G), one sees that the former gives many
more events with large values of Fz(x = 0,5), This behavior is qualitatively as .
expected and should be preserved regardless of how one treats the hadron frag-
mentation, This case of two perpendicular detectors gives perhaps the best
intuitive way of distinguishing 2 from 3 jets and is probably the only feature

of energy correlation distributions worthy of exploration.
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Note that the extreme sensitivity of 1/¢ dolsz to fragmentation is to
be expected because of the infrared finstability of F2. The inadequacy of
lfa chdF2 compared to l/g daldﬂ2 4 18 In strong support of the relevance of

*

the ctiterion of infra-stability for successful shape parameters.

4.3 Heavy Quark and Lepton Production Events

In [2] we discussed varicus possible mechanlsms for heavy quark (Q) decay.
Using approximations which are valid only near the threshold for Q§ production,
we obtain the <F2(x;0.95)> for heavy quark pair production events shown in
Fig., 4,7, Assuming that the heavy quarks ave contained in mesons M = Qas, where
1g is a light (spectator) quark, we conaider the various possible decay mech-

anisms [2]

M > q'qdq, (3-Jet)
M+ q'Gq, (2-jet) (4.22)
M>q'q {2-jet)

which are shown separately in Fig. 4.7. However, it 1s clear that the different
decay modes give essentially identical forma for <F2(x;0.95)>.

We also give the mean energy correlation function for events im which
a palr of heavy leptons are produced and then decay to u&vL. We assume that
the neutrinos will not be detected and therefore divide the F2 for each event
by the aquare of the observed energy in the event, Ho' Note that our approx-
imaticns for heavy lepton production events hold only when the energies of
the heavy leptons are amall compared to thelr masses. At higher energiles,
heavy lepton production events should take on a two-jet structure, From Fig, 4.7
it 18 clear that the <F,(x;0.95)> for sfmulated hadronic events at /s = 20 GeV

invelving heavy quark or lepton production near threshold are closer to those
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for Lsotropic events than the <F,(x30.95)> for ete™ o+ q9(G) or efe™ L -+ GGG,
The difference between the heavy quark or lepton production events and ¢ + GGG
ones 1s, in fact, not very great; however, this should not pose a serious
problem for any experimental investigation based on <F2> since we expect ¢ + GGG
to cceur only on resonances below the thresholds for heavy quark palr produc-
tion and 80 heavy quark and lepton production events will compete with e+e- -+

449(G) ones, from which they are quite well distinguished in <F

>o

2
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Section 4 - Footnotes

F4.1 In Ref. [2], th(x) was called aimply F(y).

F4.2 In practical calculations, th(x) can be found easily from (4,9), and
then (4.10) can be used to obtain <F2(x,6)>. Alternatively, one may use the
rapidly convergent series (4.12). The latter method has the advantage that
it alaso allows the calculation of the discribucion 1/g do/sz. It is clear
that for both means and distributions, the “L are somewhat easler to extract
from events than the energy correlation Fz.
F4i,3 A precise comparison of theory and experiment would require a refinement

of our jet decay model along the lines deacribed in Secs. 2 and 3.

-4.14 {figure captions)-

Section 4 - Figure Captions

4.1 Two circular detectors g, o, of half angle cos“l(ﬁ). cos‘l(x) is angle
between the centers of the detectors. ?z(x,é) is obtained by averaging over

all positions for the detectors which preserve the angle Y.

4.2 The mean value of the rotationally invariant energy correlation Fz as a
function of detector separation y for fixed detector size given by 6 = 0,95
(opening angle =~ 18°). The curves given are for simulated hadronic final
states at vs = 1¢, 20 and 40 GeV and in the approximation of free quarks and
gluons. The free quark calculation marked qq(G) is, in fact, just the contri-
bution of the qqG final state calculated with no H2 cut and with no qq compo-

nent added (this would contribute only at x = +1).

4,3 A comparison at vs = 20 GeV of the mean value of the energy correlation

FZ for two different detector sizes given by & = 0.9 or § = 0,95 (corresponding

to detectors of half-amgle 26° and 18°, respectively),

4.4 The racio of the mean energy correlation bhetween point detectors <th(x)>
<F2(x;6 = 1)> for hadrons produced by the processes ete™ » 996G and e+e_ + qq
at V& = 20 GeV, MNote that at this energy, our prescription for treating frag-
mentation takes 65% of qq(G) final states to contain two jets and, therefore,

to evolve roughly like qq final states.

4.5 The distributions l/g da/sz(x,G) calculated for various separations yx

of two detectors with size § = 0,95 (=~ 18°) resulting from the processes ete™ o

99, GGG and qq(G}. Calculations in the free quark and gluon approximation
are gshown as well as those obtained from an estimate of the effects of frag-
mentation to hadrons at vs = 10, 20 and 40 GeV. In the free quark approxima-
tion e+e- + qq gives a delea function contribution, smeared to angleﬁ X o=

i(262-1) by the finite detecror sizes. The curve marked qq(G) in the free
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quark and gluon approximation 18 qq¢ with an H2 < 0.8 cut but without the

qq (delta function) term added,

4,6 1l/o dclsztx,d) for (e+e- +} ¢ > GGG in the free gluon approximation,
and using a phenomenological wodel of hadron formation, for various separations
of two detectors with size & = 0.9 (corresponding to half-angles of 26%), to

be compared with the results in Pig. 4.5 obtained with & = 0,95,

4,7 The mean energy correlation function <F2(x,6)> for events containing heavy
quark or lepton production with various mechanisms for heavy mescn decay.
For comparison, we show reaults for the continuum veaction e+e- > qa(G) from

Fig. 4.5,

ARRANGEMENT OF DETECTORS
FOR MEASUREMENT OF F» (X,8)

Fig. 4.1
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Section 4 - Footnotes Section 4 ~ Figure Captions

F4,1 In Ref. (2], th(x) was called simply F(x). 4,1 Two circular detectors o1 9y of half angle cos-l(s). cos-l(x) is angle

. between the centers of the detectors. Fz(x,ﬁ) 1s obtained by averaging over
F4,2 In practical calculations, Fg (x) can be found easily from (4.9), and

all positions for the detectors which preserve the angle y.
then (4,10) can be used to obtain <Fo(x,8)>. Altermatively, one may use the

rapidly convergent series (4.12). The latter method has the advantage that 4.2 The mean value of the rotationally invariant enexgy correlation Fz as a
it also allows the calculation of the distribution l/o da/sz. It is clear function of detector separation x for fixed detector size given by & = 0,95
that for both means and distributions, the H£ are gomewhat eaaier to extract {opening angle = 18°), The curves given are for simulated hadronic final

from events than the energy correlation Fz. atates at s = 10, 20 and 40 GeV and iIn the approximation of free quarks and

gluons. The free quark calculation marked qq{G) ig, in fact, just the contri-
F4.3 A precise comparison of theory and experiment would require a refinement

bution of the qqG final state calculated with no H2 cut and with no qq compo-
of our jet decay model along the lines described in Secs, 2 and 3.

nent added (this would contribute only at y = +1).

4.3 A comparlson at /s = 20 GeV of the mean value of the energy correlation
FZ for two different detector sizes given by & = 0.9 or § = 0.95 {corresponding

to detectors of half-angle 26° and 18°, respectively).

4.4 The ratio of the mean energy correlation between point detectors <th(x)> H
<F,(xié = 1)> for hadrons produced by the processes ete™ q3G and efe™ - qQq

at Vs = 20 GeV. Note that at this energy, our prescription for treating frag-
mentation takes 65% of qq(G) final states to contain two jets and, therefore,

to evolve roughly like qq final scates.

4.5 The distributions 1l/¢ duld?z(x,a) caleculated for various separations ¥

of two detectors with size & = 0.95 {~ 18°) resulting from the processes e+e- >
qq, GGG and qq(G). Calculations in the free quark and gluon approximation

are shown as well as those obtained from an estimate of the effects of frag-
mentation to hadrons at vz = 10, 20 and 40 GeV. In the free quark approxima-
ticen e+e- -+ qE gives a delta function contribution, smeared to angle& X =

1(262—1) by the finite detector sizes. The curve marked qq{G) in the free
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quark and gluon approximation is qqG with an Hz < 0.8 cut but without the

qq (delta Function) term added,

4.6 1fg daIsz(x,G) for (e+e- +) £ + GGG in the free gluon approximation,
end using a phenomenological model of hadron formation, for various separations
of two detectars with aize & = 0.9 (corresponding to halfF-angles of 26°), to

be compared with the results in Plg. 4.5 obtained with § = 0,95,

4.7 The wean enetgy correlation funetion <F2(x,5)> for events containing heavy
quark or lepton production with various mechanisms for heavy meson decay.
For comparison, we show results for the comtinuum reaction e'e + qq(¢) from

Fig. 4.5,

ARRANGEMENT OF DETECTORS
FOR MEASUREMENT OF F, (X,8)

Fig. 4.1
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5. Correlations with Respect to the Beam Axis

5.1 Introduction

We have discussed above the rotationally invariant observable Fz(x;é)

obtalned by averaging ¥.,, defined in (L.2), over all possible positions of

the two detectors which preserve their relative orientation. This averaged

Fz(x;ﬁ) characterizes the shapes of events and is probably the most ditect
probe of their dynamical mechanisms, However, QCD also makes unambiguous
predictions for the dependence of the shapes of events on their orientation
with respect to the beam axis, which dependence we have thus far brusquely
averaged away. In this section we conslder this angular dependence using both
the energy correlation ?é and its moments with respect to ¥, which represent
rotationally-non-invariant analogues of the Hg. In Sec, 5.2 we analyze the
general form of the angular dependence of ?é and describe arparticularly con~-
venient choice of angular coordinates, In Sec. 5.3 we define the moments = of ?2
vwhich provide an infrared stable measure of the angular correlations, and in
Sec. 5.4 we present results For the three basic processes e e  + qq, ete” >
qE(G) and e+e- + & »+ GGG, We consider these both in the free quark and gluen
approximation and including the effects of hadron fragmentation., However,

we shall not consider either heavy quark or lepton production events [F5.1];
further, our results are specialized to the case of unpolarized electron and
positron beams. It Is straightforward to generalize our results in these two

areas.

5.2 General Form of the Angular Dependence of Energy Cortelations

Consider two detectors fixed at particular positions in space separated
by an angle . The directions of these detectors from the point of interaction
{(and the normal to the plane defined by them) may be used to define an ortho-

gonal set of axes xyz with respect to which one can aspecify the direction of

.
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the beam axis. Temporarily we consider the detectors to be fixed and take

the beam direction as variable. In the next paragraph, we shall use the al-
ternative choice of a fixed beam direction and detectors at variahle angles,
With the detectors fixed, one assigns one of the axes to be the normal and the
other two to be in the plane formed by the two detectors. The direction of
the axes in the plane may be chosen arbitrarily. All cholces, 1If consistently
uged, are, of ¢ourse, equivalent; however, some may be more convenient than
otherg, As we shall see, the best cholce 1a to take the z axis to be the
normal to the plane of the detectors, and the x and y axes to be in the plane,
with the x axis defined to be on the line bisecting the angle between the two
detectors, We denote this choice by the subscript ¥ (z axis Normal to plane),.
We shall aelso sometimes discuss the P system (z axis in Plane) whose y axls

is normal to the plane and z axis is in the same direction as the x axis in
the N aystem. The careful reader will percaive that various signs are unde-
fined in these definitions (e.g., one can reverse directions of z and y axes
in the ¥ system)}. However, no parity-conserving observable is gensitive to
the ambiguities.

Now consider the energy correlations between two detectors for an ete”
annihilation event. Clearly, the correlation depends on the direction of the
beam referred to the axis sets we described above; this beam direction may
be specified by spherical polar angles (6',¢') and so we are led to define a
beam-orientated energy correlation ?gt that s a function of x, 6, ' and ¢,
To be precise, we shall actually not define €', ¢' exactly im this way but
rather fix the e+e' direction and define a fixed set of axes %p¥a%s with Zp
along the e'e” direction. Them we take the "reference orientation of the
two detectors so that *e¥R%R coincides with the detector-defined axis set

described in the paragraph above, Any orientation of the two detectors is
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then specified by a rotation R acting on the reference orientation. Let R

be in the standard Euler angle form
R = R DR (DR () (5.1)

where ﬁy(e) is a rotation about the y axis through angle & and ﬁz a rotation
about the z axis, 0 and ¢ are the angles to be used in the apecification of
?gt [F5.2], For unpolarized beams, ?gt is independent of ?. The unit spin
of the photon severely limits the possible dependence of ?gt on & and ¢; we

now turn te a discussion of these constraints.

Consider the general process
-
ee +~1+ 2+ anything, . {5.2)

where we have specialized to the case of point detectors and consider 1 and
2 as particles heading in the directions of the two detectors. Working in
the virtual photon rest frame, let )\ be the spin component of the virtual

+

photon teferred to the ¢ e direction as a quantization axts, and let B be

the gpin component of the virtual photon with respect to the 'reference’ final
state axes, Then if o denotes the unmeasured momenta and helicities of the
final particles, the amplitude for ete™ = ¥* + 1 + 2 + anything may be written

as

1
£ GAdAu(a)exP(_iu¢)Hua (5.3

Aka - u

where GA’ H“u are vertex functions, which give the hellcity amplitudes for

G -
e'e =+ y* and y* + 1 + 2 + anything, respectively, Taking Hla sa,H _=b

on 'S
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- +
H-la - ca, and using Gl - —G_l, Go 0 (for massless e ), the square of the

amplitude (5.3) becomes
_d% T (jat e e+ ab ()b +al (8)elfe |2
d{cosd)dé b 11 a 10 o -1 a
(5.4)

2
1 -1i¢ 1 1 i$
+ |d_u(a)e a, *+ d_lo(&)ba + d~1—1(°)e °a| 1,

which givea the inclusive cross-section e+e- + 1+ 2 4+ anything. For point
E.E
172
8

detectors, one must simply multiply it by to obtain ?gt(x,e,¢). One may
expand the resulting expressfon and derive the general form for the 6 and ¢
dependence of ?gt. The parity invariance of the Interaction places some con-
atrainte on this form, The constraints take a different form depending on

whether the z axis lies in the 12 plane {as in the P gystem) or along the

normal to it (N system). In & P-type system, parity invariance implies

z axis in 12 plane (5.5}
B Mt
where n, = t1l is some phase and -a denotes the state obtained by application
toe a of the symmetry operator S = Pﬁy(ﬁ) (P = parity operator, ﬁy(n) a rotation
through # about the y direction). 5, of course, leaves the directions of 1

and 2 invariant, Combining (5.5) and (5.4), one finds

d20

2
32333;33; = AP(1+cus eP) + B

2
Psin GP + CP

(5.6)

2
sin epcos2¢P + Dpﬂin239003¢9

-5,5~

where AP through DP (which, of course, depend on y) can be velated to bilinear

sums over a_, b and ¢ .
o’ A a
If now the z axis is taken along the normal to the 12 plane, the symmetry

operator for the system becomes § = PRz(ﬁ), so that the constraints from parity

invariance become

a, = -n.a,
ey TG, z axis along noyrmal to 12 plane, {5.7)
bu * nubu

Combining (5,7) and (5.4), one finds

dzu

de __ . 2 2
dcosaﬂd¢N AN(1+cos HN) + Bysin®®

N
(5.9)

2
+ CNsin BNc052¢N + DNain29N31n2¢N.

Comparing (5.6) and (5.8), we see that there are, in general, 4 Iindepen-
dent beam-oriented energy correlation functions. The specific expansion co-
efficients in the complete energy correlation as a function of the directions
of the detectors with respect to the beam {or, equivalently, at least for the
point detector case conaidered here, the inclusive differential cross-section
for ete” » ¥* > 1+ 2 + anything) depend, however, on the choice of coordinate
system. The results (5.6) and (5.8) hold for any choice of orthogonal axes
in the 12 plane. However, they must be symmetric under the interchange 1 « 2.

This constraint may be expressed most simply if one chooses one of the axes
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in the plane aleng the bisector of the angle between the directions of 1 and
2. In this case, the terms DP and DN vanish and one may write the angular
distribution in either the N or P aystem as
dzo ~pt
d(c0s03d © <f2 (,0,4)> = TOO(L + J(x)Pz(cosB)
(5.9}

+ K(x)ain29c082¢}.

With the above choice, our previocus rotational averaged <F2(x)> {8 juat the
function T(x) while moments of ?gt(x,e.é) with respect to the orthogonal funec-

tions Pz(cose) and sin28c032¢ give J and X:
t
<> = = [ a@dBi(x,0,0)> = TG0
<P, (cos8)>/<1> = J(x)/5 (5.10)

<ain28cosze>l<1> = 4K(x)/15.

5.3 Moments of Angular Correlations

The Ha observables discussed in [2] were of the form

AL
) £(p,°p,) (5.11)
1,3 ° .
where ﬁi, ﬁj are unit vectors along the momenta of particles 1 and j and the

f were chosen to be the Legendre polynomials., The Hz give a complete specifi-

cation of the rotationally invariant two-point energy correlatfon function

~5.7-

in an event, In [3] and in Sec. 6 below, we discusa the expansion of the three-
point energy correlation defined as

+ -+ >
leIto,llp b .
3T BBy By (5.12)
8

I

1,3,k

In this section, we consider another extengion of (5.11) in which f now depends

on the direction of the Incoming beams, G. We take
i A A
B = 1Zj —b £(B,p,,0,) . (5.13)

We find that these observables provide information on the angular distributions
of plamar structurea in events with respect to the beam direction,
The general analysis of Sec, 5.2 allows us to write any £ in terms of

the linearly independent functions

rh

i = sin2¢ijP£(cos¢ij)

f’l* = sin2¢ijP2 (cosenij)PL(cosqn“) (5.14)

h e

2
5 = sin2¢ijsin ﬁNi cosZ¢NijP£(coa¢ij),

and ¢
Ny By
which specify the beam direction in the Nij coordinate aystem, This set of

wherea ¢1J is the angle between particles 1 and j, 8 are the angles
axes {xyz)} 1s defined as described in Sec. 5.2, but with the directions of
particles 1 and j replacing the detector directions of the previous discussion.
The subscript N indicates that the z axta is normal to the plane defined by

51 and ﬁj' The explicit factor $1n2¢ij in (5.14) 1s necessary to make the
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fi well defined in the limits ¢ij = 0 or m, This can be seen from the expres-

sions for the beam angular functions in terms of scalar products of &, 61 and

~

Pj=

sin28N cosz¢ = L

A a2
[br(py+p.))
i “ij 4c032¢1j/2 79

2 2 1
sin BN eln ¢N

—— [5G 17, (5.15)
it i} 4sin ¢ij/2

lai)

o= (-G e iR,y 00))

™
-

" (L= 3 (Gp + B + 365 By 5y B, D) 1E, (B, B

L]
e

= (2068 Bop) - (80 (G5 + G IR Gy py),

(5.16)

which illustrates the necessity of the sin2¢ij factor in the definition of
)
&
as taken from eq. (5.14) or (5.16). 1t is clear that the <E:> shate the infrared

fi to avoid problems at ¢1j =0 or t. We define using (5,13) with fi
stability of the <H£> vhen they are computed in QCD perturbation theory,
Another possible set of observables, which appears to be less gensitive

to hadron fragmentation than the Ez (see below), iz defined in analogy with
(5.13):

- AL

E 121 el R IR Y

) (5.17)
=2 £ 2
fk = fkl(ain ¢1j)'
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The Ei are only independent of the Ei for 2 » 0 and 1. The definition
(5,17) 1s singular at sin2¢ij =0, for k = 1 or 2, For ¢ij =0, the % axis
remains well defined (along the ﬁi, §j direction) but the y and z axes of the
Nij system are undefined, In this case, we take the ?i’z to have the values

obtained by averaging unlformly over all possible directions of the y and z

axes in the plane perpendicular to ﬁi‘ ﬁj, 80 that

Ei(wij - Q) = - % Pz(cosai)Pn(cuse b

1]
(5.18)
E;(¢ij = () = Pz(cosui)PL(coaeij)

where a, is angle between beam direction and the particles i or 3.
In the case ¢ij = 7, an analogous situation pertains and only the y axis
is well defined. We take fi 2 to have the value obtained by averaging over
1]

all posaible directions for the x and z directions, so that

Ei(tij =7) = - %-Pz(cosui)Pl(cosai )

1
(5.19)

E§(¢ij =q) = -Pz(cosui)Pg(cosaij).

Note that in both limies, Ei,Z is proportional to Pz(cosai), giving the
only possible non-trivial dependence on oy
The §i cannot be written in a form analogous to the Hz from which their

infrared stability would be evident, Their values depend, of courae, on the
treatment of the singular case simpij = 0, We give evidence below that the pre-
scription for this described above is correct and renders the gt infrared stable.

It 18 clear that the energy weighting in eq. (5.17) protects the Ei from soft in-

frared divergences. Collinear quarks and gluons also give rise to divergences
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In the differential cross-section, The Ei can only be infrared stable if they
take on the same value for divergent configurations in which two separate
particles are exactly collinear (¢ij = 0} and in which a single particle car-
ries their total momentum. This will be the case with our prescription for
handling collinear particles omly Lf, in configurations where the particles
are nearly collinear, all potential divergences are independent of the azimuthal
directions of the particles with respect to the axis defined by the vector
sum of their momenta. Any dependence on the azimuthal directionm will appear
in the swplitude as terms proportional to y*k,, where k, is the transverse
momentum of one of the particles with respect to the total momentum axis.
Divergences in the amplitude are {up to logarithma} of the form dk,/k,. Hence,
any contribution to the amplitude which is not independent of azimuthal angle
will be finite as k, + 0. Thua the divergent parta of amplitudes for collinear
producticn of particles are azimuthally-symmetrical, ao that (with our preacrip-
tion) the gx take on the same value for this configuration as when a single
particle is produced in place of several collinear ones. Hence it appears
that the moments of the Ei should be infrared stable when computed in QCD
perturbation theory.

Congider now an event in which three partoms are produced, Then the
angular distribution of the plane defined by their momenta with respect to
the beam axis will be characterized by E:'zlig or 51’2/§§. In actual events,

where the final state consists of hadrons, the values of these ratios will
(e
Tk
provide a method for determining the angular distributions of planes of par-

approach the free quark and gluon results as vs increases. The therefore

ticles with respect to the beam direction without requiring the plane to be

found by minimizing an observable [37], which might well induce spurlous effects,

(=)
k

The E°, give the moments of the angular distributions of planes just as the

BL described in Ref. 2 describe the angular distributione of jets.

=5.11~

The angular distributions of planes in general depend both on their polar
(8) and azimuthal (¢) angles with respect to the beam direction. The polar
and azimuthal dependences can, of course, be rearranged by making differxent
choices of frame (e.g., N or P). One wmight expect that in some frame two jet
events should contribute on average only to the polar distribution., However,
while this is clearly the case for pure qa final states, it is no longer pos-
sible after fragmentation to hadrons to choose a frame in which the azimuthal
dependence vanishes. Hence both (E)i and (;)i

ticular feature of the angular distribution appears to be especially distin-~

should be considered; no par-

guished.

)}
k

x) of the angular terms (5.10) in the energy correlation function ?gt. Their

Finally we note that(g are the Legendre transforms (with respect to

relation to ?gt is, therefore, analogous to the relation of the HL to the

rotationally~averaged th.

5.4 Some Analytical Results for ﬁgt

For the proceas e+e- > qi, ?gt(x,8.¢) is only nonzero at ¥ = tl where
the "plane" given by the two detectors is undefined. We use the same azimuthally

gymmetric pregcription for defining the plane here as we described for gi at
+

sing,, = 0 in the previous sectlon, If a is the angle between the e e and

ij
qq direction, then the %(1+coszu) = %—+ %-Pz(cosa) angular distribution gives

for the parameters in ?gt defined according to eq. (5.10)

T(x) = 6(x~1) + 6(yx+L)
J(L) = J(-1) = -% (5.20)
R(L) = -R(-1) = g—.
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To estimate the modifications to our results when the q and q fragment
into hadrons, we would usually simulate complete hadronic events. We do this
in the next section but present here a simple estimate for the effects of
fragmentation on J(x) and K{x) which agrees closely with the results from the
more complicated model, Our simple estimate is obtained by assuming that ?z(x)
away from ¥ = 11 1s dominated by a complete jet entering one detector and a
single hadron from the other jet being incident on the second detector. The
firgt jet then has an angular distribution (1 + coszu) with respect to the
beam direction, while we take the single hadron to he distributed uniformly
in azimuth about the direction of the jet from which it came. This picture

leads to the simple predictions

. -1
Jq& fragmenta:ion(x) T4
(5.21)
K.+ o =3 X
qq fragmentation 8
which are in remarkably good agreement with the full Monte Carlo simulation
of qq fragmentation shown in Figs. 5.1 and 5.2, Of course, this simple pilcture

predicts only the angular corvelations J,K{x) and not the overall normalization

T(x).

For efe” + qiG, the Function T(y) = <th(x)> is given in (A.5). One can
also calculate J(x) and K{x) in the free quark and gluon approximation to find

(at 0(“5))

~5.13-
=T =~ ()
- 49396
quG(X)anc(X) = A + Cjﬁ(l-x)
Zas 1 2
Toge(0%qe(0 = 55— (4(5x™+8x+5) Log ((1+x)/2) (5.22)

(+x) (1-x)°

+

(0-1) 0 =76 =16%-14)) + € 5(1-)

where the coefficients of the delta functions are, as ugual, Infrared divergent

constants, For ele =+ ¢ - GGG, one also finds

Jeeet0 = = E (5.23)

while ¥(x) for this case can be calculated using the results of Ref, [38].
The analytical results for e+e- + qqG and [ + GGG are shown 1in Figs. 5.1 and
5.2 for both J(x) and K(x). The result J{x) = - % is a surprisingly common
one (see eqs. 5.20, 21, 22 and 23)}. We know of no simple explanation for this
(see Appendix B); it appears to be 'accidental'. An isotroplc (phase gpace)
model would, of course, give zers for J(x) and so the common nonzero value
of J(x) for the low order QCD processes in e+e- annihilation should provide
a useful method of identifying them,

Inzpection of eq. (5.22) reveals that (ignoring delta function terms)
both J(x) and K(x) tend to the values given in eq. (5,20) for the pure e+e- + qq
process {with our presctiption for defining the final plane) as y - t1, ‘This
supports our argument in the last section for the infrared stability of Ek;
thg equality of the qq and qq6 values for J(yx) and K(x) at y = #1 will allow
the Infrared divergences to cancel between the contributions of the two £inal
states, Remembering that the coefficient of 4(1-y) in T(x) is just CT =
2§<Ei>/a, we may form the infrared finite combinations of the coefficients

of §(1-x) in J(x) and K(x):
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2 4
-5 (CpHCL/8) = 5 (Cy=3C./8)
2 1
- 2<(£Ei/a(l’2(cosa1) -5 (5.24)
i
= -Zus/15n

where ay is the angle between particle i and the beam. The infrared finiteness
of these combinations of §{l-y) terms on their own occurs only at O(us). In

higher orders, only the complete moments <§i
atate configuratiens will be infraved finite. It 1s amuaing that the result

> lontegrated over all possible final

I = - 71; for eTe” » qq6 18 only violated in the coefficient of §(1-x) to 0fa ).

5.5 Some Results on ?gt and its Moments Ei for Hadronic Events

The observables J(x) = <Pz(coaau)> and K{y) = <sin29Ncos(2¢“)> introduced
in Sec. 5.3 are shown 1in Figs. 5.1 and 5.2 ag a function of y for events of
several types, both in the free quark and gluon approximation, and for simu-
lated hadronic final states. J(x) and K(x) completely specify the dependence of
?gt on the orientation of the two detectors with respect to the beam direction.
The most striking feature of the curves in Figs. 5,1 and 5.2 1s the similaricy
between results from the different QCD processes, An isotropic model with
J(x) = K(x) = 0 would be easy to distinguish from the QCD reactions. These
figures also confirm that our simple model for qq fragmentation teproduces
rather well the hadron final state angular functions given by the full Monte
Carlo calculation. The effects of hadron fragmentation are minor except for
the GGG finai atate and even there the hadron final states ghow beam correla-
tions very different from the lsotropic case.

In Tables 1 through 3, we give the mean values of the moments defined

in Sec. 5.3, These are infrared stable and probably preferable to J(x) and XK(x)
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discusged above, The latter have particular problems near X = 1 which are
properly averaged in cthe moments. The tables give <E:>, <Z’> and % <E°> =

k k
;> - <5§>. gﬁ is the simplest moment and provides the cleanest tests of

<E
the theory with the smallest effects from hadron fragmentation. In fact, the
effects of hadron fragmentation appear to be less severe in EZ than in the
analogous single energy correlation in 52 discussed in [2]. We currently
consider 52.2 as the best way of measuring beam angular dependence of the
energy distribution of e+e- annihilation final states. <§i> has a weighting
function P3(cusx) that 18 odd in ¥ and so is useful for investigating K{y),
witich is predicted to be approximately odd in ¥. Thus <§g> and <Eg> should
always be small while <gg> provides a measure of the absolute magnitude of
¥. We have not discussed the simplest odd function <§i> because of its sen-
sitivity to missing particles in incomplete final states observed experimen~
tally (recall that <gi> = <H;> vanishes because of momentum conservation).
Finally the tables show % <5;>, which is the simplest example of a moment
observable with an explicit sinzx guppression of the x = 1 regions,

Tables 1 and 2 also show resulta with an H2 cut < 0.35 (applied to the
final hadrons) which selects "true" 3 iet events. The fact that these results

are similar to those withour the H2 cut 13 an indication that the beam corre-

lations do not depend importantly om the 'shapes' of the events.
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£

Table 1: The Beam Moments <§;> for ete” + q7 at /& = 20 GeV [F5.3], Table 2: The Beam Moments <§k> for ete” » qq(G} at vs = 20 Ge¥ {F5.3}.

2 = 0,2
2= 0,2 E=0: <20 2= 3 <§i> <§:'§E>
L= 0 <§;> ¢ = 3 <§i> <§K - §12(> -

<E">, Hadrons 1 0.072 .36
<E§>, Hadrons 1 0.032 0.27

<E°>, FQGA 1 0.073 0,15
<s§>. PQCA 1 0 0
. <z(’;>, Hadrons W 0.09 0.018 0.067
< >, Hadrons 0.001 e

o * uzluo < 3 0.35

<El>, FoGA . 0,028 0.015 0.02
t§:>, FQGA 0.35 0

<E}>, Hadrons - 044 - L0027 - .015
<Ei>, Hadrons -0,047 -0.001 «0.013

<z%>, Fooa - 048 - .0027 - .0076
<si>, FQGA -0.05 0 0

<zi‘>, Hadrons - 0031 - .0007 - 0024
- H2/}1° <
<g3>, Hadrons 0.0004 0.06 -0.001

<E}>, FQaA 0.35 - .0014 - .0006 - L0012
<§’2'>, FQGA 0 0.1 0

<s;>, Hadrons .0007 .049 - .002

<E>, FQGA ,0008 .080 - ,0003

<§2>, Hadrons Hzlﬂo < 00022 L0011 - 0002

<E3>, FQGA 0.35 .00025 .00040 .00001
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Table 3: The Beam Moments <§i> for e+e_ + I + GGG at Y8 = 10 GeV [F5.3]. Section 5 - Footnotes
F3.1 For heavy meson pair production near threshold, the spinless nature of
the mesons prevents any sngular dependence of energy correlations, but for

spin - % heavy lepton pair production, there should be a definite non-trivial

Lo 0,2: angular dependence.
zo . cnd 0 _ 22
L= 0: 7 L= 3 b T T F5.2 6" = -9, ¢' = ~p relates this to previous deascription. In {5.9) one can
- uge either choice as allowed transformation functions are independent of a
<E°>, Hadrons 1 0.19 0.69
sign change for 0 and ¢.
<z, Pqoa 1 0.22 0.38
F5.3 As usual, when not all the energy in the events is included in the cal-
-4 _ _
<E,>, Hadrons - J0L4 - .0017 -00%3 culation of the <Et>, the value in each event is divided by Ho{2]. FQea
- denotes the perturbative QCD calculation of the free quark and gluon final
<gi>, FQGA - 04 .0003 - .019 P ¢ 4 8
state.,
<2}>, Hadrons 0.0008 .0061 - L0021
<E}>, PQGA 0.008 .022 0
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Section 5 - Pigure Captions

5.1 The beam angular correlation J{x)/5 = <P2(cossu)> defined in eq. (5.10)
for the processes e+e- + qq, e+e— + qq(G) and [ + GGG, in the free quark and
gluon approximation (‘'idealized calculation') and for simulated hadronic final
states. We also show results for e+e— + qq events obtained from the simple
fragmentation model described in Sec. 5.4. There is a severe nonuniformicy
in the curves near y = +l, as discussed at the end of Sec. 5.4 (c.f,, eq.

(5.22)), The figures do not attempt to illustrate this phenomenon correctly.

5.2 The second independent beam angular correlation 4K(x)/15 = <sin28Nc052¢N>
for the same processes as glven in Fig. 5.1, For both J(x) and K(x), the
subscript N on the angles denotes the use of the frame where the z axis is

perpendicular to plane defined by the two particles,
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6. Three-Detector Energy Correlations

6.1 Fy, a3 a Test for Planar Structure

In this section we conaider the three-detector energy correlation, defined

by

I AATEN
191] %2 193] /)3

?5(01, %y, 03) (6.1)
where detector { has area Ioi| on which & total momentum !Bil is incident.

We shall consider only the functiom FS(GI’ 9y 03) obtained by averaging over

all positions of the detectors that maintain their relative orientation. Thus

we ignore the correlations with the beam direction that were treated in Sec, 5
for the two detector case, The main purpose in considering three detector
correlations is to find tests for planar momentum configurations, Two particle
final states contribute to the two detector energy correlation function only
when the angle between the two detectors is near 180°. On the other hand,

three particle final states, as from e+e- + 996 or e+e“ + ¢ -+ GGG, have no such
simple signatures in the two detector case, However, the momenta in a three par-
ticle final state lie in a plane and hence the three detector energy correlation
vanishes for such events unless the detectors themselves are nearly coplanar.

In order to extract the most demanding test of coplanarity, we define Fy, as

the value of the rotationally averaged F3(al, Ty» 53) when all the three de-
tector directions are mutually orthogonal, We take the three detectors to

be circular and of equal angular radius cos_l(d). The normalization of F3
ig such that it has the value one for isotrepic events. Thus the value of

F3, is zero for idealized three jet events and one for 1socropic events. Hence
4 measurement of <F4 > provides a method for distinguishing thess two event

sStructures. Of course, the naive prediction that <Fq;>» = 0 for three-jet
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events 1s only true at infinite energy, where there are neither perturbative
nor hadvonic corrections. At finite energies which are sufficlently large
that fragmentation is unimportanct, one may eatimate that <Fq,> = la: + O(ag)
for e'e” + q3(6G...), while for & + GGA(GG...), <F3,> = Aag + 0. (anal-
ogous results hold for <n1>.) There are indications that X and X' are of order
one. Note that the decay g + GGGG (which gives rise to non-coplanar final
states) where [ is, ag above, a 351 Qﬁ state, is not forbidden by symmetry

(as would the corresponding positronium decay) because the gluons can be anti-
symmetric in color. Hence, one expects that, at values of ¥s for which frag-
mentation is unimportamt, <Fj,> should be larger an resonances than in the
continuum by a factor of order l/aa. For lower vs, the hadronization of the
final state will modify perturbative predictions for <F4,>, and one must make
a model to study the size of the changes., We consider the particular question
of to what extent a measurement of <P3,> enables one to test for 3 jet decay
of the T and possible higher mass heavy quark bound states., In our calcula-
tions of the effects of fragmentation, we ignore the perturbative O(Gs) or
O(a:) corrections to the result <F3,> = 0 for two and three jet events. We
compare only mechanisma that lead to the same single hadron momentum distri-
butions. We found (3] two models that gave the same z distributions as ete”

+ § * GGG. The first was obtained by construction; we generated hadrons from

genuine'; -+ GGG events and then randomly rotated each hadron in the final state.

We term this model 'isotropic.' For the second model, we noted that e+e— - M,
where each meson M decays into 3 jets (cf. Sec, 4.3), happens to give essen-
tially the same single hadron momentum distributfon as e+e_ + L » GGG. This
'6 jet' model is, of course, not isotropic but it is certainly more so than
would be expected from a GGG final state. 1In Fig. 6.1 we plot <Fj,> as a func-

tn of vs for these three types of events. The GGG final state 1s easily

-6.3~

distinguished, even at the T mass, from the mote isotropic mechanisma. Of
course, the discrimination improves as vs increases,

Although <Fy,> appears to be a very useful experimental observable, we
should point out that it is not trivial to calculate. We found no simple
analogue of the eq. (4.1) for the two detector case, Thus we calculated <Fq,>
by doing the angular average (integral) in its definition by a simple Monte
Carlo technique. Note that this integral has to be done separately for each
event .,

We have chesen te emphasize one particular angular conflguration for the
three detectors: the case where they are mutually perpendicular. One can,
of course, consider other angular separations but we do not believe they will

lead to gualitatively different results,

6.2 Moments of Three-Detector Energy Corrxelations

The twe jet form for the Hl:
<HZ> =0 £ odd

(6.2)

<H,> = 1 2 even

is a moment analogue of the result for the two detector energy correlation:
pt
ForQ) = 8(1=x) + §(L+x) (6.3)

It 1s natural to ask if there is a moment analogue for the prediccion
that the three detector correlation function th 18 zero for three particle final
states unleas the detectors are coplanar, In Ref. 3, we showed that thare
were such moment analogues but did net discuss their relation to Fpt. We

defined two classes of moments that vanished for planar events:
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Bl el . L.
L -1--13-E- (py xp 'pk)zs(pi.p aPy)
Lik @) s !

LI (6.4)
L M(ﬁ x By BOAG 4, ,8,)
A 1,9.% (J§)3 i ik E LS Rl A
where the functiona § and A are respectively symmetric and antisymmetrice poly-
nomials in the scalar producta of the unit vectors 61 in the directions of
the particles 1. The simplest example of the T class of observables has § = ]
and was denoted “1’ while the simplest non-trivial member of the ¥ class (de—
noted by ¥,) has A = [(51-5k)2c§k-aj) + (5j-ﬁ1)2(§1‘§k) + (ﬁk-ﬁj)z(ﬁj-ﬁi) -
(61.6j)2(ﬁj.§k) - (ﬁk‘ﬁi)z(ﬁi'ﬁj) - (ﬁj'ﬁk)z(ﬁk-ﬁi)]. It is clear from our
previous arguments that the moments of ns and TA are infrared stable when
computed in QCD perturbation theory. As discussed in Ref. 3, we found Hl to
be the most useful observable in that it offered the greatest discrimination
between 3 jet and igotropic processes at the T mass. In Fig, 6.2 we show <Hl>
as a function of ¥3 for the three processes discussed in the previous subsec-
tion., There are again reasonably large differences between the results for
e+e- + § + GGG events and for our models with faotropic % decay. However,
comparison of Figs. 6.1 and §.2 ghows that <F4,> 1s somewhat better than T, >
at distinguishing the processes. Hl does have two advantages, however: Ffirat,
it is much easier to calculate than <Fq,>, and further it 1s not only poasible
to find easily the mean <M;> but 2lso the distribution 1l/e do/dnl. The latter
provides additional discrimination as discussed in Ref. 3.
s and YA to th;
the analogue to the result that the HL are the Legendre moments of th. We

We now describe the relatfonship of the observables I

specialize to the idealized cagse of point detectors and write th in the rather

formal manner

-6.5=-

pt -~ - -~ » AN ~a A A
Fy 31,045,805 = 8n [ dd PRy, )0 (A8, )0 (A0 ,) . {6.5)

Here {i and ﬁdk(k = 1,2,3) are elements of the rotation group. {I runs over

all rotations (labeled by 3 Euler angles so that | aff = 812) while ﬁd is

k
defined so that the direction of detector k is given by ﬁdka where z 1s unit
vector in the z direction, We have written (6.53) For the case of a continuous

energy density o normalized to unlty when Integrated over independent values

of its argument (l.e., dropping the redundant azimuthal integral in dfi}, so

that
faf oy = 20 (6.6)

and p = l/4w for an isotropic event, Of course, for a particle avent {6,5)
is valid with p as a sum of delta functions at the angles of the various par-~

ticles. We now define the multipole moments A? ag in Refa. 2 and 3;

m_ 1 A I PP
Ay = 5= [ ab p (YL () (6.7)
or conversely
~ m f29+1 &
o () ﬁ[mal T DL () (6.8)
E]

where D;m, are the conventional rotation matrices which can be written as
0% (8) = exp(-imp)dt (8) (6.,9)
= mo v

vwhere d - ﬁz(¢)ﬁy(9)ﬁz(¢) . (6.10)
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is expressed as a product of rotations about the ¥ and z axes,
Substituting (6.8) into (6.5), we use the addition theorem for the D

matrices to find

L b Lt
| at Py o (DD

a A rs 2
FRr L L) - '
3 “a1M32 M3 Ry L

Wald

(6.11)

o o, om £ L £, 20, 4+1) (22,+41) (22,41)
(nd3) = .

1, 2, 3.1 ,4 2 ,a 3
A,CACALTD T (a,,)D T (G,,)D
11 12 ta m 0 dl m,0 d2 1,0

Defining the rotationally invariant three detector moments T£ a1 by
17273

zll £ mlmzm3 | T T )

2, 8,0 m, m, m
T - un¥? g ( 112 J)A 23 (6.12)
273 o, moM, 17273

the integral a6 may be expressed in terms of 3-j symbols {39] so that

22,8, L84, .
j o l23 123G

Ly hoty

pros A A P .
Fa (“dl’ndz 'nd3) dl’ndz’ndﬂ) (6.13)

where

Elﬁzl

3 A A a -
A (9d1,9d2.0d3) /(22;+1)(212+1)(223+1)

(6.14)
3 )

2 £ 3
17273 1,2 2 4 3 a4
(n m, m-) m. o(ﬂdl)Dm o(ndZ)Dm o(ﬂd3)'
mlmzm3 17273 1 2 3

A 1s a function of general mathematical Interest, It is a rotationally invari-

ant function of three directicns. This invariance can be expressed as

-6.7-

[ 3 78 ) LoR,0
17273 ~0 ax e 1%2%3 ,~
(Rﬂdl,Rndz,Rﬂd3) = A

A <.
(47 00,5,845) (6.15)

for any rotation R. A is the three-direction analogue of the two-direction

rotationally-invariant function P (ﬁ-lﬁ )+ Of course, the H, are the two
4 48 £7d1 a2 )

2
17273 and th can be expressed in terms of H, and
2.4 2 L.R.8

Pk(ﬁ;iﬁdz) in analogy to (6.13). 1f any & value is zero, A 1z and T 172%3

direction analogues of T

A-l)\
reduce to Pi(ﬂdlﬂdZ) and Hz, respectively,
Note that if nl + 12 + £3 is even, then T and A are real and invariant

under any permutation of indices {k] in the %, and ﬁdk' On the other hand,

1f Lo+ 12 + ma is odd, then both T and A are purely imaginary and permutations
of {k} multiply them by the signature of the permutation.
This fact leads to our first teat for plames. If in a planar event we

cheose the X and 2z axes to be in the plane, then the A" are manifestly purely
L, 2,0 [

real and hence all T 17273 are real. Therefore, T 1z=

vanishes for planar

events 1f Ll +t 4, + 13 is odd. The simplest nontrivial constraint corresponds

to T234 = (0 and one can easily show that

8 34
v, = & ma??. (6.15)

1

2.R,2
The equivalence between ¥~like testz (in sense of (6.4)) and Im{T 172 3;
Ltaty

£1+£2+L3 odd) is complete., Neote that both TA and Im(T ) are pseudoscalars

(i.e., change sign on reveraal of all the particle momenta) while N_ and

s
f1tahy

Re(T ) are scalars. %
We now show how to obtain observables of the NI type from our new formaliam,
We first choose a particular configuration for the three detectors with detec-

tor 1 along the z axis and detector 2 in the x2 plane:
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D

dl
gy = ﬁy(ez) (6.17)
gy ® ﬁzws)ﬁv(ea).

This makes the degrees of freedom of A manifest but loses the elegant

symmetry of the original form 6.14). We can now express th as a Fourier

series in the azimuthal variable ¢3:

F3E(0,,05,0,) = [ 17(5,,0,)exp (10,)
m

(6.18)
=z} (Rer)cosm¢3 -2 (Imrm)ainm¢3
m=0 >0
where
a : hitaty
18,0, = ] 22,40 Qa0 EntD) 1
. )
17273 (6.19)
2,02, % £ L
17273 2 3
(o m —m) dmo(GZ)d-mo(eB)'

For a planar event, th is proportional to a delta function at ¢3 =0,

and inverting the Fourier series (6.18) this implies
o™ =0 (m integer) (6.20)

1
Rel™ = Rar® {m,m' Integer). (6.21)

-6.9=-

% 9 X
The result (6.20) is just the vanishing of Im(T 172 3) for planar events

that we have already discussed. Some of the information in (6.21) can be
turned into new moment constraints that are squivalent to HS =0 in (6.4).

Consider the relation
Rel 1 = Rer B, > (6.22)

where n, and m, differ by an even integer. Multiply both aldes of (6.22) by

3 £

d 2 (92)d 3 (0,) and integrate d(cosé,)d{cosd. ), Using the orthogonality

®,0 -m;0 3 2 3 0.2.8

of the d matrices, we pick up a finite linear combination of T 17273 (22, LS

£, .

fixed, Ll varies) on the left hand side. Now we can express dmzo(ez) as a
L 1

linear combination of d 2 (8,) with &) < 2, and slmilarly for &£.. (Here we
m,0 2 2 2 3

use our cholce that my and m, differ by an even integer.,) It follows that the

| 2 7 4

right hand side is also a finite linear combination of T 17273 observables
| )

and hence (6.22) gives rise to a set of finite relations between ReT 17273

for planar events. These relations may be translated into constraints of the

form [1S = 0. For example, the simplest observable nl is obtained from the

relation Re?2 = Rel® on multiplying through by d§0(82)d320(63) and integrating.

Reference 3 gilves some of the simpler 01 observables found in this way as linear

22,2
combinations of the T 172 3.
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Section & - Figure Captiona

6.1 The mean enargy correlation <F3,> between three orthogonal detectors with
angular radii cos-1(0.95) == 18", as a funetion of v/8, for three clasaes of
processes discusaed in the text. At infinice energy, coplanar events such
as [ + GGG give <Fj,> = 0, while a completely isotropic diseribution of energy
in the final state gives <Fj,> = 1. '6 jet' final states give <F3,> = 0,2

as J;‘*“.

6.2 The mean coplanarity parameter <n1> defined in Sec. 6.2 as a function

of a. At infinite /3, 7 + GGG gives <> = 0, isotropic events <I,> = 2/9

1

and '6 jet' ones <I,> =~ 0.07,

1
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Appendix A: Apalytical Results for Mean Two-detector Energy Correlationa in

the Free Quark and Gluon Approximation

In this appendix, we give the <Pgt(x)> Eor various processes in the frea

quark and gluon approximetion, The <?2(x,6)> for detectors of nonezero area
can be obtained by smearing <Pgt(x)> using the formula (4,10},

All e+e— + qq events give
00 = (8Q-x) + str0]. (a.1)

t
Three-particle final states give rise to a distribution of forms for Fg {x).

2
Taking the fractional energies of the particles to be x, = ——£, <Fpt(x)> ba-

‘ i J; 2
comad
oo = T L a0 |y
2 151 2 o A [ Rk I dxidxj acos¢ij 174
Re (A.2)

+ % <£x§>5(l-x),

where ;3 ia determined by requiring that the angle ¢ij bhetween parcicles i

and j satisfles cos@ij = ¥, Ll.e.,

2(1-x,)
i
e A3
3T TR D 4.3
The Jacobian ig, therefore, simply
| axj l . 2)(1(]."}!1) @8
costyy | fae, (1))

Then, dropplag the infrared divergent part of <th(x)> at x = 1 coming from

-A.2-

the case { = j and given in eq. (3.7), one finds that for e'e - 946,

l6a
<F§t(x)> -t (2 {ﬁ(x2+4x+1)log(l—;x)

T e
(A.5)
+ 3(1-x) (143x)].
flence, for example
ot 32(3-41032)03
<F2 {0)> = 3y =0.77 a. (A.6)

The forms for <F§t(x)> close to x = tl are given in eqs. (3.4) and {3.5).

The form (A.6) is essentially indistinguishable from that of <F2(x,6)> in the
free quark and gluon approximation when & = 0,95, shown in Fig. 4.2, Of course,
the true form of <th(x)> eontains a term proportional to §(L-y) with a diver-
gent coefficlent, whereas in <F2(x,6)> this divergence is smeared out. Note
that the result (A.5) 1s obtained by integrating over all possible qqG final

states, with no cut on Hz. En our prescriptien for treating hadroniec final

cut
P
= 0.8 18 qualitatively aimilar to the result

states, we only consider qgG final states which have H2 < H The form of

<th(x)> for e+e— + an when H;ut
(A.5) (H;ut = 1}, but there is a slight suppression near X = t3,

On several occasions, we approximate <th(x)> for e+e- -+ an by the value

obtained by performing the sum (4.2) only over the q and ¢ and neglecting con-

tributions from the gluon. In this case,

8a
FE0> = ot ——te—— (20 (3y#5) 1og (L)
3(x-1)° (14

(.7
+ (x-1) (x*-14x-83) )



“A, 3

80 that

8(1201032-—83)0s

pt
<F5 (0)> = 37 =~ 0.05 a. (A.8)

This L3 much smaller than the result (A.6) for the complete qq¢ final state

since the q and q are rarely at 90°., Near x = -1, (A.7) becomes

- Lix
S R e AP B (4.9)
n (1+y) 3(1+y) rerrd

Note that while the leading term here is the same as in (3.4) for the complete
case, the subleading terms differ., For y = +1, <th(x)> calculated using only

the q and E has no divergence and its regular part tends simply to Gs/30ﬂ.

2

The proceas § - GGG at lowest order (36) in g" gilves

-1
<HBx)> = (B L (s A? (2K
2 xi-g (1-}1)3 2
2 Ly,
= Ox“+axt3)leg (<37 + (1-x){(2x-5)} (A.10)

2
+ (lgﬂizéélis(l-x),
2(n"-9)

vwhere the last term comes from events in which the same particle passes through

both detectors. At ¥ = 0 one finds
<HPF(0)> = () (5(log2-1) + 1) =~ 0,252, (A.11)
=9

Near x = -1, {A.10) becomes

A4~

- -——%—-— [103(%11) +7 +...], (A.12)
2{n"-9)

while at X = +1, the regular part of (A.10) tends to l/(lO(ﬂ2-9)) ~ 0,114,
All these results are very similar to those for a three particle final state
generated uniformly in phase space as discussed in Sec. 2.6. Once again,
the mean <F2(x,6)> with § = 0,95 given In Fig. 4.2 for the free quark and gluon
approximation is essentially identical to the form in eq. (A.7), except near
x = 1.

In [2]) we discussed various posaible mechanisms for the production and
weak decay of heavy quark pairs near threshold. Two of these (Q » ¢'G and
Qas > q'ae) gave rigse to events containing four jets of equal energy in two
collinear pairs. If the angle between these pairs of jets in a particular

event 1s §, then the energy correlation function for this event will be
PE(x) = 3 [80-1) + 8(1h0) + E(x-cosE) + 6 (xheost) ] (4.13)
giving immediately

Hg = % (Pz(casg) + 1) {2 evan)

(A.14)
=0 (% odd).
Averaging over all values of ¢osf, one obtains
FBE00> = 3 [6(l-g) + 840 + 1],
(a.15)

pt =1
<F2 (0)> 3
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Three-body heavy quark decays were also considered in [2]. With this

decay scheme, QQ production and decay glves

B8 x> = 2+ B (601 (PH33x P17 195) 1og (1%
2 2t 2
(A.16)
3 2 11
+ (L=x) (25 +401x"° + 1163x+811)} + Tl S{1-v),
80 that
<5 (0)> = %+ 8(811-117010g2) = 0.642. (A.LD)

At x = -1, (A,16) becomes 7/2, while the regular part goea to 19/35 as x + +1.

Note the absence of a log(l+y) divergence as x + -1,
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Appendix B: 2 + sinzﬂH Forever?

A remarkable feature of the results presented in Sec. 4.2 was that four
distinct processes gave a 2 + sinzeN distribution for the angle BN between
the incoming beam direction and the normal to the plane defined by the (three-
parricle) final state: ete” + qqG, efa™ » c(3sl) + 6ge, ete” o qq¢, where
¢ is a scalar 'gluon' and e+eq + qq, where the plane in this case is taken
to have a uniform distribution about the qq direction. One may wonder whether
this common 2 + sin29N dependence 1s accidental or has some fundamental sig-
nificance, As we wlll now describe, our tentative conclusion is that it is
largely accidental.

The formalism of Sec. 3.2 shows that a 2 + sinzﬂN distribution has a simple
interpretation in terms of the amplitudes EA for virtual photons of helicity
A to decay to a given final state configuration. We work in the virtual rhoton
rest frame and quantize the photon spin aloug the normal to the plane defined
by the final state particles. Then the condition for a 2 + ain?'eN angular
distribution is

le 12 = Jeg )+ Jx )2 (8.1)

This may also be expressed as a constraint on the photon polarization amplitude
A . TIf z is the normal to the final state plane, and the x and ¥y are axes in the

u

plane, then (B.l) may be rewritten as
2 2 2
lag 1™ = [a ™ + o |” (B.2)

Note that gauge invariance for a photen at rest implies
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2
[a|* = 0. (8.3)

We firat discuss the origin of the 2 + sin26N behavior in the process
e+e~ + q4G. As mentioned in Sec, 4,3, this angular distribution ia easy te
underatand in the infrared limit where the virtual quark 1is nearly on shell.
Here, the gluon will be distributed uniformly in azimuth about the qq direction,
while the q and § will have a 1 + c0328 angular distribution with respect to
the beam direction. In this limit, therefore, e'e -+ qq¢ behaves like e'e” + qa

with random plane orientation, and the 2 + sinze form follows directly, The

N
same result holds for scalar gluons. Unfortunately, these arguments cannot
be extended away from the infrared region where the q and g no longer have
al+ ¢0829 angular distribution, In Feynman gauge, one finds that for each
of the two diagrams contributing to e'e  + qq€,

!2

2 2
a 1% = 1agl? + 1A ? - 1A

ok (B.4)

However, only in the sum of the diagrama does the |A°|2 term cancel so that
the requirement {B.2) 1s satisfied. The fact that all diagrams mustc be Included

(at least in Feynman gauge) in order to obtain a 2 + sin28 angular diatribu-

N
tion for e+e- + qq(C) suggeats that its appearance there 1s somewhat 'acciden-
tal’,

For e+e- + ¢ + GGG, the aituation is even more mysterious. In this case,
two heavy quarks annihilate at reat leaving no hint of a 1 + coaze beam dig-
tribution which might be transmuted into a 2 + sin29N plane angular diecri-

bution. In faet, one can easily show that the 2 + sinza obtained for 7 decay

N
to spin 1 gluons does net hold for spin O gluons. For acalar gluons, Eo = 0,

while for pseudoscalar ones, E1 = E_l = 0.

-B,3-

We conclude that we are unable to find a fundamental explanation for the

widespread 2 + sinZB“ behavior, Perhaps the reader can,
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Appendix C: ‘'Scalar QCD'

In assessing to what extent various measurements constitute tests of QCD,
it is convenient to compare QCD predictions for them with results obtainad
from other theories., In this appendix, we give the forms for some of the
results discuesed in this paper which would follow from a theory in which the
gluons (§) are colored scalars., Thia theory has many fundamental differences
from QCD. 1In particular, the effective qq¢ coupling A does not tend logarithm-
ically to zero as a increases but rather goes to a constant value as a power
of a. Nevertheless, this behavior i{s not yet ruled out by deep inelastic

scattering meagurements, The y* -+ qa¢ differential cross-section is

2
x
do A 3
Tx dx, " 3w W=y €.n

Note that this exhibits collinear but not soft infrared divergences. Adding
in the one-loop corrections to y* - qa, one finds that for scalar QCD, the
ete” rotal cross-section is [FC,1]

A

g = oo(l + Em LIS (C.2)

From eq. (C.1) one finds that for ete s qq(9):

A 2,
Wp> =1~ @lezn?) =1 - 0,132 (€.3
Hy> = ?-g-"‘- (772-69) =~ 0.19 A, (C.4)

while for eTe” + qq{G) [2}:

-G.2-
2“9 2
<Hy> = 1= o= (4n°-33) ~ 1 - 1.4 a (¢.5)
Zas 2
<H3> i (1980=-200n") =~ 0.43 a . (C.8)
For e'e” + qqd:
2)
<th(x)> =3y -——+—— [8(1+x)(2x2+1sx+19)1og(1—‘2”x)
(x-1)" (L+x)
<.
+ (L) (47x24160x+105) | + €& (1),
pt 2k
<F, (0)> = 5y (15210g2-105) = 0.076 1. (C.8)

The corresponding results for e+e- + qqG are given in Appendix A. Equations
(C.3) through (C,8) indicate that, for a given value of the coupling constant,
gcalar QCD predicts that continuum e+e_ annihilation events should be closer
to the two-jet limit than is expected from QCD,

Near y = -1, the <th(x)> given in {C.7) becomes

N 1 6log(l%x)-25
L + + .. ¢.9)
T (T 5 :

while around x = +1, the regular part goes like

A 1 ?
w o fw ) (c.10)
Note the absence of a double logarithmic divergence in the integral of <an(x)>

cloge to ¥ = -1, This implies that the <H£> for e+e— > qﬁ(@) depend on log(l)

for large %, rather than 1032(2), as in QCD, The <H£>,at large % for the
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procesa efe” » qa(¢¢....) behave like k-al when summed to all orders in X,

Appendix C - Footnote
—baalogl

in contrast to the result ~ % found im QCD. FC.1 For colored scalar quarks, but vector gluons, this result becomes

42
o ao(l + . + .00
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